Learning End-to-End Channel Coding with Diffusion Models

Konferenz: WSA & SCC 2023 - 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding
27.02.2023–03.03.2023 in Braunschweig, Germany

Tagungsband: ITG-Fb. 308: WSA & SCC 2023

Seiten: 6Sprache: EnglischTyp: PDF

Autoren:
Kim, Muah; Fritschek, Rick; Schaefer, Rafael F. (Chair of Information Theory and Machine Learning, Technical University of Dresden, Germany)

Inhalt:
It is a known problem that deep-learning-based end-to-end (E2E) channel coding systems depend on a known and differentiable channel model, due to the learning process and based on the gradient-descent optimization methods. This places the challenge to approximate or generate the channel or its derivative from samples generated by pilot signaling in realworld scenarios. Currently, there are two prevalent methods to solve this problem. One is to generate the channel via a generative adversarial network (GAN), and the other is to, in essence, approximate the gradient via reinforcement learning methods. Other methods include using score-based methods, variational autoencoders, or mutual-information-based methods. In this paper, we focus on generative models and, in particular, on a new promising method called diffusion models, which have shown a higher quality of generation in image-based tasks. We will show that diffusion models can be used in wireless E2E scenarios and that they work as good as Wasserstein GANs while having a more stable training procedure and a better generalization ability in testing.