Data mining for pedestrian movement in large-scale experiments
Conference: ISCTT 2021 - 6th International Conference on Information Science, Computer Technology and Transportation
11/26/2021 - 11/28/2021 at Xishuangbanna, China
Proceedings: ISCTT 2021
Pages: 9Language: englishTyp: PDF
Personal VDE Members are entitled to a 10% discount on this title
Authors:
Jin, Chengjie; Shi, Keda (Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing, China)
Abstract:
In order to study the essence of pedestrian flow under high densities, we organized one large-scale pedestrian flow experiment, and the extreme density as high as 9ped/m2 was reached. To get more understandings, the microscopic pedestrian data in the experiment, including velocities and trajectories, are particularly studied by data mining technology in this paper. For uni-directional flow, we introduced the typical examples of hyper-congested regime and over-congested regime. For bi-directional flow, the “temporary deadlock” before the lane formation and the loop oscillation after the lane formation are discussed. The dynamics revealed from the microscopic results can be a great help for related computer simulations.