Ship-Iceberg Discrimination with Convolutional Neural Networks in High Resolution SAR Images
Conference: EUSAR 2016 - 11th European Conference on Synthetic Aperture Radar
06/06/2016 - 06/09/2016 at Hamburg, Germany
Proceedings: EUSAR 2016
Pages: 4Language: englishTyp: PDF
Personal VDE Members are entitled to a 10% discount on this title
Authors:
Bentes, Carlos; Frost, Anja; Velotto, Domenico; Tings, Bjoern (German Aerospace Center (DLR), Germany)
Abstract:
The application of Synthetic Aperture Radar (SAR) for ship and iceberg monitoring is important to promote maritime safety in Arctic waters. Although the detection of ships and icebergs in SAR images is well established using adaptive threshold techniques, the discrimination between the two target classes still represents a challenge for operational scenarios. This paper proposes the application of Convolutional Neural Networks (CNN) for ship-iceberg discrimination in high resolution TerraSAR-X StripMap images. The CNN model is compared with a Support Vector Machine (SVM), and the final results indicate a superior classification performance of the proposed method.