Spiking Neural Network Decision Feedback Equalization

Konferenz: WSA & SCC 2023 - 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding
27.02.2023–03.03.2023 in Braunschweig, Germany

Tagungsband: ITG-Fb. 308: WSA & SCC 2023

Seiten: 6Sprache: EnglischTyp: PDF

Autoren:
Bansbach, Eike-Manuel; von Bank, Alexander; Schmalen, Laurent (Communications Engineering Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany)

Inhalt:
In the past years, artificial neural networks (ANNs) have become the de-facto standard to solve tasks in communications engineering that are difficult to solve with traditional methods. In parallel, the artificial intelligence community drives its research to biology-inspired, brain-like spiking neural networks (SNNs), which promise extremely energy-efficient computing. In this paper, we investigate the use of SNNs in the context of channel equalization for ultra-low complexity receivers. We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE). To convert real-world data into spike signals, we introduce a novel ternary encoding and compare it with traditional log-scale encoding. We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels. We highlight that mainly the conversion of the channel output to spikes introduces a minor performance penalty. The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.