
Information technology — Trusted
Platform Module Library —
Part 2:
Structures
Technologies de l’information — Bibliothèque de module
de plate-forme de confiance —
Partie 2: Structures

INTERNATIONAL
STANDARD

ISO/IEC
11889-2

Reference number
ISO/IEC 11889-2:2015(E)

Second edition
2015-12-15

© ISO/IEC 2015

ii © ISO/IEC 2015 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC 11889-2:2015(E)

ISO/IEC 11889-2:2015(E)

CONTENTS

Foreword .. xv

Introduction ... xvi

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1

4 Symbols and abbreviated terms .. 1

5 Notation ... 1

5.1 Introduction .. 1

5.2 Named Constants .. 2

5.3 Data Type Aliases (typedefs) .. 3

5.4 Enumerations .. 3

5.5 Interface Type ... 4

5.6 Arrays .. 5

5.7 Structure Definitions .. 6

5.8 Conditional Types .. 7

5.9 Unions ... 8

5.9.1 Introduction .. 8
5.9.2 Union Definition ... 8
5.9.3 Union Instance ... 9
5.9.4 Union Selector Definition ... 10

5.10 Bit Field Definitions .. 11

5.11 Parameter Limits ... 12

5.12 Enumeration Macro ... 13

5.13 Size Checking ... 13

5.14 Data Direction .. 14

5.15 Structure Validations ... 15

5.16 Name Prefix Convention ... 15

5.17 Data Alignment .. 16

5.18 Parameter Unmarshaling Errors ... 16

6 Base Types ... 18

6.1 Primitive Types .. 18

6.2 Miscellaneous Types ... 18

7 Constants .. 19

7.1 TPM_SPEC (Specification Version Values) .. 19

7.2 TPM_GENERATED .. 19

7.3 TPM_ALG_ID .. 20

7.4 TPM_ECC_CURVE ... 24

7.5 TPM_CC (Command Codes) .. 24

© ISO/IEC 2015 - All rights reserved i

ISO/IEC 11889-2:2015(E)

7.5.1 Format ... 24
7.5.2 Description ... 25
7.5.3 TPM_CC Listing .. 26

7.6 TPM_RC (Response Codes) .. 29

7.6.1 Description ... 29
7.6.2 Response Code Formats ... 30
7.6.3 TPM_RC Values .. 33

7.7 TPM_CLOCK_ADJUST .. 38

7.8 TPM_EO (EA Arithmetic Operands) ... 38

7.9 TPM_ST (Structure Tags) ... 39

7.10 TPM_SU (Startup Type) .. 41

7.11 TPM_SE (Session Type) ... 41

7.12 TPM_CAP (Capabilities) ... 42

7.13 TPM_PT (Property Tag) .. 43

7.14 TPM_PT_PCR (PCR Property Tag) .. 48

7.15 TPM_PS (Platform Specific) .. 50

8 Handles ... 51

8.1 Introduction .. 51

8.2 TPM_HT (Handle Types) .. 51

8.3 Persistent Handle Sub-ranges .. 52

8.4 TPM_RH (Permanent Handles) .. 53

8.5 TPM_HC (Handle Value Constants) ... 54

9 Attribute Structures .. 56

9.1 Description .. 56

9.2 TPMA_ALGORITHM ... 56

9.3 TPMA_OBJECT (Object Attributes) .. 56

9.3.1 Introduction .. 56
9.3.2 Structure Definition .. 57
9.3.3 Attribute Descriptions .. 58

9.4 TPMA_SESSION (Session Attributes) .. 63

9.5 TPMA_LOCALITY (Locality Attribute) ... 64

9.6 TPMA_PERMANENT .. 65

9.7 TPMA_STARTUP_CLEAR.. 66

9.8 TPMA_MEMORY .. 67

9.9 TPMA_CC (Command Code Attributes) ... 68

9.9.1 Introduction .. 68
9.9.2 Structure Definition .. 68
9.9.3 Field Descriptions .. 68

10 Interface Types .. 71

10.1 Introduction .. 71

10.2 TPMI_YES_NO ... 71

10.3 TPMI_DH_OBJECT .. 71

ii © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

10.4 TPMI_DH_PERSISTENT .. 72

10.5 TPMI_DH_ENTITY .. 72

10.6 TPMI_DH_PCR ... 73

10.7 TPMI_SH_AUTH_SESSION ... 73

10.8 TPMI_SH_HMAC .. 73

10.9 TPMI_SH_POLICY .. 73

10.10 TPMI_DH_CONTEXT .. 74
10.11 TPMI_RH_HIERARCHY .. 74
10.12 TPMI_RH_ENABLES .. 74
10.13 TPMI_RH_HIERARCHY_AUTH .. 75
10.14 TPMI_RH_PLATFORM ... 75
10.15 TPMI_RH_OWNER ... 75
10.16 TPMI_RH_ENDORSEMENT ... 76
10.17 TPMI_RH_PROVISION ... 76
10.18 TPMI_RH_CLEAR ... 76
10.19 TPMI_RH_NV_AUTH .. 77
10.20 TPMI_RH_LOCKOUT ... 77
10.21 TPMI_RH_NV_INDEX ... 77
10.22 TPMI_ALG_HASH ... 78
10.23 TPMI_ALG_ASYM (Asymmetric Algorithms) .. 78
10.24 TPMI_ALG_SYM (Symmetric Algorithms) .. 79
10.25 TPMI_ALG_SYM_OBJECT ... 79
10.26 TPMI_ALG_SYM_MODE .. 80
10.27 TPMI_ALG_KDF (Key and Mask Generation Functions) .. 80
10.28 TPMI_ALG_SIG_SCHEME ... 81
10.29 TPMI_ECC_KEY_EXCHANGE ... 81
10.30 TPMI_ST_COMMAND_TAG ... 81

11 Structure Definitions .. 83

11.1 TPMS_EMPTY .. 83

11.2 TPMS_ALGORITHM_DESCRIPTION .. 83

11.3 Hash/Digest Structures ... 84

11.3.1 TPMU_HA (Hash) .. 84
11.3.2 TPMT_HA .. 84

11.4 Sized Buffers ... 85

11.4.1 Introduction .. 85
11.4.2 TPM2B_DIGEST ... 85
11.4.3 TPM2B_DATA ... 86
11.4.4 TPM2B_NONCE .. 86
11.4.5 TPM2B_AUTH ... 86
11.4.6 TPM2B_OPERAND ... 86
11.4.7 TPM2B_EVENT ... 87
11.4.8 TPM2B_MAX_BUFFER .. 87
11.4.9 TPM2B_MAX_NV_BUFFER ... 87
11.4.10 TPM2B_TIMEOUT .. 88
11.4.11 TPM2B_IV ... 88

11.5 Names ... 88

11.5.1 Introduction .. 88
11.5.2 TPMU_NAME .. 88
11.5.3 TPM2B_NAME .. 89

11.6 PCR Structures ... 89

11.6.1 TPMS_PCR_SELECT ... 89

© ISO/IEC 2015 - All rights reserved iii

ISO/IEC 11889-2:2015(E)

11.6.2 TPMS_PCR_SELECTION ... 90

11.7 Tickets ... 90

11.7.1 Introduction .. 90
11.7.2 A NULL Ticket.. 91
11.7.3 TPMT_TK_CREATION .. 92
11.7.4 TPMT_TK_VERIFIED .. 93
11.7.5 TPMT_TK_AUTH .. 94
11.7.6 TPMT_TK_HASHCHECK .. 95

11.8 Property Structures ... 95

11.8.1 TPMS_ALG_PROPERTY .. 95
11.8.2 TPMS_TAGGED_PROPERTY .. 95
11.8.3 TPMS_TAGGED_PCR_SELECT .. 96

11.9 Lists ... 96

11.9.1 TPML_CC .. 96
11.9.2 TPML_CCA .. 97
11.9.3 TPML_ALG .. 97
11.9.4 TPML_HANDLE .. 97
11.9.5 TPML_DIGEST .. 98
11.9.6 TPML_DIGEST_VALUES ... 98
11.9.7 TPM2B_DIGEST_VALUES ... 98
11.9.8 TPML_PCR_SELECTION ... 99
11.9.9 TPML_ALG_PROPERTY .. 99
11.9.10 TPML_TAGGED_TPM_PROPERTY .. 99
11.9.11 TPML_TAGGED_PCR_PROPERTY .. 100
11.9.12 TPML_ECC_CURVE .. 100
11.10 Capabilities Structures ... 100
11.10.1 TPMU_CAPABILITIES .. 100
11.10.2 TPMS_CAPABILITY_DATA .. 101
11.11 Clock/Counter Structures .. 101
11.11.1 PMS_CLOCK_INFO ... 101
11.11.2 Clock ... 101
11.11.3 ResetCount ... 101
11.11.4 RestartCount ... 102
11.11.5 Safe ... 102
11.11.6 TPMS_TIME_INFO ... 102

11.12 TPM Attestation Structures .. 103

11.12.1 Introduction .. 103
11.12.2 TPMS_TIME_ATTEST_INFO ... 103
11.12.3 TPMS_CERTIFY_INFO .. 103
11.12.1 TPMS_QUOTE_INFO ... 103
11.12.2 TPMS_COMMAND_AUDIT_INFO .. 104
11.12.3 TPMS_SESSION_AUDIT_INFO ... 104
11.12.4 TPMS_CREATION_INFO ... 104
11.12.5 TPMS_NV_CERTIFY_INFO ... 104
11.12.6 TPMI_ST_ATTEST ... 105
11.12.7 TPMU_ATTEST .. 105
11.12.8 TPMS_ATTEST ... 105
11.12.9 TPM2B_ATTEST ... 106

11.13 Authorization Structures ... 106

11.13.1 Introduction .. 106
11.13.2 TPMS_AUTH_COMMAND ... 106
11.13.3 TPMS_AUTH_RESPONSE .. 106

12 Algorithm Parameters and Structures ... 107

iv © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

12.1 Symmetric ... 107

12.1.1 Introduction .. 107
12.1.2 TPMI_AES_KEY_BITS .. 107
12.1.3 TPMI_SM4_KEY_BITS ... 107
12.1.4 TPMI_CAMELLIA KEY_BITS .. 108
12.1.5 TPMU_SYM_KEY_BITS ... 108
12.1.6 TPMU_SYM_MODE .. 108
12.1.7 TPMU_SYM_DETAILS .. 109
12.1.8 TPMT_SYM_DEF .. 109
12.1.9 TPMT_SYM_DEF_OBJECT .. 110
12.1.10 TPM2B_SYM_KEY ... 110
12.1.11 TPMS_SYMCIPHER_PARMS .. 110
12.1.12 TPM2B_SENSITIVE_DATA .. 110
12.1.13 TPMS_SENSITIVE_CREATE ... 111
12.1.14 TPM2B_SENSITIVE_CREATE ... 111
12.1.15 TPMS_SCHEME_SIGHASH ... 112
12.1.16 TPMI_ALG_HASH_SCHEME ... 112
12.1.17 HMAC_SIG_SCHEME .. 112
12.1.18 TPMS_SCHEME_XOR ... 113
12.1.19 TPMU_SCHEME_HMAC .. 113
12.1.20 TPMT_KEYEDHASH_SCHEME ... 113

12.2 Asymmetric .. 114

12.2.1 Signing Schemes ... 114
12.2.2 Encryption Schemes .. 116
12.2.3 Key Derivation Schemes ... 116
12.2.4 RSA ... 119
12.2.5 ECC ... 122

12.3 Signatures ... 124

12.3.1 TPMS_SIGNATURE_RSASSA ... 124
12.3.2 TPMS_SIGNATURE_RSAPSS ... 124
12.3.3 TPMS_SIGNATURE_ECDSA ... 125
12.3.4 TPMU_SIGNATURE ... 125
12.3.5 TPMT_SIGNATURE .. 126

12.4 Key/Secret Exchange .. 126

12.4.1 Introduction .. 126
12.4.2 TPMU_ENCRYPTED_SECRET.. 126
12.4.3 TPM2B_ENCRYPTED_SECRET .. 127

13 Key/Object Complex .. 128

13.1 Introduction .. 128

13.2 Public Area Structures ... 128

13.2.1 Description ... 128
13.2.2 TPMI_ALG_PUBLIC .. 128
13.2.3 Type-Specific Parameters ... 128
13.2.4 TPMT_PUBLIC .. 132
13.2.5 TPM2B_PUBLIC .. 132

13.3 Private Area Structures ... 133

13.3.1 Introduction .. 133
13.3.2 Sensitive Data Structures .. 133
13.3.3 TPM2B_SENSITIVE .. 134
13.3.4 Encryption .. 135
13.3.5 Integrity .. 135
13.3.6 _PRIVATE ... 135
13.3.7 TPM2B_PRIVATE ... 135

© ISO/IEC 2015 - All rights reserved v

ISO/IEC 11889-2:2015(E)

13.4 Identity Object ... 136

13.4.1 Description ... 136
13.4.2 _ID_OBJECT ... 136
13.4.3 TPM2B_ID_OBJECT ... 136

14 NV Storage Structures .. 137

14.1 TPM_NV_INDEX ... 137

14.2 TPMA_NV (NV Index Attributes) ... 138

14.3 TPMS_NV_PUBLIC .. 141

14.4 TPM2B_NV_PUBLIC .. 141

15 Context Data ... 142

15.1 Introduction .. 142

15.2 TPM2B_CONTEXT_SENSITIVE .. 142

15.3 TPMS_CONTEXT_DATA .. 142

15.4 TPM2B_CONTEXT_DATA.. 142

15.5 TPMS_CONTEXT ... 143

15.6 Parameters of TPMS_CONTEXT ... 143

15.6.1 sequence ... 143
15.6.2 savedHandle .. 144
15.6.3 hierarchy .. 145

15.7 Context Protection ... 145

15.7.1 Context Integrity .. 145
15.7.2 Context Confidentiality ... 145

16 Creation Data .. 146

16.1 TPMS_CREATION_DATA .. 146

16.2 TPM2B_CREATION_DATA .. 146

 (informative) Algorithm Constants ... 147 Annex A

A.1 Introduction .. 147

A.2 Allowed Hash Algorithms .. 147

A.2.1 SHA1 ... 147
A.2.2 SHA256 ... 147
A.2.3 SHA384 ... 147
A.2.4 SHA512 ... 148
A.2.5 SM3_256 ... 148

A.3 Architectural Limits .. 148

 (informative) Implementation Definitions ... 149 Annex B

B.1 Introduction .. 149

B.2 Logic Values .. 149

B.3 Processor Values .. 149

B.4 Implemented Algorithms .. 150

B.5 Implemented Commands .. 151

B.6 Algorithm Constants .. 154

B.6.1 RSA ... 154
B.6.2 ECC ... 154

vi © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

B.6.3 AES .. 154
B.6.4 SM4 ... 154
B.6.5 CAMELLIA ... 155
B.6.6 Symmetric .. 155

B.7 Implementation Specific Values .. 156

Bibliography .. 159

© ISO/IEC 2015 - All rights reserved vii

ISO/IEC 11889-2:2015(E)

Tables

Table 1 — Name Prefix Convention ... 15

Table 2 — Unmarshaling Errors ... 17

Table 3 — Definition of Base Types ... 18

Table 4 — Definition of Types for Documentation Clarity ... 18

Table 5 — Definition of (UINT32) TPM_SPEC Constants <> ... 19

Table 6 — Definition of (UINT32) TPM_GENERATED Constants <O> ... 19

Table 7 — Legend for TPM_ALG_ID Table .. 20

Table 8 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S> ... 21

Table 9 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S> 24

Table 10 — TPM Command Format Fields Description ... 24

Table 11 — Legend for Command Code Tables .. 25

Table 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S> 26

Table 13 — Format-Zero Response Codes .. 31

Table 14 — Format-One Response Codes .. 32

Table 15 — Response Code Groupings ... 32

Table 16 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT> .. 33

Table 17 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN> ... 38

Table 18 — Definition of (UINT16) TPM_EO Constants <IN/OUT> ... 38

Table 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S> ... 39

Table 20 — Definition of (UINT16) TPM_SU Constants <IN> .. 41

Table 21 — Definition of (UINT8) TPM_SE Constants <IN> .. 41

Table 22 — Definition of (UINT32) TPM_CAP Constants .. 42

Table 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S> ... 43

Table 24 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S> ... 48

Table 25 — Definition of (UINT32) TPM_PS Constants <OUT> .. 50

Table 26 — Definition of Types for Handles ... 51

Table 27 — Definition of (UINT8) TPM_HT Constants <S> ... 51

Table 28 — Definition of (TPM_HANDLE) TPM_RH Constants <S> ... 53

Table 29 — Definition of (TPM_HANDLE) TPM_HC Constants <S> ... 55

Table 30 — Definition of (UINT32) TPMA_ALGORITHM Bits .. 56

Table 31 — Definition of (UINT32) TPMA_OBJECT Bits ... 57

Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT> .. 63

Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT> .. 65

Table 34 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT> .. 65

Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT> .. 66

Table 36 — Definition of (UINT32) TPMA_MEMORY Bits <Out> .. 67

Table 37 — Definition of (TPM_CC) TPMA_CC Bits <OUT> ... 68

viii © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

Table 38 — Definition of (BYTE) TPMI_YES_NO Type ... 71

Table 39 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type.. 71

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type ... 72

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN> .. 72

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN> ... 73

Table 43 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT> 73

Table 44 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT> .. 73

Table 45 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT> 73

Table 46 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type .. 74

Table 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type .. 74

Table 48 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type ... 74

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN> 75

Table 50 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN> ... 75

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN> ... 75

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN> 76

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN> ... 76

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN> ... 76

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN> .. 77

Table 56 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN> ... 77

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT> 77

Table 58 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type.. 78

Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type ... 78

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type .. 79

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type ... 79

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type ... 80

Table 63 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type .. 80

Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type .. 81

Table 65 — Definition of (TPM_ALG_ID) TPMI_ECC_KEY_EXCHANGE Type .. 81

Table 66 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type .. 81

Table 67 — Definition of TPMS_EMPTY Structure <IN/OUT> ... 83

Table 68 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT> 83

Table 69 — Definition of TPMU_HA Union <IN/OUT, S> ... 84

Table 70 — Definition of TPMT_HA Structure <IN/OUT> .. 84

Table 71 — Definition of TPM2B_DIGEST Structure ... 85

Table 72 — Definition of TPM2B_DATA Structure ... 86

Table 73 — Definition of Types for TPM2B_NONCE ... 86

Table 74 — Definition of Types for TPM2B_AUTH .. 86

Table 75 — Definition of Types for TPM2B_OPERAND .. 86

Table 76 — Definition of TPM2B_EVENT Structure ... 87

© ISO/IEC 2015 - All rights reserved ix

ISO/IEC 11889-2:2015(E)

Table 77 — Definition of TPM2B_MAX_BUFFER Structure .. 87

Table 78 — Definition of TPM2B_MAX_NV_BUFFER Structure ... 87

Table 79 — Definition of TPM2B_TIMEOUT Structure <IN/OUT> ... 88

Table 80 — Definition of TPM2B_IV Structure <IN/OUT> .. 88

Table 81 — Definition of TPMU_NAME Union <> .. 88

Table 82 — Definition of TPM2B_NAME Structure .. 89

Table 83 — Definition of TPMS_PCR_SELECT Structure ... 90

Table 84 — Definition of TPMS_PCR_SELECTION Structure ... 90

Table 85 — Values for proof Used in Tickets ... 91

Table 86 — General Format of a Ticket .. 91

Table 87 — Definition of TPMT_TK_CREATION Structure .. 92

Table 88 — Definition of TPMT_TK_VERIFIED Structure .. 93

Table 89 — Definition of TPMT_TK_AUTH Structure .. 94

Table 90 — Definition of TPMT_TK_HASHCHECK Structure .. 95

Table 91 — Definition of TPMS_ALG_PROPERTY Structure <OUT> ... 95

Table 92 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT> ... 95

Table 93 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT> ... 96

Table 94 — Definition of TPML_CC Structure .. 96

Table 95 — Definition of TPML_CCA Structure <OUT> ... 97

Table 96 — Definition of TPML_ALG Structure .. 97

Table 97 — Definition of TPML_HANDLE Structure <OUT> .. 97

Table 98 — Definition of TPML_DIGEST Structure .. 98

Table 99 — Definition of TPML_DIGEST_VALUES Structure ... 98

Table 100 — Definition of TPM2B_DIGEST_VALUES Structure ... 98

Table 101 — Definition of TPML_PCR_SELECTION Structure ... 99

Table 102 — Definition of TPML_ALG_PROPERTY Structure <OUT> ... 99

Table 103 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT> 99

Table 104 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT> 100

Table 105 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT> ... 100

Table 106 — Definition of TPMU_CAPABILITIES Union <OUT> ... 100

Table 107 — Definition of TPMS_CAPABILITY_DATA Structure <OUT> ... 101

Table 108 — Definition of TPMS_CLOCK_INFO Structure .. 101

Table 109 — Definition of TPMS_TIME_INFO Structure ... 102

Table 110 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT> ... 103

Table 111 — Definition of TPMS_CERTIFY_INFO Structure <OUT> .. 103

Table 112 — Definition of TPMS_QUOTE_INFO Structure <OUT> .. 103

Table 113 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT> 104

Table 114 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT> .. 104

Table 115 — Definition of TPMS_CREATION_INFO Structure <OUT> .. 104

x © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

Table 116 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT> ... 104

Table 117 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT> .. 105

Table 118 — Definition of TPMU_ATTEST Union <OUT> ... 105

Table 119 — Definition of TPMS_ATTEST Structure <OUT> .. 105

Table 120 — Definition of TPM2B_ATTEST Structure <OUT> .. 106

Table 121 — Definition of TPMS_AUTH_COMMAND Structure <IN> ... 106

Table 122 — Definition of TPMS_AUTH_RESPONSE Structure <OUT> .. 106

Table 123 — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type 107

Table 124 — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type 107

Table 125 — Definition of {CAMELLIA} (TPM_KEY_BITS) TPMI_CAMELLIA_KEY_BITS Type 108

Table 126 — Definition of TPMU_SYM_KEY_BITS Union ... 108

Table 127 — Definition of TPMU_SYM_MODE Union ... 108

Table 128 —xDefinition of TPMU_SYM_DETAILS Union .. 109

Table 129 — Definition of TPMT_SYM_DEF Structure .. 109

Table 130 — Definition of TPMT_SYM_DEF_OBJECT Structure .. 110

Table 131 — Definition of TPM2B_SYM_KEY Structure .. 110

Table 132 — Definition of TPMS_SYMCIPHER_PARMS Structure .. 110

Table 133 — Definition of TPM2B_SENSITIVE_DATA Structure .. 111

Table 134 — Definition of TPMS_SENSITIVE_CREATE Structure <IN> .. 111

Table 135 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S> .. 111

Table 136 — Definition of TPMS_SCHEME_SIGHASH Structure ... 112

Table 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type 112

Table 138 — Definition of Types for HMAC_SIG_SCHEME .. 112

Table 139 — Definition of TPMS_SCHEME_XOR Structure ... 113

Table 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S> 113

Table 141 — Definition of TPMT_KEYEDHASH_SCHEME Structure ... 113

Table 142 — Definition of {RSA} Types for RSA_SIG_SCHEMES .. 114

Table 143 — Definition of {ECC} Types for ECC_SIG_SCHEMES.. 114

Table 144 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure .. 114

Table 145 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S> .. 115

Table 146 — Definition of TPMT_SIG_SCHEME Structure ... 115

Table 147 — Definition of {RSA} TPMS_SCHEME_OAEP Structure .. 116

Table 148 — Definition of {ECC} TPMS_SCHEME_ECDH Structure .. 116

Table 149 — Definition of TPMS_SCHEME_MGF1 Structure ... 116

Table 150 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800_56a Structure 116

Table 151 — Definition of TPMS_SCHEME_KDF2 Structure .. 117

Table 152 — Definition of TPMS_SCHEME_KDF1_SP800_108 Structure ... 117

Table 153 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S> ... 117

Table 154 — Definition of TPMT_KDF_SCHEME Structure .. 117

© ISO/IEC 2015 - All rights reserved xi

ISO/IEC 11889-2:2015(E)

Table 155 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <>................................. 118

Table 156 — Definition of TPMU_ASYM_SCHEME Union .. 118

Table 157 — Definition of TPMT_ASYM_SCHEME Structure <> .. 119

Table 158 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type 119

Table 159 — Definition of {RSA} TPMT_RSA_SCHEME Structure ... 119

Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type 120

Table 161 — Definition of {RSA} TPMT_RSA_DECRYPT Structure ... 120

Table 162 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure .. 120

Table 163 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type 121

Table 164 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure .. 121

Table 165 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure ... 122

Table 166 — Definition of {ECC} TPMS_ECC_POINT Structure ... 122

Table 167 — Definition of {ECC} TPM2B_ECC_POINT Structure ... 122

Table 168 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type 123

Table 169 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type 123

Table 170 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure 123

Table 171 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT> 124

Table 172 — Definition of {RSA} TPMS_SIGNATURE_RSASSA Structure .. 124

Table 173 — Definition of {RSA} TPMS_SIGNATURE_RSAPSS Structure .. 125

Table 174 — Definition of {ECC} TPMS_SIGNATURE_ECDSA Structure .. 125

Table 175 — Definition of TPMU_SIGNATURE Union <IN/OUT, S> ... 125

Table 176 — Definition of TPMT_SIGNATURE Structure .. 126

Table 177 — Definition of TPMU_ENCRYPTED_SECRET Union <S> ... 126

Table 178 — Definition of TPM2B_ENCRYPTED_SECRET Structure .. 127

Table 179 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type .. 128

Table 180 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S> ... 129

Table 181 — Definition of TPMS_KEYEDHASH_PARMS Structure.. 129

Table 182 — Definition of TPMS_ASYM_PARMS Structure <> .. 130

Table 183 — Definition of {RSA} TPMS_RSA_PARMS Structure.. 130

Table 184 — Definition of {ECC} TPMS_ECC_PARMS Structure ... 131

Table 185 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S> .. 131

Table 186 — Definition of TPMT_PUBLIC_PARMS Structure ... 132

Table 187 — Definition of TPMT_PUBLIC Structure .. 132

Table 188 — Definition of TPM2B_PUBLIC Structure .. 132

Table 189 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<> 133

Table 190 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S> 133

Table 191 — Definition of TPMT_SENSITIVE Structure .. 134

Table 192 — Definition of TPM2B_SENSITIVE Structure <IN/OUT> .. 134

Table 193 — Definition of _PRIVATE Structure <> .. 135

xii © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

Table 194 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S> ... 135

Table 195 — Definition of _ID_OBJECT Structure <> .. 136

Table 196 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT> ... 136

Table 197 — Definition of (UINT32) TPM_NV_INDEX Bits <> ... 137

Table 198 — Definition of (UINT32) TPMA_NV Bits .. 139

Table 199 — Definition of TPMS_NV_PUBLIC Structure ... 141

Table 200 — Definition of TPM2B_NV_PUBLIC Structure ... 141

Table 201 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT> 142

Table 202 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S> .. 142

Table 203 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT> .. 142

Table 204 — Definition of TPMS_CONTEXT Structure ... 143

Table 205 — Context Handle Values .. 144

Table 206 — Definition of TPMS_CREATION_DATA Structure <OUT> ... 146

Table 207 — Definition of TPM2B_CREATION_DATA Structure <OUT> ... 146

Table A.1 — Defines for SHA1 Hash Values .. 147

Table A.2 — Defines for SHA256 Hash Values .. 147

Table A.3 — Defines for SHA384 Hash Values .. 147

Table A.4 — Defines for SHA512 Hash Values ... 148

Table A.5 — Defines for SM3_256 Hash Values .. 148

Table A.6 — Defines for Architectural Limits Values .. 148

Table B.1 — Defines for Logic Values .. 149

Table B.2 — Defines for Processor Values .. 149

Table B.3 — Defines for Implemented Algorithms .. 150

Table B.4 — Defines for Implemented Commands .. 151

Table B.5 — Defines for RSA Algorithm Constants .. 154

Table B.6 — Defines for ECC Algorithm Constants ... 154

Table B.7 — Defines for AES Algorithm Constants .. 154

Table B.8 — Defines for SM4 Algorithm Constants .. 154

Table B.9 — Defines for CAMELLIA Algorithm Constants ... 155

Table B.10 — Defines for Symmetric Algorithm Constants .. 155

Table B.11 — Defines for Implementation Values .. 156

© ISO/IEC 2015 - All rights reserved xiii

ISO/IEC 11889-2:2015(E)

Figures

Figure 1 — Command Format .. 24

Figure 2 — Format-Zero Response Codes ... 30

Figure 3 — Format-One Response Codes ... 31

Figure 4 — ISO/IEC 11889 (first edition) TPM_NV_INDEX ... 137

Figure 5 — ISO/IEC 11889 TPM_NV_INDEX .. 137

xiv © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
Details of any patent rights identified during the development of the document will be in the Introduction
and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information.

ISO/IEC 11889-2 was prepared by the Trusted Computing Group (TCG) and was adopted, under the
PAS procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its
approval by national bodies of ISO and IEC.

This second edition cancels and replaces the first edition (ISO/IEC 11889-2:2009), which has been
technically revised.

ISO/IEC 11889 consists of the following parts, under the general title Information technology — Trusted
latform Module Library: P

art 1: Architecture ۛ P

art 2: Structures ۛ P

art 3: Commands ۛ P

ۛ Part 4: Supporting routines

© ISO/IEC 2015 - All rights reserved xv

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

ISO/IEC 11889-2:2015(E)

xvi © ISO/IEC 2015 – All rights reserved

Introduction

The International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use
of a patent.	

ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he/she is willing to negotiate licences
either free of charge or under reasonable and non-discriminatory terms and conditions with applicants
throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO
and IEC. Information may be obtained from:

Fujitsu Limited	

1-1, Kamikodanaka 4- hrome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan	c

Microsoft Corporation	

One Microsoft Way, Redmond, WA 98052

Enterasys Networks, Inc

50 Minuteman Road, US-Andover, MA 01810

Lenovo

1009 Think Place, US-Morrisville, NC 27560-8496

Advanced Micro devices, Inc. - AMD

7171 Southwest Parkway, Mailstop B100.3 US-Austin, Texas 78735

Hewlett-Packard Company

P.O. Box 10490, US-Palo Alto, CA 94303-0969

Infineon Technologies AG - Neubiberg

Am Campeon 1-12, DE-85579 Neubiberg

Sun Microsystems Inc. - Menlo Park, CA

10 Network Circle, UMPK10-146, US-Menlo Park, CA 94025

IBM Corporation

North Castle Drive, US-Armonk, N.Y. 10504

Intel Corporation

5200 Elam Young Parkway, US-Hillsboro, OR 97123

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying
any or all such patent rights.	

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant
to their standards. Users are encouraged to consult the databases for the most up to date information
concerning patents.

http://www.iso.org/patents
http://patents.iec.ch/

ISO/IEC 11889-2:2015(E)

Information technology — Trusted Platform Module Library —

Part 2: Structures

1 Scope

This part of ISO/IEC 11889 contains the definitions of the constants, flags, structure, and union definitions
used to communicate with the TPM. Values defined in this part of ISO/IEC 11889 are used by the TPM
commands defined in ISO/IEC 11899-3 and by the functions in ISO/IEC 11889-4.

NOTE The structures in this document are the canonical form of the structures on the interface. All structures
are "packed" with no octets of padding between structure elements. The TPM-internal form of the
structures is dependent on the processor and compiler for the TPM implementation.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

 ISO/IEC 9797-2, Information technology -- Security techniques -- Message Authentication Codes
(MACs) -- Part 2: Mechanisms using a dedicated hash-function

 ISO/IEC 10116:2006, Information technology — Security techniques — Modes of operation for an n-
bit block cipher

 ISO/IEC 11889-1, Information technology — Trusted Platform Module Library — Part 1: Architecture

 ISO/IEC 11889-3, Information technology — Trusted Platform Module Library — Part 3: Commands

 ISO/IEC 11889-4, Information technology — Trusted Platform Module Library — Part 4: Supporting
routines

 TCG Algorithm Registry, available at
<http://www.trustedcomputinggroup.org/resources/tcg_algorithm_registry>

3 Terms and definitions

For the purposes of this part of ISO/IEC 11889, the terms and definitions given in ISO/IEC 11889-1 apply.

4 Symbols and abbreviated terms

For the purposes of this part of ISO/IEC 11889, the symbols and abbreviated terms given in
ISO/IEC 11889-1 apply.

5 Notation

5.1 Introduction

The information in this part of ISO/IEC 11889 is formatted so that it may be converted to standard
computer-language formats by an automated process. The purpose of this automated process is to
minimize the transcription errors that often occur during the conversion process.

For the purposes of this part of ISO/IEC 11889, the conventions given in ISO/IEC 11889-1 apply.

In addition, the conventions and notations in clause 5 describe the representation of various data so that
it is both human readable and amenable to automated processing.

© ISO/IEC 2015 – All rights reserved 1

ISO/IEC 11889-2:2015(E)

When a table row contains the keyword “reserved” (all lower case) in columns 1 or 2, the tools will not
produce any values for the row in the table.

NOTE 1 In the examples in clause 5, the unmarshaling routines are shown as returning bool. In the code of the
reference implementation, the return value is a TPM_RC. A bool is used in the examples, because the
meaning of a TPM_RC is not yet defined.

NOTE 2 The unmarshaling code examples are the actual code that would be produced by the automatic code
generator used in the construction of the reference code. The actual code contains additional parameter
checking that is omitted for clarity of the principle being illustrated. Actual examples of the code are found
in ISO/IEC 11889-4.

5.2 Named Constants

A named constant is a numeric value to which a name has been assigned. In the C language, this is done
with a #define statement. In ISO/IEC 11889, a named constant is defined in a table that has a title that
starts with “Definition” and ends with “Constants.”

The table title will indicate the name of the class of constants that are being defined in the table. The title
will include the data type of the constants in parentheses.

The table in Example 1 names a collection of 16-bit constants and Example 2 shows the C code that
might be produced from that table by an automated process.

NOTE A named constant (#define) has no data type in C and an enumeration would be a better choice for
many of the defined constants. However, the C language does not allow an enumerated type to have a
storage type other than int so the method of using a combination of typedef and #define is used.

EXAMPLE 1

Table xx — Definition of (UINT16) COUNTING Constants

Parameter Value Description

first 1 decimal value is implicitly the size of the

second 0x0002 hex value will match the number of bits in the constant

third 3

fourth 0x0004

EXAMPLE 2

/* The C language equivalent of the constants from the table above */
typedef UINT16 COUNTING;
#define first 1
#define second 0x0002
#define third 3
#define fourth 0x0004

2 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

5.3 Data Type Aliases (typedefs)

When a group of named items is assigned a type, it is placed in a table that has a title starting with
“Definition of Types.” In ISO/IEC 11889, defined types have names that use all upper-case characters.

The table in Example 1 shows how typedefs would be defined in ISO/IEC 11889 and Example 2 shows
the C-compatible code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of Types for Some Purpose

Type Name Description

unsigned short UINT16

UINT16 SOME_TYPE

unsigned long UINT32

UINT32 LAST_TYPE

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */
typedef unsigned short UINT16;
typedef UINT16 SOME_TYPE;
typedef unsigned long UINT32;
typedef UINT32 LAST_TYPE;

5.4 Enumerations

A table that defines an enumerated data type will start with the word “Definition” and end with “Values.”

A value in parenthesis will denote the intrinsic data size of the value and may have the values "INT8",
"UINT8", "INT16", “UINT16”, "INT32", and “UINT32.” If this value is not present, “UINT16” is assumed.

Most C compilers set the type of an enumerated value to be an integer on the machine – often 16 bits –
but this is not always consistent. To ensure interoperability, the enumeration values may not exceed
32,384.

The table in Example 1 shows how an enumeration would be defined in ISO/IEC 11889. Example 2
shows the C code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of (UINT16) CARD_SUIT Values

Suit Names Value Description

CLUBS 0x0000

DIAMONDS 0x000D

HEARTS 0x001A

SPADES 0x0027

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */
typedef enum {
 CLUBS = 0x0000,
 DIAMONDS = 0x000D,
 HEARTS = 0x001A,
 SPADES = 0x0027
} CARD_SUIT;

© ISO/IEC 2015 – All rights reserved 3

ISO/IEC 11889-2:2015(E)

5.5 Interface Type

An interface type is used for an enumeration that is checked by the unmarshaling code. This type is
defined for purposes of automatic generation of the code that will validate the type. The title will start with
the keyword “Definition” and end with the keyword “Type.” A value in parenthesis indicates the base type
of the interface. The table may contain an entry that is prefixed with the “#” character to indicate the
response code if the validation code determines that the input parameter is the wrong type.

EXAMPLE 1

Table xx — Definition of (CARD_SUIT) RED_SUIT Type

Values Comments

HEARTS

DIAMONDS

#TPM_RC_SUIT response code returned when the unmarshaling of this type fails

NOTE TPM_RC_SUIT is an example and no such response code is actually
defined in ISO/IEC 11889.

EXAMPLE 2

/* Validation code that might be automatically generated from table above */
if((*target != HEARTS) && (*target != DIAMONDS))
 return TPM_RC_SUIT;

In some cases, the allowed values are numeric values with no associated mnemonic. In such a case, the
list of numeric values may be given a name. Then, when used in an interface definition, the name would
have a "$" prefix to indicate that a named list of values should be substituted.

To illustrate, assume that the implementation only supports two sizes (1024 and 2048 bits) for keys
associated with some algorithm (MY algorithm). In the implementation Annex B a named list would be
created.

EXAMPLE 3

Table xx — Defines for MY Algorithm Constants

Name Value Comments

MY_KEY_SIZES_BITS {1024, 2048} braces because this is a list value

4 © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

Then, whenever an input value would need to be a valid MY key size for the implementation, the value
$MY_KEY_SIZES_BITS could be used. Given the definition for MY_KEY_SIZES_BITS in Example 3
above, the tables in Examples 4 and 5 below, are equivalent.

