
Information technology — UPnP
Device Architecture —
Part 20-1:
Audio video device control protocol —
Level 4 — Audio video architecture
Technologies de l'information — Architecture de dispositif UPnP —
Partie 20-1: Protocole de contrôle de dispositif audio-vidéo — Niveau
4 — Architecture audio-vidéo

INTERNATIONAL
STANDARD

ISO/IEC
29341-20-1

Reference number
ISO/IEC 29341-20-1:2017(E)

First edition
2017-09

© ISO/IEC 2017

﻿

ii� © ISO/IEC 2017 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC 29341-20-1:2017(E)

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved iii

CONTENTS

1 Scope ... 1

1.1 Introductioin ... 1

1.2 Goals ... 1

1.3 Non-Goals .. 1

2 Normative references .. 1

3 Terms, definitions, symbols and abbreviations .. 2

4 Architectural Overview .. 3

5 Playback Architecture ... 5

5.1 MediaServer ... 6

5.1.1 ContentDirectory Service .. 7

5.1.2 ConnectionManager Service ... 7

5.1.1 AVTransport Service ... 7

5.2 MediaRenderer ... 7

5.2.1 RenderingControl Service ... 8

5.2.2 ConnectionManager Service ... 8

5.2.3 AVTransport Service ... 8

5.3 Control point ... 8

5.3.1 2-Box model: Control point with Decoder .. 11

5.3.2 2-Box model: Control point with Content ... 12

5.4 Tracking streams in the network .. 12

6 Example Playback Scenarios ... 12

6.1 3-Box model: Isochronous-Push (IEC61883/IEEE1394) .. 13

6.2 3-Box model: Asynchronous-Pull (e.g. HTTP GET) ... 14

6.3 2-Box model: Control point with Decoder using Isochronous-Push (e.g.
IEEE-1394) .. 15

6.4 2-Box model: Control point with Decoder using Asynchronous-Pull (e.g.
HTTP GET) ... 17

6.4.1 Minimal Implementation ... 17

6.5 2-Box model: Control point with Content using Isochronous-Push (e.g. IEEE-
1394) .. 19

6.6 2-Box Model: Control point with Content using Asynchronous-Pull (e.g.
HTTP GET) ... 20

6.7 No ConnectionManager::PrepareForConnection() Action 20

7 Advanced Playback Scenarios ... 21

7.1 Synchronized playback .. 22

7.2 Multi-streaming .. 24

8 Recording Architecture .. 26

8.1 Legacy recording mechanism ... 26

8.2 Scheduled Recording .. 26

ISO/IEC 29341-20-1:2017(E)

iv  ISO/IEC 2017 – All rights reserved

List of Figures

Figure 1 — Typical UPnP Device Interaction Model .. 3

Figure 2 — UPnP AV Device Interaction Model .. 4

Figure 3 — General Device Architecture aka the 3-Box model .. 5

Figure 4 — General Interaction Diagram of the 3-Box model ... 10

Figure 5 — Control point with Decoder .. 11

Figure 6 — Control point with Content ... 12

Figure 7 — 3-Box Model: Isochronous-Push transfer protocols .. 14

Figure 8 — 3-Box model:Asynchronus-Pull transfer protocol .. 15

Figure 9 — 2-Box model: Control point with Decoder using Isochronous-Push 16

Figure 10 — 2-Box model: Control point with Decoder using Asynchronous-Pull 17

Figure 11 — 2-Box model: Minimal Implementation ... 18

Figure 12 — 2-Box model: Control point with Content using Isochronous-Push 19

Figure 13 — 2-Box model: Control point with Content using Asynchronous-Pull 20

Figure 14 — 3-Box model: no ConnectionManager::PrepareForConnection() action 21

Figure 15 — Sequence diagram for setting up synchronized playback 23

Figure 16 — Multi-streaming playback sequence ... 25

Figure 17 — Relationship between a Schedule and the related Tasks 27

Figure 18 — Out of bounds content creation by the ScheduledRecording service................. 27

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved v

Foreword	

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	
Electrotechnical	Commission)	form	the	specialized	system	for	worldwide	standardization.	National	
bodies	 that	 are	members	 of	 ISO	or	 IEC	participate	 in	 the	development	 of	 International	 Standards	
through	 technical	 committees	 established	 by	 the	 respective	 organization	 to	 deal	 with	 particular	
fields	of	technical	activity.	ISO	and	IEC	technical	committees	collaborate	in	fields	of	mutual	interest.	
Other	international	organizations,	governmental	and	non‐governmental,	in	liaison	with	ISO	and	IEC,	
also	 take	part	 in	 the	work.	 In	 the	 field	of	 information	 technology,	 ISO	 and	 IEC	have	 established	 a	
joint	technical	committee,	ISO/IEC	JTC	1.		

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	maintenance	
are	 described	 in	 the	 ISO/IEC	 Directives,	 Part	1.	 In	 particular	 the	 different	 approval	 criteria	
needed	 for	 the	 different	 types	 of	 document	 should	 be	 noted.	 This	 document	 was	 drafted	 in	
accordance	 with	 the	 editorial	 rules	 of	 the	 ISO/IEC	 Directives,	 Part	 2	
(see	http://www.iso.org/directives).	

Attention	 is	 drawn	 to	 the	 possibility	 that	 some	 of	 the	 elements	 of	 this	 document	 may	 be	 the	
subject	of	patent	rights.	 ISO	and	IEC	shall	not	be	held	responsible	for	 identifying	any	or	all	such	
patent	 rights.	 Details	 of	 any	 patent	 rights	 identified	 during	 the	 development	 of	 the	 document	
will	 be	 in	 the	 Introduction	 and/or	 on	 the	 ISO	 list	 of	 patent	 declarations	 received	
(see	www.iso.org/patents).	

Any	 trade	 name	 used	 in	 this	 document	 is	 information	 given	 for	 the	 convenience	 of	 users	 and	
does	not	constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 voluntary	 nature	 of	 Standard,	 the	meaning	 of	 the	 ISO	 specific	 terms	
and	expressions	related	to	conformity	assessment,	as	well	as	information	about	ISO’s	adherence	
to	the	WTO	principles	in	the	Technical	Barriers	to	Trade	(TBT)	see	the	following	URL:	Foreword	
–	Supplementary	information	

ISO/IEC	29341‐20‐1	 was	 prepared	 by	 UPnP	 Forum	 and	 adopted,	 under	 the	 PAS	 procedure,	 by	
joint	technical	committee	 ISO/IEC	 JTC	1,	Information technology,	 in	parallel	with	 its	approval	by	
national	bodies	of	ISO	and	IEC.		

The	 list	 of	 all	 currently	 available	 parts	 of	 ISO/IEC	 29341	 series,	 under	 the	 general	 title	
Information technology — UPnP Device Architecture,	can	be	found	on	the	ISO	web	site.	

http://www.iso.org/directives�
http://www.iso.org/patents�
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm�
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm�
http://www.iso.org/iso/search.htm�

ISO/IEC 29341-20-1:2017(E)

vi  ISO/IEC 2017 – All rights reserved

Introduction

ISO and IEC draw attention to the fact that it is claimed that compliance with this document may
involve the use of patents as indicated below.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights. The
holders of -these patent rights have assured ISO and IEC that they are willing to negotiate licenses
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In
this respect, the statements of the holders of these patent rights are registered with ISO and IEC.

