Perfomance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis

Konferenz: ARCS 2015 - 28th International Conference on Architecture of Computing Systems
24.03.2015 - 27.03.2015 in Porto, Portugal

Tagungsband: ARCS 2015

Seiten: 6Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Sierra-Pajuelo, Fernando; Paz-Gallardo, Abel (Centro Extreme˜no de Tecnologías Avanzadas, C. Sola, 1. Trujillo, Cáceres 10200, Spain)
Plaza, Antonio (Hyperspectral Computing Laboratory, University of Extremadura, Escuela Politécnica de Cáceres, Cáceres 10004, Spain)

Inhalt:
Hyperspectral sensors acquire images with hundreds of spectral channels. These images have a lot of information in both spectral and spatial domain, and with this kind of information different research studies can be accomplished. In this work, we present several optimizations for hyperspectral image processing algorithms intended to detect targets in hyperspectral images. The hyperspectral image selected for our study was collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the World Trade Center (WTC) in New York, five days after September 11th attack. The algorithm used in our experiments is the automated target generation process (ATGP) and our optimizations comprise parallel versions of the algorithm developed using open multi-processing (OpenMP) and message passing interface (MPI). Our experiments indicate that the ATGP can be successfully implemented in parallel in multicore and cluster computing architectures.