EXAMPLE 4

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

{1024, 2048} the number of bits in the supported key

EXAMPLE 5

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

$MY_KEY_SIZES_BITS the number of bits in the supported key

5.6 Arrays

Arrays are denoted by a value in square brackets (“[]”) following a parameter name. The value in the
brackets may be either an integer value such as “[20]” or the name of a component of the same structure
that contains the array.

The table in Example 1 shows how a structure containing fixed and variable-length arrays would be
defined in ISO/IEC 11889. Example 2 shows the C code that might be produced from that table by an
automated process.

 EXAMPLE 1

Table xx — Definition of A_STRUCT Structure

Parameter Type Description

array1[20] UINT16 an array of 20 UINT16s

a_size UINT16

array2[a_size] UINT32 an array of UINT32 values that has a
number of elements determined by a_size
above

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */
typedef struct {
 UINT16 array1[20];
 UINT16 a_size;
 UINT32 array2[];
} A_STRUCT;

© ISO/IEC 2015 – All rights reserved 5

ISO/IEC 11889-2:2015(E)

5.7 Structure Definitions

The tables used to define structures have a title that starts with the word “Definition” and ends with
“Structure.” The first column of the table will denote the reference names for the structure members; the
second column the data type of the member; and the third column a synopsis of the use of the element.

The table in Example 1 shows an example of how a structure would be defined in ISO/IEC 11889 and
Example 2 shows the C code that might be produced from the table by an automated process. Example 3
illustrates the type of unmarshaling code that could be generated using the information available in the
table.

EXAMPLE 1

Table xx — Definition of SIMPLE_STRUCTURE Structure

Parameter Type Description

tag TPM_ST

value1 INT32

value2 INT32

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */
typedef struct {
 TPM_ST tag;
 INT32 value1
 INT32 value2;
} SIMPLE_STRUCTURE;

EXAMPLE 3

bool SIMPLE_STRUCTURE_Unmarshal(SIMPLE_STRUCTURE *target, BYTE **buffer, INT32 *size)
{
 // If unmarshal of tag succeeds
 if(TPM_ST_Unmarshal((TPM_ST *)&(target->tag), buffer, size))
 // then unmarshal value1, and if that succeeds...
 if(INT32_Unmarshal((INT32 *)&(target->value1, buffer, size))
 // then return the results of unmarshaling values
 return(INT32_Unmarshal((INT32 *)&(target->value2, buffer, size))
 // if unmarshal of tag or value failed, return failure
 return FALSE;
}

6 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

A table may have a term in {}. This indicates that the table is conditionally compiled. It is commonly used
when a table's inclusion is based on the implementation of a cryptographic algorithm. See, for
example, Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type, which is
dependent on the RSA algorithm.

5.8 Conditional Types

An enumeration may contain an extended value indicated by “+” preceding the name in the "Value"
column. This “+” indicates that this is a conditional value that may be allowed in certain situations.

NOTE In many cases, the input values are algorithm IDs. When two collections of algorithm IDs differ only
because one collection allows TPM_ALG_NULL and the other does not, it is preferred that there not be
two completely different enumerations because this leads to many casts. To avoid this, the “+” can be
added to a TPM_ALG_NULL value in the table defining the type. When the use of that type allows
TPM_ALG_NULL to be in the set, the use would append a “+” to the instance.

EXAMPLE 1

Table xx — Definition of (CARD_SUIT) TPMI_CARD_SUIT Type

Values Comments

SPADES

HEARTS

DIAMONDS

CLUBS

+JOKER an optional value that may be allowed

#TPM_RC_SUIT response code returned when the input value is not one of the
values above

When an interface type is used, a “+” will be appended to the type specification for the parameter when
the conditional value is allowed. If no “+” is present, then the conditional value is not allowed.

EXAMPLE 2

Table xx — Definition of POKER_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT+ allows joker

number UINT8 the card value

EXAMPLE 3

Table xx — Definition of BRIDGE_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT does not allow joker

number UINT8 the card value

© ISO/IEC 2015 – All rights reserved 7

ISO/IEC 11889-2:2015(E)

5.9 Unions

5.9.1 Introduction

A union allows a structure to contain a variety of structures or types. The union has members, only one of
which is present at a time. Three different tables are required to fully characterize a union so that it may
be communicated on the TPM interface and used by the TPM:

1) union definition;

2) union instance; and

3) union selector definition.

5.9.2 Union Definition

The table in Example 1 illustrates a union definition. The title of a union definition table starts with
“Definition” and ends with “Union.” The “Parameter” column of a union definition lists the different names
that are used when referring to a specific type. The “Type” column identifies the data type of the member.
The “Selector” column identifies the value that is used by the marshaling and unmarshaling code to
determine which case of the union is present.

If a parameter is the keyword “null,” then this denotes a selector with no contents. The table in Example 1
illustrates a union in which a conditional null selector is allowed to indicate an empty union member.

Example 2 shows how the table would be converted into C-compatible code.

The expectation is that the unmarshaling code for the union will validate that the selector for the union is
one of values in the selector list.

EXAMPLE 1

Table xx — Definition of NUMBER_UNION Union

Parameter Type Selector Description

a_byte BYTE BYTE_SELECT

an_int int INT_SELECT

a_float float FLOAT_SELECT

+null NULL_SELECT the empty branch

EXAMPLE 2

// C-compatible version of the union defined in the table above
typedef union {
 BYTE a_byte;
 int an_int;
 float a_float;
} NUMBER_UNION;

EXAMPLE 3

8 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

// Possible auto-generated code to unmarshal a union in Example 2 based on the
// input value of selector
bool NUMBER_UNION_Unmarshal(NUMBER_UNION *target, BYTE **buffer,
 INT32 *size, UINT32 selector)
{
 switch (selector) {
 case BYTE_SELECT:
 return BYTE_Unmarshal((BYTE *)&(target->a_byte), buffer, size);
 case INT_SELECT:
 return INT_Unmarshal((int *)&(target->an_int), buffer, size);
 case FLOAT_SELECT:
 return FLOAT_Unmarshal((float *)&(target->a_float), buffer, size);
 case NULL_SELECT:
 return;
}

A table may have a type with no selector. This is used when the first part of the structure for all union
members is identical. This type is a programming convenience, allowing code to reference the common
members without requiring a case statement to determine the specific structure. In object oriented
programming terms, this type is a superclass and the types with selectors are subclasses.

5.9.3 Union Instance

When a union is used in a structure that is sent on the interface, the structure will minimally contain a
selector and a union. The selector value indicates which of the possible union members is present so that
the unmarshaling code can unmarshal the correct type. The selector may be any of the parameters that
occur in the structure before the union instance. To denote the structure parameter that is used as the
selector, its name is in brackets (“[]”) placed before the parameter name associated with the union.

The table in Example 1 shows the definition of a structure that contains a union and a selector. Example 2
shows how the table would be converted into C-compatible code and Example 3 shows how the
unmarshaling code would handle the selector.

EXAMPLE 1

Table xx — Definition of STRUCTURE_WITH_UNION Structure

Parameter Type Description

select NUMBER_SELECT a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 5.9.2

EXAMPLE 2

// C-compatible version of the union structure in the table above
typedef struct {
 NUMBER_SELECT select;
 NUMBER_UNION number;
} STRUCT_WITH_UNION;

EXAMPLE 3

// Possible unmarshaling code for the structure above
bool STRUCT_WITH_UNION_Unmarshal(STRUCT_WITH_UNION *target, BYTE **buffer, INT32 *size)
{
 // Unmarshal the selector value
 if(!NUMBER_SELECT_Unmarshal((NUMBER_SELECT *)&target->select, buffer, size))
 return FALSE;
 // Use the unmarshaled selector value to indicate to the union unmarshal
 // function which unmarshaling branch to follow.
 return(NUMBER_UNION_Unmarshal((NUMBER_UNION *)&(target->number),
 buffer, size, (UINT32)target->select);
}

© ISO/IEC 2015 – All rights reserved 9

ISO/IEC 11889-2:2015(E)

5.9.4 Union Selector Definition

The selector definition limits the values that are used in unmarshaling a union. Two different selector sets
applied to the same union define different types.

For the union in 5.9.2, a selector definition should be limited to no more than four values, one for each of
the union members. The selector definition could have fewer than four values.

In Example 1, the table defines a value for each of the union members.

EXAMPLE 1

Table xx — Definition of (INT8) NUMBER_SELECT Values <IN>

Name Value Comments

BYTE_SELECT 3

INT_SELECT 2

FLOAT_SELECT 1

NULL_SELECT 0

The unmarshaling code would limit the input values to the defined values. When the NUMBER_SELECT
is used in the union instance of 5.9.3, any of the allowed union members of NUMBER_UNION could be
present.

A different selection could be used to limit the values in a specific instance. To get the different selection,
a new structure is defined with a different selector. The table in Example 2 illustrates a way to subset the
union. The base type of the selection is NUMBER_SELECT so a NUMBER_SELECT will be unmarshaled
before the checks are made to see if the value is in the correct range for JUST_INTEGERS types. If the
base type had been UINT8, then no checking would occur prior to checking that the value is in the
allowed list. In this particular case, the effect is the same in either case since the only values that will be
accepted by the unmarshaling code for JUST_INTEGER are BYTE_SELECT and INT_SELECT.

EXAMPLE 2

Table xx — Definition of (NUMBER_SELECT) AN_INTEGER Type <IN>

Values Comments

{BYTE_SELECT, INT_SELECT} list of allowed values

NOTE Since NULL_SELECT is not in the list of values accepted as a JUST_INTEGER, the “+” modifier will have
no effect if used for a JUST_INTEGERS type shown in Example 3.

The selector in Example 2 can then be used in a subset union as shown in Example 3.

EXAMPLE 3

Table xx — Definition of JUST_INTEGERS Structure

Parameter Type Description

select AN_INTEGER a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 5.9.2

10 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

5.10 Bit Field Definitions

A table that defines a structure containing bit fields has a title that starts with “Definition” and ends with
“Bits.” A type identifier in parentheses in the title indicates the size of the datum that contains the bit
fields.

When the bit fields do not occupy consecutive locations, a spacer field is defined with a name of
“Reserved.” Bits in these spaces are reserved and shall be zero.

The table in Example 1 shows how a structure containing bit fields would be defined in ISO/IEC 11889.
Example 2 shows the C code that might be produced from that table by an automated process.

When a field has more than one bit, the range is indicated by a pair of numbers separated by a colon (“:”).
The numbers will be in high:low order.

EXAMPLE1

 Table xx — Definition of (UINT32) SOME_ATTRIBUTE Bits

Bit Name Action

0 zeroth_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

1 first_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

6:2 Reserved A placeholder that spans 5 bits

7 third_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

31:8 Reserved Placeholder to fill 32 bits

EXAMPLE 2

/* C language equivalent of the attributes structure defined in the table above */
typedef struct {
 int zeroth_bit : 1;
 int first_bit : 1;
 int Reserved3 : 5;
 int third_bit : 1;
 int Reserved7 : 24;
} SOME_ATTRIBUTE;

© ISO/IEC 2015 – All rights reserved 11

ISO/IEC 11889-2:2015(E)

5.11 Parameter Limits

A parameter used in a structure may be given a set of values that can be checked by the unmarshaling
code. The allowed values for a parameter may be included in the definition of the parameter by
appending the values and delimiting them with braces (“{ }”). The values are comma-separated
expressions. A range of numbers may be indicated by separating two expressions with a colon (“:”). The
first number is an expression that represents the minimum allowed value and the second number
indicates the maximum. If the minimum or maximum value expression is omitted, then the range is open-
ended.

Parameter limits expressed using braces apply only to inputs to the TPM. Any value returned by the
TPM is assumed to be valid.

The maximum size of an array may be indicated by putting a “{}” delimited expression following the
square brackets (“[]”) that indicate that the value is an array.

EXAMPLE

Table xx — Definition of B_STRUCT Structure

Parameter Type Description

value1 {20:25} UINT16 a parameter that must have a value between 20
and 25, inclusive

value2 {20} UINT16 a parameter that must have a value of 20

value3 {:25} INT16 a parameter that may be no larger than 25

Since the parameter is signed, the minimum value
is the largest negative integer that may be
expressed in 16 bits.

value4 {20:} a parameter that must be at least 20

value5 {1,2,3,5} UINT16 a parameter that may only have one of the four
listed values

value6 {1, 2, 10:(10+10)} UINT32 a parameter that may have a value of 1, 2, or be
between 10 and 20

array1[value1] BYTE Because the index refers to value1, which is a
value limited to be between 20 and 25 inclusive,
array1 is an array that may have between 20 and
25 octets. This is not the preferred way to indicate
the upper limit for an array as it does not indicate
the upper bound of the size.

array2[value4]{:25} BYTE an array that may have between 20 and 25 octets

This arrangement is used to allow the automatic
code generation to allocate 25 octets to store the
largest array2 that can be unmarshaled. The code
generation can determine from this expression that
value4 shall have a value of 25 or less. From the
definition of value4 above, it can determine that
value4 must have a value of at least 20.

NOTE The restrictions on the size of array1 is a limitation of the current parser. A different
parser could associate the range of value1 with the value and compute the maximum
size of the array.

12 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

5.12 Enumeration Macro

An enumeration can be a list of allowed numeric values.

EXAMPLE The permitted sizes for an AES key might be expressed as in Table 123 — Definition of {AES}
(TPM_KEY_BITS) TPMI_AES_KEY_BITS Type.

$AES_KEY_SIZE_BITS is a macro that will take the value of AES_KEY_SIZE_BITS from Table B.7 —
Defines for AES Algorithm Constants and substitute it.

5.13 Size Checking

In some structures, a size field is present to indicate the number of octets in some subsequent part of the
structure. In the B_STRUCT table in 5.11, value4 indicates how many octets to unmarshal for array2. This
semantic applies when the size field determines the number of octets to unmarshal. However, in some
cases, the subsequent structure is self-defining. If the size precedes a parameter that is not an octet
array, then the unmarshaled size of that parameter is determined by its data type. The table in Example 1
shows a structure where the size parameter would nominally indicate the number of octets in the
remainder of the structure.

EXAMPLE 1

Table xx — Definition of C_STRUCT Structure

Parameter Type Comments

size UINT16 the expected size of the remainder of the structure

anInteger UINT32 a 4-octet value

In this particular case, the value of size would be incorrect if it had any value other than 4. So that the
table parser is able to know that the purpose of the size parameter is to define the number of octets
expected in the remainder of the structure, an equal sign (“=”) is appended to the parameter name.

In Example 2 below, the size= causes the parser to generate validation code that will check that the
unmarshaled size of someStructure and someData adds to the value unmarshaled for size. When the “=”
decoration is present, a value of zero is not allowed for the size.

EXAMPLE 2

 Table xx — Definition of D_STRUCT Structure

Parameter Type Comments

size= UINT16 the size of a structure

The “=” indicates that the TPM is required to
validate that the remainder of the D_STRUCT
structure is exactly the value in size. That is, the
number of bytes in the input buffer used to
successfully unmarshal someStructure must be the
same as size.

someStructure A_STRUCT a structure to be unmarshaled

The size of the structure is computed when it is
unmarshaled. Because an “=” is present on the
definition of size, the TPM is required to validate
that the unmarshaled size exactly matches size.

someData UINT32 a value

© ISO/IEC 2015 – All rights reserved 13

ISO/IEC 11889-2:2015(E)

5.14 Data Direction

A structure or union may be input (IN), output (OUT), or internal. An input structure is sent to the TPM and
is unmarshaled by the TPM. An output structure is sent from the TPM and is marshaled by the TPM. An
internal structure is not used outside of the TPM except that it may be included in a saved context.

By default, structures are assumed to be both IN and OUT and the code generation tool will generate
both marshaling and unmarshaling code for the structure. This default may be changed by using values
enclosed in angle brackets (“<>”) as part of the table title. If the angle brackets are empty, then the
structure is internal and neither marshaling nor unmarshaling code is generated. If the angle brackets
contain the letter “I” (such as in “IN” or “in” or “i”), then the structure is input and unmarshaling code will be
generated. If the angle brackets contain the letter “O” (such as in “OUT” or “out” or “o”), then the structure
is output and marshaling code will be generated.

EXAMPLE 1 Both of the following table titles would indicate a structure that is used in both input and output

Table xx — Definition of TPMS_A Structure

Table xx — Definition of TPMS_A Structure <IN/OUT>

EXAMPLE 2 The following table title would indicate a structure that is used only for input

Table xx — Definition of TPMS_A Structure <IN>

EXAMPLE 3 The following table title would indicate a structure that is used only for output

Table xx — Definition of TPMS_A Structure <OUT>

14 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

5.15 Structure Validations

By default, when a structure is used for input to the TPM, the code generation tool will generate the
unmarshaling code for that structure. Auto-generation may be suppressed by adding an “S” within the
angle brackets.

EXAMPLE The following table titles indicate a structure for which the auto-generation of the validation code is to be
suppressed.

Table xx — Definition of TPMT_A Structure <S>

Table xx — Definition of TPMT_A Structure <IN, S>

Table xx — Definition of TPMT_A Structure <IN/OUT, S>

5.16 Name Prefix Convention

Parameters are constants, variables, structures, unions, and structure members. Structure members are
given a name that is indicative of its use, with no special prefix. The other parameter types are named
according to their type with their name starting with “TPMx_”, where “x” is an optional character to indicate
the data type.

In some cases, additional qualifying characters will follow the underscore. These are generally used when
dealing with an enumerated data type.

Table 1 — Name Prefix Convention

Prefix Description

TPM an indication/signal from the TPM’s system interface

TPM_ a constant or an enumerated type

TPM2_ a command defined by ISO/IEC 11889

TPM2B_ a structure that is a sized buffer where the size of the buffer is contained in a 16-bit, unsigned
value

The first parameter is the size in octets of the second parameter. The second parameter may be
any type.

TPMA_ a structure where each of the fields defines an attribute and each field is usually a single bit

All the attributes in an attribute structure are packed with the overall size of the structure
indicated in the heading of the attribute description (UINT8, UINT16, or UINT32).

TPM_ALG_ an enumerated type that indicates an algorithm

A TPM_ALG_ is often used as a selector for a union.

TPMI_ an interface type

The value is specified for purposes of dynamic type checking when unmarshaled.

TPML_ a list length followed by the indicated number of entries of the indicated type

This is an array with a length field.

TPMS_ a structure that is not a size buffer or a tagged buffer or a list

TPMT_ a structure with the first parameter being a structure tag, indicating the type of the structure that
follows

A structure tag may be either a TPMT_ST_ or TPM_ALG_ depending on context.

TPMU_ a union of structures, lists, or unions

If a union exists, there will normally be a companion TPMT_ that is the expression of the union
in a tagged structure, where the tag is the selector indicating which member of the union is
present.

TPM_xx_ an enumeration value of a particular type

© ISO/IEC 2015 – All rights reserved 15

ISO/IEC 11889-2:2015(E)

The value of “xx” will be indicative of the use of the enumerated type. A table of “TPM_xx”
constant definitions will exist to define each of the TPM_xx_ values.

EXAMPLE 1 Regarding the prefix TPM_xx_, TPM_CC_ indicates that the type is used for a commandCode. The allowed
enumeration values will be found in the table defining the TPM_CC constants (Table 12).

EXAMPLE 2 Regarding the prefix TPM_xx_, TPM_RC_ indicates that the type is used for a responseCode. The allowed
enumeration values are in Table 16.

5.17 Data Alignment

The data structures in this part of ISO/IEC 11889 use octet alignment for all structures. When used in a
table to indicate a maximum size, the sizeof() function returns the octet-aligned size of the structure,
with no padding.

5.18 Parameter Unmarshaling Errors

The TPM commands are defined in ISO/IEC 11889-3. The command definition includes C code that
details the actions performed by that command. The code is written assuming that the parameters of the
command have been unmarshaled.

NOTE 1 An implementation does not need to process parameters in this manner or to separate the parameter
parsing from the command actions. This method was chosen for ISO/IEC 11889 so that the normative
behavior described by the detailed actions would be clear and unencumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the
parameters for use by the command-specific action code. No data movement need take place but it is
required that the TPM validate that the parameters meet the requirements of the expected data type as
defined in this part of ISO/IEC 11889.

When an error is encountered while unmarshaling a command parameter, an error response code is
returned and no command processing occurs. A table defining a data type may have response codes
embedded in the table to indicate the error returned when the input value does not match the parameters
of the table.

EXAMPLE Table 12 has a listing of TPM command code values. The last row in the table contains
"#TPM_RC_COMMAND_CODE" indicating the response code that is returned if the TPM is unmarshaling
a value that it expects to be a TPM_CC and the input value is not in the table.

NOTE 2 In the reference implementation, a parameter number is added to the response code so that the offending
parameter can be isolated.

16 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

In many cases, the table contains no specific response code value and the return code will be determined
as defined in Table 2.

Table 2 — Unmarshaling Errors

Response code Usage

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_VALUE A parameter does not have one of its allowed values

TPM_RC_TAG A parameter that should be a structure tag has a value that is not supported by
the TPM

In some commands, a parameter may not be used because of various options of that command.
However, the unmarshaling code is required to validate that all parameters have values that are allowed
by the definition in this part of ISO/IEC 11889 of the parameter type even if that parameter is not used in
the command actions.

© ISO/IEC 2015 – All rights reserved 17

ISO/IEC 11889-2:2015(E)

6 Base Types

6.1 Primitive Types

The types listed in Table 3 are the primitive types on which all of the other types and structures are
based. The values in the “Type” column should be edited for the compiler and computer on which the
TPM is implemented. The values in the “Name” column should remain the same because these values
are used in the remainder of ISO/IEC 11889.

NOTE The types are compatible with the C99 standard and should be defined in stdint.h that is provided with a
C99-compliant compiler.

The parameters in the Name column should remain in the order shown.

Table 3 — Definition of Base Types

Type Name Description

uint8_t UINT8 unsigned, 8-bit integer

uint8_t BYTE unsigned 8-bit integer

int8_t INT8 signed, 8-bit integer

BOOL a bit in an int

This is not used across the interface but is used in many places in the code. If
the type were sent on the interface, it would have to have a type with a specific
number of bytes.

int

uint16_t UINT16 unsigned, 16-bit integer

int16_t INT16 signed, 16-bit integer

uint32_t UINT32 unsigned, 32-bit integer

int32_t INT32 signed, 32-bit integer

uint64_t UINT64 unsigned, 64-bit integer

int64_t INT64 signed, 64-bit integer

6.2 Miscellaneous Types

These types are defined either for compatibility with ISO/IEC 11889 (first edition) or for clarity of ISO/IEC
11889.

Table 4 — Definition of Types for Documentation Clarity

Type Name Description

UINT32 TPM_ALGORITHM_ID this is the ISO/IEC 11889 (first edition) compatible form of
the TPM_ALG_ID

UINT32 TPM_MODIFIER_INDICATOR

UINT32 TPM_AUTHORIZATION_SIZE the authorizationSize parameter in a command

UINT32 TPM_PARAMETER_SIZE the parameterSizeset parameter in a command

UINT16 TPM_KEY_SIZE a key size in octets

UINT16 TPM_KEY_BITS a key size in bits

18 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7 Constants

7.1 TPM_SPEC (Specification Version Values)

These values are readable with TPM2_GetCapability().

NOTE This table will require editing when ISO/IEC 11889 is updated.

Table 5 — Definition of (UINT32) TPM_SPEC Constants <>

Name Value Comments

0x322E3000 ASCII “2.0” with null terminator TPM_SPEC_FAMILY

TPM_SPEC_LEVEL 00 the level number for ISO/IEC 11889

TPM_SPEC_VERSION 107 the version number of ISO/IEC 11889 (001.07* 100)

TPM_SPEC_YEAR 2014 the year of the version

TPM_SPEC_DAY_OF_YEAR 23 the day of the year (March 18, 20154)

7.2 TPM_GENERATED

This constant value differentiates TPM-generated structures from non-TPM structures.

Table 6 — Definition of (UINT32) TPM_GENERATED Constants <O>

Name Value Comments

TPM_GENERATED_VALUE 0xff544347 0xFF ‘TCG’ (FF 54 43 4716)

© ISO/IEC 2015 – All rights reserved 19

ISO/IEC 11889-2:2015(E)

7.3 TPM_ALG_ID

The TCG maintains a registry of all algorithms that have an assigned algorithm ID. That registry is the
definitive list of algorithms that may be supported by a TPM. Use of the algorithm identifiers defined in
the TCG Algorithm Registry is mandatory, making the TCG Algorithm Registry an indispensable reference
for implementing this International Standard.

NOTE 1 Inclusion of an algorithm does NOT indicate that the necessary claims of the algorithm are available
under reasonable and non-discriminatory (RAND) terms from a TCG member.

Table 8 is a copy of the TPM_ALG_ID constants table in the TCG Algorithm Registry, Revision
1.15. Table 8 is provided for illustrative purposes only.

An algorithm ID is often used like a tag to determine the type of a structure in a context-sensitive way.
The values for TPM_ALG_ID shall be in the range of 00 0016 – 7F FF16. Other structure tags will be in the
range 80 0016 – FF FF16.

NOTE 2 In ISO/IEC 11889 (first edition), these were defined as 32-bit constants. ISO/IEC 11889 limits the future
size of the algorithm ID to 16 bits. The TPM_ALGORITHM_ID data type will continue to be a 32-bit
number.

An algorithm shall not be assigned a value in the range 00 C116 – 00 C616 in order to prevent any overlap
with the command structure tags used in ISO/IEC 11889 (first edition).

The implementation of some algorithms is dependent on the presence of other algorithms. When there is
a dependency, the algorithm that is required is listed in column labeled "D" (dependent) in Table 8.

EXAMPLE Implementation of TPM_ALG_RSASSA needs the RSA algorithm be implemented.

TPM_ALG_KEYEDHASH and TPM_ALG_NULL are required of all TPM implementations.

Table 7 — Legend for TPM_ALG_ID Table

Column Title Comments

Algorithm Name the mnemonic name assigned to the algorithm

Value the numeric value assigned to the algorithm

Type The allowed values are:

A – asymmetric algorithm with a public and private key

S – symmetric algorithm with only a private key

H – hash algorithm that compresses input data to a digest value or indicates a
method that uses a hash

X – signing algorithm

N – an anonymous signing algorithm

E – an encryption mode

M – a method such as a mask generation function

O – an object type

(Classification) The allowed values are:

A – Assigned

S – TCG Standard

L – TCG Legacy

C

(Dependent) Indicates which other algorithm is required to be implemented if this
algorithm is implemented

Dep

Reference the reference document that defines the algorithm

Comments clarifying information

20 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 8 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>

Algorithm Name Value Typ
e

Dep C Reference Comments

0x0000 should not occur TPM_ALG_ERROR

0x0001 marker value TPM_ALG_FIRST

0x0001 A O S IETF RFC 3447 the RSA algorithm TPM_ALG_RSA

TPM_ALG_SHA 0x0004 H S ISO/IEC 10118-3 the SHA1 algorithm

0x0004 H S ISO/IEC 10118-3 redefinition for documentation
consistency

TPM_ALG_SHA1

0x0005 H X S ISO/IEC 9797-2 Hash Message Authentication
Code (HMAC) algorithm

TPM_ALG_HMAC

0x0006 S S ISO/IEC 18033-3 the AES algorithm with various
key sizes

TPM_ALG_AES

0x0007 H M S IEEE Std 1363TM-2000

IEEE Std 1363a™-
2004

hash-based mask-generation
function

TPM_ALG_MGF1

0x0008 H O S ISO/IEC 11889 an object type that may use
XOR for encryption or an
HMAC for signing and may also
refer to a data object that is
neither signing nor encrypting

TPM_ALG_KEYEDHASH

0x000A H S S ISO/IEC 11889 the XOR encryption algorithm

TPM_ALG_XOR

0x000B H S ISO/IEC 10118-3 the SHA 256 algorithm TPM_ALG_SHA256

0x000C H A ISO/IEC 10118-3 the SHA 384 algorithm TPM_ALG_SHA384

0x000D H A ISO/IEC 10118-3 the SHA 512 algorithm TPM_ALG_SHA512

0x0010 S ISO/IEC 11889 Null algorithm TPM_ALG_NULL

0x0012 H A GM/T 0004-2012 SM3 hash algorithm TPM_ALG_SM3_256

0x0013 S A GM/T 0002-2012 SM4 symmetric block cipher TPM_ALG_SM4

0x0014 A X RSA S IETF RFC 3447 a signature algorithm defined in
section 8.2 (RSASSA-PKCS1-
v1_5)

TPM_ALG_RSASSA

TPM_ALG_RSAES 0x0015 A E RSA S IETF RFC 3447

a padding algorithm defined in
section 7.2 (RSAES-PKCS1-
v1_5)

0x0016 A X RSA S IETF RFC 3447 a signature algorithm defined in
section 8.1 (RSASSA-PSS)

TPM_ALG_RSAPSS

TPM_ALG_OAEP 0x0017 A E
H

RSA S IETF RFC 3447

a padding algorithm defined in
section 7.1 (RSAES_OAEP)

0x0018 A X ECC S ISO/IEC 14888-3 signature algorithm using
elliptic curve cryptography
(ECC)

TPM_ALG_ECDSA

TPM_ALG_ECDH 0x0019 A M ECC S NIST SP800-56A secret sharing using ECC

Based on context, this can be
either One-Pass Diffie-Hellman,
C(1, 1, ECC CDH) defined in
6.2.2.2 or Full Unified Model
C(2, 2, ECC CDH) defined in

© ISO/IEC 2015 – All rights reserved 21

ISO/IEC 11889-2:2015(E)

Algorithm Name Value Typ
e

Dep C Reference Comments

6.1.1.2

0x001A A X
N

ECC S ISO/IEC 11889 elliptic-curve based,
anonymous signing scheme

TPM_ALG_ECDAA

TPM_ALG_SM2 0x001B A X ECC A GM/T 0003.1–2012

GM/T 0003.2–2012

GM/T 0003.3–2012

GM/T 0003.5–2012

SM2 – depending on context,
either an elliptic-curve based,
signature algorithm or a key
exchange protocol

TPM_ALG_ECSCHNORR 0x001C A X ECC S ISO/IEC 11889 elliptic-curve based Schnorr
signature

0x001D A M ECC A NIST SP800-56A two-phase elliptic-curve key
exchange – C(2, 2, ECC MQV)
section 6.1.1.4

TPM_ALG_ECMQV

TPM_ALG_KDF1_SP800_56A 0x0020 H M ECC S NIST SP800-56A concatenation key derivation
function (approved alternative
1) section 5.8.1

0x0021 H M A IEEE Std 1363a-2004 key derivation function KDF2
section 13.2

TPM_ALG_KDF2

TPM_ALG_KDF1_SP800_108 0x0022 H M S NIST SP800-108 a key derivation method

Section 5.1 KDF in Counter
Mode

0x0023 A O S ISO/IEC 15946-1 prime field ECC

TPM_ALG_ECC

0x0025 O S S ISO/IEC 11889 the object type for a symmetric
block cipher

TPM_ALG_SYMCIPHER

TPM_ALG_CAMELLIA 0x0026 S A ISO/IEC 18033-3 Camellia is symmetric block
cipher. The Camellia algorithm
with various key sizes.

0x0040 S E A ISO/IEC 10116 Counter mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_CTR

0x0041 S E A ISO/IEC 10116 Output Feedback mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_OFB

0x0042 S E A ISO/IEC 10116 Cipher Block Chaining mode –
if implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_CBC

TPM_ALG_CFB 0x0043 S E A ISO/IEC 10116 Cipher Feedback mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

22 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Algorithm Name Value Typ
e

Dep C Reference Comments

0x0044 S E A ISO/IEC 10116 Electronic Codebook mode – if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_ECB

0x0044 marker value TPM_ALG_LAST

reserved 0x00C1
through
0x00C6

 0x00C1 – 0x00C6 are reserved
to prevent any overlap with the
command structure tags used
in ISO/IEC 11889 (first edition)

reserved 0x8000
through
0xFFFF

 reserved for other structure
tags

NOTE 1 For TPM_ALG_SM2, the Type is listed as signing but, other uses are allowed according to context.

NOTE 2 For TPM_ALG_ECB, this mode is not recommended for uses unless the key is frequently rotated such as in video
codecs.

© ISO/IEC 2015 – All rights reserved 23

ISO/IEC 11889-2:2015(E)

7.4 TPM_ECC_CURVE

The TCG maintains a registry of all curves that have an assigned curve identifier. That registry is the
definitive list of curves that may be supported by a TPM.

Table 9 is a copy of the TPM_ECC_CURVE constants table in the TCG Algorithm Registry, Revision
1.15. Table 9 is provided for illustrative purposes only.

Table 9 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S>

Name Value Classification Comments

TPM_ECC_NONE 0x0000 Assigned

TPM_ECC_NIST_P192 0x0001 Assigned

TPM_ECC_NIST_P224 0x0002 Assigned

TPM_ECC_NIST_P256 0x0003 TCG Standard

TPM_ECC_NIST_P384 0x0004 Assigned

TPM_ECC_NIST_P521 0x0005 Assigned

TPM_ECC_BN_P256 0x0010 TCG Standard curve to support ECDAA

TPM_ECC_BN_P638 0x0011 Assigned curve to support ECDAA

TPM_ECC_SM2_P256 0x0020 Assigned

#TPM_RC_CURVE

7.5 TPM_CC (Command Codes)

7.5.1 Format

A command is a 32-bit structure with fields assigned as shown in Figure 1.

3
1

3
0

2
9

2
8

1
6

1
5

0
0

Res V Reserved Command Index

Figure 1 — Command Format

Table 10 — TPM Command Format Fields Description

Bit Name Definition

15:0 Command Index the index of the command

28:16 Reserved shall be zero

29 V SET(1): the command is vendor specific

CLEAR(0): the command is not vendor specific

31:30 Res shall be zero

24 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7.5.2 Description

Table 11 provides the legend for the interpretation of the column data in Table 12.

Table 11 — Legend for Command Code Tables

Allowed
Values Comments Column

Command
Code Name

Name of the command Name

Command Code Numeric value the numeric value for the commandCode

NV Write blank, Y, O indicates whether the command may cause an NV write operation

If this column contains a “Y,” then successful completion of the
command is expected to cause modification of the NV memory
because of the command actions.

If the column contains an “O,” then the command may cause a
modification to NV associated with an orderly shutdown. That is, the
command may modify the orderly save state of NV, in which case, an
NV write will be necessary.

If the entry is blank, then writing to NV is not allowed in the command
actions.

Physical Presence blank, Y indicates whether the Platform Authorization for this command may
require confirmation through a physical presence indication

Decrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a command

Blank indicates that no size field is present and no parameter
encryption is allowed.

Encrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a response

Blank indicates that no size field is present and no parameter
encryption is allowed.

NOTE 1 Any command can be delayed in order for the TPM to complete NV actions due to a previous command or because
of an asynchronous update of Clock.

NOTE 2 Any command with an authorization value can cause an NV write on an authorization failure but the command does
not complete successfully.

© ISO/IEC 2015 – All rights reserved 25

ISO/IEC 11889-2:2015(E)

7.5.3 TPM_CC Listing

Table 12 lists the command codes and their attributes. The only normative column in this table is the
column indicating the command code assigned to a specific command (the "Command Code" column).
For all other columns, the command and response tables in ISO/IEC 11889-3 are definitive.

Table 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>

Command
Code N

V
 W

ri
te

P
h

ys
ic

al

P
re

s
en

ce

D
ec

ry
p

t

E
n

cr
yp

t

Comments Name

0x0000011F
Compile variable. May decrease
based on implementation.