Intel Corporation has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Intel Corporation
Standards Licensing Department
5200 NE Elam Young Parkway
MS: JFS-98
USA – Hillsboro, Oregon 97124

Microsoft Corporation has informed IEC and ISO that it has patent applications or granted
patents as listed below:

6101499 / US; 6687755 / US; 6910068 / US; 7130895 / US; 6725281 / US; 7089307 / US;
7069312 / US; 10/783 524 /US

Information may be obtained from:

Microsoft Corporation
One Microsoft Way
USA – Redmond WA 98052

Philips International B.V. has informed IEC and ISO that it has patent applications or granted
patents.

Information may be obtained from:

Philips International B.V. – IP&S
High Tech campus, building 44 3A21
NL – 5656 Eindhoven

NXP B.V. (NL) has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

NXP B.V. (NL)
High Tech campus 60
NL – 5656 AG Eindhoven

Matsushita Electric Industrial Co. Ltd. has informed IEC and ISO that it has patent
applications or granted patents.

Information may be obtained from:

Matsushita Electric Industrial Co. Ltd.
1-3-7 Shiromi, Chuoh-ku
JP – Osaka 540-6139

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved vii

Hewlett Packard Company has informed IEC and ISO that it has patent applications or
granted patents as listed below:

5 956 487 / US; 6 170 007 / US; 6 139 177 / US; 6 529 936 / US; 6 470 339 / US; 6 571 388 /
US; 6 205 466 / US

Information may be obtained from:

Hewlett Packard Company
1501 Page Mill Road
USA – Palo Alto, CA 94304

Samsung Electronics Co. Ltd. has informed IEC and ISO that it has patent applications or
granted patents.

Information may be obtained from:

Digital Media Business, Samsung Electronics Co. Ltd.
416 Maetan-3 Dong, Yeongtang-Gu,
KR – Suwon City 443-742

Huawei Technologies Co., Ltd. has informed IEC and ISO that it has patent applications or
granted patents.

Information may be obtained from:

Huawei Technologies Co., Ltd.
Administration Building, Bantian Longgang District
Shenzhen – China 518129

Qualcomm Incorporated has informed IEC and ISO that it has patent applications or granted
patents.

Information may be obtained from:

Qualcomm Incorporated
5775 Morehouse Drive
San Diego, CA – USA 92121

Telecom Italia S.p.A.has informed IEC and ISO that it has patent applications or granted
patents.

Information may be obtained from:

Telecom Italia S.p.A.
Via Reiss Romoli, 274
Turin - Italy 10148

Cisco Systems informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA – USA 95134

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those identified above. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

ISO/IEC 29341-20-1:2017(E)

viii  ISO/IEC 2017 – All rights reserved

Original UPnP Document

Reference may be made in this document to original UPnP documents. These references are
retained in order to maintain consistency between the specifications as published by ISO/IEC
and by UPnP Implementers Corporation and later by UPnP Forum. The following table
indicates the original UPnP document titles and the corresponding part of ISO/IEC 29341:

