Survey of Perturbation Approaches for Explainable ML in the Context of Flood Detection from SAR Images

Conference: EUSAR 2024 - 15th European Conference on Synthetic Aperture Radar
04/23/2024 - 04/26/2024 at Munich, Germany

Proceedings: EUSAR 2024

Pages: 6Language: englishTyp: PDF

Authors:
Schlegel, Anastasia; Hänsch, Ronny

Abstract:
Machine learning and especially deep convolutional networks (ConvNets) are increasingly being used for various image analysis tasks in Earth observation. Despite their strong performance, ConvNets are considered black boxes lacking explainability of their predictions. Methods under the umbrella term “explainable machine learning” or more “explainable AI” (XAI) aim to provide human-interpretable reasoning for why a model made a particular prediction. Amongst them, perturbation techniques explore changes in the prediction when the input is locally distorted. We investigate the influence of different parameter choices on the quality of explanations in the context of flood detection using SAR images.