Compensation of Torque deviation caused by magnet temperature variation for a flux based IPMSM core control

Konferenz: PCIM Europe digital days 2020 - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
07.07.2020 - 08.07.2020 in Deutschland

Tagungsband: PCIM Europe digital days 2020

Seiten: 6Sprache: EnglischTyp: PDF

Autoren:
Bertele, Felix; Ammann, Ulrich; Cheshire, Christoph; Roeser, Tobias (Esslingen University of Applied Sciences, Germany)

Inhalt:
For a low voltage IPMSM used in a hybrid drive system of a consumer car, it is of the highest importance to design a torque controller circuit that produces an accurate torque at the shaft. The accurate torque is needed to distribute the load between the combustion engine, or the manual break, and the electrical drive. As the capacitance of the batteries used in this type of car is usually very small, the control of the batteris state of charge and its output current is quite critical. Therefore, a precise torque control is elementary. Temperature changes have a large impact on the IPMSM internal parameters. Especially the permanent magnet flux and the stator resistance are affected by temperature changes. There are techniques to observe and calculate the temperature variation of these parameters. This contribution describes a method to handle the influence of temperature variation on the actual torque at the shaft, by correcting the current commands of the open loop controller.