UPnP Document Title ISO/IEC 29341 Part

UPnP Device Architecture 1.0 ISO/IEC 29341-1:2008

UPnP Device Architecture Version 1.0 ISO/IEC 29341-1:2011

UPnP Device Architecture 1.1 ISO/IEC 29341-1-1:2011

UPnP Device Architecture 2.0 ISO/IEC 29341-1-2

UPnP Basic:1 Device ISO/IEC 29341-2

UPnP AV Architecture:1 ISO/IEC 29341-3-1:2008

UPnP AV Architecture:1 ISO/IEC 29341-3-1:2011

UPnP AVTransport:1 Service ISO/IEC 29341-3-10

UPnP ConnectionManager:1 Service ISO/IEC 29341-3-11

UPnP ContentDirectory:1 Service ISO/IEC 29341-3-12

UPnP RenderingControl:1 Service ISO/IEC 29341-3-13

UPnP MediaRenderer:1 Device ISO/IEC 29341-3-2

UPnP MediaRenderer:2 Device ISO/IEC 29341-3-2:2011

UPnP MediaServer:1 Device ISO/IEC 29341-3-3

UPnP AVTransport:2 Service ISO/IEC 29341-4-10:2008

UPnP AVTransport:2 Service ISO/IEC 29341-4-10:2011

UPnP ConnectionManager:2 Service ISO/IEC 29341-4-11:2008

UPnP ConnectionManager:2 Service ISO/IEC 29341-4-11:2011

UPnP ContentDirectory:2 Service ISO/IEC 29341-4-12

UPnP RenderingControl:2 Service ISO/IEC 29341-4-13:2008

UPnP RenderingControl:2 Service ISO/IEC 29341-4-13:2011

UPnP ScheduledRecording:1 ISO/IEC 29341-4-14

UPnP ScheduledRecording:2 ISO/IEC 29341-4-14:2011

UPnP MediaRenderer:2 Device ISO/IEC 29341-4-2

UPnP MediaServer:2 Device ISO/IEC 29341-4-3

UPnP AV Datastructure Template:1 ISO/IEC 29341-4-4:2008

UPnP AV Datastructure Template:1 ISO/IEC 29341-4-4:2011

UPnP DigitalSecurityCamera:1 Device ISO/IEC 29341-5-1

UPnP DigitalSecurityCameraMotionImage:1 Service ISO/IEC 29341-5-10

UPnP DigitalSecurityCameraSettings:1 Service ISO/IEC 29341-5-11

UPnP DigitalSecurityCameraStillImage:1 Service ISO/IEC 29341-5-12

UPnP HVAC_System:1 Device ISO/IEC 29341-6-1

UPnP ControlValve:1 Service ISO/IEC 29341-6-10

UPnP HVAC_FanOperatingMode:1 Service ISO/IEC 29341-6-11

UPnP FanSpeed:1 Service ISO/IEC 29341-6-12

UPnP HouseStatus:1 Service ISO/IEC 29341-6-13

UPnP HVAC_SetpointSchedule:1 Service ISO/IEC 29341-6-14

UPnP TemperatureSensor:1 Service ISO/IEC 29341-6-15

UPnP TemperatureSetpoint:1 Service ISO/IEC 29341-6-16

UPnP HVAC_UserOperatingMode:1 Service ISO/IEC 29341-6-17

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved ix

UPnP HVAC_ZoneThermostat:1 Device ISO/IEC 29341-6-2

UPnP BinaryLight:1 Device ISO/IEC 29341-7-1

UPnP Dimming:1 Service ISO/IEC 29341-7-10

UPnP SwitchPower:1 Service ISO/IEC 29341-7-11

UPnP DimmableLight:1 Device ISO/IEC 29341-7-2

UPnP InternetGatewayDevice:1 Device ISO/IEC 29341-8-1

UPnP LANHostConfigManagement:1 Service ISO/IEC 29341-8-10

UPnP Layer3Forwarding:1 Service ISO/IEC 29341-8-11

UPnP LinkAuthentication:1 Service ISO/IEC 29341-8-12

UPnP RadiusClient:1 Service ISO/IEC 29341-8-13

UPnP WANCableLinkConfig:1 Service ISO/IEC 29341-8-14

UPnP WANCommonInterfaceConfig:1 Service ISO/IEC 29341-8-15

UPnP WANDSLLinkConfig:1 Service ISO/IEC 29341-8-16

UPnP WANEthernetLinkConfig:1 Service ISO/IEC 29341-8-17

UPnP WANIPConnection:1 Service ISO/IEC 29341-8-18

UPnP WANPOTSLinkConfig:1 Service ISO/IEC 29341-8-19

UPnP LANDevice:1 Device ISO/IEC 29341-8-2

UPnP WANPPPConnection:1 Service ISO/IEC 29341-8-20

UPnP WLANConfiguration:1 Service ISO/IEC 29341-8-21

UPnP WANDevice:1 Device ISO/IEC 29341-8-3

UPnP WANConnectionDevice:1 Device ISO/IEC 29341-8-4

UPnP WLANAccessPointDevice:1 Device ISO/IEC 29341-8-5

UPnP Printer:1 Device ISO/IEC 29341-9-1

UPnP ExternalActivity:1 Service ISO/IEC 29341-9-10

UPnP Feeder:1.0 Service ISO/IEC 29341-9-11

UPnP PrintBasic:1 Service ISO/IEC 29341-9-12

UPnP Scan:1 Service ISO/IEC 29341-9-13

UPnP Scanner:1.0 Device ISO/IEC 29341-9-2

UPnP QoS Architecture:1.0 ISO/IEC 29341-10-1

UPnP QosDevice:1 Service ISO/IEC 29341-10-10

UPnP QosManager:1 Service ISO/IEC 29341-10-11

UPnP QosPolicyHolder:1 Service ISO/IEC 29341-10-12

UPnP QoS Architecture:2 ISO/IEC 29341-11-1

UPnP QosDevice:2 Service ISO/IEC 29341-11-10

UPnP QosManager:2 Service ISO/IEC 29341-11-11

UPnP QosPolicyHolder:2 Service ISO/IEC 29341-11-12

UPnP QOS v2 Schema Files ISO/IEC 29341-11-2

UPnP RemoteUIClientDevice:1 Device ISO/IEC 29341-12-1

UPnP RemoteUIClient:1 Service ISO/IEC 29341-12-10

UPnP RemoteUIServer:1 Service ISO/IEC 29341-12-11

UPnP RemoteUIServerDevice:1 Device ISO/IEC 29341-12-2

UPnP DeviceSecurity:1 Service ISO/IEC 29341-13-10

UPnP SecurityConsole:1 Service ISO/IEC 29341-13-11

UPnP ContentDirectory:3 Service ISO/IEC 29341-14-12:2011

UPnP MediaServer:3 Device ISO/IEC 29341-14-3:2011

UPnP ContentSync:1 ISO/IEC 29341-15-10:2011

UPnP Low Power Architecture:1 ISO/IEC 29341-16-1:2011

ISO/IEC 29341-20-1:2017(E)

x  ISO/IEC 2017 – All rights reserved

UPnP LowPowerProxy:1 Service ISO/IEC 29341-16-10:2011

UPnP LowPowerDevice:1 Service ISO/IEC 29341-16-11:2011

UPnP QoS Architecture:3 ISO/IEC 29341-17-1:2011

UPnP QosDevice:3 Service ISO/IEC 29341-17-10:2011

UPnP QosManager:3 Service ISO/IEC 29341-17-11:2011

UPnP QosPolicyHolder:3 Service ISO/IEC 29341-17-12:2011

UPnP QosDevice:3 Addendum ISO/IEC 29341-17-13:2011

UPnP RemoteAccessArchitecture:1 ISO/IEC 29341-18-1:2011

UPnP InboundConnectionConfig:1 Service ISO/IEC 29341-18-10:2011

UPnP RADAConfig:1 Service ISO/IEC 29341-18-11:2011

UPnP RADASync:1 Service ISO/IEC 29341-18-12:2011

UPnP RATAConfig:1 Service ISO/IEC 29341-18-13:2011

UPnP RAClient:1 Device ISO/IEC 29341-18-2:2011

UPnP RAServer:1 Device ISO/IEC 29341-18-3:2011

UPnP RADiscoveryAgent:1 Device ISO/IEC 29341-18-4:2011

UPnP SolarProtectionBlind:1 Device ISO/IEC 29341-19-1:2011

UPnP TwoWayMotionMotor:1 Service ISO/IEC 29341-19-10:2011

UPnP AV Architecture:2 ISO/IEC 29341-20-1

UPnP AVTransport:3 Service ISO/IEC 29341-20-10

UPnP ConnectionManager:3 Service ISO/IEC 29341-20-11

UPnP ContentDirectory:4 Device ISO/IEC 29341-20-12

UPnP RenderingControl:3 Service ISO/IEC 29341-20-13

UPnP ScheduledRecording:2 Service ISO/IEC 29341-20-14

UPnP MediaRenderer:3 Service ISO/IEC 29341-20-2

UPnP MediaServer:4 Device ISO/IEC 29341-20-3

UPnP AV Datastructure Template:1 ISO/IEC 29341-20-4

UPnP InternetGatewayDevice:2 Device ISO/IEC 29341-24-1

UPnP WANIPConnection:2 Service ISO/IEC 29341-24-10

UPnP WANIPv6FirewallControl:1 Service ISO/IEC 29341-24-11

UPnP WANConnectionDevice:2 Service ISO/IEC 29341-24-2

UPnP WANDevice:2 Device ISO/IEC 29341-24-3

UPnP Telephony Architecture:2 ISO/IEC 29341-26-1

UPnP CallManagement:2 Service ISO/IEC 29341-26-10

UPnP MediaManagement:2 Service ISO/IEC 29341-26-11

UPnP Messaging:2 Service ISO/IEC 29341-26-12

UPnP PhoneManagement:2 Service ISO/IEC 29341-26-13

UPnP AddressBook:1 Service ISO/IEC 29341-26-14

UPnP Calendar:1 Service ISO/IEC 29341-26-15

UPnP Presense:1 Service ISO/IEC 29341-26-16

UPnP TelephonyClient:2 Device ISO/IEC 29341-26-2

UPnP TelephonyServer:2 Device ISO/IEC 29341-26-3

UPnP Friendly Info Update:1 Service ISO/IEC 29341-27-1
UPnP MultiScreen MultiScreen Architecture:1 ISO/IEC 29341-28-1
UPnP MultiScreen Application Management:1 Service ISO/IEC 29341-28-10
UPnP MultiScreen Screen:1 Device ISO/IEC 29341-28-2
UPnP MultiScreen Application Management:2 Service ISO/IEC 29341-29-10
UPnP MultiScreen Screen:2 Device ISO/IEC 29341-29-2

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved xi

UPnP IoT Management and Control Architecture Overview:1 ISO/IEC 29341-30-1
UPnP DataStore:1 Service ISO/IEC 29341-30-10
UPnP IoT Management and Control Data Model:1 Service ISO/IEC 29341-30-11
UPnP IoT Management and Control Transport Generic:1
Service ISO/IEC 29341-30-12
UPnP IoT Management and Control:1 Device ISO/IEC 29341-30-2
UPnP Energy Management:1 Service ISO/IEC 29341-31-1

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 1

1 Scope

1.1 Introductioin

This document describes the overall UPnP AV Architecture, which forms the foundation for
the UPnP AV Device and Service templates. The AV Architecture defines the general
interaction between UPnP control points and UPnP AV devices. It is independent of any
particular device type, content format, and transfer protocol. It supports a variety of devices
such as TVs, VCRs, CD/DVD players/jukeboxes, settop boxes, stereos systems, MP3 players,
still-image cameras, camcorders, electronic picture frames (EPFs), and the PC. The AV
Architecture allows devices to support different types of formats for the entertainment content
(such as MPEG2, MPEG4, JPEG, MP3, Windows Media Architecture (WMA), bitmaps (BMP),
NTSC, PAL, ATSC, etc.) and multiple types of transfer protocols (such as IEC-61883/IEEE-
1394, HTTP GET, RTP, HTTP PUT/POST, TCP/IP, etc.). The following clauses describe the
AV Architecture and how the various UPnP AV devices and services work together to enable
various end-user scenarios.