TPM_CC_FIRST

0x0000011F
Compile variable. Would decrease if
new PP commands are added

TPM_CC_PP_FIRST

TPM_CC_NV_UndefineSpaceSpecial 0x0000011F Y Y

TPM_CC_EvictControl 0x00000120 Y Y

TPM_CC_HierarchyControl 0x00000121 Y Y

TPM_CC_NV_UndefineSpace 0x00000122 Y Y

TPM_CC_ChangeEPS 0x00000124 Y Y

TPM_CC_ChangePPS 0x00000125 Y Y

TPM_CC_Clear 0x00000126 Y Y

TPM_CC_ClearControl 0x00000127 Y Y

TPM_CC_ClockSet 0x00000128 Y Y

TPM_CC_HierarchyChangeAuth 0x00000129 Y Y 2

TPM_CC_NV_DefineSpace 0x0000012A Y Y 2

TPM_CC_PCR_Allocate 0x0000012B Y Y

TPM_CC_PCR_SetAuthPolicy 0x0000012C Y Y 2

TPM_CC_PP_Commands 0x0000012D Y Y

TPM_CC_SetPrimaryPolicy 0x0000012E Y Y 2

TPM_CC_FieldUpgradeStart 0x0000012F O Y 2

TPM_CC_ClockRateAdjust 0x00000130 O Y

TPM_CC_CreatePrimary 0x00000131 Y 2 2

TPM_CC_NV_GlobalWriteLock 0x00000132 O Y

TPM_CC_PP_LAST 0x00000132 Compile variable

TPM_CC_GetCommandAuditDigest 0x00000133 Y 2

TPM_CC_NV_Increment 0x00000134 Y

TPM_CC_NV_SetBits 0x00000135 Y

TPM_CC_NV_Extend 0x00000136 Y

TPM_CC_NV_Write 0x00000137 Y 2

26 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Command
Code N

V
 W

ri
te

P
h

ys
ic

al

P
re

s
en

ce

D
ec

ry
p

t

E
n

cr
yp

t

Comments Name

TPM_CC_NV_WriteLock 0x00000138 Y

TPM_CC_DictionaryAttackLockReset 0x00000139 O

TPM_CC_DictionaryAttackParameters 0x0000013A Y

TPM_CC_NV_ChangeAuth 0x0000013B Y 2

TPM_CC_PCR_Event 0x0000013C O 2 PCR

TPM_CC_PCR_Reset 0x0000013D O PCR

TPM_CC_SequenceComplete 0x0000013E O 2 2

TPM_CC_SetAlgorithmSet 0x0000013F Y

TPM_CC_SetCommandCodeAuditStatus 0x00000140 Y

TPM_CC_FieldUpgradeData 0x00000141 O 2

TPM_CC_IncrementalSelfTest 0x00000142 O

TPM_CC_SelfTest 0x00000143 O

TPM_CC_Startup 0x00000144 Y

TPM_CC_Shutdown 0x00000145 Y

TPM_CC_StirRandom 0x00000146 Y 2

TPM_CC_ActivateCredential 0x00000147 2 2

TPM_CC_Certify 0x00000148 O 2 2

TPM_CC_PolicyNV 0x00000149 2 Policy

TPM_CC_CertifyCreation 0x0000014A O 2 2

TPM_CC_Duplicate 0x0000014B 2 2

TPM_CC_GetTime 0x0000014C O 2

TPM_CC_GetSessionAuditDigest 0x0000014D O 2

TPM_CC_NV_Read 0x0000014E 2

TPM_CC_NV_ReadLock 0x0000014F O

TPM_CC_ObjectChangeAuth 0x00000150 2 2

TPM_CC_PolicySecret 0x00000151 2 Policy

TPM_CC_Rewrap 0x00000152 2 2

TPM_CC_Create 0x00000153 2 2

TPM_CC_ECDH_ZGen 0x00000154 2 2

TPM_CC_HMAC 0x00000155 2 2

TPM_CC_Import 0x00000156 2 2

TPM_CC_Load 0x00000157 2 2

TPM_CC_Quote 0x00000158 O 2 2

© ISO/IEC 2015 – All rights reserved 27

ISO/IEC 11889-2:2015(E)

Name
Command

Code N
V

 W
ri

te

P
h

ys
ic

al

P
re

s
en

ce

D
ec

ry
p

t

E
n

cr
yp

t

Comments

TPM_CC_RSA_Decrypt 0x00000159 2

TPM_CC_HMAC_Start 0x0000015B 2 2

TPM_CC_SequenceUpdate 0x0000015C 2

TPM_CC_Sign 0x0000015D 2

TPM_CC_Unseal 0x0000015E 2

TPM_CC_PolicySigned 0x00000160 2 Policy

TPM_CC_ContextLoad 0x00000161 O Context

TPM_CC_ContextSave 0x00000162 O Context

TPM_CC_ECDH_KeyGen 0x00000163 2

TPM_CC_EncryptDecrypt 0x00000164 2

TPM_CC_FlushContext 0x00000165 O Context

TPM_CC_LoadExternal 0x00000167 2 2

TPM_CC_MakeCredential 0x00000168 2 2

TPM_CC_NV_ReadPublic 0x00000169 NV

TPM_CC_PolicyAuthorize 0x0000016A 2 Policy

TPM_CC_PolicyAuthValue 0x0000016B Policy

TPM_CC_PolicyCommandCode 0x0000016C Policy

TPM_CC_PolicyCounterTimer 0x0000016D 2 Policy

TPM_CC_PolicyCpHash 0x0000016E 2 Policy

TPM_CC_PolicyLocality 0x0000016F Policy

TPM_CC_PolicyNameHash 0x00000170 2 Policy

TPM_CC_PolicyOR 0x00000171 Policy

TPM_CC_PolicyTicket 0x00000172 2 Policy

TPM_CC_ReadPublic 0x00000173 2

TPM_CC_RSA_Encrypt 0x00000174 2 2

TPM_CC_StartAuthSession 0x00000176 O 2 2

TPM_CC_VerifySignature 0x00000177 2

TPM_CC_ECC_Parameters 0x00000178

TPM_CC_FirmwareRead 0x00000179

TPM_CC_GetCapability 0x0000017A

TPM_CC_GetRandom 0x0000017B 2

TPM_CC_GetTestResult 0x0000017C

TPM_CC_Hash 0x0000017D 2 2

28 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Name
Command

Code N
V

 W
ri

te

P
h

ys
ic

al

P
re

s
en

ce

D
ec

ry
p

t

E
n

cr
yp

t

Comments

TPM_CC_PCR_Read 0x0000017E PCR

TPM_CC_PolicyPCR 0x0000017F Policy

TPM_CC_PolicyRestart 0x00000180

TPM_CC_ReadClock 0x00000181

TPM_CC_PCR_Extend 0x00000182 O 2

TPM_CC_PCR_SetAuthValue 0x00000183 N 2

TPM_CC_NV_Certify 0x00000184 O

TPM_CC_EventSequenceComplete 0x00000185 O

TPM_CC_HashSequenceStart 0x00000186

TPM_CC_PolicyPhysicalPresence 0x00000187 Policy

TPM_CC_PolicyDuplicationSelect 0x00000188 Policy

TPM_CC_PolicyGetDigest 0x00000189 Policy

TPM_CC_TestParms 0x0000018A

TPM_CC_Commit 0x0000018B O 2 2

TPM_CC_PolicyPassword 0x0000018C Policy

TPM_CC_ZGen_2Phase 0x0000018D 2 2

TPM_CC_EC_Ephemeral 0x0000018E

TPM_CC_PolicyNvWritten 0x0000018F Policy

0x0000018F
Compile variable. May increase
based on implementation.

TPM_CC_LAST

 #TPM_RC_COMMAND_CODE

7.6 TPM_RC (Response Codes)

7.6.1 Description

Each return from the TPM has a 32-bit response code. The TPM will always set the upper 20 bits (31:12)
of the response code to 0 00 0016 and the low-order 12 bits (11:00) will contain the response code.

When a command succeeds, the TPM shall return TPM_RC_SUCCESS (0 0016) and will update any
authorization-session nonce associated with the command.

When a command fails to complete for any reason, the TPM shall return

 a TPM_ST (UINT16) with a value of TPM_TAG_RSP_COMMAND or TPM_ST_NO_SESSIONS,
followed by

 a UINT32 (responseSize) with a value of 10, followed by

 a UINT32 containing a response code with a value other than TPM_RC_SUCCESS.

Commands defined in ISO/IEC 11889 will use a tag of either TPM_ST_NO_SESSIONS or
TPM_ST_SESSIONS. Error responses will use a tag value of TPM_ST_NO_SESSIONS and the

© ISO/IEC 2015 – All rights reserved 29

ISO/IEC 11889-2:2015(E)

response code will be as defined in ISO/IEC 11889. Commands that use tags defined in ISO/IEC 11889
(first edition) will use TPM_TAG_RSP_COMMAND in an error and a response code defined ISO/IEC
11889 (first edition).

If the tag of the command is not a recognized command tag, the TPM error response will differ depending
on ISO/IEC 11889 (first edition) compatibility. If the TPM supports ISO/IEC 11889 (first edition)
compatibility, the TPM shall return a tag of TPM_TAG_RSP_COMMAND and an appropriate ISO/IEC
11889 (first edition) response code (TPM_BADTAG = 00 00 00 1E16). If the TPM does not support
compatibility with ISO/IEC 11889 (first edition), the TPM shall return TPM_ST_NO_SESSION and a
response code of TPM_RC_TAG.

When a command fails, the TPM shall not update the authorization-session nonces associated with the
command and will not close the authorization sessions used by the command. Audit digests will not be
updated on an error. Unless noted in the command actions, a command that returns an error shall leave
the state of the TPM as if the command had not been attempted. The exception to this principle is that a
failure due to an authorization failure may update the dictionary-attack protection values.

7.6.2 Response Code Formats

The response codes for ISO/IEC 11889 are defined such that there is no overlap between the response
codes used for ISO/IEC 11889 and those assigned in ISO/IEC 11889 (first edition).

The formats defined in clause 7.6.2 only apply when the tag for the response is
TPM_ST_NO_SESSIONS.

The response codes use two different format groups. One group contains the ISO/IEC 11889 (first
edition) compatible response codes and the response codes for ISO/IEC 11889 that are not related to
command parameters. The second group contains the errors that may be associated with a command
parameter, handle, or session.

Figure 2 shows the format for the response codes when bit 7 is zero.

bit
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 S T r V F E

Figure 2 — Format-Zero Response Codes

30 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

The field definitions are:

Table 13 — Format-Zero Response Codes

Bit Name Definition

06:00 E the error number

The interpretation of this field is dependent on the setting of the F and S fields.

07 F format selector

CLEAR when the format is as defined in this Table 13 or when the response code is
TPM_RC_BAD_TAG.

08 V version

SET (1): The error number is defined in this part of ISO/IEC 11889 and is returned when the
response tag is TPM_ST_NO_SESSIONS.

CLEAR (0): The error number is defined by ISO/IEC 11889 (first edition). The error number is
returned when the response tag is TPM_TAG_RSP_COMMAND.

09 Reserved shall be zero.

10 T TCG/Vendor indicator

SET (1): The response code is defined by the TPM vendor.

CLEAR (0): The response code is defined by the TCG (a value in this part of ISO/IEC 11889).

11 S severity

SET (1): The response code is a warning and the command was not necessarily in error. This
command indicates that the TPM is busy or that the resources of the TPM have to be adjusted in
order to allow the command to execute.

CLEAR (0): The response code indicates that the command had an error that would prevent it
from running.

NOTE 1 In any error number returned by a TPM, the F (bit 7) and V (bit 8) attributes will be CLEAR when the
response tag is TPM_TAG_RSP_COMMAND value used in ISO/IEC 11889 (first edition).

NOTE 2 The TCG/Vendor indicator attribute does not indicate a vendor-specific code unless the F attribute
(bit[07]) is CLEAR.

When the format bit (bit 7) is SET, then the error occurred during the unmarshaling or validation of an
input parameter to the TPM. Figure 3 shows the format for the response codes when bit 7 is one.

bit
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 N 1 P E

Figure 3 — Format-One Response Codes

There are 64 errors with this format. The errors can be associated with a parameter, handle, or session.
The error number for this format is in bits[05:00]. When an error is associated with a parameter, 0 4016 is
added and N is set to the parameter number.

For an error associated with a handle, a parameter number (1 to 7) is added to the N field. For an error
associated with a session, a value of 8 plus the session number (1 to 7) is added to the N field. In other
words, if P is clear, then a value of 0 to 7 in the N field will indicate a handle error, and a value of 8 – 15
will indicate a session error.

NOTE If an implementation is not able to designate the handle, session, or parameter in error, then P and N will
be zero.

© ISO/IEC 2015 – All rights reserved 31

ISO/IEC 11889-2:2015(E)

The field definitions are:

Table 14 — Format-One Response Codes

Bit Name Definition

05:00 E the error number

The error number is independent of the other settings.

P SET (1): The error is associated with a parameter.

CLEAR (0): The error is associated with a handle or a session.

06

07 F the response code format selector

This field shall be SET for the format in this table.

11:08 N the number of the handle, session, or parameter in error

If P is SET, then this field is the parameter in error. If P is CLEAR, then this field indicates the
handle or session in error. Handles use values of N between 00002 and 01112. Sessions use
values between 10002 and 11112.

The groupings of response codes are determined by bits 08, 07, and 06 of the response code as
summarized in Table 15.

Table 15 — Response Code Groupings

Bit

0
8 Definition

0
7

0
6

0 0 x a response code defined by ISO/IEC 11889 (first edition)

1 0 x a response code defined by this part of ISO/IEC 11889 with no handle, session, or parameter number
modifier

x 1 0 a response code defined by this part of ISO/IEC 11889 with either a handle or session number modifier

x 1 1 a response code defined by this part of ISO/IEC 11889 with a parameter number modifier

NOTE An “x” in a column indicates that this may be either 0 or 1 and not affect the grouping of the response code.

32 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7.6.3 TPM_RC Values

In general, response codes defined in this part of ISO/IEC 11889 will be unmarshaling errors and will
have the F (format) bit SET. Codes that are unique to ISO/IEC 11889-3 will have the F bit CLEAR but the
V (version) attribute will be SET to indicate that it is an ISO/IEC 11889 response code.

NOTE The constant RC_VER1 is used to indicate that the V attribute is SET and the constant RC_FMT1 is used
to indicate that the F attribute is SET and that the return code is variable based on handle, session, and
parameter modifiers.

Table 16 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>

Name Value Description

TPM_RC_SUCCESS 0x000

0x01E
defined for compatibility with ISO/IEC 11889 (first
edition)

TPM_RC_BAD_TAG

RC_VER1 0x100 set for all format 0 response codes

TPM_RC_INITIALIZE RC_VER1 + 0x000 TPM not initialized

RC_VER1 + 0x001
commands not being accepted because of a TPM
failure

TPM_RC_FAILURE

TPM_RC_SEQUENCE RC_VER1 + 0x003 improper use of a sequence handle

TPM_RC_PRIVATE RC_VER1 + 0x00B

TPM_RC_HMAC RC_VER1 + 0x019

TPM_RC_DISABLED RC_VER1 + 0x020

RC_VER1 + 0x021
command failed because audit sequence required
exclusivity

TPM_RC_EXCLUSIVE

TPM_RC_AUTH_TYPE RC_VER1 + 0x024 authorization handle is not correct for command

RC_VER1 + 0x025
command requires an authorization session for
handle and it is not present.

TPM_RC_AUTH_MISSING

RC_VER1 + 0x026
policy Failure In Math Operation or an invalid
authPolicy value

TPM_RC_POLICY

TPM_RC_PCR RC_VER1 + 0x027 PCR check fail

TPM_RC_PCR_CHANGED RC_VER1 + 0x028 PCR have changed since checked.

RC_VER1 + 0x02D

for all commands other than
TPM2_FieldUpgradeData(), this code indicates
that the TPM is in field upgrade mode; for
TPM2_FieldUpgradeData(), this code indicates
that the TPM is not in field upgrade mode

TPM_RC_UPGRADE

TPM_RC_TOO_MANY_CONTEXTS RC_VER1 + 0x02E context ID counter is at maximum.

RC_VER1 + 0x02F
authValue or authPolicy is not available for
selected entity.

TPM_RC_AUTH_UNAVAILABLE

RC_VER1 + 0x030
a _TPM_Init and Startup(CLEAR) is required
before the TPM can resume operation.

TPM_RC_REBOOT

TPM_RC_UNBALANCED RC_VER1 + 0x031

the protection algorithms (hash and symmetric) are
not reasonably balanced. The digest size of the
hash must be larger than the key size of the
symmetric algorithm.

© ISO/IEC 2015 – All rights reserved 33

ISO/IEC 11889-2:2015(E)

Name Value Description

RC_VER1 + 0x042

command commandSize value is inconsistent with
contents of the command buffer; either the size is
not the same as the octets loaded by the hardware
interface layer or the value is not large enough to
hold a command header

TPM_RC_COMMAND_SIZE

TPM_RC_COMMAND_CODE RC_VER1 + 0x043 command code not supported

RC_VER1 + 0x044
the value of authorizationSize is out of range or the
number of octets in the Authorization Area is
greater than required

TPM_RC_AUTHSIZE

RC_VER1 + 0x045
use of an authorization session with a context
command

TPM_RC_AUTH_CONTEXT

TPM_RC_NV_RANGE RC_VER1 + 0x046 NV offset+size is out of range.

TPM_RC_NV_SIZE RC_VER1 + 0x047 Requested allocation size is larger than allowed.

TPM_RC_NV_LOCKED RC_VER1 + 0x048 NV access locked.

RC_VER1 + 0x049
NV access authorization fails in command actions
(this failure does not affect lockout.action)

TPM_RC_NV_AUTHORIZATION

RC_VER1 + 0x04A
an NV Index is used before being initialized or the
state saved by TPM2_Shutdown(STATE) could not
be restored

TPM_RC_NV_UNINITIALIZED

TPM_RC_NV_SPACE RC_VER1 + 0x04B insufficient space for NV allocation

TPM_RC_NV_DEFINED RC_VER1 + 0x04C NV Index or persistend object already defined

TPM_RC_BAD_CONTEXT RC_VER1 + 0x050 context in TPM2_ContextLoad() is not valid

TPM_RC_CPHASH RC_VER1 + 0x051 cpHash value already set or not correct for use

TPM_RC_PARENT RC_VER1 + 0x052 handle for parent is not a valid parent

TPM_RC_NEEDS_TEST RC_VER1 + 0x053 some function needs testing.

RC_VER1 + 0x054

returned when an internal function cannot process
a request due to an unspecified problem. This
code is usually related to invalid parameters that
are not properly filtered by the input unmarshaling
code.

TPM_RC_NO_RESULT

RC_VER1 + 0x055

the sensitive area did not unmarshal correctly after
decryption – this code is used in lieu of the other
unmarshaling errors so that an attacker cannot
determine where the unmarshaling error occurred

TPM_RC_SENSITIVE

RC_MAX_FM0 RC_VER1 + 0x07F largest version 1 code that is not a warning

 New Subsection

0x080

This bit is SET in all format 1 response codes

The codes in this group may have a value added to
them to indicate the handle, session, or parameter
to which they apply.

RC_FMT1

TPM_RC_ASYMMETRIC RC_FMT1 + 0x001 asymmetric algorithm not supported or not correct

TPM_RC_ATTRIBUTES RC_FMT1 + 0x002 inconsistent attributes

TPM_RC_HASH RC_FMT1 + 0x003 hash algorithm not supported or not appropriate

TPM_RC_VALUE RC_FMT1 + 0x004
value is out of range or is not correct for the
context

34 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Name Value Description

RC_FMT1 + 0x005
hierarchy is not enabled or is not correct for the
use

TPM_RC_HIERARCHY

TPM_RC_KEY_SIZE RC_FMT1 + 0x007 key size is not supported

TPM_RC_MGF RC_FMT1 + 0x008 mask generation function not supported

TPM_RC_MODE RC_FMT1 + 0x009 mode of operation not supported

TPM_RC_TYPE RC_FMT1 + 0x00A the type of the value is not appropriate for the use

TPM_RC_HANDLE RC_FMT1 + 0x00B the handle is not correct for the use

RC_FMT1 + 0x00C
unsupported key derivation function or function not
appropriate for use

TPM_RC_KDF

TPM_RC_RANGE RC_FMT1 + 0x00D value was out of allowed range.

RC_FMT1 + 0x00E
the authorization HMAC check failed and DA
counter incremented

TPM_RC_AUTH_FAIL

TPM_RC_NONCE RC_FMT1 + 0x00F invalid nonce size

TPM_RC_PP RC_FMT1 + 0x010 authorization requires assertion of PP

TPM_RC_SCHEME RC_FMT1 + 0x012 unsupported or incompatible scheme

TPM_RC_SIZE RC_FMT1 + 0x015 structure is the wrong size

RC_FMT1 + 0x016
unsupported symmetric algorithm or key size, or
not appropriate for instance

TPM_RC_SYMMETRIC

TPM_RC_TAG RC_FMT1 + 0x017 incorrect structure tag

TPM_RC_SELECTOR RC_FMT1 + 0x018 union selector is incorrect

RC_FMT1 + 0x01A
the TPM was unable to unmarshal a value
because there were not enough octets in the input
buffer

TPM_RC_INSUFFICIENT

TPM_RC_SIGNATURE RC_FMT1 + 0x01B the signature is not valid

TPM_RC_KEY RC_FMT1 + 0x01C key fields are not compatible with the selected use

TPM_RC_POLICY_FAIL RC_FMT1 + 0x01D a policy check failed

TPM_RC_INTEGRITY RC_FMT1 + 0x01F integrity check failed

TPM_RC_TICKET RC_FMT1 + 0x020 invalid ticket

TPM_RC_RESERVED_BITS RC_FMT1 + 0x021 reserved bits not set to zero as required

TPM_RC_BAD_AUTH RC_FMT1 + 0x022 authroization failure without DA implications

TPM_RC_EXPIRED RC_FMT1 + 0x023 the policy has expired

RC_FMT1 + 0x024

the commandCode in the policy is not the
commandCode of the command or the command
code in a policy command references a command
that is not implemented

TPM_RC_POLICY_CC

RC_FMT1 + 0x025
public and sensitive portions of an object are not
cryptographically bound

TPM_RC_BINDING

TPM_RC_CURVE RC_FMT1 + 0x026 curve not supported

TPM_RC_ECC_POINT RC_FMT1 + 0x027 point is not on the required curve.

 New Subsection

RC_WARN 0x900 set for warning response codes

© ISO/IEC 2015 – All rights reserved 35

ISO/IEC 11889-2:2015(E)

Name Value Description

TPM_RC_CONTEXT_GAP RC_WARN + 0x001 gap for context ID is too large

TPM_RC_OBJECT_MEMORY RC_WARN + 0x002 out of memory for object contexts

TPM_RC_SESSION_MEMORY RC_WARN + 0x003 out of memory for session contexts

RC_WARN + 0x004
out of shared object/session memory or need
space for internal operations

TPM_RC_MEMORY

RC_WARN + 0x005
out of session handles – a session must be flushed
before a new session may be created

TPM_RC_SESSION_HANDLES

RC_WARN + 0x006
out of object handles – the handle space for
objects is depleted and a reboot is required

TPM_RC_OBJECT_HANDLES

TPM_RC_LOCALITY RC_WARN + 0x007 bad locality

RC_WARN + 0x008

the TPM has suspended operation on the
command; forward progress was made and the
command may be retried.

See ISO/IEC 11889-1, clause 38, “Multi-tasking”

TPM_RC_YIELDED

TPM_RC_CANCELED RC_WARN + 0x009 the command was canceled

TPM_RC_TESTING RC_WARN + 0x00A TPM is performing self-tests

RC_WARN + 0x010
the 1st handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H0

RC_WARN + 0x011
the 2nd handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H1

RC_WARN + 0x012
the 3rd handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H2

RC_WARN + 0x013
the 4th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H3

RC_WARN + 0x014
the 5th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H4

RC_WARN + 0x015
the 6th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H5

RC_WARN + 0x016
the 7th handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H6

RC_WARN + 0x018
the 1st authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S0

RC_WARN + 0x019
the 2nd authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S1

RC_WARN + 0x01A
the 3rd authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S2

RC_WARN + 0x01B
the 4th authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S3

RC_WARN + 0x01C
the 5th session handle references a session that is
not loaded

TPM_RC_REFERENCE_S4

RC_WARN + 0x01D
the 6th session handle references a session that is
not loaded

TPM_RC_REFERENCE_S5

RC_WARN + 0x01E
the 7th authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S6

TPM_RC_NV_RATE RC_WARN + 0x020
the TPM is rate-limiting accesses to prevent
wearout of NV

36 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Name Value Description

RC_WARN + 0x021
authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in
DA lockout mode

TPM_RC_LOCKOUT

TPM_RC_RETRY RC_WARN + 0x022 the TPM was not able to start the command

RC_WARN + 0x023
the command may require writing of NV and NV is
not current accessible

TPM_RC_NV_UNAVAILABLE

RC_WARN + 0x7F
this value is reserved and shall not be returned by
the TPM

TPM_RC_NOT_USED

 Additional Defines

TPM_RC_H 0x000 add to a handle-related error

TPM_RC_P 0x040 add to a parameter-related error

TPM_RC_S 0x800 add to a session-related error

0x100
add to a parameter-, handle-, or session-related
error

TPM_RC_1

0x200
add to a parameter-, handle-, or session-related
error

TPM_RC_2

0x300
add to a parameter-, handle-, or session-related
error

TPM_RC_3

0x400
add to a parameter-, handle-, or session-related
error

TPM_RC_4

0x500
add to a parameter-, handle-, or session-related
error

TPM_RC_5

0x600
add to a parameter-, handle-, or session-related
error

TPM_RC_6

0x700
add to a parameter-, handle-, or session-related
error

TPM_RC_7

TPM_RC_8 0x800 add to a parameter-related error

TPM_RC_9 0x900 add to a parameter-related error

TPM_RC_A 0xA00 add to a parameter-related error

TPM_RC_B 0xB00 add to a parameter-related error

TPM_RC_C 0xC00 add to a parameter-related error

TPM_RC_D 0xD00 add to a parameter-related error

TPM_RC_E 0xE00 add to a parameter-related error

TPM_RC_F 0xF00 add to a parameter-related error

TPM_RC_N_MASK 0xF00 number mask

NOTE 1 TPM_RC_FAILURE can be returned by TPM2_GetTestResult() as the testResult parameter.

NOTE 2 TPM_RC_OBJECT_HANDLES cannot occur on the reference implementation.

NOTE 3 For the response code TPM_RC_OBJECT_HANDLES there is no reason why an implementation would implement a
design that would deplete handle space. Platform specifications are encouraged to forbid it.

NOTE 4 TPM_RC_YIELDED cannot occur on the reference implementation.

© ISO/IEC 2015 – All rights reserved 37

ISO/IEC 11889-2:2015(E)

7.7 TPM_CLOCK_ADJUST

A TPM_CLOCK_ADJUST value is used to change the rate at which the TPM internal oscillator is divided.
A change to the divider will change the rate at which Clock and Time change.

NOTE The recommended adjustments are approximately 1% for a course adjustment, 0.1% for a medium
adjustment, and the minimum possible on the implementation for the fine adjustment (e.g., one count of
the pre-scalar if possible).

Table 17 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN>

Name Value Comments

TPM_CLOCK_COARSE_SLOWER -3 Slow the Clock update rate by one coarse adjustment step.

TPM_CLOCK_MEDIUM_SLOWER -2 Slow the Clock update rate by one medium adjustment step.

TPM_CLOCK_FINE_SLOWER -1 Slow the Clock update rate by one fine adjustment step.

TPM_CLOCK_NO_CHANGE 0 No change to the Clock update rate.

TPM_CLOCK_FINE_FASTER 1 Speed the Clock update rate by one fine adjustment step.

TPM_CLOCK_MEDIUM_FASTER 2 Speed the Clock update rate by one medium adjustment step.

TPM_CLOCK_COARSE_FASTER 3 Speed the Clock update rate by one coarse adjustment step.

#TPM_RC_VALUE

7.8 TPM_EO (EA Arithmetic Operands)

Table 18 — Definition of (UINT16) TPM_EO Constants <IN/OUT>

Operation Name Value Comments

TPM_EO_EQ 0x0000 A = B

TPM_EO_NEQ 0x0001 A ≠ B

TPM_EO_SIGNED_GT 0x0002 A > B signed

TPM_EO_UNSIGNED_GT 0x0003 A > B unsigned

TPM_EO_SIGNED_LT 0x0004 A < B signed

TPM_EO_UNSIGNED_LT 0x0005 A < B unsigned

TPM_EO_SIGNED_GE 0x0006 A ≥ B signed

TPM_EO_UNSIGNED_GE 0x0007 A ≥ B unsigned

TPM_EO_SIGNED_LE 0x0008 A ≤ B signed

TPM_EO_UNSIGNED_LE 0x0009 A ≤ B unsigned

TPM_EO_BITSET 0x000A All bits SET in B are SET in A. ((A&B)=B)

TPM_EO_BITCLEAR 0x000B All bits SET in B are CLEAR in A. ((A&B)=0)

#TPM_RC_VALUE Response code returned when unmarshaling of this type fails

38 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7.9 TPM_ST (Structure Tags)

Structure tags are used to disambiguate structures. They are 16-bit values with the most significant bit
SET so that they do not overlap TPM_ALG_ID values. A single exception is made for the value
associated with TPM_ST_RSP_COMMAND (0x00C4), which has the same value as the
TPM_TAG_RSP_COMMAND tag from ISO/IEC 11889 (first edition). This value is used when the TPM is
compatible with ISO/IEC 11889 (first edition) and the TPM cannot determine which family of response
code to return because the command tag is not valid.

Many of the structures defined in this part of ISO/IEC 11889 have parameters that are unions of other
structures. That is, a parameter may be one of several structures. The parameter will have a selector
value that indicates which of the options is actually present.

In order to allow the marshaling and unmarshaling code to determine which of the possible structures is
allowed, each selector will have a unique interface type and will constrain the number of possible tag
values.

Table 19 defines the structure tags values. The definition of many structures is context-sensitive using an
algorithm ID. In cases where an algorithm ID is not a meaningful way to designate the structure, the
values in this table are used.

Table 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>

Name Value Comments

TPM_ST_RSP_COMMAND 0x00C4 tag value for a response; used when there is an error
in the tag. This is also the value returned from a TPM
implementing ISO/IEC 11889 (first edition) when an
error occurs. This value is used in ISO/IEC 11889
because an error in the command tag may prevent
determination of the family. When this tag is used in
the response, the response code will be
TPM_RC_BAD_TAG (0 1E16), which has the same
numeric value as the ISO/IEC 11889 (first edition)
response code for TPM_BADTAG.

TPM_ST_NULL 0X8000 no structure type specified

TPM_ST_NO_SESSIONS 0x8001 tag value for a command/response for a command
defined in ISO/IEC 11889; indicating that the
command/response has no attached sessions and no
authorizationSize/parameterSize value is present

If the responseCode from the TPM is not
TPM_RC_SUCCESS, then the response tag shall
have this value.

TPM_ST_SESSIONS 0x8002 tag value for a command/response for a command
defined in ISO/IEC 11889; indicating that the
command/response has one or more attached
sessions and the authorizationSize/parameterSize
field is present

reserved 0x8003 When used between application software and the TPM
resource manager, this tag indicates that the
command has no sessions and the handles are using
the Name format rather than the 32-bit handle format.

Between the TRM and TPM, this tag would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has no associated sessions.

© ISO/IEC 2015 – All rights reserved 39

ISO/IEC 11889-2:2015(E)

Name Value Comments

reserved 0x8004 When used between application software and the TPM
resource manager, this tag indicates that the
command has sessions and the handles are using the
Name format rather than the 32-bit handle format.

Between the TRM and TPM, would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has authorization sessions.

TPM_ST_ATTEST_NV 0x8014 tag for an attestation structure

TPM_ST_ATTEST_COMMAND_AUDIT 0x8015 tag for an attestation structure

TPM_ST_ATTEST_SESSION_AUDIT 0x8016 tag for an attestation structure

TPM_ST_ATTEST_CERTIFY 0x8017 tag for an attestation structure

TPM_ST_ATTEST_QUOTE 0x8018 tag for an attestation structure

TPM_ST_ATTEST_TIME 0x8019 tag for an attestation structure

TPM_ST_ATTEST_CREATION 0x801A tag for an attestation structure

reserved 0x801B do not use

TPM_ST_CREATION 0x8021 tag for a ticket type

TPM_ST_VERIFIED 0x8022 tag for a ticket type

TPM_ST_AUTH_SECRET 0x8023 tag for a ticket type

TPM_ST_HASHCHECK 0x8024 tag for a ticket type

TPM_ST_AUTH_SIGNED 0x8025 tag for a ticket type

TPM_ST_FU_MANIFEST 0x8029 tag for a structure describing a Field Upgrade Policy

NOTE 1 In a previously published version of the TCG TPM 2.0 Library specification, TPM_RC_BAD_TAG
was incorrectly assigned a value of 0x030 instead of 30 (0x01e). Some implementations my return
the old value instead of the new value.

NOTE 2 Regarding the value 0x8003, the response to application software will have a tag of
TPM_ST_NO_SESSIONS.

NOTE 3 Regarding the value 0x8003, this value is not used by all TPM or TPM Resource Manager
implementations.

NOTE 4 Regarding the value 0x8004, if the command completes successfully, the response to application
software will have a tag of TPM_ST_SESSIONS.

NOTE 5 Regarding the value 0x8004, this value is not used by all TPM or TPM Resource Manager
implementations.

NOTE 6 Regarding the value 0x801B, This was previously assigned to TPM_ST_ATTEST_NV. The tag is
changed because the structure has changed.

40 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7.10 TPM_SU (Startup Type)

These values are used in TPM2_Startup() to indicate the shutdown and startup mode. The defined
startup sequences are:

a) TPM Reset – Two cases:

1) Shutdown(CLEAR) followed by Startup(CLEAR)

2) Startup(CLEAR) with no Shutdown()

b) TPM Restart – Shutdown(STATE) followed by Startup(CLEAR)

c) TPM Resume – Shutdown(STATE) followed by Startup(STATE)

TPM_SU values of 80 0016 and above are reserved for internal use of the TPM and may not be assigned
values.

NOTE In the reference code, a value of FF FF16 indicates that the startup state has not been set. If this was
defined in this table to be, say, TPM_SU_NONE, then TPM_SU_NONE would be a valid input value but
the caller is not allowed to indicate the that the startup type is TPM_SU_NONE so the reserved value is
defined in the implementation as required for internal TPM uses.

Table 20 — Definition of (UINT16) TPM_SU Constants <IN>

Name Value Description

TPM_SU_CLEAR 0x0000 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Reset).

on TPM2_Startup(), indicates that the TPM should perform
TPM Reset or TPM Restart

TPM_SU_STATE 0x0001 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Restart or TPM Resume)

on TPM2_Startup(), indicates that the TPM should restore the
state saved by TPM2_Shutdown(TPM_SU_STATE)

#TPM_RC_VALUE response code when incorrect value is used

7.11 TPM_SE (Session Type)

This type is used in TPM2_StartAuthSession() to indicate the type of the session to be created.

Table 21 — Definition of (UINT8) TPM_SE Constants <IN>

Name Value Description

TPM_SE_HMAC 0x00

TPM_SE_POLICY 0x01

TPM_SE_TRIAL 0x03 The policy session is being used to compute the policyHash and
not for command authorization.

This setting modifies some policy commands and prevents
session from being used to authorize a command.

#TPM_RC_VALUE response code when incorrect value is used

© ISO/IEC 2015 – All rights reserved 41

ISO/IEC 11889-2:2015(E)

7.12 TPM_CAP (Capabilities)

The TPM_CAP values are used in TPM2_GetCapability() to select the type of the value to be returned.
The format of the response varies according to the type of the value.

Table 22 — Definition of (UINT32) TPM_CAP Constants

Capability Name Value Property Type Return Type

TPM_CAP_FIRST 0x00000000

0x00000000 TPM_ALG_ID(1) TPML_ALG_PROPERTY TPM_CAP_ALGS

TPM_CAP_HANDLES 0x00000001 TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS 0x00000002 TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS 0x00000003 TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS 0x00000004 TPM_CC TPML_CC

TPM_CAP_PCRS 0x00000005 reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES 0x00000006 TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES 0x00000007 TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

0x00000008 TPM_ECC_CURVE(1) TPML_ECC_CURVE TPM_CAP_ECC_CURVES

TPM_CAP_LAST 0x00000008

TPM_CAP_VENDOR_PROPERTY 0x00000100 manufacturer specific manufacturer-specific values

#TPM_RC_VALUE

NOTE The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32.

42 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

7.13 TPM_PT (Property Tag)

The TPM_PT constants are used in TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES) to
indicate the property being selected or returned.

The values in the fixed group (PT_FIXED) are not changeable through programmatic means other than a
firmware update. The values in the variable group (PT_VAR) may be changed with TPM commands but
should be persistent over power cycles and only changed when indicated by the detailed actions code.

Table 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_NONE 0x00000000 indicates no property type

PT_GROUP 0x00000100 The number of properties in each group.

PT_FIXED PT_GROUP * 1 the group of fixed properties returned as
TPMS_TAGGED_PROPERTY

The values in this group are only changed due to a
firmware change in the TPM.

TPM_PT_FAMILY_INDICATOR PT_FIXED + 0 a 4-octet character string containing the TPM Family value
(TPM_SPEC_FAMILY)

TPM_PT_LEVEL PT_FIXED + 1 the level of ISO/IEC 11889

TPM_PT_REVISION PT_FIXED + 2 ISO/IEC 11889 Revision times 100

TPM_PT_DAY_OF_YEAR PT_FIXED + 3 ISO/IEC 11889 publication day of year using TCG
calendar

TPM_PT_YEAR PT_FIXED + 4 ISO/IEC 11889 publication year using the CE

TPM_PT_MANUFACTURER PT_FIXED + 5 the vendor ID unique to each TPM manufacturer

TPM_PT_VENDOR_STRING_1 PT_FIXED + 6 the first four characters of the vendor ID string

TPM_PT_VENDOR_STRING_2 PT_FIXED + 7 the second four characters of the vendor ID string

TPM_PT_VENDOR_STRING_3 PT_FIXED + 8 the third four characters of the vendor ID string

TPM_PT_VENDOR_STRING_4 PT_FIXED + 9 the fourth four characters of the vendor ID sting

TPM_PT_VENDOR_TPM_TYPE PT_FIXED + 10 vendor-defined value indicating the TPM model

TPM_PT_FIRMWARE_VERSION_1 PT_FIXED + 11 the most-significant 32 bits of a vendor-specific value
indicating the version of the firmware

TPM_PT_FIRMWARE_VERSION_2 PT_FIXED + 12 the least-significant 32 bits of a vendor-specific value
indicating the version of the firmware

TPM_PT_INPUT_BUFFER PT_FIXED + 13 the maximum size of a parameter (typically, a
TPM2B_MAX_BUFFER)

TPM_PT_HR_TRANSIENT_MIN PT_FIXED + 14 the minimum number of transient objects that can be held
in TPM RAM

TPM_PT_HR_PERSISTENT_MIN PT_FIXED + 15 the minimum number of persistent objects that can be
held in TPM NV memory

TPM_PT_HR_LOADED_MIN PT_FIXED + 16 the minimum number of authorization sessions that can
be held in TPM RAM

TPM_PT_ACTIVE_SESSIONS_MAX PT_FIXED + 17 the number of authorization sessions that may be active at
a time

A session is active when it has a context associated with
its handle. The context may either be in TPM RAM or be
context saved.

© ISO/IEC 2015 – All rights reserved 43

ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

TPM_PT_PCR_COUNT PT_FIXED + 18 the number of PCR implemented

TPM_PT_PCR_SELECT_MIN PT_FIXED + 19 the minimum number of octets in a
TPMS_PCR_SELECT.sizeOfSelect

TPM_PT_CONTEXT_GAP_MAX PT_FIXED + 20 the maximum allowed difference (unsigned) between the
contextID values of two saved session contexts

This value shall be at least 216-1 (65535).

