A Comparative Study of Missing Feature Imputation Techniques

Konferenz: Sprachkommunikation - Beiträge zur 10. ITG-Fachtagung
26.09.2012 - 28.09.2012 in Braunschweig, Deutschland

Tagungsband: Sprachkommunikation

Seiten: 4Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Braun, Michael; Faubel, Friedrich; Klakow, Dietrich (Spoken Language Systems, Saarland University, 66123 Saarbrücken, Germany)

Inhalt:
This study presents a performance comparison of different missing feature imputation techniques under ideal as well as realistic conditions. The particular focus is on recent techniques such as Raj’s soft-decision bounded mean imputation approach and Gemmeke’s sparse imputation. In addition to experiments with oracle masks, we evaluate the usefulness of a number of different mask estimation algorithm. This includes the neg-energy criterion and a soft version of the Max-VQ algorithm. As we gradually proceed from ideal to realistic conditions, we can investigate the sensitivity of the methods towards mismatches in the acoustic conditions as well as to errors in the mask estimates.