1.2 Goals

The UPnP AV Architecture was explicitly defined to meet the following goals:

 To support arbitrary transfer protocols and content formats.

 To enable the AV content to flow directly between devices without any intervention
from the control point.

 To enable control points to remain independent of any particular transfer protocol and
content format. This allows control points to transparently support new protocols and
formats.

 Scalability, i.e. support of devices with very low resources, especially memory and
processing power as well as full-featured devices.

 Synchronized playback to multiple rendering devices.

 Access Control, Content Protection, and Digital Rights Management.

1.3 Non-Goals

The UPnP AV Architecture does not enable any of the following:

 Two-way Interactive Communication, such as audio and video conferencing, Internet
gaming, etc.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document
and are indispensable for its application. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.

[1] AVTransport:3, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-
Service.pdf.

[2] ContentDirectory:4, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-
20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-
Service.pdf.

http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v3-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v4-Service.pdf�

ISO/IEC 29341-20-1:2017(E)

2  ISO/IEC 2017 – All rights reserved

[3] ConnectionManager:3, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-
20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-
Service.pdf.

[4] MediaRenderer:3, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-Device-
20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-
Device.pdf.

[5] MediaServer:4, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device-20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-
Device.pdf.

[6] RenderingControl:3, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-
20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-
Service.pdf.

[7] ScheduledRecording:2, UPnP Forum, December, 31, 2010.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-
20101231.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-
Service.pdf.

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in [1] and the following
apply:

3.1

AVT
AVTransport Service

3.2
CDS
ContentDirectory Service

3.3
CM
ConnectionManager Service

3.4
MR
MediaRenderer Device

3.5
MS
MediaServer Device

http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service.pdf�
http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-Device-20101231.pdf�
http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-Device-20101231.pdf�
http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-Device.pdf�
http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v3-Device.pdf�
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device.pdf�
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v4-Device.pdf�
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v3-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20101231.pdf�
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf�
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service.pdf�

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 3

3.6
RCS
RenderingControl Service

3.7
SRS
ScheduledRecording Service

3.8
2-box model
Denotes an interaction model between 1 control point and 1 UPnP device.

3.9
3-box model
Denotes an interaction model between 1control point and 2 UPnP devices, where the 2 UPnP
devices are used in different roles to obtain the described feature.

4 Architectural Overview

In most (non-AV) UPnP scenarios, a control point controls the operation of one or more UPnP
devices in order to accomplish the desired behavior. Although the control point is managing
multiple devices, all interactions occur in isolation between the control point and each device.
The control point coordinates the operation of each device to achieve an overall,
synchronized, end-user effect. The individual devices do not interact directly with each
another. All of the coordination between the devices is performed by the control point and not
the devices themselves.

Figure 1 — Typical UPnP Device Interaction Model

ISO/IEC 29341-20-1:2017(E)

4  ISO/IEC 2017 – All rights reserved

Figure 2 — UPnP AV Device Interaction Model

Most AV scenarios involve the flow of (entertainment) content (i.e. a movie, song, picture,
etc.) from one device to another. As shown in Figure 2, an AV control point interacts with two
or more UPnP devices acting as source and sink, respectively. Although the control point
coordinates and synchronizes the behavior of both devices, the devices themselves interact
with each other using a non-UPnP (“out-of-band”) communication protocol. The control point
uses UPnP to initialize and configure both devices so that the desired content is transferred
from one device to the other. However, since the content is transferred using an “out-of-band”
transfer protocol, the control point is not directly involved in the actual transfer of the content.
The control point configures the devices as needed, triggers the flow of content, then gets out
of the way. Thus, after the transfer has begun, the control point can be disconnected without
disrupting the flow of content. In other words, the core task (i.e. transferring the content)
continues to function even without the control point present.

As described in the above scenario, three distinct entities are involved: the control point, the
source of the media content (called the “MediaServer”), and the sink for the content (called
the “MediaRenderer”). Throughout the remainder of the document, all three entities are
described as if they were independent devices on the network. Although this configuration
may be common (i.e. a remote control, a VCR, and a TV), the AV Architecture supports
arbitrary combinations of these entities within a single physical device. For example, a TV
can be treated as a rendering device (e.g. a display). However, since most TVs contain a
built-in tuner, the TV can also act as a server device because it could tune to a particular
channel and send that content to a MediaRenderer [4] (e.g. its local display or some remote
device such as a tuner-less display). Similarly, many MediaServers and/or MediaRenderers
may also include control point functionality. For example, an MP3 Renderer will likely have
some UI controls (e.g. a small display and some buttons) that allow the user to control the
playback of music.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 5

5 Playback Architecture

Figure 3 — General Device Architecture aka the 3-Box model

The most common task that end-users want to perform is to render (i.e. play) individual items
of content on a specific rendering device. As shown in Figure 3, the content playback
scenario involves three distinct UPnP components: a MediaServer [5], a MediaRenderer, and
a UPnP control point. These three components (each with a well-defined role) work together
to accomplish the task. In this scenario, the MediaServer contains (entertainment) content
that the user wants to render (e.g. display or listen to) on the MediaRenderer. The user
interacts with the control point’s UI to locate and select the desired content on the
MediaServer and to select the target MediaRenderer.

The MediaServer contains or has access to a variety of entertainment content, either stored
locally or stored on an external device that is accessible via the MediaServer. The
MediaServer is able to access its content and transmit it to another device via the network
using some type of transfer protocol. The content exposed by the MediaServer may include
arbitrary types of content including video, audio, and/or still images. The content is
transmitted over the network using a transfer protocol and data format that is that is
understood by the MediaServer and MediaRenderer. MediaServers may support one or
multiple transfer protocols and data formats for each content item or be able to convert the
format of a given content item into another formats on the fly. Examples of a MediaServer
include a VCR, CD/DVD player/jukebox, smartphone, camera, camcorder, PC, set-top box,
satellite receiver, audio tape player, etc.

The MediaRenderer obtains content from a MediaServer via network. Examples of a
MediaRenderer include TV, stereo, network-enabled speakers, MP3 players, Electronic
Picture Frame (EPF), a music-controlled water fountain, etc.. The type of content that a
MediaRenderer can receive depends on the transfer protocols and data formats that it
supports. Some MediaRenderers may only support one type of content (e.g. audio or still
images), whereas other MediaRenderers may support a wide variety of content including
video, audio, still images.

ISO/IEC 29341-20-1:2017(E)

6  ISO/IEC 2017 – All rights reserved

The control point coordinates and manages the operation of the MediaServer and
MediaRenderer as directed by the user (e.g. play, stop, pause) in order to accomplish the
desired task (e.g. play “MyFavorite” music). Additionally, the control point provides the UI (if
any) for the user to interact with in order to control the operation of the device(s) (e.g. to
select the desired content). The layout of the control point’s UI and the functionality that it
exposes is implementation dependent and determined solely by the control point’s
manufacturer. Some examples of a control point might include a TV with a traditional remote
control or a wireless PDA-like device with a small display.

Note: The above descriptions talk about devices “sending/receiving content to/from the home
network.” In the context of the AV Architecture, this includes point-to-point connections such
as an RCA cable that is used to connect a VCR to a TV. The AV Architecture treats this type
of connection as a small part (e.g. segment) of the home network. Refer to the
ConnectionManager service [3] for more details.

