SSRNet: A Two-branch Real-time Semantic Segmentation Network for Road Scenes

Konferenz: ICMLCA 2021 - 2nd International Conference on Machine Learning and Computer Application
17.12.2021 - 19.12.2021 in Shenyang, China

Tagungsband: ICMLCA 2021

Seiten: 5Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Shao, Huiwei; Zhao, Ji (School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China)

Inhalt:
Semantic segmentation, one of the fundamental tasks in computer vision, requires classification for each pixel in an image, and thus semantic segmentation is time-consuming. With the rise of technologies such as autonomous driving, the realtime capability of semantic segmentation is becoming more and more important. In this paper, the authors propose a novel two-way real-time semantic segmentation network (SSRNet). We create an efficient feature extraction residual block using channel split and channel shuffle to balance operational efficiency with feature extraction and design a shared spatial path. To improve the segmentation performance of the model, we designed a feature fusion module with a skip connection. Evaluated on a single 1080Ti GPU, SSRNet can run at over 85 FPS and achieve 71.2% MIoU on the Cityscapes dataset.