Multiple constrained continuous-time Markov Decision Processes with expected discounted reward criteria
Conference: CAIBDA 2022 - 2nd International Conference on Artificial Intelligence, Big Data and Algorithms
06/17/2022 - 06/19/2022 at Nanjing, China
Proceedings: CAIBDA 2022
Pages: 5Language: englishTyp: PDF
Authors:
Zhang, Lanlan; Gao, Zhuo (Department of Mathematical Teaching, Guangzhou Civil Aviation College, China)
Abstract:
Since the theory of discrete-time Markov decision processes is quite mature, in allusion to multiple constrained continuous-time Markov decision processes with expected discounted reward criteria, the criterion to be minimized is the expected discounted reward, and a given constraint vector is imposed on the expected discounted cost. Using the uniformization technique of transforming the continuous-time MDP to equivalent discrete-time MDP for the case of bounded transition rate, and the existence of a constrained optimal policy is shown.