As described above, the AV Architecture consists of three distinct components that perform
well-defined roles. In some cases, these components will exist as separate, individual UPnP
devices. However, this need not be the case. Device manufacturers are free to combine any
of these logical entities into a single physical device. In such cases, the individual
components of these combo devices may interact with each other using either the standard
UPnP control protocols (e.g. SOAP over HTTP) or using some private communication
mechanism. In either case, the function of each logical entity remains unchanged. However,
in the later case, since the communication between the logical entities is private, the
individual components will not be able to communicate with other UPnP AV devices that do
not implement the private protocol.

As shown in Figure 3, the control point is the only component that initiates UPnP actions. The
control point requests to configure the MediaServer and MediaRenderer so that the desired
content flows from the MediaServer to the MediaRenderer (using one of the transfer
protocols and data formats that are supported by both the MediaServer and MediaRenderer).
The MediaServer and MediaRenderer do invoke any UPnP actions to the control point.
However, if needed, the MediaServer and/or MediaRenderer may send event notifications to
the control point in order to inform the control point of a change in the
MediaServer’s/MediaRenderer’s internal state.

The MediaServer and MediaRenderer do not control each other via UPnP actions. However,
in order to transfer the content, the MediaServer and MediaRenderer use an “out-of-band”
(e.g. a non-UPnP) transfer protocol to directly transmit the content. The control point is not
involved in the actual transfer of the content. It simply configures the MediaServer and
MediaRenderer as needed and initiates the transfer of the content. Once the transfer begins,
the control point “gets out of the way” and is no longer needed to complete the transfer.

However, if desired by the user, the control point is capable of controlling the flow of the
content by invoking various AVTransport actions such as Stop, Pause, FF, REW, Skip, Scan,
etc. Additionally, the control point is also able to control the various rendering characteristics
on the Renderer device such as Brightness, Contrast, Volume, Balance, etc.

5.1 MediaServer

The MediaServer is used to locate content that is available via the home network.
MediaServers include a wide variety of devices including VCRs, DVD players, satellite/cable
receivers, TV tuners, smartphones, radio tuners, CD players, audio tape players, MP3
players, PCs, etc. A MediaServer’s primary purpose is to allow control points to enumerate
(i.e. browse or search for) content items that are available for the user to render. The
MediaServer contains a ContentDirectory service [2], a ConnectionManager service [3], and
an optional AVTransport service [1] (depending on the supported transfer protocols).

Some MediaServers are capable of transferring multiple content items at the same time, e.g.
a hard-disk-based audio jukebox may be able to simultaneously stream multiple audio files to

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 7

the network. In order to support this type of MediaServer, the ConnectionManager assigns a
unique Connection ID to each “connection” (i.e. each stream) that is made. This
ConnectionID allows a third-party control points to obtain information about active
connections of the MediaServer.

5.1.1 ContentDirectory Service

This service provides a set of actions that allow the control point to enumerate the content
that the Server can provide to the home network. The primary action of this service is
ContentDirectory::Browse(). This action allows control points to obtain detailed information
about each Content Item that the Server can provide. This information (i.e. meta-data)
includes properties such as its name, artist, date created, size, etc. Additionally, the returned
meta-data identifies the transfer protocols and data formats that are supported by the Server
for that particular Content Item. The control point uses this information to determine if a given
MediaRenderer is capable of rendering that content in its available format.

5.1.2 ConnectionManager Service

This service is used to manage the connections associated with a particular device. The
primary action of this service (within the context of a MediaServer) is
ConnectionManager::PrepareForConnection(). When implemented, this optional action is
invoked by the control point to give the Server an opportunity to prepare itself for an
upcoming transfer. Depending on the specified transfer protocol and data format, this action
may return the InstanceID of an AVTransport service that the control point can use to control
the flow of this content (e.g. Stop, Pause, Seek, etc). As described below, this InstanceID is
used to distinguish multiple (virtual) instances of the AVTransport service, each of which is
associated with a particular connection to Renderer. Multiple (virtual) instances of the
AVTransport service allow the MediaServer to support multiple Renderers at the same time.
When the control point wants to terminate this connection, it should invoke the MediaServer’s
ConnectionManager::ConnectionComplete() action (if implemented) to release the connection.

If the ConnectionManager::PrepareForConnection() action is not implemented, the control
point is only able to support a single Renderer at an given time. In this case, the control point
should use InstanceID=0.

5.1.1 AVTransport Service

This (optional) service is used by the control point to control the “playback” of the content
that is associated with the specified AVTransport. This includes the ability to Stop, Pause,
Seek, etc. Depending on the supported transfer protocols and/or data formats, a MediaServer
may or may not implement this service. If supported, the MediaServer can distinguish
between multiple instances of the service by using the InstanceID that is included in each
AVTransport action. New instances of the AVTransport service are created via the
ConnectionManager’s ConnectionManager::PrepareForConnection() action. A new Instance
Id is allocated for each new service Instance.

5.2 MediaRenderer

The MediaRenderer is used to render (e.g. display and/or listen to) content obtained from the
home network. This includes a wide variety of devices including TVs, stereos, speakers,
hand-held audio players, music controlled water-fountain, etc. Its main feature is that it allows
the control point to control how content is rendered (e.g. Brightness, Contrast, Volume, Mute,
etc). Additionally, depending on the transfer protocol that is being used to obtain the content
from the network, the MediaRenderer may also allow the user to control the flow of the
content (e.g. Stop, Pause, Seek, etc). The MediaRenderer includes a RenderingControl
service [6], a ConnectionManager service, and an optional AVTransport service (depending
on which transfer protocols are supported).

In order to support rendering devices that are capable of handling multiple content items at
the same time (e.g. an audio mixer such as a Karaoke device), the RenderingControl and

ISO/IEC 29341-20-1:2017(E)

8  ISO/IEC 2017 – All rights reserved

AVTransport services contain multiple independent (logical) instances of these services.
Each (logical) instance of these services is bound to a particular incoming connection. This
allows the control point to control each incoming content item independently from each other.

Multiple logical instances of these services are distinguished by a unique ‘InstanceID’ which
references the logical instance. Each action invoked by the control point contains the
Instance ID that identifies the correct instance.

5.2.1 RenderingControl Service

This service provides a set of actions that allow the control point to control how the Renderer
renders a piece of incoming content. This includes rendering characteristics such as
Brightness, Contrast, Volume, Mute, etc. The RenderingControl service supports multiple,
dynamic instances, which allows a Renderer to “mix together” one or more content items (e.g.
a Picture-in-Picture window on a TV or an audio mixer device). New instances of the service
are created by the ConnectionManager::PrepareForConnection() action. If the
ConnectionManager::PrepareForConnection() action is not implemented the default value 0
should be used for InstanceID.

5.2.2 ConnectionManager Service

This service is used to manage the connections associated with a device. Within the context
of a MediaRenderer, the primary action of this service is the
ConnectionManager::GetProtocolInfo() action. This action allows a control point to enumerate
the transfer protocols and data formats that are supported by the MediaRenderer. This
information is used to predetermine if a MediaRenderer is capable of rendering a specific
content item. A MediaRenderer may also implement the optional
ConnectionManager::PrepareForConnection() action. This action is invoked by the control
point to give the Render an opportunity to prepare itself for an upcoming transfer. Additionally,
this action assigns a unique ConnectionID that can be used by a 3rd-party control point to
obtain information about the connections that the MediaRenderer is using. Also, depending
on the specified transfer protocol and data format being used, this action may return a unique
AVTransport InstanceID that the control point can use to control the flow of the content (e.g.
Stop, Pause, Seek, etc). (Refer to 5.2.3 below for additional details). Lastly, the
ConnectionManager::PrepareForConnection() action also returns a unique RenderingControl
InstanceID which can be used by the control point to control the rendering characteristics of
the associated content as described above. When the control point wants to terminate a
connection, it should invoke the Renderer’s ConnectionManager::ConnectionComplete()
action (if implemented) to release the connection. If the
ConnectionManager::PrepareForConnection() action is not implemented the default value 0
should be used for InstanceID.