 PT_FIXED + 21 skipped

TPM_PT_NV_COUNTERS_MAX PT_FIXED + 22 the maximum number of NV Indexes that are allowed to
have the TPMA_NV_COUNTER attribute SET

TPM_PT_NV_INDEX_MAX PT_FIXED + 23 the maximum size of an NV Index data area

TPM_PT_MEMORY PT_FIXED + 24 a TPMA_MEMORY indicating the memory management
method for the TPM

TPM_PT_CLOCK_UPDATE PT_FIXED + 25 interval, in milliseconds, between updates to the copy of
TPMS_CLOCK_INFO.clock in NV

TPM_PT_CONTEXT_HASH PT_FIXED + 26 the algorithm used for the integrity HMAC on saved
contexts and for hashing the fuData of
TPM2_FirmwareRead()

TPM_PT_CONTEXT_SYM PT_FIXED + 27 TPM_ALG_ID, the algorithm used for encryption of saved
contexts

TPM_PT_CONTEXT_SYM_SIZE PT_FIXED + 28 TPM_KEY_BITS, the size of the key used for encryption
of saved contexts

TPM_PT_ORDERLY_COUNT PT_FIXED + 29 the modulus - 1 of the count for NV update of an orderly
counter

The returned value is MAX_ORDERLY_COUNT.

This will have a value of 2N – 1 where 1 ≤ N ≤ 32

TPM_PT_MAX_COMMAND_SIZE PT_FIXED + 30 the maximum value for commandSize in a command

TPM_PT_MAX_RESPONSE_SIZE PT_FIXED + 31 the maximum value for responseSize in a response

TPM_PT_MAX_DIGEST PT_FIXED + 32 the maximum size of a digest that can be produced by the
TPM

TPM_PT_MAX_OBJECT_CONTEXT PT_FIXED + 33 the maximum size of an object context that will be
returned by TPM2_ContextSave

TPM_PT_MAX_SESSION_CONTEXT PT_FIXED + 34 the maximum size of a session context that will be
returned by TPM2_ContextSave

TPM_PT_PS_FAMILY_INDICATOR PT_FIXED + 35 platform-specific family (a TPM_PS value)(see Table 25)

TPM_PT_PS_LEVEL PT_FIXED + 36 the level of the platform-specific specification

TPM_PT_PS_REVISION PT_FIXED + 37 the specification Revision times 100 for the platform-
specific specification

TPM_PT_PS_DAY_OF_YEAR PT_FIXED + 38 the platform-specific specification day of year using TCG
calendar

TPM_PT_PS_YEAR PT_FIXED + 39 the platform-specific specification year using the CE

TPM_PT_SPLIT_MAX PT_FIXED + 40 the number of split signing operations supported by the
TPM

TPM_PT_TOTAL_COMMANDS PT_FIXED + 41 total number of commands implemented in the TPM

TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42 number of commands from the TPM library that are
implemented

44 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

TPM_PT_VENDOR_COMMANDS PT_FIXED + 43 number of vendor commands that are implemented

TPM_PT_NV_BUFFER_MAX PT_FIXED + 44 the maximum data size in one NV write command

PT_VAR PT_GROUP * 2 the group of variable properties returned as
TPMS_TAGGED_PROPERTY

The properties in this group change because of a
Protected Capability other than a firmware update. The
values are not necessarily persistent across all power
transitions.

TPM_PT_PERMANENT PT_VAR + 0 TPMA_PERMANENT

TPM_PT_STARTUP_CLEAR PT_VAR + 1 TPMA_STARTUP_CLEAR

TPM_PT_HR_NV_INDEX PT_VAR + 2 the number of NV Indexes currently defined

TPM_PT_HR_LOADED PT_VAR + 3 the number of authorization sessions currently loaded into
TPM RAM

TPM_PT_HR_LOADED_AVAIL PT_VAR + 4 the number of additional authorization sessions, of any
type, that could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
loaded. Any command that changes the RAM memory
allocation can make this estimate invalid.

TPM_PT_HR_ACTIVE PT_VAR + 5 the number of active authorization sessions currently
being tracked by the TPM

This is the sum of the loaded and saved sessions.

TPM_PT_HR_ACTIVE_AVAIL PT_VAR + 6 the number of additional authorization sessions, of any
type, that could be created

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
created. Any command that changes the RAM memory
allocation can make this estimate invalid.

TPM_PT_HR_TRANSIENT_AVAIL PT_VAR + 7 estimate of the number of additional transient objects that
could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one object of any type may be loaded. Any
command that changes the memory allocation can make
this estimate invalid.

TPM_PT_HR_PERSISTENT PT_VAR + 8 the number of persistent objects currently loaded into
TPM NV memory

TPM_PT_HR_PERSISTENT_AVAIL PT_VAR + 9 the number of additional persistent objects that could be
loaded into NV memory

This value is an estimate. If this value is at least 1, then at
least one object of any type may be made persistent. Any
command that changes the NV memory allocation can
make this estimate invalid.

TPM_PT_NV_COUNTERS PT_VAR + 10 the number of defined NV Indexes that have NV
TPMA_NV_COUNTER attribute SET

© ISO/IEC 2015 – All rights reserved 45

ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11 the number of additional NV Indexes that can be defined
with their TPMA_NV_COUNTER and
TPMA_NV_ORDERLY attribute SET

This value is an estimate. If this value is at least 1, then at
least one NV Index may be created with the
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
attributes SET. Any command that changes the NV
memory allocation can make this estimate invalid.

TPM_PT_ALGORITHM_SET PT_VAR + 12 code that limits the algorithms that may be used with the
TPM

TPM_PT_LOADED_CURVES PT_VAR + 13 the number of loaded ECC curves

TPM_PT_LOCKOUT_COUNTER PT_VAR + 14 the current value of the lockout counter (failedTries)

TPM_PT_MAX_AUTH_FAIL PT_VAR + 15 the number of authorization failures before DA lockout is
invoked

TPM_PT_LOCKOUT_INTERVAL PT_VAR + 16 the number of seconds before the value reported by
TPM_PT_LOCKOUT_COUNTER is decremented

TPM_PT_LOCKOUT_RECOVERY PT_VAR + 17 the number of seconds after a lockoutAuth failure before
use of lockoutAuth may be attempted again

TPM_PT_NV_WRITE_RECOVERY PT_VAR + 18 number of milliseconds before the TPM will accept
another command that will modify NV

This value is an approximation and may go up or down
over time.

TPM_PT_AUDIT_COUNTER_0 PT_VAR + 19 the high-order 32 bits of the command audit counter

TPM_PT_AUDIT_COUNTER_1 PT_VAR + 20 the low-order 32 bits of the command audit counter

NOTE 1 Regarding PT_GROUP, the first group with any properties is group 1 (PT_GROUP * 1). Group 0 is
reserved.

NOTE 2 Regarding TPM_PT_LEVEL, for this International Standard, the level is zero.

EXAMPLE 1 Regarding TPM_PT_REVISION, revision 01.01 would have a value of 101.

NOTE 3 Regarding TPM_PT_REVISION, for this International Standard, the Revision is 1.07.

EXAMPLE 2 Regarding TPM_PT_DAY_OF_YEAR, November 15, 2010, has a day of year value of 319
(00 00 01 3F16).

NOTE 4 Regarding TPM_PT_DAY_OF_YEAR, the date is on the title page of this International Standard.

EXAMPLE 3 Regarding TPM_PT_YEAR, the year 2010 has a value of 00 00 07 DA16.

NOTE 5 Regarding TPM_PT_YEAR, the date is on the title page of this International Standard.

NOTE 6 Regarding TPM_PT_VENDOR_STRING_1, when the vendor string is fewer than 16 octets, the
additional property values do not have to be present. A vendor string of 4 octets can be represented in
one 32-bit value and no null terminating character is required.

NOTE 7 Regarding TPM_PT_HR_TRANSIENT_MIN, this minimum will be no less than the minimum value
required by the platform-specific specification to which the TPM is built.

NOTE 8 Regarding TPM_PT_HR_PERSISTENT_MIN, this minimum will be no less than the minimum value
required by the platform-specific specification to which the TPM is built.

NOTE 9 Regarding TPM_PT_HR_LOADED_MIN, this minimum will be no less than the minimum value required
by the platform-specific specification to which the TPM is built.

46 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

NOTE 10 Regarding TPM_PT_ACTIVE_SESSIONS_MAX, this value will be no less than the minimum value
required by the platform-specific specification to which the TPM is built.

NOTE 11 Regarding TPM_PT_PCR_COUNT, this number is determined by the defined attributes, not the number
of PCR that are populated.

NOTE 12 Regarding TPM_PT_PCR_SELECT_MIN, this value is not determined by the number of PCR
implemented but by the number of PCR required by the platform-specific specification with which the
TPM is compliant or by the implementer if not adhering to a platform-specific specification.

NOTE 13 Regarding TPM_PT_NV_COUNTERS_MAX, it is possible for this value to be larger than the number of
NV Indexes that can be defined. This would be indicative of a TPM implementation that did not use
different implementation technology for different NV Index types.

NOTE 14 Regarding TPM_PT_ORDERLY_COUNT, an “orderly counter” is an NV Index with
TPMA_NV_COUNTER and TPMA_NV_ORDERLY both SET.

NOTE 15 Regarding TPM_PT_ORDERLY_COUNT, when the low-order bits of a counter equal this value, an NV
write occurs on the next increment.

NOTE 16 Regarding TPM_PT_PS_FAMILY_INDICATOR, the platform-specific values for the TPM_PT_PS
parameters are in the relevant platform-specific specification. In the reference implementation, all of
these values are 0.

NOTE 17 Regarding TPM_PT_HR_LOADED_AVAIL, a valid implementation might return 1 even if more than one
authorization session would fit into RAM.

NOTE 18 Regarding TPM_PT_HR_ACTIVE_AVAIL, a valid implementation might return 1 even if more than one
authorization session could be created.

NOTE 19 Regarding TPM_PT_HR_TRANSIENT_AVAIL, a valid implementation might return 1 even if more than
one transient object would fit into RAM.

NOTE 20 Regarding TPM_PT_HR_PERSISTENT_AVAIL, a valid implementation might return 1 even if more than
one persistent object would fit into NV memory.

NOTE 21 Regarding TPM_PT_NV_COUNTERS_AVAIL, a valid implementation might return 1 even if more than
one NV counter could be defined.

© ISO/IEC 2015 – All rights reserved 47

ISO/IEC 11889-2:2015(E)

7.14 TPM_PT_PCR (PCR Property Tag)

The TPM_PT_PCR constants are used in TPM2_GetCapability() to indicate the property being selected
or returned. The PCR properties can be read when capability == TPM_CAP_PCR_PROPERTIES.

Table 24 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_PCR_FIRST 0x00000000 bottom of the range of TPM_PT_PCR properties

TPM_PT_PCR_SAVE 0x00000000 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
saved and restored by TPM_SU_STATE

TPM_PT_PCR_EXTEND_L0 0x00000001 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 0

This property is only present if a locality other than 0 is
implemented.

TPM_PT_PCR_RESET_L0 0x00000002 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 0

TPM_PT_PCR_EXTEND_L1 0x00000003 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_RESET_L1 0x00000004 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_EXTEND_L2 0x00000005 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_RESET_L2 0x00000006 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_EXTEND_L3 0x00000007 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_RESET_L3 0x00000008 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_EXTEND_L4 0x00000009 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

TPM_PT_PCR_RESET_L4 0x0000000A a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

48 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

reserved 0x0000000B –
0x00000010

the values in this range are reserved

They correspond to values that may be used to describe
attributes associated with the extended localities (32-
255).synthesize additional software localities. The meaning of
these properties need not be the same as the meaning for the
Extend and Reset properties above.

TPM_PT_PCR_NO_INCREMENT 0x00000011 a SET bit in the TPMS_PCR_SELECT indicates that
modifications to this PCR (reset or Extend) will not increment
the pcrUpdateCounter

TPM_PT_PCR_DRTM_RESET 0x00000012 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
reset by a D-RTM event

These PCR are reset to -1 on TPM2_Startup() and reset to 0 on
a _TPM_Hash_End event following a _TPM_Hash_Start event.

TPM_PT_PCR_POLICY 0x00000013 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by policy

This property is only present if the TPM supports policy control
of a PCR.

TPM_PT_PCR_AUTH 0x00000014 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by an authorization value

This property is only present if the TPM supports authorization
control of a PCR.

0x00000015 reserved for the next (2nd) TPM_PT_PCR_POLICY set reserved

0x00000016 reserved for the next (2nd) TPM_PT_PCR_AUTH set reserved

0x00000017 –
0x00000210

reserved for the 2nd through 255th TPM_PT_PCR_POLICY and
TPM_PT_PCR_AUTH values

reserved

0x00000211 reserved to the 256th, and highest allowed,
TPM_PT_PCR_POLICY set

reserved

0x00000212 reserved to the 256th, and highest allowed,
TPM_PT_PCR_AUTH set

reserved

reserved 0x00000213 new PCR property values may be assigned starting with this
value

TPM_PT_PCR_LAST 0x00000014 top of the range of TPM_PT_PCR properties of the
implementation

If the TPM receives a request for a PCR property with a value
larger than this, the TPM will return a zero length list and set the
moreData parameter to NO.

NOTE Regarding TPM_PT_PCR_LAST, this is an implementation-specific value. The value shown reflects the
reference code implementation.

© ISO/IEC 2015 – All rights reserved 49

ISO/IEC 11889-2:2015(E)

7.15 TPM_PS (Platform Specific)

The platform values in Table 25 are used for the TPM_PT_PS_FAMILY_INDICATOR.

Table 25 — Definition of (UINT32) TPM_PS Constants <OUT>

Capability Name Value Comments

TPM_PS_MAIN 0x00000000 not platform specific

TPM_PS_PC 0x00000001 PC Client

TPM_PS_PDA 0x00000002 PDA (includes all mobile devices that are not specifically cell
phones)

TPM_PS_CELL_PHONE 0x00000003 Cell Phone

TPM_PS_SERVER 0x00000004 Server WG

TPM_PS_PERIPHERAL 0x00000005 Peripheral WG

TPM_PS_TSS 0x00000006 TSS WG

TPM_PS_STORAGE 0x00000007 Storage WG

TPM_PS_AUTHENTICATION 0x00000008 Authentication WG

TPM_PS_EMBEDDED 0x00000009 Embedded WG

TPM_PS_HARDCOPY 0x0000000A Hardcopy WG

TPM_PS_INFRASTRUCTURE 0x0000000B Infrastructure WG

TPM_PS_VIRTUALIZATION 0x0000000C Virtualization WG

TPM_PS_TNC 0x0000000D Trusted Network Connect WG

TPM_PS_MULTI_TENANT 0x0000000E Multi-tenant WG

TPM_PS_TC 0x0000000F Technical Committee

NOTE Values below six (6) have the same values as the purview assignments in ISO/IEC 11889 (first edition).

50 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

8 Handles

8.1 Introduction

Handles are 32-bit values used to reference shielded locations of various types within the TPM.

Table 26 — Definition of Types for Handles

Type Name Description

UINT32 TPM_HANDLE

Handles may refer to objects (keys or data blobs), authorization sessions (HMAC and policy), NV
Indexes, permanent TPM locations, and PCR.

8.2 TPM_HT (Handle Types)

The 32-bit handle space is divided into 256 regions of equal size with 224 values in each. Each of these
ranges represents a handle type.

The type of the entity is indicated by the MSO of its handle. The values for the MSO and the entity
referenced are shown in Table 27.

Table 27 — Definition of (UINT8) TPM_HT Constants <S>

Name Value Comments

0x00 PCR – consecutive numbers, starting at 0, that reference the PCR
registers

A platform-specific specification will set the minimum number of PCR
and an implementation may have more.

TPM_HT_PCR

0x01 NV Index – assigned by the caller TPM_HT_NV_INDEX

TPM_HT_HMAC_SESSION 0x02 HMAC Authorization Session – assigned by the TPM when the
session is created

TPM_HT_LOADED_SESSION 0x02 Loaded Authorization Session – used only in the context of
TPM2_GetCapability

This type references both loaded HMAC and loaded policy
authorization sessions.

TPM_HT_POLICY_SESSION 0x03 Policy Authorization Session – assigned by the TPM when the
session is created

TPM_HT_ACTIVE_SESSION 0x03 Active Authorization Session – used only in the context of
TPM2_GetCapability

This type references saved authorization session contexts for which
the TPM is maintaining tracking information.

0x40 Permanent Values – assigned by this part of ISO/IEC 11889 in
Table 28

TPM_HT_PERMANENT

0x80 Transient Objects – assigned by the TPM when an object is loaded
into transient-object memory or when a persistent object is converted
to a transient object

TPM_HT_TRANSIENT

0x81 Persistent Objects – assigned by the TPM when a loaded transient
object is made persistent

TPM_HT_PERSISTENT

© ISO/IEC 2015 – All rights reserved 51

ISO/IEC 11889-2:2015(E)

When a transient object is loaded, the TPM shall assign a handle with an MSO of TPM_HT_TRANSIENT.
The object may be assigned a different handle each time it is loaded. The TPM shall ensure that handles
assigned to transient objects are unique and assigned to only one transient object at a time.

EXAMPLE 1 If a TPM is only able to hold 4 transient objects in internal memory, it might choose to assign handles to
those objects with the values 80 00 00 0016 – 80 00 00 0316.

When a transient object is converted to a persistent object (TPM2_EvictControl()), the TPM shall validate
that the handle provided by the caller has an MSO of TPM_HT_PERSISTENT and that the handle is not
already assigned to a persistent object.

A handle is assigned to a session when the session is started. The handle shall have an MSO equal to
TPM_HT_SESSION and remain associated with that session until the session is closed or flushed. The
TPM shall ensure that a session handle is only associated with one session at a time. When the session
is loaded into the TPM using TPM2_LoadContext(), it will have the same handle each time it is loaded.

EXAMPLE 2 If a TPM is only able to track 64 active sessions at a time, it could number those sessions using the
values xx 00 01 0016 – xx 00 01 3F16 where xx is either 0216 or 0316 depending on the session type.

8.3 Persistent Handle Sub-ranges

Persistent handles are assigned by the caller of TPM2_EvictControl(). Owner Authorization or Platform
Authorization is required to authorize allocation of space for a persistent object. These entities are given
separate ranges of persistent handles so that they do not have to allocate from a common range of
handles.

NOTE While this “namespace” allocation of the handle ranges could have been handled by convention, TPM
enforcement is used to prevent errors by the OS or malicious software from affecting the platform’s use of
the NV memory.

The Owner is allocated persistent handles in the range of 81 00 00 0016 to 81 7F FF FF16 inclusive and
the TPM will return an error if Owner Authorization is used to attempt to assign a persistent handle
outside of this range.

52 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

8.4 TPM_RH (Permanent Handles)

Table 28 lists the architecturally defined handles that cannot be changed. The handles include
authorization handles, and special handles.

Table 28 — Definition of (TPM_HANDLE) TPM_RH Constants <S>

Name Value Type Comments

TPM_RH_FIRST 0x40000000 R

TPM_RH_SRK 0x40000000 R not used

0x40000001 K, A, P
handle references the Storage Primary Seed (SPS), the
ownerAuth, and the ownerPolicy

TPM_RH_OWNER

TPM_RH_REVOKE 0x40000002 R not used

TPM_RH_TRANSPORT 0x40000003 R not used

TPM_RH_OPERATOR 0x40000004 R not used

TPM_RH_ADMIN 0x40000005 R not used

TPM_RH_EK 0x40000006 R not used

0x40000007 K, A, P
a handle associated with the null hierarchy, an EmptyAuth
authValue, and an Empty Policy authPolicy.

TPM_RH_NULL

TPM_RH_UNASSIGNED 0x40000008 R
value reserved to the TPM to indicate a handle location that
has not been initialized or assigned

0x40000009 S
authorization value used to indicate a password
authorization session

TPM_RS_PW

0x4000000A A
references the authorization associated with the dictionary
attack lockout reset

TPM_RH_LOCKOUT

TPM_RH_ENDORSEMENT 0x4000000B K, A, P
references the Endorsement Primary Seed (EPS),
endorsementAuth, and endorsementPolicy

0x4000000C K, A, P
references the Platform Primary Seed (PPS), platformAuth,
and platformPolicy

TPM_RH_PLATFORM

TPM_RH_PLATFORM_NV 0x4000000D C for phEnableNV

0x40000010 A

Start of a range of authorization values that are vendor-
specific. A TPM may support any of the values in this range
as are needed for vendor-specific purposes.

Disabled if ehEnable is CLEAR.

TPM_RH_AUTH_00

TPM_RH_AUTH_FF 0x4000010F A End of the range of vendor-specific authorization values.

© ISO/IEC 2015 – All rights reserved 53

ISO/IEC 11889-2:2015(E)

Name Value Type Comments

0x4000010F R

the top of the reserved handle area

This is set to allow TPM2_GetCapability() to know where to
stop. It may vary as implementations add to the permanent
handle area.

TPM_RH_LAST

Type definitions:

 R – a reserved value

 K – a Primary Seed

 A – an authorization value

 P – a policy value

 S – a session handle

C - a control

NOTE 1 The handles TPM_RH_SRK, TPM_RH_REVOKE, TPM_RH_TRANSPORT, TPM_RH_OPERATOR,
TPM_RH_ADMIN and TPM_RH_EK, are only used in a TPM that is compatible with ISO/IEC 11889 (first
edition). It is not used in any command defined in this International Standard.

NOTE 2 Regarding the values a TPM supports for TPM_RH_AUTH_00, “any” includes “none”.

8.5 TPM_HC (Handle Value Constants)

The definitions in Table 29 are used to define many of the interface data types.

These values, that indicate ranges, are informative and may be changed by an implementation as long as
the values stay within the prescribed ranges for the handle type:

HMAC_SESSION_FIRST, HMAC_SESSION_LAST, LOADED_SESSION_FIRST,
LOADED_SESSION_LAST, POLICY_SESSION_FIRST, POLICY_SESSION_LAST,
TRANSIENT_FIRST, TRANSIENT_LAST, ACTIVE_SESSION_FIRST, ACTIVE_SESSION_LAST,
PCR_LAST

These values are input by the caller. The TPM implementation should support the entire range"

PERSISTENT_FIRST, PERSISTENT_LAST, PLATFORM_PERSISTENT, NV_INDEX_FIRST,
NV_INDEX_LAST, PERMANENT_FIRST, PERMANENT_LAST

NOTE 1 PCR0 is architecturally intended to have a handle value of 0.

For the reference implementation, the handle range for sessions starts at the lowest allowed value for a
session handle. The highest value for a session handle is determined by how many active sessions are
allowed by the implementation. The MSO of the session handle will be set according to the session type.

A similar approach is used for transient objects with the first assigned handle at the bottom of the range
defined by TPM_HT_TRANSIENT and the top of the range determined by the implementation-dependent
value of MAX_LOADED_OBJECTS.

The first assigned handle for evict objects is also at the bottom of the allowed range defined by
TPM_HT_PERSISTENT and the top of the range determined by the implementation-dependent value of
MAX_EVICT_OBJECTS.

NOTE 2 The values in Table 29 are intended to facilitate the process of making the handle larger than 32 bits in
the future. It is intended that HR_MASK and HR_SHIFT are the only values that need change to resize
the handle space.

54 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 29 — Definition of (TPM_HANDLE) TPM_HC Constants <S>

Name Value Comments

HR_HANDLE_MASK 0x00FFFFFF to mask off the HR

HR_RANGE_MASK 0xFF000000 to mask off the variable
part

HR_SHIFT 24

HR_PCR (TPM_HT_PCR << HR_SHIFT)

HR_HMAC_SESSION (TPM_HT_HMAC_SESSION << HR_SHIFT)

HR_POLICY_SESSION (TPM_HT_POLICY_SESSION << HR_SHIFT)

HR_TRANSIENT (TPM_HT_TRANSIENT << HR_SHIFT)

HR_PERSISTENT (TPM_HT_PERSISTENT << HR_SHIFT)

HR_NV_INDEX (TPM_HT_NV_INDEX << HR_SHIFT)

HR_PERMANENT (TPM_HT_PERMANENT << HR_SHIFT)

PCR_FIRST (HR_PCR + 0) first PCR

PCR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1) last PCR

HMAC_SESSION_FIRST (HR_HMAC_SESSION + 0) first HMAC session

HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1) last HMAC session

LOADED_SESSION_FIRST HMAC_SESSION_FIRST used in GetCapability

LOADED_SESSION_LAST HMAC_SESSION_LAST used in GetCapability

POLICY_SESSION_FIRST (HR_POLICY_SESSION + 0) first policy session

POLICY_SESSION_LAST (POLICY_SESSION_FIRST + MAX_ACTIVE_SESSIONS-1) last policy session

TRANSIENT_FIRST (HR_TRANSIENT + 0) first transient object

ACTIVE_SESSION_FIRST POLICY_SESSION_FIRST used in GetCapability

ACTIVE_SESSION_LAST POLICY_SESSION_LAST used in GetCapability

TRANSIENT_LAST (TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1) last transient object

PERSISTENT_FIRST (HR_PERSISTENT + 0) first persistent object

PERSISTENT_LAST (PERSISTENT_FIRST + 0x00FFFFFF) last persistent object

PLATFORM_PERSISTENT (PERSISTENT_FIRST + 0x00800000) first platform persistent
object

NV_INDEX_FIRST (HR_NV_INDEX + 0) first allowed NV Index

NV_INDEX_LAST (NV_INDEX_FIRST + 0x00FFFFFF) last allowed NV Index

PERMANENT_FIRST TPM_RH_FIRST

PERMANENT_LAST TPM_RH_LAST

© ISO/IEC 2015 – All rights reserved 55

ISO/IEC 11889-2:2015(E)

9 Attribute Structures

9.1 Description

Attributes are expressed as bit fields of varying size. An attribute field structure may be 1, 2, or 4 octets in
length.

The bit numbers for an attribute structure are assigned with the number 0 assigned to the least-significant
bit of the structure and the highest number assigned to the most-significant bit of the structure.

The least significant bit is determined by treating the attribute structure as an integer. The least-significant
bit would be the bit that is set when the value of the integer is 1.

When any reserved bit in an attribute is SET, the TPM shall return TPM_RC_RESERVED_BITS. This
response code is not shown in the tables for attributes.

9.2 TPMA_ALGORITHM

This structure defines the attributes of an algorithm.

Each algorithm has a fundamental attribute: asymmetric, symmetric, or hash. In some cases (e.g.,
TPM_ALG_RSA or TPM_ALG_AES), this is the only attribute.

A mode, method, or scheme may have an associated asymmetric, symmetric, or hash algorithm.

Table 30 — Definition of (UINT32) TPMA_ALGORITHM Bits

Bit Name Definition

0 asymmetric SET (1): an asymmetric algorithm with public and private portions

CLEAR (0): not an asymmetric algorithm

1 symmetric SET (1): a symmetric block cipher

CLEAR (0): not a symmetric block cipher

2 hash SET (1): a hash algorithm

CLEAR (0): not a hash algorithm

3 object SET (1): an algorithm that may be used as an object type

CLEAR (0): an algorithm that is not used as an object type

7:4 Reserved

8 signing SET (1): a signing algorithm. The setting of asymmetric, symmetric, and hash
will indicate the type of signing algorithm.

CLEAR (0): not a signing algorithm

9 encrypting SET (1): an encryption/decryption algorithm. The setting of asymmetric,
symmetric, and hash will indicate the type of encryption/decryption algorithm.

CLEAR (0): not an encryption/decryption algorithm

10 method SET (1): a method such as a key derivative function (KDF)

CLEAR (0): not a method

31:11 Reserved

9.3 TPMA_OBJECT (Object Attributes)

9.3.1 Introduction

56 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

This attribute structure indicates an object’s use, its authorization types, and its relationship to other
objects.

The state of the attributes is determined when the object is created and they are never changed by the
TPM. Additionally, the setting of these structures is reflected in the integrity value of the private area of an
object in order to allow the TPM to detect modifications of the Protected Object when stored off the TPM.

9.3.2 Structure Definition

Table 31 — Definition of (UINT32) TPMA_OBJECT Bits

Bit Name Definition

0 Reserved shall be zero

1 fixedTPM SET (1): The hierarchy of the object, as indicated by its Qualified Name, may
not change.

CLEAR (0): The hierarchy of the object may change as a result of this object or
an ancestor key being duplicated for use in another hierarchy.

2 stClear SET (1): Previously saved contexts of this object may not be loaded after
Startup(CLEAR).

CLEAR (0): Saved contexts of this object may be used after a
Shutdown(STATE) and subsequent Startup().

3 Reserved shall be zero

4 fixedParent SET (1): The parent of the object may not change.

CLEAR (0): The parent of the object may change as the result of a
TPM2_Duplicate() of the object.

5 sensitiveDataOrigin SET (1): Indicates that, when the object was created with TPM2_Create() or
TPM2_CreatePrimary(), the TPM generated all of the sensitive data other than
the authValue.

CLEAR (0): A portion of the sensitive data, other than the authValue, was
provided by the caller.

6 userWithAuth SET (1): Approval of USER role actions with this object may be with an HMAC
session or with a password using the authValue of the object or a policy
session.

CLEAR (0): Approval of USER role actions with this object may only be done
with a policy session.

7 adminWithPolicy SET (1): Approval of ADMIN role actions with this object may only be done with
a policy session.

CLEAR (0): Approval of ADMIN role actions with this object may be with an
HMAC session or with a password using the authValue of the object or a policy
session.

9:8 Reserved shall be zero

10 noDA SET (1): The object is not subject to dictionary attack protections.

CLEAR (0): The object is subject to dictionary attack protections.

11 encryptedDuplication SET (1): If the object is duplicated, then symmetricAlg shall not be
TPM_ALG_NULL and newParentHandle shall not be TPM_RH_NULL.

CLEAR (0): The object may be duplicated without an inner wrapper on the
private portion of the object and the new parent may be TPM_RH_NULL.

15:12 Reserved shall be zero

16 restricted SET (1): Key usage is restricted to manipulate structures of known format; the
parent of this key shall have restricted SET.

CLEAR (0): Key usage is not restricted to use on special formats.

© ISO/IEC 2015 – All rights reserved 57

ISO/IEC 11889-2:2015(E)

Bit Name Definition

17 decrypt SET (1): The private portion of the key may be used to decrypt.

CLEAR (0): The private portion of the key may not be used to decrypt.

18 sign SET (1): The private portion of the key may be used to sign.

CLEAR (0): The private portion of the key may not be used to sign.

31:19 Reserved shall be zero

9.3.3 Attribute Descriptions

9.3.3.1 Introduction

The following remaining paragraphs in clause 9.3.3 describe the use and settings for each of the
TPMA_OBJECT attributes. The description includes checks that are performed on the objectAttributes
when an object is created, when it is loaded, and when it is imported. In these descriptions:

Creation – indicates settings for the template parameter in TPM2_Create() or
TPM2_CreatePrimary()

Load – indicates settings for the inPublic parameter in TPM2_Load()

Import – indicates settings for the objectPublic parameter in TPM2_Import()

External – indicates settings that apply to the inPublic parameter in TPM2_LoadExternal() if both the
public and sensitive portions of the object are loaded

NOTE For TPM2_LoadExternal() when only the public portion of the object is loaded, the only attribute checks
are the checks in the validation code following Table 31 and the reserved attributes check.

For any consistency error of attributes in TPMA_OBJECT, the TPM shall return TPM_RC_ATTRIBUTES.

9.3.3.2 Bit[1] – fixedTPM

When SET, the object cannot be duplicated for use on a different TPM, either directly or indirectly and the
Qualified Name of the object cannot change. When CLEAR, the object’s Qualified Name may change if
the object or an ancestor is duplicated.

NOTE 1 This attribute is the logical inverse of the migratable attribute in ISO/IEC 11889 (first edition). That is,
when this attribute is CLEAR, it is the equivalent to an ISO/IEC 11889 (first edition) object with migratable
SET.

Creation – If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be
set to the same value in template. If fixedTPM is CLEAR in the parent, this attribute shall
also be CLEAR in template.

NOTE 2 For a Primary Object, the parent is considered to have fixedTPM SET.

Load – If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be
set to the same value. If fixedTPM is CLEAR in the parent, this attribute shall also be
CLEAR.

Import – shall be CLEAR

External – shall be CLEAR if both the public and sensitive portions are loaded or if fixedParent is
CLEAR, otherwise may be SET or CLEAR

58 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

9.3.3.3 Bit[2] – stClear

If this attribute is SET, then saved contexts of this object will be invalidated on
TPM2_Startup(TPM_SU_CLEAR). If the attribute is CLEAR, then the TPM shall not invalidate the saved
context if the TPM received TPM2_Shutdown(TPM_SU_STATE). If the saved state is valid when checked
at the next TPM2_Startup(), then the TPM shall continue to be able to use the saved contexts.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

9.3.3.4 Bit[4] – fixedParent

If this attribute is SET, the object’s parent may not be changed. That is, this object may not be the object
of a TPM2_Duplicate(). If this attribute is CLEAR, then this object may be the object of a
TPM2_Duplicate().

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – shall be CLEAR

External – shall be CLEAR if both the public and sensitive portions are loaded; otherwise it may be
SET or CLEAR

9.3.3.5 Bit[5] – sensitiveDataOrigin

This attribute is SET for any key that was generated by TPM in TPM2_Create() or
TPM2_CreatePrimary(). If CLEAR, it indicates that the sensitive part of the object (other than the
obfuscation value) was provided by the caller.

NOTE 1 If the fixedTPM attribute is SET, then this attribute is authoritative and accurately reflects the source of
the sensitive area data. If the fixedTPM attribute is CLEAR, then validation of this attribute requires
evaluation of the properties of the ancestor keys.

Creation – If inSensitive.sensitive.data.size is zero, then this attribute shall be SET in the template;
otherwise, it shall be CLEAR in the template.

NOTE 2 The inSensitive.sensitive.data.size parameter will be zero for an asymmetric key so sensitiveDataOrigin
will be SET.

NOTE 3 The inSensitive.sensitive.data.size parameter might not be zero for a data object so sensitiveDataOrigin
needs to be CLEAR. A data object has type = TPM_ALG_KEYEDHASH and its sign and decrypt attributes
are CLEAR.

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

© ISO/IEC 2015 – All rights reserved 59

ISO/IEC 11889-2:2015(E)

9.3.3.6 Bit[6] – userWithAuth

If SET, authorization for operations that require USER role authorization may be given if the caller
provides proof of knowledge of the authValue of the object with an HMAC authorization session or a
password.

If this attribute is CLEAR, then HMAC or password authorizations may not be used for USER role
authorizations.

NOTE 1 Regardless of the setting of this attribute, authorizations for operations that require USER role
authorizations can be provided with a policy session that satisfies the object's authPolicy.

NOTE 2 Regardless of the setting of this attribute, the authValue can be referenced in a policy session or used to
provide the bind value in TPM2_StartAuthSession(). However, if userWithAuth is CLEAR, then the object
can be used as the bind object in TPM2_StartAuthSession() but the session cannot be used to authorize
actions on the object. If this were allowed, then the userWithAuth control could be circumvented simply by
using the object as the bind object.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

9.3.3.7 Bit[7] – adminWithPolicy

If CLEAR, authorization for operations that require ADMIN role may be given if the caller provides proof of
knowledge of the authValue of the object with an HMAC authorization session or a password.

If this attribute is SET, then then HMAC or password authorizations may not be used for ADMIN role
authorizations.

NOTE 1 Regardless of the setting of this attribute, operations that require ADMIN role authorization can be
provided by a policy session that satisfies the object's authPolicy.

NOTE 2 This attribute is similar to userWithAuth but the logic is a bit different. When userWithAuth is CLEAR, the
authValue cannot be used for USER mode authorizations. When adminWithPolicy is CLEAR, it means
that the authValue can be used for ADMIN role. Policy can always be used regardless of the setting of
userWithAuth or adminWithPolicy.

Actions that always require policy (TPM2_Duplicate()) are not affected by the setting of this attribute.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

9.3.3.8 Bit[10] – noDA

If SET, then authorization failures for the object do not affect the dictionary attack protection logic and
authorization of the object is not blocked if the TPM is in lockout.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

60 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

9.3.3.9 Bit[11] – encryptedDuplication

If SET, then when the object is duplicated, the sensitive portion of the object is required to be encrypted
with an inner wrapper and the new parent shall be an asymmetric key and not TPM_RH_NULL

NOTE 1 Enforcement of these requirements in TPM2_Duplicate() is by not allowing symmetricAlg to be
TPM_ALG_NULL and not allowing newParentHandle to be TPM_RH_NULL.

This attribute shall not be SET in any object that has fixedTPM SET.

NOTE 2 This requirement means that encryptedDuplication cannot be SET if the object cannot be directly or
indirectly duplicated.

If an object's parent has fixedTPM SET, and the object is duplicable (fixedParent == CLEAR), then
encryptedDuplication may be SET or CLEAR in the object.

NOTE 3 This allows the object at the boundary between duplicable and non-duplicable objects to have either
setting.

If an object's parent has fixedTPM CLEAR, then the object is required to have the same setting of
encryptedDuplication as its parent.

NOTE 4 This requirement forces all duplicable objects in a duplication group to have the same
encryptedDuplication setting.

Creation – shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have
the same value as its parent unless fixedTPM is SET in the object's parent, in which
case, it may be SET or CLEAR.

Load – shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have
the same value as its parent, unless fixedTPM is SET the parent, in which case, it may
be SET or CLEAR.

Import – if fixedTPM is SET in the object's new parent, then this attribute may be SET or CLEAR,
otherwise, it shall have the same setting as the new parent.

External – may be SET or CLEAR.

9.3.3.10 Bit[16] – restricted

This this attribute modifies the decrypt and sign attributes of an object.

NOTE A key with this object CLEAR cannot be a parent for another object.

Creation – shall be CLEAR in template if neither sign nor decrypt is SET in template.

Load – shall be CLEAR if neither sign nor decrypt is SET in the object

Import – may be SET or CLEAR

External – shall be CLEAR

© ISO/IEC 2015 – All rights reserved 61

ISO/IEC 11889-2:2015(E)

9.3.3.11 Bit[17] – decrypt

When SET, the private portion of this key can be used to decrypt an external blob. If restricted is SET,
then the TPM will return an error if the external decrypted blob is not formatted as appropriate for the
command.

