Inhalt

NATIONALE ANMERKUNG Die Zahlen in eckigen Klammern geben die Quelle laut "Literaturhinweise" an.

		Seite
1	Anwendungsbereich	10
2	Normative Verweisungen	10
3	Begriffe	11
4	Überspannungen in Niederspannungssystemen	13
5	Blitzüberspannungen	14
5.1	Allgemeines	14
5.2	Ursprung von Blitzüberspannungen	19
5.3	Blitzüberspannungen, übertragen aus Mittelspannungssystemen	22
5.4	Überspannungen, verursacht durch einen Direkteinschlag in Niederspannungsleitungen	24
5.5	In Niederspannungssysteme induzierte Blitzüberspannungen	24
5.6	Beispiele von induzierten Überspannungen	26
5.7	Überspannungen, verursacht durch Blitzeinschläge in Gebäude oder in deren unmittelbarer Nähe	28
5.8	Zusammenfassung zu Blitzüberspannungen	32
6	Schaltüberspannungen	32
6.1	Allgemeines	32
6.2	Auslösen von Leistungsschaltern und Schaltern	36
6.3	Auslösen von Sicherungen	37
6.4	Häufigkeit von Ereignissen	38
6.5	Wechselwirkungen mit Überspannung-Schutzeinrichtungen (ÜSE)	39
6.6	Zusammenfassung zu Schaltüberspannungen	39
7	Zeitweilige Überspannungen	40
7.1	Allgemeines	40
7.2	Intensität zeitweiliger Überspannungen auf Grund von Mittelspannungs- und Niederspannungsstörungen	40
7.3	Zeitweilige Überspannungen auf Grund von Fehlern in der Niederspannungsanlage	42
7.4	Wahrscheinlichkeit von Ereignissen und Schadenshöhe	43
7.5	Zusammenfassung zu zeitweiligen Überspannungen	45
8	Überspannungen auf Grund von Wechselwirkungen zwischen Systemen	46
8.1	Allgemein	46
8.2	Wechselwirkung zwischen Stromversorgungssystem und Nachrichtensystem	46
8.3	Weitere Wechselwirkungen	47
8.4	Zusammenfassung zu Überspannungen auf Grund von Wechselwirkungen zwischen Systemen	47
9	Bemerkungen zu Überspannungen und Ausfallraten	48
9.1	Allgemein	
9.2	Auswertung von Ausfalldaten in der Praxis	48
9.3	Zusammenfassung der Bemerkungen zu Überspannungen und Ausfallraten	49
10	Überlegungen zu Systemausfällen/Betriebsmittelversagen/Bränden	50
10.1	Allgemeines	50
10.2	Vermeiden von Störbeeinflussungen beim Betrieb von Anlagen	50
10.3	Vorbeugung gegen dauerhafte Schäden	51
10.4	Kosten von überspannungsbedingten Störungen und Ausfällen	
10.5	Zusammenfassung zu Ausfällen und Versagen	53
11	Überlegungen zum Einsatz von Schutz bei Überspannung	54

44.4	Allgramainas	Seite
11.1	Allgemeines	
11.2	Konfiguration der Energieversorgung	
11.3	Arten von Anlagen	
11.4	Auftreten von Überspannungen	
11.5	Abtrennvorrichtung einer Überspannung-Schutzeinrichtung (ÜSE)	
11.6	Risikoabschätzung	56
11.7	Zusammenfassung der Betrachtungen über die Notwendigkeit von Schutz bei Überspannung	58
12	Anwendung von Schutz bei Überspannung	
12.1	Allgemeines	
12.2	Überspannung-Schutzeinrichtungen (ÜSE) für den Einsatz in Verteilungssystemen	
12.3	Grundlegende Netzcharakteristika bei der Auswahl von Überspannung-Schutzeinrichtungen	
12.0	(ÜSE)	61
12.4	Betrachtungen zum Einbau von Überspannung-Schutzeinrichtungen (ÜSE)	
12.5	Koordination zwischen Überspannung-Schutzeinrichtungen (ÜSE) und dem zu schützenden	
	Betriebsmittel	67
