Full-SiC Integrated Power Module based on Planar Packaging Technology for High Efficiency Power Converters in Aircraft Applications
Konferenz: CIPS 2020 - 11th International Conference on Integrated Power Electronics Systems
24.03.2020 - 26.03.2020 in Berlin, Deutschland
Tagungsband: ETG-Fb. 161: CIPS 2020
Seiten: 6Sprache: EnglischTyp: PDF
Autoren:
Raab, Oliver; Kriegel, Kai; Schulz, Martin (Siemens AG, Corporate Technology, Munich, Germany)
Guacci, Mattia; Heller, Morris; Bortis, Dominik; Kolar, Johann W. (Power Electronic Systems Laboratory, ETH Zurich, Zurich, Switzerland)
Griffo, Antonio; Wang, Jiabin (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK)
Inhalt:
Compact, light-weight, efficient and reliable power converters are fundamental for the future of More Electrical Aircraft (MEA). Core elements supporting the electrification of the aerospace industry are power modules (PMs) employing exclusively SiC MOSFETs. In order to fully exploit the high switching speeds enabled by SiC, and to address the challenges arising from the parallelization of power devices, novel PM concepts must be investigated. In this paper, highly symmetrical layouts, low inductance planar interconnection technologies, and integrated buffer capacitors are explored to realize a high efficiency, fast-switching, and reliable full-SiC PM for MEA applications. A comprehensive assessment of a number of performance metrics against state-of-the-art full-SiC PMs demonstrates the benefits of the proposed design approach and manufacturing technologies. Moreover, by integrating temperature and current sensors, intelligent functions, which are crucial for the safe application of power electronics in MEA, are added to the developed PM. In this context, the use of MOSFETs’ Temperature Sensitive Electrical Parameters for online junction temperature estimation is demonstrated, allowing for non-invasive, i.e. without the need for dedicated sensors, thermal monitoring. Additionally, a highly compact gate driver, reducing the overall system volume and complexity, is designed and integrated in the housing of the PM. Finally, switching waveforms are measured during operation of the PM at 500V and 200A, proving the performance improvement enabled by the low inductance layout, the integrated snubber, and the gate driver.