NOTE 1 Since TPM-generated keys and sealed data will contain a hash and a structure tag, the TPM can ensure
that it is not being used to improperly decrypt and return sensitive data that ought not be returned. The
only type of data that can be returned after decryption is a Sealed Data Object (a keyedHash object with
decrypt and sign CLEAR).

When restricted is CLEAR, there are no restrictions on the use of the private portion of the key for
decryption and the key may be used to decrypt and return any structure encrypted by the public portion of
the key.

NOTE 2 A key with this attribute SET can be a parent for another object if restricted is SET and sign is CLEAR.

If decrypt is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an
XOR encryption key.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

9.3.3.12 Bit[18] – sign

When this attribute is SET, the private portion of this key may be used to sign a digest. If restricted is
SET, then the key may only be used to sign a digest that was computed by the TPM. A restricted signing
key may be used to sign a TPM-generated digest. If a structure is generated by the TPM, it will begin with
TPM_GENERATED_VALUE and the TPM may sign the digest of that structure. If the data is externally
supplied and has TPM_GENERATED_VALUE as its first octets, then the TPM will not sign a digest of
that data with a restricted signing key.

If restricted is CLEAR, then the key may be used to sign any digest, whether generated by the TPM or
externally provided.

NOTE 1 Some asymmetric algorithms might not support both sign and decrypt being SET in the same key.

If sign is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an
HMAC key.

NOTE 2 A key with this attribute SET cannot be a parent for another object.

Creation – shall not be SET if decrypt and restricted are both SET

Load – shall not be SET if decrypt and restricted are both SET

Import – shall not be SET if decrypt and restricted are both SET

External – shall not be SET if decrypt and restricted are both SET

62 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

9.4 TPMA_SESSION (Session Attributes)

This octet in each session is used to identify the session type, indicate its relationship to any handles in
the command, and indicate its use in parameter encryption.

Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>

Bit Name Meaning

0 continueSession SET (1): In a command, this setting indicates that the session is to remain active
after successful completion of the command. In a response, it indicates that the
session is still active. If SET in the command, this attribute shall be SET in the
response.

CLEAR (0): In a command, this setting indicates that the TPM should close the
session and flush any related context when the command completes successfully. In
a response, it indicates that the session is closed and the context is no longer active.

This attribute has no meaning for a password authorization and the TPM will allow
any setting of the attribute in the command and SET the attribute in the response.

This attribute will only be CLEAR in one response for a logical session. If the attribute
is CLEAR, the context associated with the session is no longer in use and the space
is available. A session created after another session is ended may have the same
handle but logically is not the same session.

This attribute has no effect if the command does not complete successfully.

1 auditExclusive SET (1): In a command, this setting indicates that the command should only be
executed if the session is exclusive at the start of the command. In a response, it
indicates that the session is exclusive. This setting is only allowed if the audit
attribute is SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is
TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS.

See ISO/IEC 11889-1, clause 20.2, "Exclusive Audit Sessions".

2 auditReset SET (1): In a command, this setting indicates that the audit digest of the session
should be initialized and the exclusive status of the session SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is
TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS. This setting is
always used for a response.

4:3 Reserved shall be CLEAR

5 decrypt SET (1): In a command, this setting indicates that the first parameter in the command
is symmetrically encrypted using the parameter encryption scheme specified in
ISO/IEC 11889-1. The TPM will decrypt the parameter after performing any HMAC
computations and before unmarshaling the parameter. In a response, the attribute is
copied from the request but has no effect on the response.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may be SET in combination with any other session attributes.

This attribute may only be SET if the first parameter of the command is a sized buffer
(TPM2B_).

© ISO/IEC 2015 – All rights reserved 63

ISO/IEC 11889-2:2015(E)

Bit Name Meaning

6 encrypt SET (1): In a command, this setting indicates that the TPM should use this session to
encrypt the first parameter in the response. In a response, it indicates that the
attribute was set in the command and that the TPM used the session to encrypt the
first parameter in the response using the parameter encryption scheme specified in
ISO/IEC 11889-1.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may only be SET if the first parameter of a response is a sized buffer
(TPM2B_).

7 audit SET (1): In a command or response, this setting indicates that the session is for audit
and that auditExclusive and auditReset have meaning. This session may also be
used for authorization, encryption, or decryption. The encrypted and encrypt fields
may be SET or CLEAR.

CLEAR (0): Session is not used for audit.

This attribute may only be SET in one session per command or response. If SET in
the command, then this attribute will be SET in the response.

9.5 TPMA_LOCALITY (Locality Attribute)

In a TPMS_CREATION_DATA structure, this structure is used to indicate the locality of the command that
created the object. No more than one of the locality attributes shall be set in the creation data.

When used in TPM2_PolicyLocality(), this structure indicates which localities are approved by the policy.
When a policy is started, all localities are allowed. If TPM2_PolicyLocality() is executed, it indicates that
the command may only be executed at specific localities. More than one locality may be selected.

EXAMPLE 1 TPM_LOC_TWO would indicate that only locality 2 is authorized.

EXAMPLE 2 TPM_LOC_ONE + TPM_LOC_TWO would indicate that locality 1 or 2 is authorized.

EXAMPLE 3 TPM_LOC_FOUR + TPM_LOC_THREE would indicate that localities 3 or 4 are authorized.

EXAMPLE 4 A value of 2116 would represent a locality of 33.

NOTE Locality values of 5 through 31 are not selectable.

64 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

If Extended is non-zero, then an extended locality is indicated and the TPMA_LOCALITY contains an
integer value.

Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>

Bit Name Definition

0 TPM_LOC_ZERO

1 TPM_LOC_ONE

2 TPM_LOC_TWO

3 TPM_LOC_THREE

4 TPM_LOC_FOUR

7:5 Extended If any of these bits is set, an extended locality is indicated

9.6 TPMA_PERMANENT

The attributes in this structure are persistent and are not changed as a result of _TPM_Init or any
TPM2_Startup(). Some of the attributes in this structure may change as the result of specific Protected
Capabilities. This structure may be read using TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTIES, property = TPM_PT_PERMANENT).

Table 34 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT>

Bit Parameter Description

0 ownerAuthSet SET (1): TPM2_HierarchyChangeAuth() with ownerAuth has been executed since
the last TPM2_Clear().

CLEAR (0): ownerAuth has not been changed since TPM2_Clear().

1 endorsementAuthSet SET (1): TPM2_HierarchyChangeAuth() with endorsementAuth has been executed
since the last TPM2_Clear().

CLEAR (0): endorsementAuth has not been changed since TPM2_Clear().

2 lockoutAuthSet SET (1): TPM2_HierarchyChangeAuth() with lockoutAuth has been executed since
the last TPM2_Clear().

CLEAR (0): lockoutAuth has not been changed since TPM2_Clear().

7:3 Reserved

8 disableClear SET (1): TPM2_Clear() is disabled.

CLEAR (0): TPM2_Clear() is enabled.

9 inLockout SET (1): The TPM is in lockout and commands that require authorization with other
than Platform Authorization or Lockout Authorization will not succeed.

10 tpmGeneratedEPS SET (1): The EPS was created by the TPM.

CLEAR (0): The EPS was created outside of the TPM using a manufacturer-
specific process.

31:11 Reserved

NOTE See ISO/IEC 11889-3, clause 25.7, “TPM2_ClearControl” for details on changing the disableClear
attribute.

© ISO/IEC 2015 – All rights reserved 65

ISO/IEC 11889-2:2015(E)

9.7 TPMA_STARTUP_CLEAR

These attributes are set to their default state on reset on each TPM Reset or TPM Restart. The attributes
are preserved on TPM Resume.

On each TPM2_Startup(TPM_SU_CLEAR), the TPM will set these attributes to their indicated defaults.

This structure may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES,
property = TPM_PT_STARTUP_CLEAR).

Some of attributes may be changed as the result of specific Protected Capabilities.

Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>

Bit Parameter Description

0 phEnable SET (1): The platform hierarchy is enabled and platformAuth or platformPolicy may
be used for authorization.

CLEAR (0): platformAuth and platformPolicy may not be used for authorizations,
and objects in the platform hierarchy, including persistent objects, cannot be used.

1 shEnable SET (1): The Storage hierarchy is enabled and ownerAuth or ownerPolicy may be
used for authorization. NV indices defined using owner authorization are
accessible.

CLEAR (0): ownerAuth and ownerPolicy may not be used for authorizations, and
objects in the Storage hierarchy, persistent objects, and NV indices defined using
owner authorization cannot be used.

2 ehEnable SET (1): The EPS hierarchy is enabled and Endorsement Authorization may be
used to authorize commands.

CLEAR (0): Endorsement Authorization may not be used for authorizations, and
objects in the endorsement hierarchy, including persistent objects, cannot be used.

3 phEnableNV SET (1): NV indices that have TPMA_PLATFORM_CREATE SET may be read or
written. The platform can create define and undefine indices.

CLEAR (0): NV indices that have TPMA_PLATFORM_CREATE SET may not be
read or written (TPM_RC_HANDLE). The platform cannot define
(TPM_RC_HIERARCHY) or undefined (TPM_RC_HANDLE) indices.

30:4 Reserved shall be zero

31 orderly SET (1): The TPM received a TPM2_Shutdown() and a matching TPM2_Startup().

CLEAR (0): TPM2_Startup(TPM_SU_CLEAR) was not preceded by a
TPM2_Shutdown() of any type.

NOTE 1 Regarding phEnable, shEnable, ehEnable, and phEnableNV see ISO/IEC 11889-3, clause 25.2,
“TPM2_HierarchyControl” for details on changing these attributes.

NOTE 2 Regarding phEnableNV, read refers to these commands: TPM2_NV_Read, TPM2_NV_ReadPublic,
TPM_NV_Certify and TPM2_PolicyNV.

NOTE 3 Regarding phEnableNV, write refers to these commands: TPM2_NV_Write, TPM2_NV_Increment,
TPM2_NV_Extend and TPM2_NV_SetBits.

NOTE 4 Regarding phEnableNV, the TPM needs to query the index TPMA_PLATFORM_CREATE attribute to
determine whether phEnableNV is applicable. Since the TPM will return TPM_RC_HANDLE if the index
does not exist, it also returns this error code if the index is disabled. Otherwise, the TPM would leak the
existence of an index even when disabled.

NOTE 5 Regarding orderly, a shutdown is orderly if the TPM receives a TPM2_Shutdown() of any type followed
by a TPM2_Startup() of any type. However, the TPM will return an error if
TPM2_Startup(TPM_SU_STATE) was not preceded by TPM2_State_Save(TPM_SU_STATE).

66 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

9.8 TPMA_MEMORY

This structure of this attribute is used to report the memory management method used by the TPM for
transient objects and authorization sessions. This structure may be read using
TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_MEMORY).

If the RAM memory is shared, then context save of a session may make it possible to load an additional
transient object.

Table 36 — Definition of (UINT32) TPMA_MEMORY Bits <Out>

Bit Name Definition

sharedRAM SET (1): indicates that the RAM memory used for authorization session
contexts is shared with the memory used for transient objects

CLEAR (0): indicates that the memory used for authorization sessions is not
shared with memory used for transient objects

0

sharedNV SET (1): indicates that the NV memory used for persistent objects is shared
with the NV memory used for NV Index values

CLEAR (0): indicates that the persistent objects and NV Index values are
allocated from separate sections of NV

1

objectCopiedToRam SET (1): indicates that the TPM copies persistent objects to a transient-object
slot in RAM when the persistent object is referenced in a command. The TRM
is required to make sure that an object slot is available.

CLEAR (0): indicates that the TPM does not use transient-object slots when
persistent objects are referenced

2

31:3 Reserved shall be zero

© ISO/IEC 2015 – All rights reserved 67

ISO/IEC 11889-2:2015(E)

9.9 TPMA_CC (Command Code Attributes)

9.9.1 Introduction

This structure defines the attributes of a command from a context management perspective. The fields of
the structure indicate to the TPM Resource Manager (TRM) the number of resources required by a
command and how the command affects the TPM’s resources.

This structure is only used in a list returned by the TPM in response to TPM2_GetCapability(capability =
TPM_CAP_COMMANDS).

For a command to the TPM, only the commandIndex field and V attribute are allowed to be non-zero.

9.9.2 Structure Definition

Table 37 — Definition of (TPM_CC) TPMA_CC Bits <OUT>

Bit Name Definition

15:0 commandIndex indicates the command being selected

21:16 Reserved shall be zero

22 nv SET (1): indicates that the command may write to NV

CLEAR (0): indicates that the command does not write to NV

23 extensive SET (1): This command could flush any number of loaded contexts.

CLEAR (0): no additional changes other than indicated by the flushed attribute

24 flushed SET (1): The context associated with any transient handle in the command will
be flushed when this command completes.

CLEAR (0): No context is flushed as a side effect of this command.

27:25 cHandles indicates the number of the handles in the handle area for this command

28 rHandle SET (1): indicates the presence of the handle area in the response

29 V SET (1): indicates that the command is vendor-specific

CLEAR (0): indicates that the command is defined in ISO/IEC 11889

31:30 Res allocated for software; shall be zero

9.9.3 Field Descriptions

9.9.3.1 Bits[15:0] – commandIndex

This is the command index of the command in the set of commands. The two sets are defined by the V
attribute. If V is zero, then the commandIndex shall be in the set of commands defined in ISO/IEC 11889.
If V is one, then the meaning of commandIndex is as determined by the TPM vendor.

9.9.3.2 Bit[22] – nv

If this attribute is SET, then the TPM may perform an NV write as part of the command actions. This write
is independent of any write that may occur as a result of dictionary attack protection. If this attribute is
CLEAR, then the TPM shall not perform an NV write as part of the command actions.

9.9.3.3 Bit[23] – extensive

68 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

If this attribute is SET, then the TPM may flush many transient objects as a side effect of this command.
In ISO/IEC 11889-3, a command that has this attribute is indicated by using a “{E}” decoration in the
“Description” column of the commandCode parameter.

EXAMPLE See ISO/IEC 11889-3, clause 25.6, “TPM2_Clear”.

NOTE The “{E}” decoration can be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV E}.”

9.9.3.4 Bit[24] – flushed

If this attribute is SET, then the TPM will flush transient objects as a side effect of this command. Any
transient objects listed in the handle area of the command will be flushed from TPM memory. Handles
associated with persistent objects, sessions, PCR, or other fixed TPM resources are not flushed.

NOTE 1 The TRM is expected to use this value to determine how many objects are loaded into transient TPM
memory.

NOTE 2 The “{F}” decoration can be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV F}.”

If this attribute is SET for a command, and the handle of the command is associated with a hierarchy
(TPM_RH_PLATFORM, TPM_RH_OWNER, or TPM_RH_ENDORSEMENT), all loaded objects in the
indicated hierarchy are flushed.

The TRM is expected to know the behaviour of TPM2_ContextSave(), and sessions are flushed when
context saved, but objects are not. The flushed attribute for that command shall be CLEAR.

In ISO/IEC 11889-3, a command that has this attribute is indicated by using a “{F}” decoration in the
“Description” column of the commandCode parameter.

EXAMPLE See ISO/IEC 11889-3, clause 18.5, “TPM2_SequenceComplete”.

9.9.3.5 Bits[27:25] – cHandles

This field indicates the number of handles in the handle area of the command. This number allows the
TRM to enumerate the handles in the handle area and find the position of the authorizations (if any).

9.9.3.6 Bit[28] – rHandle

If this attribute is SET, then the response to this command has a handle area. This area will contain no
more than one handle. This field is necessary to allow the TRM to locate the parameterSize field in the
response, which is then used to locate the authorizations.

NOTE The TRM is expected to “virtualize” the handle value for any returned handle.

© ISO/IEC 2015 – All rights reserved 69

ISO/IEC 11889-2:2015(E)

A TPM command is only allowed to have one handle in the session area.

9.9.3.7 Bit[29] – V

When this attribute is SET, it indicates that the command operation is defined by the TPM vendor. When
CLEAR, it indicates that the command is defined by ISO/IEC 11889.

9.9.3.8 Bits[31:30] – Res

This field is reserved for system software. This field is required to be zero for a command to the TPM.

70 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10 Interface Types

10.1 Introduction

Clause 10 contains definitions for interface types. An interface type is type checked when it is
unmarshaled. These types are based on an underlying type that is indicated in the table title by the value
in parentheses. When an interface type is used, the base type is unmarshaled and then checked to see if
it has one of the allowed values.

10.2 TPMI_YES_NO

This interface type is used in place of a Boolean type in order to eliminate ambiguity in the handling of a
octet that conveys a single bit of information. This type only has two allowed values, YES (1) and NO (0).

NOTE This list is not used as input to the TPM.

Table 38 — Definition of (BYTE) TPMI_YES_NO Type

Value Description

NO a value of 0

YES a value of 1

#TPM_RC_VALUE

10.3 TPMI_DH_OBJECT

The TPMI_DH_OBJECT interface type is a handle that references a loaded object. The handles in this
set are used to refer to either transient or persistent object. The range of these values would change
according to the TPM implementation.

NOTE These interface types not supposed to be used by system software to qualify the keys produced by the
TPM. The value returned by the TPM will be used to reference the object.

Table 39 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

+TPM_RH_NULL the conditional value

#TPM_RC_VALUE

© ISO/IEC 2015 – All rights reserved 71

ISO/IEC 11889-2:2015(E)

10.4 TPMI_DH_PERSISTENT

The TPMI_DH_PERSISTENT interface type is a handle that references a location for a transient object.
This type is used in TPM2_EvictControl() to indicate the handle to be assigned to the persistent object.

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type

Values Comments

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

#TPM_RC_VALUE

10.5 TPMI_DH_ENTITY

The TPMI_DH_ENTITY interface type is TPM-defined values that are used to indicate that the handle
refers to an authValue. The range of these values would change according to the TPM implementation.

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>

Values Comments

TPM_RH_OWNER

TPM_RH_ENDORSEMENT

TPM_RH_PLATFORM

TPM_RH_LOCKOUT

{TRANSIENT_FIRST : TRANSIENT_LAST} range of object handles

{PERSISTENT_FIRST : PERSISTENT_LAST}

{NV_INDEX_FIRST : NV_INDEX_LAST}

{PCR_FIRST : PCR_LAST}

{TPM_RH_AUTH_00 : TPM_RH_AUTH_FF} range of vendor-specific authorization values

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

72 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10.6 TPMI_DH_PCR

This interface type consists of the handles that may be used as PCR references. The upper end of this
range of values would change according to the TPM implementation.

NOTE 1 Typically, the 0th PCR will have a handle value of zero.

NOTE 2 The handle range for PCR is defined to be the same as the handle range for PCR in ISO/IEC 11889 (first
edition).

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>

Values Comments

{PCR_FIRST:PCR_LAST}

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

10.7 TPMI_SH_AUTH_SESSION

The TPMI_SH_AUTH_SESSION interface type is TPM-defined values that are used to indicate that the
handle refers to an authorization session.

Table 43 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST} range of HMAC authorization session handles

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

+TPM_RS_PW a password authorization

#TPM_RC_VALUE error returned if the handle is out of range

10.8 TPMI_SH_HMAC

This interface type is used for an authorization handle when the authorization session uses an HMAC.

Table 44 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST: HMAC_SESSION_LAST} range of HMAC authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

10.9 TPMI_SH_POLICY

This interface type is used for a policy handle when it appears in a policy command.

Table 45 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>

Values Comments

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

© ISO/IEC 2015 – All rights reserved 73

ISO/IEC 11889-2:2015(E)

10.10 TPMI_DH_CONTEXT

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_Flush().

Table 46 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

{POLICY_SESSION_FIRST:POLICY_SESSION_LAST}

{TRANSIENT_FIRST:TRANSIENT_LAST}

#TPM_RC_VALUE

10.11 TPMI_RH_HIERARCHY

The TPMI_RH_HIERARCHY interface type is used as the type of a handle in a command when the
handle is required to be one of the hierarchy selectors.

Table 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.12 TPMI_RH_ENABLES

The TPMI_RH_ENABLES interface type is used as the type of a handle in a command when the handle
is required to be one of the hierarchy or NV enables.

Table 48 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_PLATFORM_NV Platform NV

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

74 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10.13 TPMI_RH_HIERARCHY_AUTH

This interface type is used as the type of a handle in a command when the handle is required to be one of
the hierarchy selectors or the Lockout Authorization.

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_LOCKOUT Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.14 TPMI_RH_PLATFORM

The TPMI_RH_PLATFORM interface type is used as the type of a handle in a command when the only
allowed handle is TPM_RH_PLATFORM indicating that Platform Authorization is required.

Table 50 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN>

Values Comments

TPM_RH_PLATFORM Platform hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.15 TPMI_RH_OWNER

This interface type is used as the type of a handle in a command when the only allowed handle is
TPM_RH_OWNER indicating that Owner Authorization is required.

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>

Values Comments

TPM_RH_OWNER Owner hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

© ISO/IEC 2015 – All rights reserved 75

ISO/IEC 11889-2:2015(E)

10.16 TPMI_RH_ENDORSEMENT

This interface type is used as the type of a handle in a command when the only allowed handle is
TPM_RH_ENDORSEMENT indicating that Endorsement Authorization is required.

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>

Values Comments

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.17 TPMI_RH_PROVISION

The TPMI_RH_PROVISION interface type is used as the type of the handle in a command when the only
allowed handles are either TPM_RH_OWNER or TPM_RH_PLATFORM indicating that either Platform
Authorization or Owner Authorization are allowed.

In most cases, either Platform Authorization or Owner Authorization may be used to authorize the
commands used for management of the resources of the TPM and this interface type will be used.

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN>

Value Comments

TPM_RH_OWNER handle for Owner Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.18 TPMI_RH_CLEAR

The TPMI_RH_CLEAR interface type is used as the type of the handle in a command when the only
allowed handles are either TPM_RH_LOCKOUT or TPM_RH_PLATFORM indicating that either Platform
Authorization or Lockout Authorization are allowed.

This interface type is normally used for performing or controlling TPM2_Clear().

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for Lockout Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

76 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10.19 TPMI_RH_NV_AUTH

This interface type is used to identify the source of the authorization for access to an NV location. The
handle value of a TPMI_RH_NV_AUTH shall indicate that the authorization value is either Platform
Authorization, Owner Authorization, or the authValue. This type is used in the commands that access an
NV Index (commands of the form TPM2_NV_xxx) other than TPM2_NV_DefineSpace() and
TPM2_NV_UndefineSpace().

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN>

Value Comments

TPM_RH_PLATFORM Platform Authorization is allowed

TPM_RH_OWNER Owner Authorization is allowed

{NV_INDEX_FIRST:NV_INDEX_LAST} range for NV locations

#TPM_RC_VALUE response code returned when unmarshaling of this type fails

10.20 TPMI_RH_LOCKOUT

The TPMI_RH_LOCKOUT interface type is used as the type of a handle in a command when the only
allowed handle is TPM_RH_LOCKOUT indicating that Lockout Authorization is required.

Table 56 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10.21 TPMI_RH_NV_INDEX

This interface type is used to identify an NV location. This type is used in the NV commands.

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT>

Value Comments

{NV_INDEX_FIRST:NV_INDEX_LAST} Range of NV Indexes

#TPM_RC_VALUE error returned if the handle is out of range

© ISO/IEC 2015 – All rights reserved 77

ISO/IEC 11889-2:2015(E)

10.22 TPMI_ALG_HASH

A TPMI_ALG_HASH is an interface type of all the hash algorithms implemented on a specific TPM. Table
58 is a list of the hash algorithms that have an algorithm ID assigned by the TCG and does not indicate
the algorithms that will be accepted by a TPM.

NOTE An implementation would modify this table according to the implemented algorithms, changing the values
that are accepted as hash algorithms.

Table 58 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_SHA1 example

TPM_ALG_SHA256 example

TPM_ALG_SM3_256 example

TPM_ALG_SHA384 example

TPM_ALG_SHA512 example

+TPM_ALG_NULL

#TPM_RC_HASH

10.23 TPMI_ALG_ASYM (Asymmetric Algorithms)

A TPMI_ALG_ASYM is an interface type of all the asymmetric algorithms implemented on a specific TPM.
Table 59 lists each of the asymmetric algorithms that have an algorithm ID assigned by the TCG.

Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type

Values Comments

TPM_ALG_RSA

TPM_ALG_ECC

+TPM_ALG_NULL

#TPM_RC_ASYMMETRIC

78 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10.24 TPMI_ALG_SYM (Symmetric Algorithms)

A TPMI_ALG_SYM is an interface type of all the symmetric algorithms that have an algorithm ID assigned
by the TCG and are implemented on the TPM.

The list in the table below is illustrative and will change according to the implementation. The validation
code will only accept the subset of algorithms implemented on a TPM.

NOTE The validation code produced by an example script will produce a CASE statement with a case for each of
the values in the “Values” column. The case for a value is delimited by a #ifdef/#endif pair so that if the
algorithm is not implemented on the TPM, then the case for the algorithm is not generated, and use of the
algorithm will cause a TPM error (TPM_RC_SYMMETRIC).

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type

Values Comments

TPM_ALG_AES example

TPM_ALG_SM4 example

TPM_ALG_CAMELLIA example

TPM_ALG_XOR example

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

10.25 TPMI_ALG_SYM_OBJECT

A TPMI_ALG_SYM_OBJECT is an interface type of all the TCG-defined symmetric algorithms that may
be used as companion symmetric encryption algorithm for an asymmetric object. All algorithms in this list
shall be block ciphers usable in Cipher Feedback (CFB).

Table 61 is illustrative. It would be modified to indicate the algorithms of the TPM.

NOTE TPM_ALG_XOR cannot be in this list.

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type

Values Comments

TPM_ALG_AES example

TPM_ALG_SM4 example

TPM_ALG_CAMELLIA example

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

© ISO/IEC 2015 – All rights reserved 79

ISO/IEC 11889-2:2015(E)

10.26 TPMI_ALG_SYM_MODE

A TPMI_ALG_SYM_MODE is an interface type of all the TCG-defined block-cipher modes of operation.

This version of the table is not expected to be the table checked by the validation code. Rather, the table
would be replaced by one containing the algorithms implemented on the TPM and the values in that table
would be checked by the input validation code.

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type

Values Comments

TPM_ALG_CTR IV will be determined by use.

If the outside provides the nonce and initial counter, then the caller can
know what IV to provide for chaining.

TPM_ALG_OFB XOR last cipher text block with last plaintext to create IV for next block

TPM_ALG_CBC IV will be determined by use.

indefinite chaining using previous output block as IV for next block

TPM_ALG_CFB shall be implemented in all TPM compliant with ISO/IEC 11889

IV will be determined by use.

indefinite chaining using previous cipher text as IV

TPM_ALG_ECB no IV or chaining value required

+TPM_ALG_NULL

#TPM_RC_MODE

Implementation of TPM_ALG_CFB is mandatory. CFB is specified ISO/IEC 10116:2006, making ISO/IEC
10116:2006 indispensable for an implementation of this International Standard.

10.27 TPMI_ALG_KDF (Key and Mask Generation Functions)

A TPMI_ALG_KDF is an interface type of all the key derivation functions implemented on a specific TPM.
Table 63 is exemplary and would change based on the algorithms implemented in a TPM.

Table 63 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type

Values Comments

TPM_ALG_MGF1

TPM_ALG_KDF1_SP800_108

TPM_ALG_KDF1_SP800_56a

TPM_ALG_KDF2

+TPM_ALG_NULL

#TPM_RC_KDF

80 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

10.28 TPMI_ALG_SIG_SCHEME

This is the definition of the interface type for a signature scheme. This table would change according to
the algorithms implemented on the TPM.

Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type

Values Comments

TPM_ALG_RSASSA requires that RSA be implemented

TPM_ALG_RSAPSS requires that RSA be implemented

TPM_ALG_ECDSA requires that ECC be implemented

TPM_ALG_ECDAA requires that ECC and ECDAA be implemented

TPM_ALG_ECSCHNORR

TPM_ALG_SM2 requires that ECC be implemented

TPM_ALG_HMAC present on all TPM

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a signature scheme is not correct

Implementation of TPM_ALG_HMAC is mandatory. HMAC is specified ISO/IEC 9797-2, making ISO/IEC
9797-2 indispensable for an implementation of this International Standard.

10.29 TPMI_ECC_KEY_EXCHANGE

This is the definition of the interface type for an ECC key exchange scheme. This table would change
according to the algorithms implemented on the TPM.

Table 65 — Definition of (TPM_ALG_ID) TPMI_ECC_KEY_EXCHANGE Type

Values Comments

TPM_ALG_ECDH used for single and two phase key exchange

TPM_ALG_ECMQV

TPM_ALG_SM2 requires that ECC be implemented

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a key exchange scheme is not correct

10.30 TPMI_ST_COMMAND_TAG

This interface type is used for the command tags.

The response code for a bad command tag has the same value as the ISO/IEC 11889 (first edition)
response code (TPM_BAD_TAG). This value is used in case the software is not compatible with ISO/IEC
11889 and an unexpected response code might have unexpected side effects.

Table 66 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type

Values Comments

TPM_ST_NO_SESSIONS

TPM_ST_SESSIONS

© ISO/IEC 2015 – All rights reserved 81

ISO/IEC 11889-2:2015(E)

Values Comments

#TPM_RC_BAD_TAG

82 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11 Structure Definitions

11.1 TPMS_EMPTY

This structure is used as a placeholder. In some cases, a union will have a selector value with no data to
unmarshal when that type is selected. Rather than leave the entry empty, TPMS_EMPTY may be
selected. Alternatively, a more descriptive value may be created as a type of TPMS_EMPTY (such as,
TPMS_SCHEME_RSAES).

NOTE The tool chain will special case this structure and create the marshaling and unmarshaling code for this
structure but not create a type definition. The unmarshaling code for this structure will return
TPM_RC_SUCCESS and the marshaling code will return 0.

Table 67 — Definition of TPMS_EMPTY Structure <IN/OUT>

Parameter Type Description

 a structure with no member

11.2 TPMS_ALGORITHM_DESCRIPTION

This structure is a return value for a TPM2_GetCapability() that reads the installed algorithms.

Table 68 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm

attributes TPMA_ALGORITHM the attributes of the algorithm

© ISO/IEC 2015 – All rights reserved 83

ISO/IEC 11889-2:2015(E)

11.3 Hash/Digest Structures

11.3.1 TPMU_HA (Hash)

A TPMU_HA is a union of all the hash algorithms implemented on a TPM. Table 69 is exemplary and
would change based on the algorithms implemented in a TPM.

NOTE If processed by an automated tool, each entry of the table ought to be qualified (with #ifdef/#endif) so that
if the hash algorithm is not implemented on the TPM, the parameter associated with that hash is not
present. This will keep the union from being larger than the largest digest of a hash implemented on that
TPM.

Table 69 — Definition of TPMU_HA Union <IN/OUT, S>

Parameter Type Selector Description

sha1 [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHA1

sha256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sm3_256 [SM3_256_DIGEST_SIZE] BYTE TPM_ALG_SM3_256

sha384 [SHA384_DIGEST_SIZE] BYTE TPM_ALG_SHA384

sha512 [SHA512_DIGEST_SIZE] BYTE TPM_ALG_SHA512

null TPM_ALG_NULL

11.3.2 TPMT_HA

Table 70 shows the basic hash-agile structure used in ISO/IEC 11889. To handle hash agility, this
structure uses the hashAlg parameter to indicate the algorithm used to compute the digest and, by
implication, the size of the digest.

When transmitted, only the number of octets indicated by hashAlg is sent.

NOTE In the reference code, when a TPMT_HA is allocated, the digest field is large enough to support the
largest hash algorithm in the TPMU_HA union.

Table 70 — Definition of TPMT_HA Structure <IN/OUT>

Parameter Type Description

hashAlg +TPMI_ALG_HASH selector of the hash contained in the digest that implies the
size of the digest

[hashAlg] digest TPMU_HA the digest data

NOTE The leading “+” on the type indicates that this structure ought to pass an indication to the unmarshaling
function for TPMI_ALG_HASH so that TPM_ALG_NULL will be allowed if a use of a TPMT_HA allows
TPM_ALG_NULL.

84 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.4 Sized Buffers

11.4.1 Introduction

The “TPM2B_” prefix is used for a structure that has a size field followed by a data buffer with the
indicated number of octets. The size field is 16 bits.

When the type of the second parameter in a TPM2B_ structure is BYTE, the TPM shall unmarshal the
indicated number of octets, which may be zero.

When the type of the second parameter in the TPM2B_ structure is not BYTE, the value of the size field
shall either be zero indicating that no structure is to be unmarshaled; or it shall be identical to the number
of octets unmarshaled for the second parameter.

NOTE 1 If the TPM2B_ defines a structure and not an array of octets, then the structure is self-describing and the
TPM will be able to determine how many octets are in the structure when it is unmarshaled. If that number
of octets is not equal to the size parameter, then it is an error.

NOTE 2 The reason that a structure can be put into a TPM2B_ is that the parts of the structure can be handled as
separate opaque blocks by the application/system software. Rather than require that all of the structures
in a command or response be marshaled or unmarshaled sequentially, the size field facilitates the
structure to be manipulated as an opaque block. Placing a structure in a TPM2B_ also makes it possible
to use parameter encryption on the structure.

If a TPM2B_ is encrypted, the TPM will encrypt/decrypt the data field of the TPM2B_ but not the size
parameter. The TPM will encrypt/decrypt the number of octets indicated by the size field.

NOTE 3 In the reference implementation, a TPM2B type is defined that is a 16-bit size field followed by a single
byte of data. The TPM2B_ is then defined as a union that contains a TPM2B (union member ‘b’) and the
structure in the definition table (union member ‘t’). This union is used for internally generated structures
so that there is a way to define a structure of the correct size (forced by the ‘t’ member) while giving a way
to pass the structure generically as a ‘b’. Most function calls use the 't' member so that the compiler will
generate a warning if there is a type error (a TPM2B_ of the wrong type). Having the type checked helps
avoid many issues with buffer overflow caused by a too small buffer being passed to a function.

11.4.2 TPM2B_DIGEST

This structure is used for a sized buffer that cannot be larger than the largest digest produced by any
hash algorithm implemented on the TPM.

As with all sized buffers, the size is checked to see if it is within the prescribed range. If not, the response
code is TPM_RC_SIZE.

NOTE For any structure, like the one below, that contains an implied size check, it is implied that TPM_RC_SIZE
is a possible response code and the response code will not be listed in the table.

Table 71 — Definition of TPM2B_DIGEST Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMU_HA)} BYTE the buffer area that can be no larger than a digest

© ISO/IEC 2015 – All rights reserved 85

ISO/IEC 11889-2:2015(E)

11.4.3 TPM2B_DATA

This structure is used for a data buffer that is required to be no larger than the size of the Name of an
object. This size limit includes the algorithm ID of the hash and the hash data.

Table 72 — Definition of TPM2B_DATA Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMT_HA)} BYTE the buffer area that contains the algorithm ID and the
digest

11.4.4 TPM2B_NONCE

Table 73 — Definition of Types for TPM2B_NONCE

Type Name Description

TPM2B_DIGEST TPM2B_NONCE size limited to the same as the digest structure

11.4.5 TPM2B_AUTH

This structure is used for an authorization value and limits an authValue to being no larger than the
largest digest produced by a TPM. In order to ensure consistency within an object, the authValue may be
no larger than the size of the digest produced by the object’s nameAlg. This ensures that any TPM that
can load the object will be able to handle the authValue of the object.

Table 74 — Definition of Types for TPM2B_AUTH

Type Name Description

TPM2B_DIGEST TPM2B_AUTH size limited to the same as the digest structure

11.4.6 TPM2B_OPERAND

This type is a sized buffer that can hold an operand for a comparison with an NV Index location. The
maximum size of the operand is implementation dependent but a TPM is required to support an operand
size that is at least as big as the digest produced by any of the hash algorithms implemented on the TPM.

Table 75 — Definition of Types for TPM2B_OPERAND

Type Name Description

TPM2B_DIGEST TPM2B_OPERAND size limited to the same as the digest structure

86 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.4.7 TPM2B_EVENT

This type is a sized buffer that can hold event data.

Table 76 — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 size of the operand buffer

buffer [size] {:1024} BYTE the operand

11.4.8 TPM2B_MAX_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for commands that use a large data
buffer.

EXAMPLE Examples of commands that might use large data buffers are TPM2_PCR_Event(), TPM2_Hash(),
TPM2_SequenceUpdate(), or TPM2_FieldUpgradeData().

NOTE The list above is not comprehensive and other commands may use this buffer type.

Table 77 — Definition of TPM2B_MAX_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_DIGEST_BUFFER} BYTE the operand

NOTE MAX_DIGEST_BUFFER is TPM-dependent but is required to be at least 1,024.

11.4.9 TPM2B_MAX_NV_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for NV data commands.

EXAMPLE Examples of NV data commands are TPM2_NV_Read(), TPM2_NV_Write(), and TPM2_NV_Certify().

Table 78 — Definition of TPM2B_MAX_NV_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_NV_BUFFER_SIZE} BYTE the operand

NOTE MAX_NV_BUFFER_SIZE is TPM-dependent.

© ISO/IEC 2015 – All rights reserved 87

ISO/IEC 11889-2:2015(E)

11.4.10 TPM2B_TIMEOUT

This TPM-dependent structure is used to provide the timeout value for an authorization.

Table 79 — Definition of TPM2B_TIMEOUT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the timeout value

This value is fixed for a TPM implementation.

buffer [size] {:sizeof(UINT64)} BYTE the timeout value

11.4.11 TPM2B_IV

This structure is used for passing an initial value for a symmetric block cipher to or from the TPM. The
size is set to be the largest block size of any implemented symmetric cipher implemented on the TPM.

Table 80 — Definition of TPM2B_IV Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the timeout value

This value is fixed for a TPM implementation.

buffer [size] {:MAX_SYM_BLOCK_SIZE} BYTE the timeout value

11.5 Names

11.5.1 Introduction

The Name of an entity is used in place of the handle in authorization computations. The substitution
occurs in cpHash and policyHash computations.