5.2.3 AVTransport Service

This (optional) service is used by the control point to control the flow of the associated
content. This includes the ability to Play, Stop, Pause, Seek, etc. Depending on transfer
protocols and/or data formats that are supported, the Renderer may or may not implement
this service. In order to support MediaRenderers that can simultaneously handle multiple
content items, the AVTransport service may support multiple logical instances of this service.
As described above, AVTransport InstanceIDs are allocated by the
ConnectionManager::PrepareForConnection() action to distinguish between multiple service
instances.

5.3 Control point

Control points coordinate the operation of the MediaServer and the MediaRenderer, usually
in response to user interaction with the control point’s UI. A control point is not a UPnP
device, e.g. it is not visible as a device on the network, since it does not provide any UPnP
services. Conversely, the control point invokes services on other UPnP devices in order to
trigger some desired behavior of the remote device.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 9

The following describes a generic control point algorithm that can be used to interact with a
wide variety of MediaServer and MediaRenderer implementations.

a) Discover AV Devices: Using UPnP’s Discovery mechanism, MediaServers and
MediaRenderers in the home network are discovered.

b) Locate Desired Content: Using the Server’s ContentDirectory::Browse() or
ContentDirectory::Search() actions, a desired Content Item is located. The information
returned by ContentDirectory::Browse()/Search() includes the transfer protocols and data
formats that the MediaServer supports to transfer the content to the home network.

c) Get Renderer’s Supported Protocols/Formats: Using the MediaRenderer’s
ConnectionManager::GetProtocolInfo() action a list of transfer protocols and data formats
supported by the MediaRenderer is returned to the control point.

d) Compare/Match Protocols/Formats and Check Playability: The protocol/format
information returned by the ContentDirectory for the desired Content Item is matched with
the protocol/format information returned by the MediaRenderer’s
ConnectionManager::GetProtocolInfo() action. The control point selects a transfer
protocol and data format that are supported by both the MediaServer and MediaRenderer.
For a more detailed check of the MediaRenderer’s ability to play the desired Content Item,
the ControlPoint can invoke the optional ConnectionManager::GetRendererItemInfo()
action. This action returns more detailed information about the playback capabilities of
the MediaRenderer for this Content Item, such as DRM status, supported video resolution.

e) Configure Server/Renderer: The device’s ConnectionManager::PrepareForConnection()
action (if implemented) informs the MediaServer and MediaRenderer that an
outgoing/incoming connection is about to be made using the specified transfer protocol
and data format that was previously selected. Depending on the selected transfer
protocol, either the MediaServer or MediaRenderer will return an AVTransport InstanceID.
This InstanceID is used in conjunction with the device’s AVTransport service (i.e. the
device returning the AVTransport InstanceID) to control the flow of the content (e.g.
AVTransport::Play(), AVTransport::Stop(), AVTransport::Pause(), AVTransport::Seek(),
etc). Additionally, the Renderer will return a RenderingControl InstanceID that is used by
the control point to control the Rendering characteristics of the content.

Note: Since ConnectionManager::PrepareForConnection() is an optional action, there may
be situations in which either the MediaServer and/or MediaRenderer do not implement
ConnectionManager::PrepareForConnection(). When this occurs and neither MediaServer
nor MediaRenderer return an AVTransport InstanceID, the control point uses an
InstanceID=0 to control the flow of the content. Refer to the ConnectionManager and
AVTransport service [1] for details.

f) Select Desired Content: Using the AVTransport service (whose InstanceID is returned
by either the Server or Renderer), invoke the AVTransport ::SetAVTransportURI() action
to identify the content item that needs to be transferred.

g) Start Content Transfer: Using the AVTransport service, invoke one of the transport
control actions as desired by the user (e.g. AVTransport::Play(), AVTransport::Stop(),
AVTransport::Seek(), etc).

h) Adjust Rendering Characteristics: Using the MediaRenderer’s RenderingControl
service [6], invoke any rendering control actions as desired by the user (e.g. adjust
brightness, contrast, volume, mute, etc). More sophisticated rendering characteristics (e.g.
rotation, red-eye removal) can be set by means of the action
RenderingControl::SetTransforms(). The available rendering characteristics which can be
controlled in this manner are listed by RenderingControl:: GetAllowedTransforms()action.

i) Repeat: Select Next Content: Using either the AVTransport::SetAVTransportURI() or
AVTransport::SetNextAVTRansportURI() actions, identify the next content item that is to
be transferred from the same Server to the same Renderer. Repeat as needed.

j) Cleanup Server/Renderer: When the session is terminated and MediaServer and
MediaRenderer are no longer needed in the context of the session, the MediaServer’s
and MediaRenderer’s ConnectionManager::ConnectionComplete() action is invoked to
close the MediaServer’s connection.

ISO/IEC 29341-20-1:2017(E)

10  ISO/IEC 2017 – All rights reserved

Based on the interaction sequence shown above, the following diagram chronologically
illustrates the typical interaction sequence between the control point and the MediaServer
and MediaRenderer.

Figure 4 — General Interaction Diagram of the 3-Box model

The 3-Box model is the most comprehensive UPnP interaction model. It is also possible to
combine the control point with services, to make a combo device. These scenarios are known
as 2-Box models and are explained below.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 11

5.3.1 2-Box model: Control point with Decoder

Figure 5 — Control point with Decoder

As shown in Figure 5, the content playback scenario involves two distinct UPnP components:
a MediaServer, and a UPnP control point with Decoder. These two components (each with a
well-defined role) work together to accomplish the task. In this scenario, the MediaServer
contains (entertainment) content that the user wants to render (e.g. display or listen to) on
the apparatus. The user interacts with the control point’s UI to locate and select the desired
content on the MediaServer and to play it back by means of its own Decoder.

The state of the system can not be tracked by any other UPnP control points, since the out of
band transfer is not registered at the server or the playback device due to the absence of the
AVTransport service. This scenario explains the most simplified UPnP AV interaction model.

Note that the control point in this scenario only interacts with the MediaServer services.

Note that the “Sink” in this scenario is not a MediaRenderer and not even a UPnP device.

ISO/IEC 29341-20-1:2017(E)

12  ISO/IEC 2017 – All rights reserved

5.3.2 2-Box model: Control point with Content

Figure 6 — Control point with Content

As shown in Figure 6, the content playback scenario involves two distinct UPnP components:
a Control Point with content and a MediaRenderer. These two components (each with a well-
defined role) work together to accomplish the task. In this scenario, the control point has
capabilities like a normal MediaServer for serving content and contains (entertainment)
content that the user wants to render (e.g. display or listen to) on the Device. The user
interacts with the UI on the control point to locate and select the desired content by means of
internal communication and to play it back using the MediaRenderer.

Note that the control point in this scenario only interacts with the MediaRenderer services.

5.4 Tracking streams in the network

The out of band streams are trackable by other UPnP control points on the network if:

 The optional ConnectionManager::PrepareForConnection() action on a
ConnectionManager service is implemented (either on the Media Server or the Media
Renderer side).

 Or when the playback device contains an AVTransport service.

