Detection and Classification of Eavesdropping and Mechanical Vibrations in Fiber Optical Networks by Analyzing Polarization Signatures Over a Noisy Environment

Konferenz: ECOC 2024 - 50th European Conference on Optical Communication
22.09.2024-26.09.2024 in Frankfurt, Germany

Tagungsband: ITG-Fb. 317: ECOC 2024

Seiten: 4Sprache: EnglischTyp: PDF

Autoren:
Sadighi, Leyla; Karlsson, Stefan; Natalino, Carlos; Wosinska, Lena; Ruffini, Marco; Furdek, Marija

Inhalt:
We propose a machine-learning-based method to detect and classify eavesdropping and mechanical vibrations in an optical network based on state of polarization variations. Tests in two realworld installations with links of different lengths demonstrate an accuracy of 86.5% in 7 distinct normal and malicious scenarios.