For an entity that is defined by a public area (objects and NV Indexes), the Name is the hash of the public
structure that defines the entity. The hash is done using the nameAlg of the entity.

NOTE For an object, a TPMT_PUBLIC defines the entity. For an NV Index, a TPMS_NV_PUBLIC defines the
entity.

For entities not defined by a public area, the Name is the handle that is used to refer to the entity.

11.5.2 TPMU_NAME

Table 81 — Definition of TPMU_NAME Union <>

Parameter Type Selector Description

digest TPMT_HA when the Name is a digest

handle TPM_HANDLE when the Name is a handle

88 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.5.3 TPM2B_NAME

This buffer holds a Name for any entity type.

The type of Name in the structure is determined by context and the size parameter. If size is four, then
the Name is a handle. If size is zero, then no Name is present. Otherwise, the size shall be the size of a
TPM_ALG_ID plus the size of the digest produced by the indicated hash algorithm.

Table 82 — Definition of TPM2B_NAME Structure

Parameter Type Description

size UINT16 size of the Name structure

name[size]{:sizeof(TPMU_NAME)} BYTE the Name structure

11.6 PCR Structures

11.6.1 TPMS_PCR_SELECT

This structure provides a standard method of specifying a list of PCR.

PCR numbering starts at zero.

pcrSelect is an array of octets. The octet containing the bit corresponding to a specific PCR is found by
dividing the PCR number by 8.

EXAMPLE 1 The bit in pcrSelect corresponding to PCR 19 is in pcrSelect [2] (19/8 = 2).

The least significant bit in a octet is bit number 0. The bit in the octet associated with a PCR is the
remainder after division by 8.

EXAMPLE 2 The bit in pcrSelect [2] corresponding to PCR 19 is bit 3 (19 mod 8). If sizeofSelect is 3, then the
pcrSelect array that would specify PCR 19 and no other PCR is 00 00 0816.

Each bit in pcrSelect indicates whether the corresponding PCR is selected (1) or not (0). If the pcrSelect
is all zero bits, then no PCR is selected.

sizeofSelect indicates the number of octets in pcrSelect. The allowable values for sizeofSelect is
determined by the number of PCR required by the applicable platform-specific specification and the
number of PCR implemented in the TPM. The m um value for sizeo Select is: inim f

	 PCR_SELECT_MIN	≔	(PLATFORM_PCR	+ 7) / 8	 (1)	

where

PLATFORM_PCR	 the number of PCR required by the platform-specific specification

The maximum value for sizeofSelect is:

	 PCR_SELECT_MAX	≔	(IMPLEMENTATION_PCR	+	7)	/	8	 (2)	

where

IMPLEMENTATION_PCR	 the number of PCR implemented on the TPM	

© ISO/IEC 2015 – All rights reserved 89

ISO/IEC 11889-2:2015(E)

If the TPM implements more PCR than there are bits in pcrSelect, the additional PCR are not selected.

EXAMPLE 3 If the applicable platform-specific specification requires that the TPM have a minimum of 24 PCR but the
TPM implements 32, then a PCR select of 3 octets would imply that PCR 24-31 are not selected.

Table 83 — Definition of TPMS_PCR_SELECT Structure

Parameter Type Description

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

11.6.2 TPMS_PCR_SELECTION

Table 84 — Definition of TPMS_PCR_SELECTION Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm associated with the
selection

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

11.7 Tickets

11.7.1 Introduction

Tickets are evidence that the TPM has previously processed some information. A ticket is an HMAC over
the data using a secret key known only to the TPM. A ticket is a way to expand the state memory of the
TPM. A ticket is only usable by the TPM that produced it.

The formulations for tickets shown in clause 11.7 are to be used by a TPM that is compliant with ISO/IEC
11889.

The method of creating the ticket data is:

	 HMACcontexAlg(proof,	(ticketType	|| param	{	||	param	{…})) (3)

where

HMACcontexAlg() an HMAC using the hash used for context integrity

proof a TPM secret value (depends on hierarchy)

ticketType a value to differentiate the tickets

param one or more values that were checked by the TPM

90 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

The proof value used for each hierarchy is shown in Table 85.

Table 85 — Values for proof Used in Tickets

Hierarchy proof Description

None Empty Buffer

Platform phProof a value that changes with each change of the PPS

Owner shProof a value that changes with each change of the SPS

Endorsement ehProof a value that changes with each change of either the EPS or SPS

The format for a ticket is shown in Table 86. This is a template for the tickets shown in the remainder of
clause 11.7.

Table 86 — General Format of a Ticket

Parameter Type Description

tag TPM_ST structure tag indicating the type of the ticket

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the proof value

digest TPM2B_DIGEST the HMAC over the ticket-specific data

11.7.2 A NULL Ticket

When a command requires a ticket and no ticket is available, the caller is required to provide a structure
with a ticket tag that is correct for the context. The hierarchy shall be set to TPM_RH_NULL, and digest
shall be the Empty Buffer (a buffer with a size field of zero). This construct is the NULL Ticket. When a
response indicates that a ticket is returned, the TPM may return a NULL Ticket.

NOTE Because each use of a ticket needs for the structure tag for the ticket be appropriate for the use, there is
no single representation of a NULL Ticket that will work in all circumstances. Minimally, a NULL ticket will
have a structure type that is appropriate for the context.

© ISO/IEC 2015 – All rights reserved 91

ISO/IEC 11889-2:2015(E)

11.7.3 TPMT_TK_CREATION

This ticket is produced by TPM2_Create() or TPM CreatePrimary(). It is used to bind the creation data
to the object to whic s. The ticket is comp d by

2_
h it applie ute

 HMACcontextAlg(proof,	(TPM_ST_CREATION	|| name	||	HnameAlg(TPMS_CREATION_DATA))) (4)

where

HMACcontextAlg() an HMAC using the context integrity hash algorithm

proof a TPM secret value associated with the hierarchy associated with name

TPM_ST_CREATION a value used to ensure that the ticket is properly used

name the Name of the object to which the creation data is to be associated

HnameAlg() hash using the nameAlg of the created object

TPMS_CREATION_DATA the creation data structure associated with name

Table 87 — Definition of TPMT_TK_CREATION Structure

Parameter Type Description

tag {TPM_ST_CREATION} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_CREATION

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing name

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Creation Ticket is the tuple <TPM_ST_CREATION, TPM_RH_NULL, 0x0000>.

92 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.7.4 TPMT_TK_VERIFIED

This ticket is produced by TPM2_VerifySignature(). This formulation is used for multiple ticket uses. The
ticket provides evidence that the TPM h validated that a dig t was signed by a key with the Name of
keyName. The ticket is computed by

as es

 HMACcontextAlg(proof,	(TPM_ST_VERIFIED	|| digest	|| keyName)) (5)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy associated with
keyName

TPM_ST_VERIFIED a value used to ensure that the ticket is properly used

digest the signed digest

keyName Name of the key that signed digest

Table 88 — Definition of TPMT_TK_VERIFIED Structure

Parameter Type Description

tag {TPM_ST_VERIFIED} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_VERIFIED

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing keyName

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Verified Ticket is the tuple <TPM_ST_VERIFIED, TPM_RH_NULL, 0x0000>.

© ISO/IEC 2015 – All rights reserved 93

ISO/IEC 11889-2:2015(E)

11.7.5 TPMT_TK_AUTH

This ticket is produced by TPM2_PolicySigned() and TPM2_PolicySecret() when the authorization has an
expiration time. The ticket is computed by

 HMACcontextAlg(proof,	(TPM_ST_AUTH_xxx ||	timeout	|| cpHash	|| policyRef	|| authName))	 (6)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the object
associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET; used to
ensure that the ticket is properly used

timeout implementation-specific value indicating when the authorization expires

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

Table 89 — Definition of TPMT_TK_AUTH Structure

Parameter Type Description

tag {TPM_ST_AUTH_SIGNED, TPM_ST_AUTH_SECRET} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is
not TPM_ST_AUTH

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the object
used to produce the ticket

digest TPM2B_DIGEST This shall be the HMAC
produced using a proof
value of hierarchy.

EXAMPLE A NULL Auth Ticket is the tuple <TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000> or the tuple
<TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000>

94 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.7.6 TPMT_TK_HASHCHECK

This ticket is produced by TPM2_Seq enceC mplete() when the message that as digested did not start
with TPM_GENERATED_VALUE. The ticket is computed by

u o w

 HMACcontexAlg(proof,	(TPM_ST_HASHCHECK	|| digest)) (7)

where

HMACcontexAlg () an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy indicated by the
command

TPM_ST_HASHCHECK a value used to ensure that the ticket is properly used

digest the digest of the data

Table 90 — Definition of TPMT_TK_HASHCHECK Structure

Parameter Type Description

tag {TPM_ST_HASHCHECK} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when is not TPM_ST_HASHCHECK

hierarchy TPMI_RH_HIERARCHY+ the hierarchy

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

11.8 Property Structures

11.8.1 TPMS_ALG_PROPERTY

This structure is used to report the properties of an algorithm identifier. It is returned in response to a
TPM2_GetCapability() with capability = TPM_CAP_ALG.

Table 91 — Definition of TPMS_ALG_PROPERTY Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm identifier

algProperties TPMA_ALGORITHM the attributes of the algorithm

11.8.2 TPMS_TAGGED_PROPERTY

This structure is used to report the properties that are UINT32 values. It is returned in response to a
TPM2_GetCapability().

Table 92 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>

Parameter Type Description

property TPM_PT a property identifier

value UINT32 the value of the property

© ISO/IEC 2015 – All rights reserved 95

ISO/IEC 11889-2:2015(E)

11.8.3 TPMS_TAGGED_PCR_SELECT

This structure is used in TPM2_GetCapability() to return the attributes of the PCR.

Table 93 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>

Parameter Type Description

tag TPM_PT the property identifier

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of PCR with the identified property

11.9 Lists

11.9.1 TPML_CC

A list of command codes may be input to the TPM or returned by the TPM depending on the command.

Table 94 — Definition of TPML_CC Structure

Parameter Type Description

count UINT32 number of commands in the commandCode list;
may be 0

commandCodes[count]{:MAX_CAP_CC} TPM_CC a list of command codes

The maximum only applies to a command code
list in a command. The response size is limited
only by the size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

96 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.9.2 TPML_CCA

This list is only used in TPM2_GetCapability(capability = TPM_CAP_COMMANDS).

The values in the list are returned in commandIndex order with vendor-specific commands returned after
other commands. Because of the other attributes, the commands may not be returned in strict numerical
order. They will be in commandIndex order.

Table 95 — Definition of TPML_CCA Structure <OUT>

Parameter Type Description

count UINT32 number of values in the commandAttributes list;
may be 0

commandAttributes[count]{:MAX_CAP_CC} TPMA_CC a list of command codes attributes

11.9.3 TPML_ALG

This list is returned by TPM2_IncrementalSelfTest().

Table 96 — Definition of TPML_ALG Structure

Parameter Type Description

count UINT32 number of algorithms in the algorithms list; may be 0

algorithms[count]{:MAX_ALG_LIST_SIZE} TPM_ALG_ID a list of algorithm IDs

The maximum only applies to an algorithm list in a
command. The response size is limited only by the
size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

11.9.4 TPML_HANDLE

This structure is used when the TPM returns a list of loaded handles when the capability in
TPM2_GetCapability() is TPM_CAP_HANDLE.

NOTE This list is not used as input to the TPM.

Table 97 — Definition of TPML_HANDLE Structure <OUT>

Name Type Description

count UINT32 the number of handles in the list

may have a value of 0

handle[count]{: MAX_CAP_HANDLES} TPM_HANDLE an array of handles

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

© ISO/IEC 2015 – All rights reserved 97

ISO/IEC 11889-2:2015(E)

11.9.5 TPML_DIGEST

This list is used to convey a list of digest values. This type is used in TPM2_PolicyOR() and in
TPM2_PCR_Read().

Table 98 — Definition of TPML_DIGEST Structure

Parameter Type Description

count {2:} UINT32 number of digests in the list, minimum is two for
TPM2_PolicyOR().

digests[count]{:8} TPM2B_DIGEST a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE response code when count is not at least two or is
greater than eight

11.9.6 TPML_DIGEST_VALUES

This list is used to convey a list of digest values. This type is returned by TPM2_Event() and
TPM2_SequenceComplete() and is an input for TPM2_PCR_Extend().

NOTE 1 This construct limits the number of hashes in the list to the number of digests implemented in the TPM
rather than the number of PCR banks. This allows extra values to appear in a call to
TPM2_PCR_Extend().

NOTE 2 The digest for an unimplemented hash algorithm might not be in a list because the TPM might not
recognize the algorithm as being a hash and it may not know the digest size.

Table 99 — Definition of TPML_DIGEST_VALUES Structure

Parameter Type Description

count UINT32 number of digests in the list

digests[count]{:HASH_COUNT} TPMT_HA a list of tagged digests

#TPM_RC_SIZE response code when count is greater than the possible
number of banks

11.9.7 TPM2B_DIGEST_VALUES

Digest list in a sized buffer. This list is returned by TPM2_PCR_SequenceComplete().

Table 100 — Definition of TPM2B_DIGEST_VALUES Structure

Parameter Type Description

size UINT16 size of the operand buffer

buffer [size] {:sizeof(TPML_DIGEST_VALUES)} BYTE the operand

98 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.9.8 TPML_PCR_SELECTION

This list is used to indicate the PCR that are included in a selection when more than one PCR value may
be selected.

This structure is an input parameter to TPM2_PolicyPCR() to indicate the PCR that will be included in the
digest of PCR for the authorization. The structure is used in TPM2_PCR_Read() command to indicate the
PCR values to be returned and in the response to indicate which PCR are included in the list of returned
digests. The structure is an output parameter from TPM2_Create() and indicates the PCR used in the
digest of the PCR state when the object was created. The structure is also contained in the attestation
structure of TPM2_Quote().

When this structure is used to select PCR to be included in a digest, the selected PCR are concatenated
to create a “message” containing all of the PCR, and then the message is hashed using the context-
specific hash algorithm.

Table 101 — Definition of TPML_PCR_SELECTION Structure

Parameter Type Description

count UINT32 number of selection structures

A value of zero is allowed.

pcrSelections[count]{:HASH_COUNT} TPMS_PCR_SELECTION list of selections

#TPM_RC_SIZE response code when count is greater
than the possible number of banks

11.9.9 TPML_ALG_PROPERTY

This list is used to report on a list of algorithm attributes. It is returned in a TPM2_GetCapability().

Table 102 — Definition of TPML_ALG_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of algorithm properties structures

A value of zero is allowed.

algProperties[count]{:MAX_CAP_ALGS} TPMS_ALG_PROPERTY list of properties

11.9.10 TPML_TAGGED_TPM_PROPERTY

This list is used to report on a list of properties that are TPMS_TAGGED_PROPERTY values. It is
returned by a TPM2_GetCapability().

Table 103 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

tpmProperty[count]{:MAX_TPM_PROPERTIES} TPMS_TAGGED_PROPERTY an array of tagged properties

© ISO/IEC 2015 – All rights reserved 99

ISO/IEC 11889-2:2015(E)

11.9.11 TPML_TAGGED_PCR_PROPERTY

This list is used to report on a list of properties that are TPMS_PCR_SELECT values. It is returned by a
TPM2_GetCapability().

Table 104 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

pcrProperty[count]{:MAX_PCR_PROPERTIES} TPMS_TAGGED_PCR_SELECT a tagged PCR selection

11.9.12 TPML_ECC_CURVE

This list is used to report the ECC curve ID values supported by the TPM. It is returned by a
TPM2_GetCapability().

Table 105 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT>

Parameter Type Description

count UINT32 number of curves

A value of zero is allowed.

eccCurves[count]{:MAX_ECC_CURVES} TPM_ECC_CURVE array of ECC curve identifiers

11.10 Capabilities Structures

11.10.1 TPMU_CAPABILITIES

Table 106 — Definition of TPMU_CAPABILITIES Union <OUT>

Parameter Type Selector Description

algorithms TPML_ALG_PROPERTY TPM_CAP_ALGS

handles TPML_HANDLE TPM_CAP_HANDLES

command TPML_CCA TPM_CAP_COMMANDS

ppCommands TPML_CC TPM_CAP_PP_COMMANDS

auditCommands TPML_CC TPM_CAP_AUDIT_COMMANDS

assignedPCR TPML_PCR_SELECTION TPM_CAP_PCRS

tpmProperties TPML_TAGGED_TPM_PROPERTY TPM_CAP_TPM_PROPERTIES

pcrProperties TPML_TAGGED_PCR_PROPERTY TPM_CAP_PCR_PROPERTIES

eccCurves TPML_ECC_CURVE TPM_CAP_ECC_CURVES TPM_ALG_ECC

100 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.10.2 TPMS_CAPABILITY_DATA

This data area is returned in response to a TPM2_GetCapability().

Table 107 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>

Parameter Type Description

capability TPM_CAP the capability

[capability]data TPMU_CAPABILITIES the capability data

11.11 Clock/Counter Structures

11.11.1 TPMS_CLOCK_INFO

This structure is used in each of the attestation commands.

Table 108 — Definition of TPMS_CLOCK_INFO Structure

Parameter Type Description

clock UINT64 time in milliseconds during which the TPM has been powered

This structure element is used to report on the TPM's Clock value.

The value of Clock shall be recorded in non-volatile memory no
less often than once per 222 milliseconds (~69.9 minutes) of TPM
operation. The reference for the millisecond timer is the TPM
oscillator.

This value is reset to zero when the Storage Primary Seed is
changed (TPM2_Clear()).

This value may be advanced by TPM2_AdvanceClock().

resetCount UINT32 number of occurrences of TPM Reset since the last TPM2_Clear()

restartCount UINT32 number of times that TPM2_Shutdown() or _TPM_Hash_Start have
occurred since the last TPM Reset or TPM2_Clear().

safe TPMI_YES_NO no value of Clock greater than the current value of Clock has been
previously reported by the TPM. Set to YES on TPM2_Clear().

11.11.2 Clock

Clock is a monotonically increasing counter that advances whenever power is applied to the TPM. The
value of Clock may be set forward with TPM2_ClockSet() if Owner Authorization or Platform Authorization
is provided. The value of Clock is incremented each millisecond.

TPM2_Clear() will set Clock to zero.

Clock will be non-volatile but may have a volatile component that is updated every millisecond with the
non-volatile component updated at a lower rate. If the implementation uses a volatile component, the non-
volatile component shall be updated no less frequently than every 222 milliseconds (~69.9 minutes). The
update rate of the non-volatile portion of Clock shall be reported by a TPM2_GetCapability() with
capability = TPM_CAP_TPM_PROPERTIES and property = TPM_PT_CLOCK_UPDATE.

11.11.3 ResetCount

This counter shall increment on each TPM Reset. This counter shall be reset to zero by TPM2_Clear().

© ISO/IEC 2015 – All rights reserved 101

ISO/IEC 11889-2:2015(E)

11.11.4 RestartCount

This counter shall increment by one for each TPM Restart or TPM Resume. The restartCount shall be
reset to zero on a TPM Reset or TPM2_Clear().

11.11.5 Safe

This parameter is set to YES when the value reported in Clock is guaranteed to be unique for the current
Owner. It is set to NO when the value of Clock may have been reported in a previous attestation or
access.

This parameter will be YES if a TPM2_Startup() was preceded by TPM2_Shutdown() with no intervening
commands. It will also be YES after an update of the non-volatile bits of Clock have been updated at the
end of an update interval.

If a TPM implementation does not implement Clock, Safe shall always be NO and
TPMS_CLOCK_INFO.clock shall always be zero.

This parameter will be set to YES by TPM2_Clear().

11.11.6 TPMS_TIME_INFO

This structure is used in the TPM2_TICK attestation.

The Time value reported in this structure is reset whenever the TPM is reset. An implementation may
reset the value of Time any time after _TPM_Init and before the TPM returns after TPM2_Startup(). The
value of Time shall increment continuously while power is applied to the TPM.

Table 109 — Definition of TPMS_TIME_INFO Structure

Parameter Type Description

time UINT64 time in milliseconds since the last _TPM_Init() or TPM2_Startup()

This structure element is used to report on the TPM's Time value.

clockInfo TPMS_CLOCK_INFO a structure containing the clock information

102 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.12 TPM Attestation Structures

11.12.1 Introduction

Clause 11.12 describes the structures that are used when a TPM creates a structure to be signed. The
signing structures follow a standard format TPM2B_ATTEST with case-specific information embedded.

11.12.2 TPMS_TIME_ATTEST_INFO

This structure is used when the TPM performs TPM2_GetClock.

Table 110 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT>

Parameter Type Description

time TPMS_TIME_INFO the Time, clock, resetCount, restartCount, and Safe indicator

firmwareVersion UINT64 a vendor-specific value indicating the version number of the
firmware

11.12.3 TPMS_CERTIFY_INFO

This is the attested data for TPM2_Certify().

Table 111 — Definition of TPMS_CERTIFY_INFO Structure <OUT>

Parameter Type Description

name TPM2B_NAME Name of the certified object

TPM2B_NAME Qualified Name of the certified object qualifiedName

11.12.1 TPMS_QUOTE_INFO

This is the attested data for TPM2_Quote().

Table 112 — Definition of TPMS_QUOTE_INFO Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION information on algID, PCR selected and digest

pcrDigest TPM2B_DIGEST digest of the selected PCR using the hash of the signing key

© ISO/IEC 2015 – All rights reserved 103

ISO/IEC 11889-2:2015(E)

11.12.2 TPMS_COMMAND_AUDIT_INFO

This is the attested data for TPM2_GetCommandAuditDigest().

Table 113 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>

Parameter Type Description

auditCounter UINT64 the monotonic audit counter

digestAlg TPM_ALG_ID hash algorithm used for the command audit

auditDigest TPM2B_DIGEST the current value of the audit digest

commandDigest TPM2B_DIGEST digest of the command codes being audited using digestAlg

11.12.3 TPMS_SESSION_AUDIT_INFO

This is the attested data for TPM2_GetSessionAuditDigest().

Table 114 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>

Parameter Type Description

exclusiveSession TPMI_YES_NO current exclusive status of the session

TRUE if all of the commands recorded in the sessionDigest were
executed without any intervening TPM command that did not use
this transport session

sessionDigest TPM2B_DIGEST the current value of the session audit digest

11.12.4 TPMS_CREATION_INFO

This is the attested data for TPM2_CertifyCreation().

Table 115 — Definition of TPMS_CREATION_INFO Structure <OUT>

Parameter Type Description

objectName TPM2B_NAME Name of the object

creationHash TPM2B_DIGEST creationHash

11.12.5 TPMS_NV_CERTIFY_INFO

This structure contains the Name and contents of the selected NV Index that is certified by
TPM2_NV_Certify().

Table 116 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT>

Parameter Type Description

indexName TPM2B_NAME Name of the NV Index

offset UINT16 the offset parameter of TPM2_NV_Certify()

nvContents TPM2B_MAX_NV_BUFFER contents of the NV Index

104 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

11.12.6 TPMI_ST_ATTEST

Table 117 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>

Value Description

TPM_ST_ATTEST_CERTIFY generated by TPM2_Certify()

TPM_ST_ATTEST_QUOTE generated by TPM2_Quote()

TPM_ST_ATTEST_SESSION_AUDIT generated by TPM2_GetSessionAuditDigest()

TPM_ST_ATTEST_COMMAND_AUDIT generated by TPM2_GetCommandAuditDigest()

TPM_ST_ATTEST_TIME generated by TPM2_GetTime()

TPM_ST_ATTEST_CREATION generated by TPM2_CertifyCreation()

TPM_ST_ATTEST_NV generated by TPM2_NV_Certify()

11.12.7 TPMU_ATTEST

Table 118 — Definition of TPMU_ATTEST Union <OUT>

Parameter Type Selector

certify TPMS_CERTIFY_INFO TPM_ST_ATTEST_CERTIFY

creation TPMS_CREATION_INFO TPM_ST_ATTEST_CREATION

quote TPMS_QUOTE_INFO TPM_ST_ATTEST_QUOTE

commandAudit TPMS_COMMAND_AUDIT_INFO TPM_ST_ATTEST_COMMAND_AUDIT

sessionAudit TPMS_SESSION_AUDIT_INFO TPM_ST_ATTEST_SESSION_AUDIT

time TPMS_TIME_ATTEST_INFO TPM_ST_ATTEST_TIME

nv TPMS_NV_CERTIFY_INFO TPM_ST_ATTEST_NV

11.12.8 TPMS_ATTEST

This structure is used on each TPM-generated signed structure. The signature is over this structure.

When the structure is signed by a key in the Storage hierarchy, the values of clockInfo.resetCount,
clockInfo.restartCount, and firmwareVersion are obfuscated with a per-key obfuscation value.

Table 119 — Definition of TPMS_ATTEST Structure <OUT>

Parameter Type Description

magic TPM_GENERATED the indication that this structure was created by a TPM (always
TPM_GENERATED_VALUE)

type TPMI_ST_ATTEST type of the attestation structure

qualifiedSigner TPM2B_NAME Qualified Name of the signing key

extraData TPM2B_DATA external information supplied by caller

clockInfo TPMS_CLOCK_INFO Clock, resetCount, restartCount, and Safe

firmwareVersion UINT64 TPM-vendor-specific field identifying the firmware on the TPM

[type]attested TPMU_ATTEST the type-specific attestation information

NOTE Regarding extraData, a TPM2B_DATA structure provides room for a digest and a method indicator to

© ISO/IEC 2015 – All rights reserved 105

ISO/IEC 11889-2:2015(E)

indicate the components of the digest. The definition of this method indicator is outside the scope of
ISO/IEC 11889.

11.12.9 TPM2B_ATTEST

This sized buffer to contain the signed structure. The attestationData is the signed portion of the structure.
The size parameter is not signed.

Table 120 — Definition of TPM2B_ATTEST Structure <OUT>

Parameter Type Description

size UINT16 size of the attestationData structure

attestationData[size]{:sizeof(TPMS_ATTEST)} BYTE the signed structure

11.13 Authorization Structures

11.13.1 Introduction

The structures in clause 11.13 are used for all authorizations. One or more of these structures will be
present in a command or response that has a tag of TPM_ST_SESSIONS.

11.13.2 TPMS_AUTH_COMMAND

This is the format used for each of the authorizations in the session area of a command.

Table 121 — Definition of TPMS_AUTH_COMMAND Structure <IN>

Parameter Type Description

sessionHandle TPMI_SH_AUTH_SESSION+ the session handle

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

11.13.3 TPMS_AUTH_RESPONSE

This is the format for each of the authorizations in the session area of the response. If the TPM returns
TPM_RC_SUCCESS, then the session area of the response contains the same number of authorizations
as the command and the authorizations are in the same order.

Table 122 — Definition of TPMS_AUTH_RESPONSE Structure <OUT>

Parameter Type Description

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

Hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

106 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12 Algorithm Parameters and Structures

12.1 Symmetric

12.1.1 Introduction

Clause 12.1 defines the parameters and structures for describing symmetric algorithms.

12.1.2 TPMI_AES_KEY_BITS

This interface type defines the supported sizes for an AES key. This type is used to allow the
unmarshaling routine to generate the proper validation code for the supported key sizes. An
implementation that supports different key sizes would have a different set of selections.

When used in TPM2_StartAuthSession(), the mode parameter shall be TPM_ALG_CFB.

NOTE 1 Key size is expressed in bits.

NOTE 2 The definition for AES_KEY_SIZES_BITS used in the reference implementation is found in Annex B

Table 123 — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type

Parameter Description

$AES_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

12.1.3 TPMI_SM4_KEY_BITS

This interface type defines the supported sizes for an SM4 key. This type is used to allow the
unmarshaling routine to generate the proper validation code for the supported key sizes. An
implementation that supports different key sizes would have a different set of selections.

NOTE SM4 only supports a key size of 128 bits.

Table 124 — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type

Parameter Description

$SM4_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE

© ISO/IEC 2015 – All rights reserved 107

ISO/IEC 11889-2:2015(E)

12.1.4 TPMI_CAMELLIA KEY_BITS

This interface type defines the supported sizes for a CAMELLIA key. This type is used to allow the
unmarshaling routine to generate the proper validation code for the supported key sizes. An
implementation that supports different key sizes would have a different set of selections.

Table 125 — Definition of {CAMELLIA} (TPM_KEY_BITS) TPMI_CAMELLIA_KEY_BITS Type

Parameter Description

$CAMELLIA_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE

12.1.5 TPMU_SYM_KEY_BITS

This union is used to collect the symmetric encryption key sizes.

The xor entry is a hash algorithms selector and not a key size in bits. This overload is used in order to
avoid an additional level of indirection with another union and another set of selectors.

The xor entry is only selected in a TPMT_SYM_DEF, which is used to select the parameter encryption
value.

Table 126 — Definition of TPMU_SYM_KEY_BITS Union

Parameter Type Selector Description

aes TPMI_AES_KEY_BITS TPM_ALG_AES

SM4 TPMI_SM4_KEY_BITS TPM_ALG_SM4

CAMELLIA TPMI_CAMELLIA_KEY_BITS TPM_ALG_CAMELLIA

sym TPM_KEY_BITS when selector may be any of the
symmetric block ciphers

xor TPMI_ALG_HASH TPM_ALG_XOR overload for using xor

null TPM_ALG_NULL

12.1.6 TPMU_SYM_MODE

This union allows the mode value in a TPMT_SYM_DEF or TPMT_SYM_DEF_OBJECT to be empty.

Table 127 — Definition of TPMU_SYM_MODE Union

Parameter Type Selector Description

aes TPMI_ALG_SYM_MODE TPM_ALG_AES

SM4 TPMI_ALG_SYM_MODE TPM_ALG_SM4

CAMELLIA TPMI_ALG_SYM_MODE TPM_ALG_CAMELLIA

sym TPMI_ALG_SYM_MODE when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR no mode selector

null TPM_ALG_NULL no mode selector

108 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.1.7 TPMU_SYM_DETAILS

This union allows additional parameters to be added for a symmetric cipher. Currently, no additional
parameters are required for any of the symmetric algorithms.

NOTE The “x” character in the table title will suppress generation of this type as the parser is not, at this time,
able to generate the proper values (a union of all empty data types). When an algorithm is added that
requires additional parameterization, the Type column will contain a value and the “x” may be removed.

Table 128 —xDefinition of TPMU_SYM_DETAILS Union

Parameter Type Selector Description

aes TPM_ALG_AES

SM4 TPM_ALG_SM4

CAMELLIA TPM_ALG_CAMELLIA

sym when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR

null TPM_ALG_NULL

12.1.8 TPMT_SYM_DEF

The TPMT_SYM_DEF structure is used to select an algorithm to be used for parameter encryption in
those cases when different symmetric algorithms may be selected.

Table 129 — Definition of TPMT_SYM_DEF Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM indicates a symmetric algorithm

[algorithm]keyBits TPMU_SYM_KEY_BITS a supported key size

[algorithm]mode TPMU_SYM_MODE the mode for the key

//[algorithm]details TPMU_SYM_DETAILS contains additional algorithm details

NOTE [algorithm]details is commented out at this time as the parser might not produce the proper code for a
union if none of the selectors produces any data.

© ISO/IEC 2015 – All rights reserved 109

ISO/IEC 11889-2:2015(E)

12.1.9 TPMT_SYM_DEF_OBJECT

This structure is used when different symmetric block cipher (not XOR) algorithms may be selected.

Table 130 — Definition of TPMT_SYM_DEF_OBJECT Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM_OBJECT selects a symmetric block cipher

[algorithm]keyBits TPMU_SYM_KEY_BITS the key size

[algorithm]mode TPMU_SYM_MODE default mode

//[algorithm]details TPMU_SYM_DETAILS contains the additional algorithm details, if any

NOTE [algorithm]details is commented out at this time as the parser might not produce the proper code for a
union if none of the selectors produces any data.

12.1.10 TPM2B_SYM_KEY

This structure is used to hold a symmetric key in the sensitive area of an asymmetric object.

The number of bits in the key is in keyBits in the public area. When keyBits is not an even multiple of 8
bits, the unused bits of buffer will be the most significant bits of buffer[0] and size will be rounded up to
the number of octets required to hold all bits of the key.

Table 131 — Definition of TPM2B_SYM_KEY Structure

Parameter Type Description

size UINT16 size, in octets, of the buffer containing the key; may be
zero

buffer [size] {:MAX_SYM_KEY_BYTES} BYTE the key

12.1.11 TPMS_SYMCIPHER_PARMS

This structure contains the parameters for a symmetric block cipher object.

Table 132 — Definition of TPMS_SYMCIPHER_PARMS Structure

Parameter Type Description

sym TPMT_SYM_DEF_OBJECT a symmetric block cipher

12.1.12 TPM2B_SENSITIVE_DATA

This buffer holds the secret data of a data object. It can hold as much as 128 octets of data.

MAX_SYM_DATA shall be 128.

NOTE A named value rather than a numeric is used to make coding clearer. A numeric value does not indicate
the reason that it has the specific value that is has.

110 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 133 — Definition of TPM2B_SENSITIVE_DATA Structure

Parameter Type Description

size UINT16

buffer[size]{: MAX_SYM_DATA} BYTE the keyed hash private data structure

12.1.13 TPMS_SENSITIVE_CREATE

This structure defines the values to be placed in the sensitive area of a created object. This structure is
only used within a TPM2B_SENSITIVE_CREATE structure.

NOTE When sent to the TPM or unsealed, data is usually encrypted using parameter encryption.

If data.size is not zero, and the object is not a keyedHash, data.size must match the size indicated in the
keySize of public.parameters. If the object is a keyedHash, data.size may be any value up to the
maximum allowed in a TPM2B_SENSITIVE_DATA.

For an asymmetric object, data shall be an Empty Buffer and sensitiveDataOrigin shall be SET.

Table 134 — Definition of TPMS_SENSITIVE_CREATE Structure <IN>

Parameter Type Description

userAuth TPM2B_AUTH the USER auth secret value

data TPM2B_SENSITIVE_DATA data to be sealed

12.1.14 TPM2B_SENSITIVE_CREATE

This structure contains the sensitive creation data in a sized buffer. This structure is defined so that both
the userAuth and data values of the TPMS_SENSITIVE_CREATE may be passed as a single parameter
for parameter encryption purposes.

Table 135 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>

Parameter Type Description

size= UINT16 size of sensitive in octets (may not be zero)

sensitive TPMS_SENSITIVE_CREATE data to be sealed or a symmetric key value.

NOTE The userAuth and data parameters in this buffer might both be zero length but the minimum size of the
size parameter will be the sum of the size fields of the two parameters of the
TPMS_SENSITIVE_CREATE.

© ISO/IEC 2015 – All rights reserved 111

ISO/IEC 11889-2:2015(E)

12.1.15 TPMS_SCHEME_SIGHASH

This structure is the scheme data for schemes that only require a hash to complete the scheme definition.

Table 136 — Definition of TPMS_SCHEME_SIGHASH Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

12.1.16 TPMI_ALG_HASH_SCHEME

This is the list of values that may appear in a keyedHash as the scheme parameter.

Table 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type

Values Comments

TPM_ALG_HMAC the "signing" scheme

TPM_ALG_XOR the "obfuscation" scheme

+TPM_ALG_NULL

#TPM_RC_VALUE

12.1.17 HMAC_SIG_SCHEME

Table 138 — Definition of Types for HMAC_SIG_SCHEME

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_HMAC

112 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.1.18 TPMS_SCHEME_XOR

This structure is for the XOR encryption scheme.

Table 139 — Definition of TPMS_SCHEME_XOR Structure

Parameter Type Description

hashAlg +TPMI_ALG_HASH the hash algorithm used to digest the message

kdf TPMI_ALG_KDF the key derivation function

12.1.19 TPMU_SCHEME_HMAC

Table 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>

Parameter Type Selector Description

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the "signing" scheme

xor TPMS_SCHEME_XOR TPM_ALG_XOR the "obfuscation" scheme

null TPM_ALG_NULL

12.1.20 TPMT_KEYEDHASH_SCHEME

This structure is used for a hash signing object.

Table 141 — Definition of TPMT_KEYEDHASH_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KEYEDHASH_SCHEME selects the scheme

[scheme]details TPMU_SCHEME_KEYEDHASH the scheme parameters

© ISO/IEC 2015 – All rights reserved 113

ISO/IEC 11889-2:2015(E)

12.2 Asymmetric

12.2.1 Signing Schemes

12.2.1.1 Introduction

These structures are used to define the method in which the signature is to be created. These schemes
would appear in an object’s public area and in commands where the signing scheme is variable.

Every scheme is required to indicate a hash that is used in digesting the message.

12.2.1.2 RSA_SIG_SCHEMES

These are the RSA schemes that only need a hash algorithm as a scheme parameter.

For the TPM_ALG_RSAPSS signing scheme, the same hash algorithm is used for digesting TPM-
generated data (an attestation structure) and in the KDF used for the masking operation. The salt size is
always the largest salt value that will fit into the available space.

Table 142 — Definition of {RSA} Types for RSA_SIG_SCHEMES

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_RSASSA

TPMS_SCHEME_SIGHASH TPMS_SCHEME_RSAPSS

12.2.1.3 ECC_SIG_SCHEMES

These are the ECC schemes that only need a hash algorithm as a controlling parameter.