12.6	Zusammenfassung zur Anwendung von Überspannung-Schutzeinrichtungen (ÜSE)	69
Anhan	g A (informativ) Zusätzliche Informationen zu blitzbedingten Überspannungen	71
Anhan	g B (informativ) Schaltüberspannungen	81
Anhan	g C (informativ) Ergänzende Informationen zu zeitweiligen Überspannungen	96
Anhan	g D (informativ) Ergänzende Informationen zu Überspannungen resultierend aus	
	Wechselwirkungen zwischen unterschiedlichen Systemen (siehe Abschnitt 8)	100
Anhan	g E (informativ) Zusätzliche Informationen zur Anwendung von Überspannung- Schutzeinrichtungen (ÜSE)	106
Anhan	g F (informativ) Vermeiden von Überspannungen durch gute EMV-Praktiken bei Erdung und	
·	Verkabelung	128
Literatu	ırhinweise	131
	- Beispiele für Kopplungsmechanismen bei Blitzeinschlägen	
Bild 2 -	- Beispiele für Blitzeinschläge in einem komplexen elektrischen System	15
Bild 3 -	- Mögliche Wellenformen von Blitzströmen bei einem Einschlag in Objekte, die sich am Erdboden befinden	16
Bild 4 -	- Frequenzverteilung der Spitzenströme für drei Arten von Blitzereignissen	
	- Karte der jährlichen Gewittertage [7]	
	- Direkter Blitzeinschlag in eine Freileitung	
	- Beispiel für die ohmsche Kopplung von einer Blitzschutzanlage	
	- Typische Erdkopplungs-Mechanismen	
	- Typische Überspannungen auf einer NS-Leitung – Induziert auf Grund eines Naheinschlags	
	Beispiel für eine abgeschätzte Häufigkeit von unbeeinflussten (prospektiven), induzierten Blitzüberspannungen auf NS-Freileitungen	
Dild 11	Modell des für die Computersimulation verwendeten Verteilungssystems	
	Modell zur Berechnung der Blitzstromverteilung unter parallelen Gebäuden am Beispiel	21
biiu iz	eines TN-C-Systems	29
Bild 13	Erzeugung einer Überspannung durch Schalten eines RLC-Kreises	
	- Typische Verläufe von Schaltüberspannungen	
	Beispiel für eine hochfrequente Schaltüberspannung	
	Verteilung der Anstiegssteilheiten von Schaltüberspannungen an unterschiedlichen	
סווט וס	Standorten	35
Bild 17	Verteilung der Anstiegssteilheiten von Schaltüberspannungen	
	Anstiegssteilheit von Schaltüberspannungen und deren Scheitelwerte	
	- · · · · · · · · · · · · · · · · · · ·	

	Seite
Bild 19 – Verteilung der Dauer (Rückenhalbwertszeiten) von Schaltüberspannungen	36
Bild 20 – Beispiel für die Amplitudenverteilung von Schaltüberspannungen – gemessen in einem industriellen 230/400-V-Verteilungssystem	37
Bild 21 – Schaltüberspannung bei Kurzschlussstromunterbrechung durch eine Feinsicherung [48]	38
Bild 22 – Verteilung der relativen Wahrscheinlichkeit von Schaltüberspannungsereignissen in verschiedenen Anlagen	39
Bild 23 – PC/Modem-Verbindungen zum Stromversorgungssystem und zum Fernmelde- und informationstechnischen System	47
Bild 24 – Beispiel für die Blitzstromaufteilung auf externe Leitungen (TT-System)	63
Bild 25 – Notwendige Auswahlkriterien für eine Überspannung-Schutzeinrichtung (ÜSE)	65
Bild 26 – Auswirkung einer zusätzlichen Anschlussleitung auf die Begrenzungsspannung eines Varistors	67
