A Pilot-Based Spectrum Sensing Approach Under Unknown Timing and Frequency Offset Environments
Conference: European Wireless 2011 - Sustainable Wireless Technologies
04/27/2011 - 04/29/2011 at Vienna, Austria
Proceedings: European Wireless 2011
Pages: 5Language: englishTyp: PDF
Personal VDE Members are entitled to a 10% discount on this title
Authors:
Lu, Zhengwei; Ma, Yi; Tafazolli, Rahim (CCSR, The University of Surrey, Guildford, UK)
Abstract:
A pilot-based spectrum sensing approach in the presence of unknown timing and frequency offset is proposed in this paper. Our major idea is to utilize the second order statistics of the received samples, such as autocorrelation, to avoid the frequency offset problem. Base on the property of the pilot symbols, where the different symbol blocks usually have the same pilot symbols, some nonzero terms will appear in the frequency domain. To test the proposed approach, computer simulations are carried out for the typical Orthogonal frequency-division multiplexing (OFDM) system. It is observed that the proposed approach always outperforms the classic time domain Neyman-Pearson approach at least 4dB. Moreover, the proposed approach get the same performance as the weighted linear combination based approach when the transmitted data block size is equal to 2048, while a small computational cost is keep at the same time. Therefore, it can be said that the proposed approach can achieve a good trade-off between reliability, latency and the computational cost, when the transmitted data block size of the primary system is larger than 1000.