6 Example Playback Scenarios

As described above, the AV Architecture is designed to support arbitrary transfer protocols
and data formats. However, in some cases, certain devices are intentionally designed to
support a single transfer protocol and/or data format only. For example, a manufacturer may
want to deliver a product that targets a particular price-point and/or market segment. In these
cases, some AV devices may combine one or more logical entities into a single physical
device.

Subclauses 6.1–6.7 illustrate the flexibility of the generic Device Interaction Model algorithm.
Each of the following interaction diagrams are variations of the generic diagram with various

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 13

steps omitted. These omitted steps are not included because the particular scenario does not
require them.

6.1 3-Box model: Isochronous-Push (IEC61883/IEEE1394)

When using an isochronous transfer protocol (e.g.IEC61883/ IEEE1394), the underlying
transfer mechanism provides real-time content transfer between the MediaServer and
MediaRenderer. This ensures that individual packets of content are transferred within a
certain (relatively small) period of time. This real-time behavior allows the MediaRenderer to
provide the user with smooth-flowing rendering of the content without implementing a read-
ahead buffer. In this environment, the flow of the content is controlled by the MediaServer.
The MediaRenderer immediately renders the content that it receives from the MediaServer.
Refer to the diagram below for details.

ISO/IEC 29341-20-1:2017(E)

14  ISO/IEC 2017 – All rights reserved

Figure 7 — 3-Box Model: Isochronous-Push transfer protocols

6.2 3-Box model: Asynchronous-Pull (e.g. HTTP GET)

In this example, the transfer protocols that are used do not provide real-time guarantees. The
arrival of a particular packet of content is unpredictable relative to the previous packets.
Unless corrected, this causes the content to be rendered with certain undesirable anomalies
(e.g. detectable latencies, jitter, etc.). In order to compensate for these types of transfer
mechanisms, a Renderer device typically implements a read-ahead storage buffer in which
the Renderer reads-ahead of the current output and places the data into a buffer until the
contents are needed. This allows the MediaRenderer to smooth out any rendering anomalies
that might otherwise exist. Since the MediaRenderer needs to control the flow of the content,
it is obligated to provide the instance of the AVTransport service that will be used.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 15

Figure 8 — 3-Box model:Asynchronus-Pull transfer protocol

6.3 2-Box model: Control point with Decoder using Isochronous-Push (e.g. IEEE-
1394)

The following example illustrates how the general Device Interaction Algorithm is used to
handle devices that also include integrated control point functionality (e.g. a TV), that uses
the AVTranport service from the MediaServer to push the content to itself.

ISO/IEC 29341-20-1:2017(E)

16  ISO/IEC 2017 – All rights reserved

Figure 9 — 2-Box model: Control point with Decoder using Isochronous-Push

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 17

6.4 2-Box model: Control point with Decoder using Asynchronous-Pull (e.g. HTTP
GET)

Figure 10 — 2-Box model: Control point with Decoder using Asynchronous-Pull

6.4.1 Minimal Implementation

In some cases the server only implements minimal functionality. In this case the interaction
model is somewhat simpler. In this 2-Box model, the control point is being used to
browse/search content on a MediaServer. This is the same as above but without the
ConnectionManager::PrepareForConnection() and
ConnectionManager::ConnectionComplete() actions. The actual validation of the protocol
matching is done internally in the control point with Decoder. The content transfer and
playback are invisible for other control points.

ISO/IEC 29341-20-1:2017(E)

18  ISO/IEC 2017 – All rights reserved

Figure 11 — 2-Box model: Minimal Implementation

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 19

6.5 2-Box model: Control point with Content using Isochronous-Push (e.g. IEEE-1394)

Figure 12 — 2-Box model: Control point with Content using Isochronous-Push

ISO/IEC 29341-20-1:2017(E)

20  ISO/IEC 2017 – All rights reserved

6.6 2-Box Model: Control point with Content using Asynchronous-Pull (e.g. HTTP
GET)

Figure 13 — 2-Box model: Control point with Content using Asynchronous-Pull

6.7 No ConnectionManager::PrepareForConnection() Action

In some circumstances, vendors may choose to not implement the
ConnectionManager::PrepareForConnection() action, which (among other tasks) provides a
mechanism for the control point to obtain the InstanceID of the AVTransport and
RenderingControl service to use for controlling the flow and rendering characteristics of the

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 21

content. When the ConnectionManager::PrepareForConnection() action is not implemented,
the control point needs to “fall-back” and assume an InstanceID=0. The following diagram
illustrates how the general Device Interaction Model gracefully scales to handle this situation.

Figure 14 — 3-Box model: no ConnectionManager::PrepareForConnection() action

7 Advanced Playback Scenarios

Clause 7 describes some more advanced playback scenarios which are possible with some
of the advanced features of the AV architecture.

ISO/IEC 29341-20-1:2017(E)

22  ISO/IEC 2017 – All rights reserved

7.1 Synchronized playback

It is possible to instruct one or more MediaRenderers to start playing back of a Content Item
at a specific time. The same can be done for operations such as pausing and stopping.
These operations are possible using the AVTransport::SyncPlay(), AVTransport::SyncPause()
and AVTransport::SyncStop() actions. The pre-condition is that the different MediaServers
and MediaRenderers in the home are synchronized to the same master clock and support the
appropriate clock synchronization protocol (such as NTP, IEEE 802.1AS). Information about
the clock synchronization of the different devices can be obtained by the control point using
the ContentDirectory::GetFeatureList() action and the ConnectionManager::GetFeatureList()
action for MediaServers and the ConnectionManager::GetFeatureList() action for
MediaRenderers.

In order to determine if the MediaServer is capable of streaming synchronized content, the
control point uses the content’s upnp:resExt::clockSync@deviceClockInfoID and upnp:resExt
::clockSync@supportedTimestampsID properties to locate the specific details about the
synchronization protocol that will be used. The control point does this via the MediaServer’s
ConnectionManager service <Feature> element containing the CLOCKSYNC feature within
the MediaServer’s feature list. Specifically, the control point finds the <DeviceClockInfo>
and <supportedTimestamps> elements whose @id values match the content’s
upnp:resExt::clockSync@deviceClockInfoID and upnp:resExt::clockSync
@supportedTimestampsID property values, respectively. Consequently, the control point
identifies the clock sync protocol (e.g. 802.1AS), timestamp mechanism (e.g. ‘RTP-1733’)
and the ID of the master clock to whom the MediaServer’s internal clock is synchronized.

Then, by examining the MediaRenderer’s <DeviceClockInfo> element within the
<Feature> element containing the CLOCKSYNC feature from the MediaRenderer’s
ConnectionManager service feature list, the control point determines that the MediaRenderer
supports CLOCKSYNC feature, and identifies the clock sync protocol (802.1AS), timestamp
mechanism (e.g.‘RTP-1733’) and the ID of the master clock to whom the MediaRenderer’s
internal clock is synchronized.

Sequence Diagram:

Setting up Precision Time-Synchronized Playback

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 23

Figure 15 — Sequence diagram for setting up synchronized playback

CDS::Browse()/Search()

upnp:resExt::clockSync

control point Media Server Media Renderer

CM::GetProtocolInfo()

Protocol / Format List

AVT::SetAVTransportURI()

AVT Instance ID

AVT::SyncPlay()

CM::GetFeatureList()

CLOCKSYNC feature

Choose matching
protocols and formats

Out of Band Precision Time
Synchronized Content Transfer

CM::GetFeatureList()

CDS::GetFeatureList()

ISO/IEC 29341-20-1:2017(E)

24  ISO/IEC 2017 – All rights reserved

Based on the comparison of information from the MediaRenderer and the MediaServer, the
control point derives the conclusion whether the selected content can be played on the
specified MediaRenderer in a precision time-synchronized manner.