Bild 27 – Grundmodell für die energetische Koordination von zwei Überspannung- Schutzeinrichtungen (ÜSE)	68
Bild A.1 – Häufigkeitsverteilung der Blitz-Spitzenströme I_{\max}	71
Bild A.2 – Häufigkeitsverteilung der Gesamt-Blitzladung $\it Q$ gesamt	72
Bild A.3 – Häufigkeitsverteilung der transienten Blitzladung $\mathcal{Q}_{\mathrm{trans}}$	72
Bild A.4 – Häufigkeitsverteilung der spezifischen Blitzenergie W/R	73
Bild A.5 – Häufigkeitsverteilung des maximalen Anstiegs des transienten Stroms $\left(\mathrm{d}i/\mathrm{d}t\right)_{max}$	73
Bild A.6 – Häufigkeitsverteilung des Stroms $(\mathrm{d}i/\mathrm{d}t)_{30/90~\%}$ von negativen Folgestoßströmen	74
Bild A.7 – Vereinfachtes Beispiel für einen Blitzeinschlag in eine Niederspannungsfreileitung	
Bild A.8 – Unbeeinflusste (prospektive) Spannungen zwischen der Netzleitung und der "echten" Erde am Einschlagpunkt (Knoten 1), am Transformator (Knoten 2) und am Neutralleiter in der Kundenanlage (Knoten 3)	75
Bild A.9 – Unbeeinflusste (prospektive) Spannungen am Knoten 3 und am Knoten 4 bezogen auf die "echte" Erde	75
Bild A.10 – Strom gegen Erde am Einschlagpunkt (Knoten 1), am Transformator (Knoten 2) und in der Verbraucheranlage (Knoten 3)	75
Bild A.11 – Verteilung der Scheitelwerte von Überspannungen, aufgezeichnet auf der Primärseite eines Mittelspannungs-/Niederspannungstransformators	76
Bild A.12 – Schaltkreis, verwendet für die statistische Berechung	77
Bild A.13 – Vergleich von gemessenen Überspannungen [51] und errechneten Überspannungen (ANASTASIA)	77
Bild A.14 – Modell zur Berechung der Blitzstromverteilung unter parallelen Gebäuden am Beispiel eines TN-C-Systems [24]	78
Bild A.15 – Blitzstromverteilung der Blitzteilströme unter den einzelnen, in Bild A.14 definierten, Pfaden	79
Bild A.16 – Modell zur Berechnung der Blitzstromverteilung unter parallelen Gebäuden (TN-C-System, Gebäude 2 ohne äußere Blitzschutzanlage und ohne Überspannung- Schutzeinrichtungen (ÜSE) am Gebäudeeintritt der Niederspannungsversorgung) [24]	7 0
Bild A.17 – Strom- und Spannungsverläufe für das Beispiel in Bild A.16	
Bild B.1 – Beispiel zur Darstellung transienter Resonanzen, verursacht durch Schalthandlungen	
Bild B.2 – Berechnete Überspannungen für die Netzknoten von Beispiel B.1	
Bild B.3 – Typische Überspannung, die beim Einschalten einer Kondensatorbatterie auftritt	
Bild B.4a – Erhöhungsbedingung	
Bild B.4b – Spannungserhöhungseffekt	84
Bild B.4 – Erhöhung einer Kondensator-Schaltüberspannung an einer räumlich entfernten Kondensatorbatterie (IEEE 1036)	84
Bild B.5 – Entstehungsprinzip von Überspannungen – erzeugt durch eine	
Kurzschlussstromabschaltung	85

	Seite
Bild B.6 – Beispiel für die Untersuchung von Schaltüberspannungen in drei Anlagenarten	87
Bild B.7 – Beispiel für Schaltüberspannungen – gemessen in einer Industrieanlage nahe der Sammelschiene	00
Bild B.8 – Häufigkeit von Überspannungsereignissen an ausgewählten Orten und Gesamtergebnis	91