Table 143 — Definition of {ECC} Types for ECC_SIG_SCHEMES

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_ECDSA

TPMS_SCHEME_SIGHASH TPMS_SCHEME_SM2

TPMS_SCHEME_SIGHASH TPMS_SCHEME_ECSCHNORR

12.2.1.4 TPMS_SCHEME_ECDAA

Table 144 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

count UINT16 the counter value that is used between TPM2_Commit() and the sign
operation

114 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.2.1.5 TPMU_SIG_SCHEME

Table 145 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>

Parameter Type Selector Description

rsassa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the RSASSA-PKCS1v1_5
scheme

rsapss TPMS_SCHEME_RSAPSS TPM_ALG_RSAPSS the RSASSA-PSS scheme

ecdsa TPMS_SCHEME_ECDSA TPM_ALG_ECDSA the ECDSA scheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 ECDSA from SM2

ecdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA the ECDAA scheme

ecSchnorr TPMS_SCHEME_ECSCHNORR TPM_ALG_ECSCHNORR the EC Schnorr

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the HMAC scheme

any TPMS_SCHEME_SIGHASH selector that allows access to
digest for any signing scheme

null TPM_ALG_NULL no scheme or default

12.2.1.6 TPMT_SIG_SCHEME

Table 146 — Definition of TPMT_SIG_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_SIG_SCHEME scheme selector

[scheme]details TPMU_SIG_SCHEME scheme parameters

© ISO/IEC 2015 – All rights reserved 115

ISO/IEC 11889-2:2015(E)

12.2.2 Encryption Schemes

12.2.2.1 Introduction

These structures are used to indicate the hash algorithm used for the encrypting process. These
schemes would appear in an object’s public area.

12.2.2.2 TPMS_SCHEME_OAEP

Table 147 — Definition of {RSA} TPMS_SCHEME_OAEP Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

12.2.2.3 TPMS_SCHEME_ECDH

For ECDH, KDFe is used for the key derivation function that so only a hash algorithm is needed to
complete the definition.

Table 148 — Definition of {ECC} TPMS_SCHEME_ECDH Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12.2.3 Key Derivation Schemes

12.2.3.1 Introduction

These structures are used to define the key derivation for symmetric secret sharing using asymmetric
methods. A secret sharing scheme is required in any asymmetric key with the decrypt attribute SET.

These schemes would appear in an object’s public area and in commands where the secret sharing
scheme is variable.

Each scheme includes a symmetric algorithm and a KDF selection.

12.2.3.2 TPMS_SCHEME_MGF1

Table 149 — Definition of TPMS_SCHEME_MGF1 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12.2.3.3 TPMS_SCHEME_KDF1_SP800_56a

Table 150 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800_56a Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

116 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.2.3.4 TPMS_SCHEME_KDF2

Table 151 — Definition of TPMS_SCHEME_KDF2 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12.2.3.5 TPMS_SCHEME_KDF1_SP800_108

Table 152 — Definition of TPMS_SCHEME_KDF1_SP800_108 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12.2.3.6 TPMU_KDF_SCHEME

Table 153 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S>

Parameter Type Selector Description

mgf1 TPMS_SCHEME_MGF1 TPM_ALG_MGF1

kdf1_SP800_56a TPMS_SCHEME_KDF1_SP800_56a TPM_ALG_KDF1_SP800_56a

kdf2 TPMS_SCHEME_KDF2 TPM_ALG_KDF2

kdf1_sp800_108 TPMS_SCHEME_KDF1_SP800_108 TPM_ALG_KDF1_SP800_108

null TPM_ALG_NULL

12.2.3.7 TPMT_KDF_SCHEME

Table 154 — Definition of TPMT_KDF_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KDF scheme selector

[scheme]details TPMU_KDF_SCHEME scheme parameters

© ISO/IEC 2015 – All rights reserved 117

ISO/IEC 11889-2:2015(E)

12.2.3.8 TPMI_ALG_ASYM_SCHEME

List of all of the scheme types for any asymmetric algorithm. This is used to define the
TPMT_ASYM_SCHEME.

Table 155 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <>

Values Comments

TPM_ALG_RSASSA list of the allowed values

TPM_ALG_RSAPSS

TPM_ALG_RSAES

TPM_ALG_OAEP

TPM_ALG_ECDSA

TPM_ALG_SM2

TPM_ALG_ECDAA

TPM_ALG_ECDH

+TPM_ALG_NULL

#TPM_RC_VALUE

12.2.3.9 TPMU_ASYM_SCHEME

This union of all asymmetric schemes is used in each of the asymmetric scheme structures. The actual
scheme structure is defined by the interface type used for the selector.

EXAMPLE The TPMT_RSA_SCHEME structure uses the TPMU_ASYM_SCHEME union but the selector type is
TPMI_ALG_RSA_SCHEME. This means that the only elements of the union that can be selected for the
TPMT_RSA_SCHEME are those that are in TPMI_RSA_SCHEME.

Table 156 — Definition of TPMU_ASYM_SCHEME Union

Parameter Type Selector Description

rsassa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the RSASSA-PKCS1-v1_5 scheme

rsapss TPMS_SCHEME_RSAPSS TPM_ALG_RSAPSS the RSASSA-PSS scheme

rsaes TPM_ALG_RSAES the RSAES-PKCS1-v1_5 scheme

oaep TPMS_SCHEME_OAEP TPM_ALG_OAEP the RSAES_OAEP scheme

ecdsa TPMS_SCHEME_ECDSA TPM_ALG_ECDSA an ECDSA scheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 sign or key exchange from SM2

ecdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA an ECDAA scheme

ecSchnorr TPMS_SCHEME_ECSCHNORR TPM_ALG_ECSCHNORR elliptic curve Schnorr signature

ecdh TPMS_SCHEME_ECDH TPM_ALG_ECDH

anySig TPMS_SCHEME_SIGHASH

null TPM_ALG_NULL no scheme or default

This selects the NULL Signature.

118 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.2.3.10 TPMT_ASYM_SCHEME

This structure is defined to allow overlay of all of the schemes for any asymmetric object. This structure is
not sent on the interface.

Table 157 — Definition of TPMT_ASYM_SCHEME Structure <>

Parameter Type Description

scheme +TPMI_ALG_ASYM_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

12.2.4 RSA

12.2.4.1 TPMI_ALG_RSA_SCHEME

The list of values that may appear in the scheme parameter of a TPMS_RSA_PARMS structure.

Table 158 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type

Values Comments

TPM_ALG_RSASSA list of the allowed values

TPM_ALG_RSAPSS

TPM_ALG_RSAES

TPM_ALG_OAEP

+TPM_ALG_NULL

#TPM_RC_VALUE

12.2.4.2 TPMT_RSA_SCHEME

Table 159 — Definition of {RSA} TPMT_RSA_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

© ISO/IEC 2015 – All rights reserved 119

ISO/IEC 11889-2:2015(E)

12.2.4.3 TPMI_ALG_RSA_DECRYPT

The list of values that are allowed in a decryption scheme selection as used in TPM2_RSA_Encrypt() and
TPM2_RSA_Decrypt().

Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type

Values Comments

TPM_ALG_RSAES

TPM_ALG_OAEP

+TPM_ALG_NULL

#TPM_RC_VALUE

12.2.4.4 TPMT_RSA_DECRYPT

Table 161 — Definition of {RSA} TPMT_RSA_DECRYPT Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_DECRYPT scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

12.2.4.5 TPM2B_PUBLIC_KEY_RSA

This sized buffer holds the largest RSA public key supported by the TPM.

NOTE The reference implementation only supports key sizes of 1,024 and 2,048 bits.

Table 162 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure

Parameter Type Description

size UINT16 size of the buffer

The value of zero is only valid for create.

buffer[size] {: MAX_RSA_KEY_BYTES} BYTE Value

12.2.4.6 TPMI_RSA_KEY_BITS

This holds the value that is the maximum size allowed for an RSA key.

NOTE 1 An implementation is can provide limited support for smaller RSA key sizes. That is, a TPM might be able
to accept a smaller RSA key size in TPM2_LoadExternal() when only the public area is loaded but not
accept that smaller key size in any command that loads both the public and private portions of an RSA
key. This would let the TPM to validate signatures using the smaller key but would prevent the TPM from
using the smaller key size for any other purpose.

NOTE 2 The definition for RSA_KEY_SIZES_BITS used in the reference implementation is found in Annex B

120 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 163 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type

Parameter Description

$RSA_KEY_SIZES_BITS the number of bits in the supported key

#TPM_RC_VALUE error when key size is not supported

12.2.4.7 TPM2B_PRIVATE_KEY_RSA

This sized buffer holds the largest RSA prime number supported by the TPM.

NOTE All primes need to have exactly half the number of significant bits as the public modulus, and the square
of each prime needs to have the same number of significant bits as the public modulus.

Table 164 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure

Parameter Type Description

size UINT16

buffer[size]{:MAX_RSA_KEY_BYTES/2} BYTE

© ISO/IEC 2015 – All rights reserved 121

ISO/IEC 11889-2:2015(E)

12.2.5 ECC

12.2.5.1 TPM2B_ECC_PARAMETER

This sized buffer holds the largest ECC parameter (coordinate) supported by the TPM.

Table 165 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure

Parameter Type Description

size UINT16 size of buffer

buffer[size] {:MAX_ECC_KEY_BYTES} BYTE the parameter data

12.2.5.2 TPMS_ECC_POINT

This structure holds two ECC coordinates that, together, make up an ECC point.

Table 166 — Definition of {ECC} TPMS_ECC_POINT Structure

Parameter Type Description

x TPM2B_ECC_PARAMETER X coordinate

y TPM2B_ECC_PARAMETER Y coordinate

12.2.5.3 TPM2B_ECC_POINT

This structure is defined to allow a point to be a single sized parameter so that it may be encrypted.

NOTE If the point is to be omitted, the X and Y coordinates need to be individually set to Empty Buffers. The
minimum value for size will be four. It is checked indirectly by unmarshaling of the TPMS_ECC_POINT. If
the type of point were BYTE, then size could have been zero. However, this would complicate the process
of marshaling the structure.

Table 167 — Definition of {ECC} TPM2B_ECC_POINT Structure

Parameter Type Description

size= UINT16 size of the remainder of this structure

point TPMS_ECC_POINT coordinates

#TPM_RC_SIZE error returned if the unmarshaled size of point is
not exactly equal to size

122 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.2.5.4 TPMI_ALG_ECC_SCHEME

Table 168 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type

Values Comments

TPM_ALG_ECDSA these are the selections allowed for an ECC key

TPM_ALG_SM2

TPM_ALG_ECDAA

TPM_ALG_ECSCHNORR

TPM_ALG_ECDH

+TPM_ALG_NULL

#TPM_RC_SCHEME

12.2.5.5 TPMI_ECC_CURVE

The ECC curves implemented by the TPM.

NOTE The definition of ECC_CURVES used in the reference implementation is found in Annex B

Table 169 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type

Parameter Description

$ECC_CURVES the list of implemented curves

#TPM_RC_CURVE error when curve is not supported

12.2.5.6 TPMT_ECC_SCHEME

Table 170 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_ECC_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

© ISO/IEC 2015 – All rights reserved 123

ISO/IEC 11889-2:2015(E)

12.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

This structure is used to report on the curve parameters of an ECC curve. It is returned by
TPM2_ECC_Parameters().

Table 171 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>

Parameter Type Description

curveID TPM_ECC_CURVE identifier for the curve

keySize UINT16 Size in bits of the key

kdf TPMT_KDF_SCHEME the default KDF and hash algorithm used in secret sharing
operations

sign TPMT_ECC_SCHEME+ If not TPM_ALG_NULL, this is the mandatory signature
scheme that is required to be used with this curve.

TPM2B_ECC_PARAMETER Fp (the modulus) p

a TPM2B_ECC_PARAMETER coefficient of the linear term in the curve equation

b TPM2B_ECC_PARAMETER constant term for curve equation

gX TPM2B_ECC_PARAMETER x coordinate of base point G

gY TPM2B_ECC_PARAMETER y coordinate of base point G

n TPM2B_ECC_PARAMETER order of G

h TPM2B_ECC_PARAMETER cofactor (a size of zero indicates a cofactor of 1)

12.3 Signatures

12.3.1 TPMS_SIGNATURE_RSASSA

Table 172 — Definition of {RSA} TPMS_SIGNATURE_RSASSA Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used to digest the message

TPM_ALG_NULL is not allowed.

sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

12.3.2 TPMS_SIGNATURE_RSAPSS

When the TPM generates a PSS signature, the salt size is the largest size allowed by the key and hash
combination.

EXAMPLE For a 2,048-bit public modulus key and SHA1 hash, the salt size is 256 – 20 – 2 = 234 octets.

NOTE While this is significantly larger than needed from a security perspective, it avoids issues of whether a
particular size of salt value is sufficient.

124 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 173 — Definition of {RSA} TPMS_SIGNATURE_RSAPSS Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process

TPM_ALG_NULL is not allowed.

sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

12.3.3 TPMS_SIGNATURE_ECDSA

Table 174 — Definition of {ECC} TPMS_SIGNATURE_ECDSA Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process

TPM_ALG_NULL is not allowed.

signatureR TPM2B_ECC_PARAMETER

signatureS TPM2B_ECC_PARAMETER

12.3.4 TPMU_SIGNATURE

A TPMU_SIGNATURE_COMPOSITE is a union of the various signatures that are supported by a
particular TPM implementation. The union allows substitution of any signature algorithm wherever a
signature is required in a structure. Table 175 is an illustration of a TPMU_SIGNATURE for a TPM that
implements both RSA and ECC signing.

NOTE 1 All TPM need to support a hash algorithm and the HMAC algorithm.

When a symmetric algorithm is used for signing, the signing algorithm is assumed to be an HMAC based
on the indicated hash algorithm. The HMAC key will either be referenced as part of the usage or will be
implied by context.

NOTE 2 The table below is illustrative. It would be modified to reflect the signatures produced by the TPM.

Table 175 — Definition of TPMU_SIGNATURE Union <IN/OUT, S>

Parameter Type Selector Description

rsassa TPMS_SIGNATURE_RSASSA TPM_ALG_RSASSA an RSASSA-PKCS1-v1_5
signature

rsapss TPMS_SIGNATURE_RSAPSS TPM_ALG_RSAPSS an RSASSA-PSS signature

ecdsa TPMS_SIGNATURE_ECDSA TPM_ALG_ECDSA an ECDSA signature

sm2 TPMS_SIGNATURE_ECDSA TPM_ALG_SM2 same format as ECDSA

ecdaa TPMS_SIGNATURE_ECDSA TPM_ALG_ECDAA same format as ECDSA

ecschnorr TPMS_SIGNATURE_ECDSA TPM_ALG_ECSCHNORR same format as ECDSA

hmac TPMT_HA TPM_ALG_HMAC HMAC signature (required to
be supported)

any TPMS_SCHEME_SIGHASH used to access the hash

null TPM_ALG_NULL the NULL signature

© ISO/IEC 2015 – All rights reserved 125

ISO/IEC 11889-2:2015(E)

12.3.5 TPMT_SIGNATURE

Table 176 shows the basic algorithm-agile structure when a symmetric or asymmetric signature is
indicated. The sigAlg parameter indicates the algorithm used for the signature. This structure is output
from the attestation commands and is an input to TPM2_VerifySignature(), TPM2_PolicySigned(), and
TPM2_FieldUpgradeStart().

Table 176 — Definition of TPMT_SIGNATURE Structure

Parameter Type Description

sigAlg +TPMI_ALG_SIG_SCHEME selector of the algorithm used to construct the signature

[sigAlg]signature TPMU_SIGNATURE This shall be the actual signature information.

12.4 Key/Secret Exchange

12.4.1 Introduction

The structures in clause 12.4 are used when a key or secret is being exchanged. The exchange may be
in

 TPM2_StartAuthSession() where the secret is injected for salting the session,

 TPM2_Duplicate(), TPM2_Import, or TPM2_Rewrap() where the secret is the symmetric encryption
key for the outer wrapper of a duplication blob, or

 TPM2_ActivateIdentity() or TPM2_CreateIdentity() where the secret is the symmetric encryption key
for the credential blob.

Particulars are specified in ISO/IEC 11889-1.

12.4.2 TPMU_ENCRYPTED_SECRET

This structure is used to hold either an ephemeral public point for ECDH, an OAEP-encrypted block for
RSA, or a symmetrically encrypted value. This structure is defined for the limited purpose of determining
the size of a TPM2B_ENCRYPTED_SECRET.

The symmetrically encrypted value may use either CFB or XOR encryption.

NOTE Table 177 is illustrative. It would be modified depending on the algorithms supported in the TPM.

Table 177 — Definition of TPMU_ENCRYPTED_SECRET Union <S>

Parameter Type Selector Description

ecc[sizeof(TPMS_ECC_POINT)] BYTE TPM_ALG_ECC

rsa[MAX_RSA_KEY_BYTES] BYTE TPM_ALG_RSA

symmetric[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_SYMCIPHER

keyedHash[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_KEYEDHASH Any symmetrically encrypted
secret value will be limited to
be no larger than a digest.

126 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

12.4.3 TPM2B_ENCRYPTED_SECRET

Table 178 — Definition of TPM2B_ENCRYPTED_SECRET Structure

Parameter Type Description

size UINT16 size of the secret value

secret[size] {:sizeof(TPMU_ENCRYPTED_SECRET)} BYTE secret

© ISO/IEC 2015 – All rights reserved 127

ISO/IEC 11889-2:2015(E)

13 Key/Object Complex

13.1 Introduction

An object description requires a TPM2B_PUBLIC structure and may require a TPMT_SENSITIVE
structure. When the structure is stored off the TPM, the TPMT_SENSITIVE structure is encrypted within a
TPM2B_PRIVATE structure.

When the object requires two components for its description, those components are loaded as separate
parameters in the TPM2_Load() command. When the TPM creates an object that requires both
components, the TPM will return them as separate parameters from the TPM2_Create() operation.

The TPM may produce multiple different TPM2B_PRIVATE structures for a single TPM2B_PUBLIC
structure. Creation of a modified TPM2B_PRIVATE structure requires that the full structure be loaded with
the TPM2_Load() command, modification of the TPMT_SENSITIVE data, and output of a new
TPM2B_PRIVATE structure.

13.2 Public Area Structures

13.2.1 Description

Clause 13.2 defines the TPM2B_PUBLIC structure and the higher-level substructure that may be
contained in a TPM2B_PUBLIC. The higher-level structures that are currently defined for inclusion in a
TPM2B_PUBLIC are the

 structures for asymmetric keys,

 structures for symmetric keys, and

 structures for sealed data.

13.2.2 TPMI_ALG_PUBLIC

Table 179 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type

Values Comments

TPM_ALG_KEYEDHASH required of all TPM

TPM_ALG_SYMCIPHER required of all TPM

TPM_ALG_RSA At least one asymmetric algorithm shall be implemented.

TPM_ALG_ECC At least one asymmetric algorithm shall be implemented.

#TPM_RC_TYPE response code when a public type is not supported

13.2.3 Type-Specific Parameters

13.2.3.1 Description

The public area contains two fields (parameters and unique) that vary by object type. The parameters
field varies according to the type of the object but the contents may be the same across multiple
instances of a particular type. The unique field format also varies according to the type of the object and
will also be unique for each instance.

128 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

For a symmetric key (type == TPM_ALG_SYMCIPHER), HMAC key (type == TPM_ALG_KEYEDHASH)
or data object (also, type == TPM_ALG_KEYEDHASH), the contents of nique shall be computed from
components of the sensitive area of the ject as follows:

 u
 ob

 unique ≔	HnameAlg(seedValue || sensitive)	 (8)

where

HnameAlg()	 the hash algorithm used to compute the Name of the object

seedValue the digest-sized obfuscation value in the sensitive area of a symmetric
key or symmetric data object found in a
TPMT_SENSITIVE.seedValue.buffer

sensitive the secret key/data of the object in the
TPMT_SENSITIVE.sensitive.any.buffer

13.2.3.2 TPMU_PUBLIC_ID

Table 180 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S>

Parameter Type Selector Description

keyedHash TPM2B_DIGEST TPM_ALG_KEYEDHASH

sym TPM2B_DIGEST TPM_ALG_SYMCIPHER

rsa TPM2B_PUBLIC_KEY_RSA TPM_ALG_RSA

ecc TPMS_ECC_POINT TPM_ALG_ECC

13.2.3.3 TPMS_KEYEDHASH_PARMS

This structure describes the parameters that would appear in the public area of a KEYEDHASH object.

NOTE Although the names are the same, the types of the structures are not the same as for asymmetric
parameter lists.

Table 181 — Definition of TPMS_KEYEDHASH_PARMS Structure

Parameter Type Description

scheme TPMT_KEYEDHASH_SCHEME+ Indicates the signing method used for a keyedHash signing
object. This field also determines the size of the data field for a
data object created with TPM2_Create(). This field shall not be set
to TPM_ALG_NULL in a template if either sign or encrypt is SET.

13.2.3.4 TPMS_ASYM_PARMS

This structure contains the common public area parameters for an asymmetric key. The first two
parameters of the parameter definition structures of an asymmetric key shall have the same two first
components.

NOTE The sign parameter can have a different type in order to allow different schemes to be selected for each
asymmetric type but the first parameter of each scheme definition needs to be a TPM_ALG_ID for a valid
signing scheme.

© ISO/IEC 2015 – All rights reserved 129

ISO/IEC 11889-2:2015(E)

Table 182 — Definition of TPMS_ASYM_PARMS Structure <>

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ the companion symmetric algorithm for a restricted
decryption key and shall be set to a supported symmetric
algorithm

This field is optional for keys that are not decryption keys
and shall be set to TPM_ALG_NULL if not used.

scheme TPMT_ASYM_SCHEME+ for a key with the sign attribute SET, a valid signing
scheme for the key type

for a key with the decrypt attribute SET, a valid key
exchange protocol

for a key with sign and decrypt attributes, shall be
TPM_ALG_NULL

13.2.3.5 TPMS_RSA_PARMS

A TPM compatible with ISO/IEC 11889 and supporting RSA shall support two primes and an exponent of
zero. Support for other values is optional. Use of other exponents in duplicated keys is not recommended
because the resulting keys would not be interoperable with other TPMs.

NOTE Implementations are not compelled to check that exponent is the default exponent. They can fail to load
the key if exponent is not zero. The reference implementation allows the values listed in the table.

Table 183 — Definition of {RSA} TPMS_RSA_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a
supported symmetric algorithm, key size, and mode.

if the key is not a restricted decryption key, this field
shall be set to TPM_ALG_NULL.

scheme TPMT_RSA_SCHEME+ for an unrestricted signing key, shall be either
TPM_ALG_RSAPSS TPM_ALG_RSASSA or
TPM_ALG_NULL

for a restricted signing key, shall be either
TPM_ALG_RSAPSS or TPM_ALG_RSASSA

for an unrestricted decryption key, shall be
TPM_ALG_RSAES, TPM_ALG_OAEP, or
TPM_ALG_NULL unless the object also has the sign
attribute

for a restricted decryption key, this field shall be
TPM_ALG_NULL

keyBits TPMI_RSA_KEY_BITS number of bits in the public modulus

#TPM_RC_KEY_SIZE

exponent UINT32 the public exponent

A prime number greater than 2.

When zero, indicates that the exponent is the default
of 216 + 1

#TPM_RC_VALUE

NOTE Regarding the scheme parameter, when both sign and decrypt are SET, restricted will be CLEAR and
scheme will be TPM_ALG_NULL.

130 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

13.2.3.6 TPMS_ECC_PARMS

This structure contains the parameters for prime modulus ECC.

Table 184 — Definition of {ECC} TPMS_ECC_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a supported
symmetric algorithm, key size. and mode.

if the key is not a restricted decryption key, this field shall be
set to TPM_ALG_NULL.

scheme TPMT_ECC_SCHEME+ If the sign attribute of the key is SET, then this shall be a valid
signing scheme.

If the decrypt attribute of the key is SET, then this shall be a
valid key exchange scheme or TPM_ALG_NULL.

If the key is a Storage Key, then this field shall be
TPM_ALG_NULL.

curveID TPMI_ECC_CURVE ECC curve ID

kdf TPMT_KDF_SCHEME+ an optional key derivation scheme for generating a symmetric
key from a Z value

If the kdf parameter associated with curveID is not
TPM_ALG_NULL then this is required to be NULL.

NOTE 1 Regarding the scheme parameter, if the sign parameter in curveID indicates a mandatory scheme, then
the scheme field needs have the same value.

NOTE 2 Regarding the kdf parameter, there are currently no commands where the parameter has effect and, in
the reference code, this field needs to be set to TPM_ALG_NULL.

13.2.3.7 TPMU_PUBLIC_PARMS

Table 185 defines the possible parameter definition structures that may be contained in the public portion
of a key.

Table 185 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Type Selector Description(1) Parameter

keyedHashDetail TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH sign | decrypt | neither

symDetail TPMS_SYMCIPHER_PARMS TPM_ALG_SYMCIPHER a symmetric block cipher

TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign(2) rsaDetail

TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign(2) eccDetail

asymDetail TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTE 1 Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign can be set.

NOTE 2 “+” indicates that both can be set but one will be set.

NOTE 3 “|” indicates the optional settings.

© ISO/IEC 2015 – All rights reserved 131

ISO/IEC 11889-2:2015(E)

13.2.3.8 TPMT_PUBLIC_PARMS

This structure is used in TPM2_TestParms() to validate that a set of algorithm parameters is supported by
the TPM.

Table 186 — Definition of TPMT_PUBLIC_PARMS Structure

Parameter Type Description

type TPMI_ALG_PUBLIC the algorithm to be tested

[type]parameters TPMU_PUBLIC_PARMS the algorithm details

13.2.4 TPMT_PUBLIC

Table 187 defines the public area structure. The Name of the object is nameAlg concatenated with the
digest of this structure using nameAlg.

Table 187 — Definition of TPMT_PUBLIC Structure

Parameter Type Description

type TPMI_ALG_PUBLIC “algorithm” associated with this object

nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

objectAttributes TPMA_OBJECT attributes that, along with type, determine the manipulations of this
object

authPolicy TPM2B_DIGEST optional policy for using this key

The policy is computed using the nameAlg of the object.

[type]parameters TPMU_PUBLIC_PARMS the algorithm or structure details

[type]unique TPMU_PUBLIC_ID the unique identifier of the structure

For an asymmetric key, this would be the public key.

NOTE 1 The "+" indicates that the instance of a TPMT_PUBLIC can have a "+" to indicate that the nameAlg can
be TPM_ALG_NULL.

NOTE 2 The authPolicy parameter needs to be the Empty Buffer if no authorization policy is present.

13.2.5 TPM2B_PUBLIC

This sized buffer is used to embed a TPMT_PUBLIC in a command.

Table 188 — Definition of TPM2B_PUBLIC Structure

Parameter Type Description

size= UINT16 size of publicArea

publicArea +TPMT_PUBLIC the public area

NOTE 1 The “=” will force the TPM to try to unmarshal a TPMT_PUBLIC and check that the unmarshaled size
matches the value of size. If all the required fields of a TPMT_PUBLIC are not present, the TPM returns
an error (generally TPM_RC_SIZE) when attempting to unmarshal the TPMT_PUBLIC.

NOTE 2 The “+” indicates that the caller might specify that use of TPM_ALG_NULL is allowed for nameAlg.

132 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

13.3 Private Area Structures

13.3.1 Introduction

The structures in 13.3 define the contents and construction of the private portion of a TPM object. A
TPM2B_PRIVATE along with a TPM2B_PUBLIC are needed to describe a TPM object.

A TPM2B_PRIVATE area may be encrypted by different symmetric algorithms or, in some cases, not
encrypted at all.

13.3.2 Sensitive Data Structures

13.3.2.1 Introduction

The structures in 13.3.2 define the presumptive internal representations of the sensitive areas of the
various entities. A TPM may store the sensitive information in any desired format but when constructing a
TPM_PRIVATE, the formats in clause 13.3.2 shall be used.

13.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC

This structure is defined for coding purposes. For IO to the TPM, the sensitive portion of the key will be in
a canonical form. For an RSA key, this will be one of the prime factors of the public modulus. After
loading, it is typical that other values will be computed so that computations using the private key will not
need to start with just one prime factor. This structure can be used to store the results of such vendor-
specific calculations.

The value for RSA_VENDOR_SPECIFIC is determined by the vendor.

Table 189 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<>

Parameter Type Description

size UINT16

buffer[size]{:PRIVATE_VENDOR_SPECIFIC_BYTES} BYTE

13.3.2.3 TPMU_SENSITIVE_COMPOSITE

Table 190 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S>

Parameter Type Selector Description

rsa TPM2B_PRIVATE_KEY_RSA TPM_ALG_RSA a prime factor of the public
key

ecc TPM2B_ECC_PARAMETER TPM_ALG_ECC the integer private key

bits TPM2B_SENSITIVE_DATA TPM_ALG_KEYEDHASH the private data

sym TPM2B_SYM_KEY TPM_ALG_SYMCIPHER the symmetric key

any TPM2B_PRIVATE_VENDOR_SPECIFIC vendor-specific size for key
storage

© ISO/IEC 2015 – All rights reserved 133

ISO/IEC 11889-2:2015(E)

13.3.2.4 TPMT_SENSITIVE

Table 191 — Definition of TPMT_SENSITIVE Structure

Parameter Type Description

sensitiveType TPMI_ALG_PUBLIC identifier for the sensitive area

This shall be the same as the type parameter of the
associated public area.

authValue TPM2B_AUTH user authorization data

The authValue may be a zero-length string.

This value shall not be larger than the size of the
digest produced by the nameAlg of the object.

seedValue TPM2B_DIGEST for asymmetric key object, the optional protection
seed; for other objects, the obfuscation value

This value shall not be larger than the size of the
digest produced by nameAlg of the object.

[sensitiveType]sensitive TPMU_SENSITIVE_COMPOSITE the type-specific private data

13.3.3 TPM2B_SENSITIVE

The TPM2B_SENSITIVE structure is used as a parameter in TPM2_LoadExternal(). It is an unencrypted
sensitive area but it may be encrypted using parameter encryption.

NOTE 1 When this structure is unmarshaled, the sensitiveType determines what type of value is unmarshaled.
Each value of sensitiveType is associated with a TPM2B. It is the maximum size for each of the TPM2B
values that will determine if the unmarshal operation is successful. Since there is no selector for the any
or vendor options for the union, the maximum input and output sizes for a TPM2B_SENSITIVE are not
affected by the sizes of those parameters.

NOTE 2 The unmarshaling function validates that size equals the size of the value that is unmarshaled.

Table 192 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the private structure

sensitiveArea TPMT_SENSITIVE an unencrypted sensitive area

134 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

13.3.4 Encryption

A TPMS_SENSITIVE is the input to the encryption process. All TPMS_ENCRYPT structures are CFB-
encrypted using a key and Initialization Vector (IV) that are derived from a seed value.

The method of generating the key and IV is specified in “Protected Storage” subclause “Symmetric
Encryption” in ISO/IEC 11889-1.

13.3.5 Integrity

The integrity computation is used to ensure that a protected object is not modified when stored in memory
outside of the TPM.

The method of protecting the integrity of the sensitive area is specified in ISO/IEC 11889-1, clause 22.5,
“Integrity”.

13.3.6 _PRIVATE

This structure is defined to size the contents of a TPM2B_PRIVATE. This structure is not directly
marshaled or unmarshaled.

For TPM2_Duplicate() and TPM2_Import(), the TPM2B_PRIVATE may contain multiply encrypted data
and two integrity values. In some cases, the sensitive data is not encrypted and the integrity value is not
present.

For TPM2_Load() and TPM2_Create(), integrityInner is always present.

If integrityInner is present, it and sensitive are encrypted as a single block.

When an integrity value is not needed, it is not present and it is not represented by an Empty Buffer.

Table 193 — Definition of _PRIVATE Structure <>

Parameter Type Description

integrityOuter TPM2B_DIGEST

integrityInner TPM2B_DIGEST could also be a TPM2B_IV

sensitive TPMT_SENSITIVE the sensitive area

13.3.7 TPM2B_PRIVATE

The TPM2B_PRIVATE structure is used as a parameter in multiple commands that create, load, and
modify the sensitive area of an object.

Table 194 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S>

Parameter Type Description

size UINT16 size of the private structure

buffer[size] {:sizeof(_PRIVATE)} BYTE an encrypted private area

© ISO/IEC 2015 – All rights reserved 135

ISO/IEC 11889-2:2015(E)

13.4 Identity Object

13.4.1 Description

An identity object is used to convey credential protection value (CV) to a TPM that can load the object
associated with the object. The CV is encrypted to a storage key on the target TPM, and if the credential
integrity checks and the proper object is loaded in the TPM, then the TPM will return the CV.

13.4.2 _ID_OBJECT

This structure is used for sizing the TPM2_ID_OBJECT.

Table 195 — Definition of _ID_OBJECT Structure <>

Parameter Type Description

integrityHMAC TPM2B_DIGEST HMAC using the nameAlg of the storage key on the target
TPM

encIdentity TPM2B_DIGEST credential protector information returned if name matches the
referenced object

All of the encIdentity is encrypted, including the size field

NOTE The TPM does not need to check that the size is not larger than the digest of the nameAlg. However, if
the size is larger, the ID object might not be usable on a TPM that has no digest larger than produced by
nameAlg.

13.4.3 TPM2B_ID_OBJECT

This structure is an output from TPM2_MakeCredential() and is an input to TPM2_ActivateCredential().

Table 196 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the credential structure

credential[size]{:sizeof(_ID_OBJECT)} BYTE an encrypted credential area

136 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

14 NV Storage Structures

14.1 TPM_NV_INDEX

A TPM_NV_INDEX is used to reference a defined location in NV memory. The format of the Index is
changed from ISO/IEC 11889 (first edition) in order to include the Index in the reserved handle space.
Handles in this range use the digest of the public area of the Index as the Name of the entity in
authorization computations

The 32-bit ISO/IEC 11889 (first edition) NV Index format is shown in Figure 4. In order to allow the Index
to fit into the 24 bits available in the reserved handle space, the Index value format is changed as shown
in Figure 5.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

1
6

1
5

0
0

T P U D reserved Purview Index

Figure 4 — ISO/IEC 11889 (first edition) TPM_NV_INDEX

3
1

2
4

2
3

0
0

Index TPM_HT_NV_INDEX

Figure 5 — ISO/IEC 11889 TPM_NV_INDEX

NOTE 1 This TPM_NV_INDEX format does not retain the Purview field and the D bit is not a part of an Index
handle as in ISO/IEC 11889 (first edition). The TPMA_NV_PLATFORMCREATE attribute is a property of
an Index that provides functionality similar to the D bit.

A valid Index handle will have an MSO of TPM_HT_NV_INDEX.

NOTE 2 This structure is not used. It is defined here to indicate how the fields of the handle are assigned. The
exemplary unmarshaling code unmarshals a TPM_HANDLE and validates that it is in the range for a
TPM_NV_INDEX.

Table 197 — Definition of (UINT32) TPM_NV_INDEX Bits <>

Bit Name Definition

23:0 index The Index of the NV location

31:24 RH_NV constant value of TPM_HT_NV_INDEX indicating the NV Index range

 #TPM_RC_VALUE response code returned if unmarshaling of this type fails because the handle
value is incorrect

© ISO/IEC 2015 – All rights reserved 137

ISO/IEC 11889-2:2015(E)

NOTE 3 Conventions assigning subsets of the index field to different entities is in the document titled “Registry of
reserved TPM 2.0 handles and localities” maintained by the TCG.

14.2 TPMA_NV (NV Index Attributes)

This structure allows the TPM to keep track of the data and permissions to manipulate an NV Index.

The platform controls (TPMA_NV_PPWRITE and TPMA_NV_PPREAD) and owner controls
(TPMA_NV_OWNERWRITE and TPMA_NV_OWNERREAD) give the platform and owner access to NV
Indexes using Platform Authorization or Owner Authorization rather than the authValue or authPolicy of
the Index.

If access to an NV Index is to be restricted based on PCR, then an appropriate authPolicy shall be
provided.

NOTE 1 platformAuth or ownerAuth can be provided in any type of authorization session or as a password.

If TPMA_NV_AUTHREAD is SET, then the Index may be read if the Index authValue is provided. If
TPMA_NV_POLICYREAD is SET, then the Index may be read if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or
TPMA_NV_POLICYREAD shall be SET.

If TPMA_NV_AUTHWRITE is SET, then the Index may be written if the Index authValue is provided. If
TPMA_NV_POLICYWRITE is SET, then the Index may be written if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE TPMA_NV_AUTHWRITE, or
TPMA_NV_POLICYWRITE shall be SET.

If TPMA_NV_WRITELOCKED is SET, then the Index may not be written. If TPMA_NV_WRITEDEFINE is
SET, TPMA_NV_WRITELOCKED may not be CLEAR except by deleting and redefining the Index. If
TPMA_NV_WRITEDEFINE is CLEAR, then TPMA_NV_WRITELOCKED will be CLEAR on the next
TPM2_Startup(TPM_SU_CLEAR).

NOTE 2 If TPMA_NV_WRITELOCKED is SET, but TPMA_NV_WRITTEN is CLEAR, then
TPMA_NV_WRITELOCKED is CLEAR by TPM Reset or TPM Restart. This action occurs even if the
TPMA_NV_WRITEDEFINE attribute is SET. This action prevents an NV Index from being defined that
can never be written, and permits a use case where an Index is defined, but the user wants to prohibit
writes until after a reboot.

If TPMA_NV_READLOCKED is SET, then the Index may not be read. TPMA_NV_READLOCKED will be
CLEAR on the next TPM2_Startup(TPM_SU_CLEAR).

NOTE 3 The TPM is expected to maintain indicators to indicate that the Index is temporarily locked. The state of
these indicators is reported in the TPMA_NV_READLOCKED and TPMA_NV_WRITELOCKED attributes.

If TPMA_NV_EXTEND is SET, then writes to the Index will cause an update of the Index using the extend
operation with the nameAlg used to create the digest.

Only one of TPMA_NV_EXTEND, TPMA_NV_COUNTER, or TPMA_NV_BITS may be set.

When the Index is created (TPM2_NV_DefineSpace()), TPMA_NV_WRITELOCKED,
TPMA_NV_READLOCKED, TPMA_NV_WRITTEN shall all be CLEAR in the parameter that defines the
attributes of the created Index.

138 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Table 198 — Definition of (UINT32) TPMA_NV Bits

Bit Name Description

0 TPMA_NV_PPWRITE SET (1): The Index data can be written if Platform Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Platform Authorization.

1 TPMA_NV_OWNERWRITE SET (1): The Index data can be written if Owner Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Owner Authorization.

