Design of a three-phase 70 kW Current Source Inverter for Photovoltaic Applications Using a New 1.7 kV Full-SiC Voltage Bidirectional Power Module
Conference: PCIM Europe 2018 - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
06/05/2018 - 06/07/2018 at Nürnberg, Deutschland
Proceedings: PCIM Europe 2018
Pages: 8Language: englishTyp: PDF
Personal VDE Members are entitled to a 10% discount on this title
Authors:
Gabriel, Luis; Rodrigues, Alves (CEA/LITEN/Department of Solar Technologies/Photovoltaic Systems Laboratory, France & Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France)
Ferrieux, Jean-Paul (Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France)
Martin, Jeremy; Catellani, Stephane; Bier, Anthony (CEA/LITEN/Department of Solar Technologies/Photovoltaic Systems Laboratory, France)
Abstract:
Nowadays, the availability of high-voltage Silicon Carbide (SiC) devices makes possible to redesign the classical multi-stage DC-AC photovoltaic (PV) converters in order to reduce inverter complexity and costs, while improving reliability. Having this in mind, the Current Source Inverter (CSI) is proposed. In this paper, the operation of a new 1.7 kV full-SiC voltage bidirectional power module suitable for PV CSI applications is discussed. From experimental switching characterization results, the tradeoff between switching losses and EMI behavior is analyzed. Then, based on the estimation of semiconductor efficiency and thermal limits, the main design guidelines for a 70kW (60kHz) CSI are given. Furthermore, the inverter operation is discussed under two different grid voltage levels (690 Vac and 800 Vac).