Bild B.9 – Testschaltkreis und Überspannung während des Auslösens eines Leitungsschutzschalters auf Grund einer Einschaltstromüberlast	93
Bild B.10 – Beispiel für eine Überspannung auf der sekundären Sammelschiene eines 230-/440-V- Transformators, beim Auslösen von 100-A-Schmelzsicherungen in einem Abgangsschaltkreis	94
Bild B.11 – Überspannungsfaktor aufgetragen über der Zeitdauer von Schaltüberspannungen in einem Verteilungssystem – bei einem Kurzschluss in der Nähe einer Abgangssicherung	95
Bild B.12 – Überspannung in einem Verteilungssystem abhängig von der Kabellänge bei unterschiedlichen Bemessungsstromstärken der Sicherung – bei Kurzschluss an einem Kabelende	95
Bild C.1 – Zeitweilige Überspannung als Ergebnis eines Fehlers auf der Primärseite des Verteilungstransformators in einem TN-System entsprechend nordamerikanischer Ausführung	98
Bild D.1 – PC/Modem-Verbindungen zum Stromversorgungssystem und zum Nachrichtensystem	
Bild D.2 – Spannungsunterschied, der während des Stoßstroms zwischen PC/Modem auftritt	
Bild D.3 – Spannung, aufgezeichnet während eines Stoßstroms über den Referenzpunkten für einen PC/ein Modem	
Bild D.4 – Einfügen eines "Überspannung-Referenz-Ausgleichsableiter" (Surge reference equalizer) an den Eingängen eines PC/Modems	
Bild D.5 – Verringerung der Spannung zwischen den Eingängen durch einen "Überspannung- Referenz-Ausgleichsableiter" (Surge reference equalizer)	
Bild E.1 – Beispiel für Überspannung-Schutzeinrichtungen (ÜSE) (MOV1 und MOV2)	
Bild E.2 – Vergleich der <i>U/I</i> -Kennlinien von zwei MOV	
Bild E.3 – Strom- und Spannungsverläufe aufgetragen über die Zeit für zwei	
spannungsbegrenzende Überspannung-Schutzeinrichtungen (ÜSE)	107
Bild E.4 – Energieaufteilung zwischen zwei spannungsbegrenzenden Überspannung- Schutzeinrichtungen (ÜSE) aufgetragen über dem eingebrachten Stoßstrom	108
Bild E.5 – Idealisiertes Beispiel zur Darstellung von Aspekten bei der Koordination von Überspannung-Schutzeinrichtungen (ÜSE)	108
Bild E.6 – Berechnete Überspannung-Schutzeinrichtung-Spannungen und -Ströme für einen 2/20-µs-Impuls – eingekoppelt im Knotenpunkt 1	
Bild E.7 – Berechnete Überspannung-Schutzeinrichtung-Spannungen und -Ströme für einen 10/350-μs-Impuls – eingekoppelt im Knotenpunkt 2	110
Bild E.8 – Berechnete Überspannung-Schutzeinrichtung-Spannungen und -Ströme für einen 10/350-µs-Impuls – eingekoppelt im Knotenpunkt 1	111
Bild E.9 – Beispiel für die Koordination zwischen einer spannungsschaltenden Überspannung- Schutzeinrichtung (ÜSE) und einer spannungsbegrenzenden Überspannung- Schutzeinrichtung (ÜSE)	
Bild E.10 – Strom- und Spannungsverläufe für das Beispiel von Bild E.9 – Kein Ansprechen der Funkenstrecke	
Bild E.11 – Strom- und Spannungsverläufe für das Beispiel von Bild E.9 – Ansprechen der Funkenstrecke	
Bild E.12 – Spannung über Funkenstrecke U_{FS} – abhängig von unterschiedlichen Lasten	
Bild E.13 – Koordination zweier Überspannung-Schutzeinrichtungen (ÜSE) (spannungsschaltende Bauart)	