As described above, the control point can invoke the ConnectionManager::GetFeatureList()
action in order to determine the specific details of the synchronized playback supported by
the device hosting the ConnectionManager service. The <syncProtocolID> element of the
<Feature> element containing the CLOCKSYNC feature enumerates the clock
synchronization protocol that was used to synchronize the implementation’s local time-of-day
clock. The possible clock synchronization protocols include 802.1AS, NTP (Network Timing
Protocol) and SNTP (Simple Network Timing Protocol) protocols. 802.1AS clock
synchronization protocol enables precision synchronization (accuracy exceeding 1 micro-
second), thus enabling usages such as synchronized audio and video playback. For other
usages such as party music being piped to multiple rooms, NTP and SNTP protocols may
provide sufficient clock synchronization accuracy.

Similarly, the <masterClockID> element of the <Feature> element containing the
CLOCKSYNC feature identifies the master clock to which this implementation has
synchronized its local time-of-day clock. Depending on the clock synchronization protocol,
the <masterClockID> element specifies either the 8-byte binary sequence (<High 24-bits
MAC> 0xFF 0xFE <Low 24-bits MAC>) in case of 802.1AS, or the URL of the time server in
case of NTP or SNTP.

7.2 Multi-streaming

Some MediaServer implementation support the MULTI_STREAM feature, which means that
the ContentDirectory implementation is capable of exposing metadata properties that
describe Content Items supporting multiple media components. These components may
either be multiplexed together in one resource (exposed by one res property), or they can be
separate resources (exposed by multiple upnp:resExt
::componentInfo::componentGroup::component::compRes properties) which are played back
as a bundle in a synchronized way. control points that want to play back such complex
streams on a MediaRenderer need to check for its capability of playing such streams. It does
so by invoking the ConnectionManager::GetRendererItemInfo() action. The returned
RendererInfo XML Document contains information whether the MediaRenderer is able to play
such streams (through the canPlay attribute of the <resPlaybackInfo> element in the
RendererInfo XML Document). Furthermore, the RendererInfo XML Document also gives an
indication of which types of content Transforms the MediaRenderer is able to apply on such
streams during playback (through the <transformInfo> element), for example switching to
a different audio language. Applying Transforms is done by invoking the RenderingControl
::SetTransforms() action, after first invoking the RenderingControl::GetAllowedTransforms()
action to determine the allowed Transforms and their allowed values. The sequence diagram
for setting up a multi-streaming playback session is shown in Figure 16.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 25

Figure 16 — Multi-streaming playback sequence

CDS::Browse()/Search()

upnp:resExt::componentInfo

control point Media Server Media Renderer

CM::GetProtocolInfo()

Protocol / Format List

AVT::SetAVTransportURI()

AVT Instance ID

 AVT::Play()

Check matching
protocols and formats

Out of Band Content Transfer

CDS::GetFeatureList()

Check multi-stream
playback capability

CM::GetRendererItemInfo()

Protocol / Format List

RCS::GetAllowedTransforms()

RCS::SetTransforms()

ISO/IEC 29341-20-1:2017(E)

26  ISO/IEC 2017 – All rights reserved

8 Recording Architecture

8.1 Legacy recording mechanism

The UPnP AV Architecture defines a rudimentary Recording capability. An
AVTransport::Record() action is defined within the AVTranport service. As content is being
transferred from the MediaServer to the MediaRenderer, a control point may issue the
‘Record’ action. This results in the device ‘recording’ that content to some type of unspecified
storage. The details of the Record feature depend completely on the recording device and
can range dramatically from device to device.

8.2 Scheduled Recording

The UPnP AV Architecture defines a scheduled recording functionality as a separated service
called ScheduledRecording service See [7].

The ScheduledRecording service has an interface to create and manage schedules. The
architecture of the SRS is made in such way that a parametric schedule will result in one or
more time specific tasks that corresponds with an actual timed recording events; this is
depicted in Figure 17. The next types of record schedules can exist, each with different
characteristics to create tasks:

Schedule type Description

direct.manual The object.recordSchedule.direct.manual class is used to create recordSchedule instances
for manual scheduling of recordings.

direct.cdsEPG The object.recordSchedule.direct.cdsEPG class is used to create recordSchedule instances
for scheduling of recordings, based on local EPG information

direct.cdsNonEPG The object.recordSchedule.direct.cdsNonEPG class is used to create recordSchedule
instances for scheduling of recordings, for which (only) channel information is available in a
local ContentDirectory database.

direct.programCod
e

The object.recordSchedule.direct.programCode class is used to create recordSchedule
instances for scheduling of recordings, based on program code information

query.contentName The object.recordSchedule.query.contentName class is used to create recordSchedule
instances for scheduling of recordings, based on program or series name information.

query.contentID The object.recordSchedule.query.contentID class is used to create recordSchedule
instances for scheduling of recordings, based on program or series ID information.

Note that not all schedule recording implementations have to implement all possible types of
schedules. The types of supported schedules and their used properties can be retrieved by
actions on the ScheduledRecording service.

ISO/IEC 29341-20-1:2017(E)

 ISO/IEC 2017 – All rights reserved 27

Figure 17 — Relationship between a Schedule and the related Tasks

The resulting RecordTasks created by a RecordSchedule can be managed by a control point.
When the RecordTasks have been (successfully) completed, the result, a newly created
recording, can be visible as an item in the accompanied ContentDirectory service of the same
Media Server. This is depicted in Figure 18.

Figure 18 — Out of bounds content creation by the ScheduledRecording service.

For more details on the ScheduledRecording service see [7].

﻿

ISO/IEC 29341-20-1:2017(E)
﻿

© ISO/IEC 2017 – All rights reserved

ICS 35.200
Price based on 27 pages

	1 Scope
	1.1 Introductioin
	1.2 Goals
	1.3 Non-Goals

	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	4 Architectural Overview
	5 Playback Architecture
	5.1 MediaServer
	5.1.1 ContentDirectory Service
	5.1.2 ConnectionManager Service
	5.1.1 AVTransport Service

	5.2 MediaRenderer
	5.2.1 RenderingControl Service
	5.2.2 ConnectionManager Service
	5.2.3 AVTransport Service

	5.3 Control point
	5.3.1 2-Box model: Control point with Decoder
	5.3.2 2-Box model: Control point with Content

	5.4 Tracking streams in the network

	6 Example Playback Scenarios
	6.1 3-Box model: Isochronous-Push (IEC61883/IEEE1394)
	6.2 3-Box model: Asynchronous-Pull (e.g. HTTP GET)
	6.3 2-Box model: Control point with Decoder using Isochronous-Push (e.g. IEEE-1394)
	6.4 2-Box model: Control point with Decoder using Asynchronous-Pull (e.g. HTTP GET)
	6.4.1 Minimal Implementation

	6.5 2-Box model: Control point with Content using Isochronous-Push (e.g. IEEE-1394)
	6.6 2-Box Model: Control point with Content using Asynchronous-Pull (e.g. HTTP GET)
	6.7 No ConnectionManager::PrepareForConnection() Action

	7 Advanced Playback Scenarios
	7.1 Synchronized playback
	7.2 Multi-streaming

	8 Recording Architecture
	8.1 Legacy recording mechanism
	8.2 Scheduled Recording