Bild E.14 – Zwei ZnO-Varistoren mit dem gleichen Nennableitstoßstrom	
Bild E.15 – Zwei ZnO-Varistoren mit unterschiedlichem Nennableitstoßstrom	
Bild E.16 – Koordinationsprinzip nach Variante I	
	•

	Seite
Bild E.17 – Koordinationsprinzip nach Variante II	
Bild E.18 – Koordinationsprinzip nach Variante III	
Bild E.19 – Koordinationsprinzip nach Variante IV	
Bild E.20 – Durchlassenergie-Methode (Let-through-energy method) mit Standardimpulsparametern	
Bild E.21 – Steilheitsfaktor für Stoßstromimpulse	124
Bild F.1 – EMV-gerechtes Gehäuse schützt elektronische Betriebsmittel gegen Gleichtaktströme übertragen durch Leitungen	
Bild F.2 – Einkopplung von Gleichtakt-Überspannung verursacht durch Schaltüberspannungen	129
Bild F.3 – Im Kontrollraum gemessene Spannungen über dem Kabel, das am anderen Ende kurzgeschlossen wurde, an der Oberseite des Transformators. Die Gleichtaktströme werden für die unterschiedlichen parallelen Erdschutzleiter (PEC) zwischen A und C gekennzeichnet	130
901011112010111101	100
Tabelle 1 – Eigenschaften und Einwirkungen von Blitzeinschlägen	15
Tabelle 2 – Statistik der signifikanten Parameter eines Blitzereignisses	18
Tabelle 3 – Unbeeinflusste Leiter-Erde-Überspannungspegel in Niederspannungsanlagen, Ereignisse pro Jahr	26
Tabelle 4 – Stromverteilung zwischen den verfügbaren Strompfaden für das Beispiel in Bild 12	
(10/350 μs, 100 kA Blitzteilstrom)	30
Tabelle 5 – Rückenhalbwertszeit von Schaltüberspannungen bei unterschiedlichen Bemessungsstromstärken von Feinsicherungen	38
Tabelle 6 – Zulässige Höchstwerte von Überspannungen, die während Erdfehler auf der Mittelspannungsebene auftreten	42
Tabelle 7 – Mögliche Arten des Schutzes	66
Tabelle B.1 – Minimalwert, Maximalwert und Mittelwert von Amplitude und Anstiegssteilheit der aufgezeichneten Schaltüberspannungen an unterschiedlichen Standorten [48]	87
Tabelle B.2 – Verteilung der aufgezeichneten Transienten	
Tabelle B.3. – Messorte und Ergebnisse der Langzeitmessungen (zweiter Teil) [1]	
Tabelle B.4 – Amplitude und Anstiegssteilheit von Schaltüberspannungen bei unterschiedlichen Bemessungsstromstärken von Leitungsschutzschaltern [47]	92
Tabelle C.1 – Zulässige Höchstwerte von Überspannungen in Niederspannungsanlagen, die	
während Erdfehler auf der Mittelspannungsebene auftreten	96
Tabelle C.2 – Maximal mögliche TOV-Werte in Niederspannungsanlagen auf Grund von Fehlern im Niederspannungssystem	07
Tabelle E.1 – Notwendige Induktivitäten, um ein Ansprechen der Funkenstrecke sicherzustellen	
Tabelle E.2 – Normierte Werte	
Tabelle E.3 – Referenztabelle	
Tabelle E.4 – Äquivalente Werte	
Tabelle E.5 – Koordinationsbeispiel zwischen zwei Überspannung-Schutzeinrichtungen (ÜSE),	122
getestet nach der Klasse II	126
Tabelle E.6 – Koordinationsbeispiel zwischen einer Überspannung-Schutzeinrichtung (ÜSE), geprüft nach den Klasse-I-Kriterien, und einer Überspannung-Schutzeinrichtung (ÜSE),	
geprüft nach den Klasse-II-Kriterien	
Tabelle E.7 – Parameter für Klasse-I-Prüfung nach IEC 61643-1	127