2 TPMA_NV_AUTHWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with an HMAC session or password.

CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with an HMAC session or password.

3 TPMA_NV_POLICYWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with a policy session.

CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with a policy session.

4 TPMA_NV_COUNTER SET (1): Index contains an 8-octet value that is to be used as a
counter and can only be modified with TPM2_NV_Increment().

CLEAR (0): The Index is not a counter.

5 TPMA_NV_BITS SET (1): Index contains an 8-octet value to be used as a bit field and
can only be modified with TPM2_NV_SetBits().

CLEAR (0): The Index is not a bit field.

6 TPMA_NV_EXTEND SET (1): Index contains a digest-sized value used like a PCR. The
Index may only be modified using TPM2_NV_Extend. The extend will
use the nameAlg of the Index.

CLEAR (0): Index is not a PCR.

9:7 Reserved shall be zero

reserved for use in defining additional write controls

10 TPMA_NV_POLICY_DELETE SET (1): Index may not be deleted unless the authPolicy is satisfied
using TPM2_NV_UndefineSpaceSpecial().

CLEAR (0): Index may be deleted with proper platform or owner
authorization using TPM2_NV_UndefineSpace().

11 TPMA_NV_WRITELOCKED SET (1): Index cannot be written.

CLEAR (0): Index can be written.

12 TPMA_NV_WRITEALL SET (1): A partial write of the Index data is not allowed. The write
size shall match the defined space size.

CLEAR (0): Partial writes are allowed. This setting is required if
TPMA_NV_BITS is SET.

13 TPMA_NV_WRITEDEFINE SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location.

CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITE_STCLEAR is also CLEAR.

14 TPMA_NV_WRITE_STCLEAR SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location until the next TPM Reset or TPM Restart.

CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITEDEFINE is also CLEAR.

© ISO/IEC 2015 – All rights reserved 139

ISO/IEC 11889-2:2015(E)

Bit Name Description

15 TPMA_NV_GLOBALLOCK SET (1): If TPM2_NV_GlobalWriteLock() is successful, then further
writes to this location are not permitted until the next TPM Reset or
TPM Restart.

CLEAR (0): TPM2_NV_GlobalWriteLock() has no effect on the
writing of the data at this Index.

16 TPMA_NV_PPREAD SET (1): The Index data can be read if Platform Authorization is
provided.

CLEAR (0): Reading of the Index data cannot be authorized with
Platform Authorization.

17 TPMA_NV_OWNERREAD SET (1): The Index data can be read if Owner Authorization is
provided.

CLEAR (0): Reading of the Index data cannot be authorized with
Owner Authorization.

18 TPMA_NV_AUTHREAD SET (1): The Index data may be read if the authValue is provided.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authValue.

19 TPMA_NV_POLICYREAD SET (1): The Index data may be read if the authPolicy is satisfied.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authPolicy.

24:20 Reserved shall be zero

reserved for use in defining additional read controls

25 TPMA_NV_NO_DA SET (1): Authorization failures of the Index do not affect the DA logic
and authorization of the Index is not blocked when the TPM is in
Lockout mode.

CLEAR (0): Authorization failures of the Index will increment the
authorization failure counter and authorizations of this Index are not
allowed when the TPM is in Lockout mode.

26 TPMA_NV_ORDERLY SET (1): NV Index state is only required to be saved when the TPM
performs an orderly shutdown (TPM2_Shutdown()).

CLEAR (0): NV Index state is required to be persistent after the
command to update the Index completes successfully (that is, the NV
update is synchronous with the update command).

27 TPMA_NV_CLEAR_STCLEAR SET (1): TPMA_NV_WRITTEN for the Index is CLEAR by TPM
Reset or TPM Restart.

CLEAR (0): TPMA_NV_WRITTEN is not changed by TPM Restart.

28 TPMA_NV_READLOCKED SET (1): Reads of the Index are blocked until the next TPM Reset or
TPM Restart.

CLEAR (0): Reads of the Index are allowed if proper authorization is
provided.

29 TPMA_NV_WRITTEN SET (1): Index has been written.

CLEAR (0): Index has not been written.

30 TPMA_NV_PLATFORMCREATE SET (1): This Index may be undefined with Platform Authorization but
not with Owner Authorization.

CLEAR (0): This Index may be undefined using Owner Authorization
but not with Platform Authorization.

The TPM will validate that this attribute is SET when the Index is
defined using Platform Authorization and will validate that this
attribute is CLEAR when the Index is defined using Owner
Authorization.

140 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Bit Name Description

31 TPMA_NV_READ_STCLEAR SET (1): TPM2_NV_ReadLock() may be used to SET
TPMA_NV_READLOCKED for this Index.

CLEAR (0): TPM2_NV_ReadLock() has no effect on this Index.

NOTE 1 Regarding TPMA_NV_POLICYWRITE, TPM2_NV_ChangeAuth() always needs authorization to be
provided in a policy session.

NOTE 2 Regarding TPMA_NV_CLEAR_STCLEAR, this attribute can only be SET if TPMA_NV_COUNTER is
not SET.

NOTE 3 Regarding TPMA_NV_CLEAR_STCLEAR, if the TPMA_NV_ORDERLY is SET, TPMA_NV_WRITTEN
will be CLEAR by TPM Reset.

14.3 TPMS_NV_PUBLIC

This structure describes an NV Index.

Table 199 — Definition of TPMS_NV_PUBLIC Structure

Name Type Description

nvIndex TPMI_RH_NV_INDEX the handle of the data area

nameAlg TPMI_ALG_HASH hash algorithm used to compute the name of the
Index and used for the authPolicy

attributes TPMA_NV the Index attributes

authPolicy TPM2B_DIGEST the access policy for the Index

dataSize{:MAX_NV_INDEX_SIZE} UINT16 the size of the data area

The maximum size is implementation-
dependent. The minimum maximum size is
platform-specific.

#TPM_RC_SIZE response code returned when the requested size
is too large for the implementation

14.4 TPM2B_NV_PUBLIC

This structure is used when a TPMS_NV_PUBLIC is sent on the TPM interface.

Table 200 — Definition of TPM2B_NV_PUBLIC Structure

Name Type Description

size= UINT16 size of nvPublic

nvPublic TPMS_NV_PUBLIC the public area

© ISO/IEC 2015 – All rights reserved 141

ISO/IEC 11889-2:2015(E)

15 Context Data

15.1 Introduction

Clause 15 defines the contents of the TPM2_ContextSave() response parameters and
TPM2_ContextLoad() command parameters.

If the parameters provided by the caller in TPM2_ContextLoad() do not match the values returned by the
TPM when the context was saved, the integrity check of the TPM2B_CONTEXT will fail and the object or
session will not be loaded.

15.2 TPM2B_CONTEXT_SENSITIVE

This structure holds the object or session context data. When saved, the full structure is encrypted.

Table 201 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size]{:MAX_CONTEXT_SIZE} BYTE the sensitive data

15.3 TPMS_CONTEXT_DATA

This structure holds the integrity value and the encrypted data for a context.

Table 202 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S>

Parameter Type Description

integrity TPM2B_DIGEST the integrity value

encrypted TPM2B_CONTEXT_SENSITIVE the sensitive area

15.4 TPM2B_CONTEXT_DATA

This structure is used in a TPMS_CONTEXT.

Table 203 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size] {:sizeof(TPMS_CONTEXT_DATA)} BYTE

142 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

15.5 TPMS_CONTEXT

This structure is used in TPM2_ContextLoad() and TPM2_ContextSave(). If the values of the
TPMS_CONTEXT structure in TPM2_ContextLoad() are not the same as the values when the context
was saved (TPM2_ContextSave()), then the TPM shall not load the context.

Saved object contexts shall not be loaded as long as the associated hierarchy is disabled.

Saved object contexts are invalidated when the Primary Seed of their hierarchy changes. Objects in the
Endorsement hierarchy are invalidated when either the EPS or SPS is changed.

When an object has the stClear attribute, it shall not be possible to reload the context or any descendant
object after a TPM Reset or TPM Restart.

NOTE 1 The reference implementation prevents reloads after TPM Restart by including the current value of a
clearCount in the saved object context. When an object is loaded, this value is compared with the current
value of the clearCount if the object has the stClear attribute. If the values are not the same, then the
object cannot be loaded.

A sequence value is contained within contextBlob, the integrity-protected part of the saved context. The
sequence value is repeated in the sequence parameter of the TPMS_CONTEXT structure. The sequence
parameter, along with other values, is used in the generation the protection values of the context.

NOTE 2 The reference implementation prepends the sequence value to the contextBlob before, for example, the
SESSION structure for sessions or the OBJECT structure for transient objects.

If the integrity value of the context is valid, but the sequence value of the decrypted context does not
match the value in the sequence parameter, then TPM shall enter the failure mode because this is
indicative of a specific type of attack on the context values.

NOTE 3 If the integrity value is correct, but the decryption fails and produces the wrong value for sequence, this
implies that either the TPM is faulty or an external entity is able to forge an integrity value for the context
but they have insufficient information to know the encryption key of the context. Since the TPM generated
the valid context, then there is no reason for the sequence value in the context to be decrypted incorrectly
other than the TPM is faulty or the TPM is under attack. In either case, it is appropriate for the TPM to
enter failure more.

Table 204 — Definition of TPMS_CONTEXT Structure

Name Type Description

UINT64 the sequence number of the context sequence

savedHandle TPMI_DH_CONTEXT the handle of the session, object or sequence

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the context

contextBlob TPM2B_CONTEXT_DATA the context data and integrity HMAC

NOTE Regarding sequence number of the context, transient object contexts and session contexts used
different counters.

15.6 Parameters of TPMS_CONTEXT

15.6.1 sequence

The sequence parameter is used to differentiate the contexts and to allow the TPM to create a different
encryption key for each context. Objects and sessions use different sequence counters. The sequence

© ISO/IEC 2015 – All rights reserved 143

ISO/IEC 11889-2:2015(E)

counter for objects (transient and sequence) is incremented when an object context is saved, and the
sequence counter for sessions increments when a session is created or when it is loaded
(TPM2_ContextLoad()). The session sequence number is the contextID counter.

For a session, the sequence number also allows the TRM to find the “older” contexts so that they may be
refreshed if the contextID are too widely separated.

If an input value for sequence is larger than the value used in any saved context, the TPM shall return an
error (TPM_RC_VALUE) and do no additional processing of the context.

If the context is a session context and the input value for sequence is less than the current value of
contextID minus the maximum range for sessions, the TPM shall return an error (TPM_RC_VALUE) and
do no additional processing of the context.

15.6.2 savedHandle

For a session, this is the handle that was assigned to the session when it was created. For a transient
object, the handle will have one of the values shown in Table 205.

If the handle type for savedHandle is TPM_HT_TRANSIENT, then the low order bits are used to
differentiate static objects from sequence objects.

If an input value for handle is outside of the range of values used by the TPM, the TPM shall return an
error (TPM_RC_VALUE) and do no additional processing of the context.

Table 205 — Context Handle Values

Value Description

0x02xxxxxx an HMAC session context

0x03xxxxxx a policy session context

0x80000000 an ordinary transient object

0x80000001 a sequence object

0x80000002 a transient object with the stClear attribute SET

144 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

15.6.3 hierarchy

This is the hierarchy (TPMI_RH_HIERARCHY) for the saved context and determines the proof value used
in the construction of the encryption and integrity values for the context. For session and sequence
contexts, the hierarchy is TPM_RC_NULL. The hierarchy for a transient object may be TPM_RH_NULL
but it is not required.

15.7 Context Protection

15.7.1 Context Integrity

The integrity of the context blob is protected by an HMAC. The integrity value is constructed such that
changes to the component values will invalidate the context and prevent it from being loaded.

Previously saved contexts for objects in the Platform hierarchy shall not be loadable after the PPS is
changed.

Previously saved contexts for objects in the Storage hierarchy shall not be loadable after the SPS is
changed.

Previously saved contexts for objects in the Endorsement hierarchy shall not be loadable after either the
EPS or SPS is changed.

Previously saved sessions shall not be loadable after the SPS changes.

Previously saved contexts for objects that have their stClear attribute SET shall not be loadable after a
TPM Restart. If a Storage Key has its stClear attribute SET, the descendants of this key shall not be
loadable after TPM Restart.

Previously saved contexts for a session and objects shall not be loadable after a TPM Reset.

A saved context shall not be loaded if its HMAC is not valid. The equation for computing the HMAC for a
context is found in ISO/IEC 11889-1, clause 30.3.2, “Context Integrity Protection”.

15.7.2 Context Confidentiality

The context data of sessions and objects shall be protected by symmetric encryption using CFB. The
method for computing the IV and encryption key is found in ISO/IEC 11889-1, clause 30.3.1, “Context
Confidentiality Protection”.

© ISO/IEC 2015 – All rights reserved 145

ISO/IEC 11889-2:2015(E)

16 Creation Data

16.1 TPMS_CREATION_DATA

This structure provides information relating to the creation environment for the object. The creation data
includes the parent Name, parent Qualified Name, and the digest of selected PCR. These values
represent the environment in which the object was created. Creation data allows a relying party to
determine if an object was created when some appropriate protections were present.

When the object is created, the structure shown in Table 206 is generated and a ticket is computed over
this data.

If the parent is a permanent handle (TPM_RH_OWNER, TPM_RH_PLATFORM,
TPM_RH_ENDORSEMENT, or TPM_RH_NULL), then parentName and parentQualifiedName will be set
to the parent handle value and parentNameAlg will be TPM_ALG_NULL.

Table 206 — Definition of TPMS_CREATION_DATA Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION list indicating the PCR included in pcrDigest

pcrDigest TPM2B_DIGEST digest of the selected PCR using nameAlg of the object for
which this structure is being created

pcrDigest.size shall be zero if the pcrSelect list is empty.

locality TPMA_LOCALITY the locality at which the object was created

parentNameAlg TPM_ALG_ID nameAlg of the parent

parentName TPM2B_NAME Name of the parent at time of creation

The size will match digest size associated with parentNameAlg
unless it is TPM_ALG_NULL, in which case the size will be 4
and parentName will be the hierarchy handle.

parentQualifiedName TPM2B_NAME Qualified Name of the parent at the time of creation

Size is the same as parentName.

outsideInfo TPM2B_DATA association with additional information added by the key
creator

This will be the contents of the outsideInfo parameter in
TPM2_Create() or TPM2_CreatePrimary().

16.2 TPM2B_CREATION_DATA

This structure is created by TPM2_Create() and TPM2_CreatePrimary(). It is never entered into the TPM
and never has a size of zero.

Table 207 — Definition of TPM2B_CREATION_DATA Structure <OUT>

Parameter Type Description

size= UINT16 size of the creation data

creationData TPMS_CREATION_DATA

146 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

 Annex A
(informative)

Algorithm Constants

A.1 Introduction

Annex A contains constants that are defined by algorithms.

A.2 Allowed Hash Algorithms

A.2.1 SHA1

Table A.1 — Defines for SHA1 Hash Values

Name Value Description

SHA1_DIGEST_SIZE 20 Values are in octets.

SHA1_BLOCK_SIZE 64

SHA1_DER_SIZE 15

SHA1_DER {0x30,0x21,0x30,0x09,0x06,0x05,0x2B,0x0E,
0x03,0x02,0x1A,0x05,0x00,0x04,0x14}

A.2.2 SHA256

Table A.2 — Defines for SHA256 Hash Values

Name Value Description

SHA256_DIGEST_SIZE 32 Values are in octets.

SHA256_BLOCK_SIZE 64

SHA256_DER_SIZE 19

SHA256_DER {0x30,0x31,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x01,0x05,
0x00,0x04,0x20}

A.2.3 SHA384

Table A.3 — Defines for SHA384 Hash Values

Name Value Description

SHA384_DIGEST_SIZE 48 Values are in octets.

SHA384_BLOCK_SIZE 128

SHA384_DER_SIZE 19

SHA384_DER {0x30,0x41,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x02,0x05,
0x00,0x04,0x30}

© ISO/IEC 2015 – All rights reserved 147

ISO/IEC 11889-2:2015(E)

A.2.4 SHA512

Table A.4 — Defines for SHA512 Hash Values

Name Value Description

SHA512_DIGEST_SIZE 64 Values are in octets.

SHA512_BLOCK_SIZE 128

SHA512_DER_SIZE 19

SHA512_DER {0x30,0x51,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x03,0x05,
0x00,0x04,0x40}

A.2.5 SM3_256

Table A.5 — Defines for SM3_256 Hash Values

Name Value Description

SM3_256_DIGEST_SIZE 32 Values are in octets.

SM3_256_BLOCK_SIZE 64

SM3_256_DER_SIZE 18

SM3_256_DER {0x30,0x30,0x30,0x0c,0x06,0x08,0x2a,0x81,
0x1c,0x81,0x45,0x01,0x83,0x11,0x05,0x00,
0x04,0x20}

Unknown

A.3 Architectural Limits

Table A.6 — Defines for Architectural Limits Values

Name Value Description

MAX_SESSION_NUMBER 3 the maximum number of authorization sessions that may be in a
command

This value may be increased if new commands require more than
two authorization handles.

148 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

 Annex B
(informative)

Implementation Definitions

B.1 Introduction

Annex B contains some of the tables that are used to define the desired implementation for the
automated tools.

NOTE The reference implementation assumes that stdint.h is used.

B.2 Logic Values

The values in clause B.2 are used to seed the generation of the subsequent tables. These values should
not be changed.

Table B.1 — Defines for Logic Values

Name Value Description

YES 1

NO 0

TRUE 1

FALSE 0

SET 1

CLEAR 0

B.3 Processor Values

These values are used to control generation of octet-swapping routines. The canonical octet ordering for
the TPM input/output buffer is “big endian” with the most significant octet of any datum at the lowest
address.

NOTE The setting for the exemplar is for the x86 family of processor.

Table B.2 — Defines for Processor Values

Name Value Description

BIG_ENDIAN_TPM NO set to YES or NO according to the processor

LITTLE_ENDIAN_TPM YES set to YES or NO according to the processor

NO_AUTO_ALIGN NO set to YES if the processor does not allow unaligned accesses

NOTE 1 BIG_ENDIAN and LITTLE_ENDIAN need be set to opposite values.

NOTE 2 If LITTLE_ENDIAN is YES, then the setting of the NO_AUTO_ALIGN value has no effect.

© ISO/IEC 2015 – All rights reserved 149

ISO/IEC 11889-2:2015(E)

B.4 Implemented Algorithms

Table B.3 — Defines for Implemented Algorithmsis used to indicate the algorithms that are implemented
in a TPM. The selections in the Value column may be changed to reflect the implementation. The values
shown are illustrative.

The "Implemented" column contains a "Y", "YES", or blank to indicate that the command is present in the
implementation, an "N" or "NO" to indicate that the command is not implemented.

NOTE The leading and trailing “_” characters are to avoid name space collisions with some crypto libraries.

Table B.3 — Defines for Implemented Algorithms

Algorithm Name Implemented Comments

RSA YES

SHA1 YES

HMAC YES REQUIRED, do not change this value

AES YES

MGF1 YES

XOR YES

KEYEDHASH YES REQUIRED, do not change this value

SHA256 YES

SHA384 YES

SHA512 NO

SM3_256 NO

SM4 NO

RSASSA (YES * RSA) requires RSA

RSAES (YES * RSA) requires RSA

RSAPSS (YES * RSA) requires RSA

OAEP (YES * RSA) requires RSA

ECC YES

ECDH (YES * ECC) requires ECC

ECDSA (YES * ECC) requires ECC

ECDAA (YES * ECC) requires ECC

SM2 (NO * ECC) requires ECC

ECSCHNORR (YES * ECC) requires ECC

ECMQV (NO * ECC) requires ECC

SYMCIPHER YES REQUIRED, at least one symmetric algorithm shall be implemented

CAMELLIA YES

KDF1_SP800_56a (YES * ECC) requires ECC

KDF2 NO

KDF1_SP800_108 YES

CTR YES

OFB YES

CBC YES

CFB YES REQUIRED, do not change this value

ECB YES

150 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

B.5 Implemented Commands

This table is used to indicate which of the commands are implemented. In the reference implementation,
this table determines which commands can be called and drives the generation of various command-
dependent switch statements.

The "Implemented or Dependent" column contains a "Y", "YES", or blank to indicate that the command is
present in the implementation; an "N" or "NO" to indicate that the command is not implemented; and an
algorithm value if implementation of the command is dependent on a setting in Table B.3 — Defines for
Implemented Algorithms . Linkage to Table B.3 — Defines for Implemented Algorithms is not required
and is provide as a convenience.

To indicate that the command is implemented, only "Y", "N", blank, or a value from Table B.3 — Defines
for Implemented Algorithms is allowed.

Table B.4 — Defines for Implemented Commands

Implemented
or Dependent Comments Name

ActivateCredential YES

Certify Y

CertifyCreation Y

ChangeEPS Y

ChangePPS Y

Clear Y

ClearControl Y

ClockRateAdjust Y

ClockSet Y

Commit ECC

ContextLoad Y Context

ContextSave Y Context

Create Y

CreatePrimary Y

DictionaryAttackLockReset Y

DictionaryAttackParameters Y

Duplicate Y

ECC_Parameters ECC

ECDH_KeyGen ECC

ECDH_ZGen ECC

EncryptDecrypt Y

EventSequenceComplete Y

EvictControl Y

FieldUpgradeData N

FieldUpgradeStart N

FirmwareRead N

FlushContext Y Context

GetCapability Y

GetCommandAuditDigest Y

© ISO/IEC 2015 – All rights reserved 151

ISO/IEC 11889-2:2015(E)

Implemented
or Dependent Comments Name

GetRandom Y

GetSessionAuditDigest Y

GetTestResult Y

GetTime Y

Hash Y

HashSequenceStart Y

HierarchyChangeAuth Y

HierarchyControl Y

HMAC Y

HMAC_Start Y

Import Y

IncrementalSelfTest Y

Load Y

LoadExternal Y

MakeCredential Y

NV_Certify Y

NV_ChangeAuth Y

NV_DefineSpace Y

NV_Extend Y

NV_GlobalWriteLock Y

NV_Increment Y

NV_Read Y

NV_ReadLock Y

NV_ReadPublic Y NV

NV_SetBits Y

NV_UndefineSpace Y

NV_UndefineSpaceSpecial Y

NV_Write Y

NV_WriteLock Y

ObjectChangeAuth Y

PCR_Allocate Y

PCR_Event Y PCR

PCR_Extend Y

PCR_Read Y PCR

PCR_Reset Y PCR

PCR_SetAuthPolicy Y

PCR_SetAuthValue Y

PolicyAuthorize Y Policy

PolicyAuthValue Y Policy

PolicyCommandCode Y Policy

152 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Implemented
or Dependent Comments Name

PolicyCounterTimer Y Policy

PolicyCpHash Y Policy

PolicyDuplicationSelect Y Policy

PolicyGetDigest Y Policy

PolicyLocality Y Policy

PolicyNameHash Y Policy

PolicyNV Y Policy

PolicyOR Y Policy

PolicyPassword Y Policy

PolicyPCR Y Policy

PolicyPhysicalPresence Y Policy

PolicyRestart Y

PolicySecret Y Policy

PolicySigned Y Policy

PolicyTicket Y Policy

PP_Commands Y

Quote Y

ReadClock Y

ReadPublic Y

Rewrap Y

RSA_Decrypt RSA

RSA_Encrypt RSA

SelfTest Y

SequenceComplete Y

SequenceUpdate Y

SetAlgorithmSet Y

SetCommandCodeAuditStatus Y

SetPrimaryPolicy Y

Shutdown Y

Sign Y

StartAuthSession Y

Startup Y

StirRandom Y

TestParms Y

Unseal Y

VerifySignature Y

ZGen_2Phase Y

EC_Ephemeral Y

PolicyNvWritten Y

© ISO/IEC 2015 – All rights reserved 153

ISO/IEC 11889-2:2015(E)

B.6 Algorithm Constants

B.6.1 RSA

Table B.5 — Defines for RSA Algorithm Constants

Name Value Comments

RSA_KEY_SIZES_BITS {1024, 2048} braces because this is a
list value

MAX_RSA_KEY_BITS 2048

MAX_RSA_KEY_BYTES ((MAX_RSA_KEY_BITS + 7) / 8)

B.6.2 ECC

Table B.6 — Defines for ECC Algorithm Constants

Name Value Comments

ECC_CURVES {TPM_ECC_NIST_P256, TPM_ECC_BN_P256,
TPM_ECC_SM2_P256}

ECC_KEY_SIZES_BITS {256} this is a list value with
length of one

MAX_ECC_KEY_BITS 256

MAX_ECC_KEY_BYTES ((MAX_ECC_KEY_BITS + 7) / 8)

B.6.3 AES

Table B.7 — Defines for AES Algorithm Constants

Name Value Comments

AES_KEY_SIZES_BITS {128, 256}

MAX_AES_KEY_BITS 256

MAX_AES_BLOCK_SIZE_BYTES 16

MAX_AES_KEY_BYTES ((MAX_AES_KEY_BITS + 7) / 8)

B.6.4 SM4

Table B.8 — Defines for SM4 Algorithm Constants

Name Value Comments

SM4_KEY_SIZES_BITS {128}

MAX_SM4_KEY_BITS 128

MAX_SM4_BLOCK_SIZE_BYTES 16

MAX_SM4_KEY_BYTES ((MAX_SM4_KEY_BITS + 7) / 8)

154 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

B.6.5 CAMELLIA

NOTE This International Standard supports larger key sizes for Camellia, however, the reference implementation
only implements 128 bits. An implementation that supports different key sizes would have different
values in Table B.9

Table B.9 — Defines for CAMELLIA Algorithm Constants

Name Value Comments

CAMELLIA_KEY_SIZES_BITS {128}

MAX_CAMELLIA_KEY_BITS 128

MAX_CAMELLIA_BLOCK_SIZE_BYTES 16

MAX_CAMELLIA_KEY_BYTES ((MAX_CAMELLIA_KEY_BITS + 7) / 8)

B.6.6 Symmetric

The definitions in this table are derived from the implemented symmetric algorithms.

Table B.10 — Defines for Symmetric Algorithm Constants

Name Value Comments

MAX_SYM_KEY_BITS MAX_AES_KEY_BITS

MAX_SYM_KEY_BYTES MAX_AES_KEY_BYTES

MAX_SYM_BLOCK_SIZE MAX_AES_BLOCK_SIZE_BYTES

© ISO/IEC 2015 – All rights reserved 155

ISO/IEC 11889-2:2015(E)

B.7 Implementation Specific Values

The values listed in Table B.11 — Defines for Implementation Values are defined for a specific TPM
implementation. The numbers in the Value column may be changed to reflect the implementation. The
values shown are illustrative.

Table B.11 — Defines for Implementation Values

Name Value Description

FIELD_UPGRADE_IMPLEMENTED NO temporary define

BSIZE UINT16 size used for internal storage of
the size field of a TPM2B

This is the definition used for
the reference design.
Compilation with this value
changed may cause warnings
about conversions.

BUFFER_ALIGNMENT 4 sets the size granularity for the
buffers in a TPM2B structure

TPMxB buffers will be assigned
a space that is a multiple of this
value. This does not set the size
limits for IO. Those are set by
the canonical form of the
TPMxB

IMPLEMENTATION_PCR 24 the number of PCR in the TPM

PLATFORM_PCR 24 the number of PCR required by
the relevant platform
specification

17 the D-RTM PCR DRTM_PCR

HCRTM_PCR 0 the PCR that will receive the H-
CRTM value at TPM2_Startup.
This value should not be
changed.

NUM_LOCALITIES 5 the number of localities
supported by the TPM

This is expected to be either 5
for a PC, or 1 for just about
everything else.

MAX_HANDLE_NUM 3 the maximum number of
handles in the handle area

This should be produced by the
ISO/IEC 11889-3 parser but is
here for now.

MAX_ACTIVE_SESSIONS 64 the number of simultaneously
active sessions that are
supported by the TPM
implementation

CONTEXT_SLOT UINT16 the type of an entry in the array
of saved contexts

CONTEXT_COUNTER UINT64 the type of the saved session
counter

MAX_LOADED_SESSIONS 3 the number of sessions that the
TPM may have in memory

MAX_SESSION_NUM 3 this is the current maximum
value

156 © ISO/IEC 2015 – All rights reserved

 ISO/IEC 11889-2:2015(E)

Name Value Description

MAX_LOADED_OBJECTS 3 the number of simultaneously
loaded objects that are
supported by the TPM; this
number does not include the
objects that may be placed in
NV memory by
TPM2_EvictControl().

MIN_EVICT_OBJECTS 2 the minimum number of evict
objects supported by the TPM

PCR_SELECT_MIN ((PLATFORM_PCR+7)/8)

PCR_SELECT_MAX ((IMPLEMENTATION_PCR+7)/8)

NUM_POLICY_PCR_GROUP 1 number of PCR groups that
have individual policies

NUM_AUTHVALUE_PCR_GROUP 1 number of PCR groups that
have individual authorization
values

MAX_CONTEXT_SIZE 2048 This may be larger than
necessary

MAX_DIGEST_BUFFER 1024

MAX_NV_INDEX_SIZE 2048 maximum data size allowed in
an NV Index

MAX_NV_BUFFER_SIZE 1024 maximum data size in one NV
read or write command

MAX_CAP_BUFFER 1024 maximum size of a capability
buffer

NV_MEMORY_SIZE 16384 size of NV memory in octets

NUM_STATIC_PCR 16

MAX_ALG_LIST_SIZE 64 number of algorithms that can
be in a list

TIMER_PRESCALE 100000 nominal value for the pre-scale
value of Clock (the number of
cycles of the TPM's oscillator for
each increment of Clock)

PRIMARY_SEED_SIZE 32 size of the Primary Seed in
octets

CONTEXT_ENCRYPT_ALG TPM_ALG_AES context encryption algorithm

MAX_SYM_KEY_BITS context encryption key size in
bits

CONTEXT_ENCRYPT_KEY_BITS

CONTEXT_ENCRYPT_KEY_BYTES ((CONTEXT_ENCRYPT_KEY_BITS+7
)/8)

CONTEXT_INTEGRITY_HASH_ALG TPM_ALG_SHA256 context integrity hash algorithm

CONTEXT_INTEGRITY_HASH_SIZE SHA256_DIGEST_SIZE number of byes in the context
integrity digest

PROOF_SIZE CONTEXT_INTEGRITY_HASH_SIZE size of proof value in octets

This size of the proof should be
consistent with the digest size
used for context integrity.

© ISO/IEC 2015 – All rights reserved 157

ISO/IEC 11889-2:2015(E)

Name Value Description

NV_CLOCK_UPDATE_INTERVAL 12 the update interval expressed
as a power of 2 seconds

A value of 12 is 4,096 seconds
(~68 minutes).

NUM_POLICY_PCR 1 number of PCR that allow
policy/auth

MAX_COMMAND_SIZE 4096 maximum size of a command

MAX_RESPONSE_SIZE 4096 maximum size of a response

ORDERLY_BITS 8 number between 1 and 32
inclusive

MAX_ORDERLY_COUNT ((1 << ORDERLY_BITS) - 1) maximum count of orderly
counter before NV is updated

This must be of the form 2N – 1
where 1 ≤ N ≤ 32.

ALG_ID_FIRST TPM_ALG_FIRST used by GetCapability()
processing to bound the
algorithm search

ALG_ID_LAST TPM_ALG_LAST used by GetCapability()
processing to bound the
algorithm search

MAX_SYM_DATA 128 this is the maximum number of
octets that may be in a sealed
blob.

MAX_RNG_ENTROPY_SIZE 64

RAM_INDEX_SPACE 512

0x00010001 216 + 1 RSA_DEFAULT_PUBLIC_EXPONENT

ENABLE_PCR_NO_INCREMENT YES indicates if the
TPM_PT_PCR_NO_INCREME
NT group is implemented

CRT_FORMAT_RSA YES

PRIVATE_VENDOR_SPECIFIC_BYTES ((MAX_RSA_KEY_BYTES/2) * (3 +
CRT_FORMAT_RSA * 2))

NOTE Regarding DRTM_PCR, the value is not defined when the TPM does not implement D-RTM.

158 © ISO/IEC 2015 – All rights reserved

ISO/IEC 11889-2:2015(E)

© ISO/IEC 2015 – All rights reserved 159

Bibliography

[1] GM/T 0002-2012: SM4 Block Cipher Algorithm

[2] GM/T 0003.1-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 1:
General

[3] GM/T 0003.2-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 2:
Digital Signature Algorithm

[4] GM/T 0003.3-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 3:
Key Exchange ProtocolGM/T 0003.4-2012: Public Key Cryptographic Algorithm SM2 Based on
Elliptic Curves, Part 4: Public Key Encryption Algorithm

[5] GM/T 0003.5-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves Part 5:
Parameter definition

[6] GM/T 0004-2012: SM3 Cryptographic Hash Algorithm

[7] IEEE Std 1363TM-2000, Standard Specifications for Public Key Cryptography

[8] IEEE Std 1363a™-2004 (Amendment to IEEE Std 1363™-2000), IEEE Standard Specifications
for Public Key Cryptography- Amendment 1: Additional Techniques

[9] IETF RFC 3447, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1

[10] IETF RFC 4034, Resource Records for the DNS Security Extensions, available at
<http://www.ietf.org/rfc/rfc4034.txt>

[11] ISO/IEC 10118-3, Information technology — Security techniques — Hash-functions — Part 3:
Dedicated hash functions

[12] ISO/IEC 14888-3, Information technology -- Security techniques -- Digital signature with appendix
-- Part 3: Discrete logarithm based mechanisms

[13] ISO/IEC 15946-1, Information technology — Security techniques — Cryptographic techniques
based on elliptic curves — Part 1: General

[14] ISO/IEC 18033-3, Information technology — Security techniques — Encryption algorithms — Part
3: Block ciphers

[15] NIST SP800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography (Revised, available at <http://csrc.nist.gov/publications/nistpubs/800-
56A/SP800-56A_Revision1_Mar08-2007.pdf>

[16] NIST SP800-108, Recommendation for Key Derivation Using Pseudorandom Functions (revised),
available at <http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf>

[17] Registry of Reserved TPM 2.0 Handles and Localities, TCG, available at
<http://www.trustedcomputinggroup.org/resources/registry>

[18] TCG Vendor ID Registry, available at
<http://www.trustedcomputinggroup.org/resources/vendor_id_registry>

ISO/IEC 11889-2:2015(E)

ICS 35.040
Price based on 159 pages

© ISO/IEC 2015 – All rights reserved

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Notation
	5.1 Introduction
	5.2 Named Constants
	5.3 Data Type Aliases (typedefs)
	5.4 Enumerations
	5.5 Interface Type
	5.6 Arrays
	5.7 Structure Definitions
	5.8 Conditional Types
	5.9 Unions
	5.9.1 Introduction
	5.9.2 Union Definition
	5.9.3 Union Instance
	5.9.4 Union Selector Definition

	5.10 Bit Field Definitions
	5.11 Parameter Limits
	5.12 Enumeration Macro
	5.13 Size Checking
	5.14 Data Direction
	5.15 Structure Validations
	5.16 Name Prefix Convention
	5.17 Data Alignment
	5.18 Parameter Unmarshaling Errors

	6 Base Types
	6.1 Primitive Types
	6.2 Miscellaneous Types

	7 Constants
	7.1 TPM_SPEC (Specification Version Values)
	7.2 TPM_GENERATED
	7.3 TPM_ALG_ID
	7.4 TPM_ECC_CURVE
	7.5 TPM_CC (Command Codes)
	7.5.1 Format
	7.5.2 Description
	7.5.3 TPM_CC Listing

	7.6 TPM_RC (Response Codes)
	7.6.1 Description
	7.6.2 Response Code Formats
	7.6.3 TPM_RC Values

	7.7 TPM_CLOCK_ADJUST
	7.8 TPM_EO (EA Arithmetic Operands)
	7.9 TPM_ST (Structure Tags)
	7.10 TPM_SU (Startup Type)
	7.11 TPM_SE (Session Type)
	7.12 TPM_CAP (Capabilities)
	7.13 TPM_PT (Property Tag)
	7.14 TPM_PT_PCR (PCR Property Tag)
	7.15 TPM_PS (Platform Specific)

	8 Handles
	8.1 Introduction
	8.2 TPM_HT (Handle Types)
	8.3 Persistent Handle Sub-ranges
	8.4 TPM_RH (Permanent Handles)
	8.5 TPM_HC (Handle Value Constants)

	9 Attribute Structures
	9.1 Description
	9.2 TPMA_ALGORITHM
	9.3 TPMA_OBJECT (Object Attributes)
	9.3.1 Introduction
	9.3.2 Structure Definition
	9.3.3 Attribute Descriptions
	9.3.3.1 Introduction
	9.3.3.2 Bit[1] – fixedTPM
	9.3.3.3 Bit[2] – stClear
	9.3.3.4 Bit[4] – fixedParent
	9.3.3.5 Bit[5] – sensitiveDataOrigin
	9.3.3.6 Bit[6] – userWithAuth
	9.3.3.7 Bit[7] – adminWithPolicy
	9.3.3.8 Bit[10] – noDA
	9.3.3.9 Bit[11] – encryptedDuplication
	9.3.3.10 Bit[16] – restricted
	9.3.3.11 Bit[17] – decrypt
	9.3.3.12 Bit[18] – sign

	9.4 TPMA_SESSION (Session Attributes)
	9.5 TPMA_LOCALITY (Locality Attribute)
	9.6 TPMA_PERMANENT
	9.7 TPMA_STARTUP_CLEAR
	9.8 TPMA_MEMORY
	9.9 TPMA_CC (Command Code Attributes)
	9.9.1 Introduction
	9.9.2 Structure Definition
	9.9.3 Field Descriptions
	9.9.3.1 Bits[15:0] – commandIndex
	9.9.3.2 Bit[22] – nv
	9.9.3.3 Bit[23] – extensive
	9.9.3.4 Bit[24] – flushed
	9.9.3.5 Bits[27:25] – cHandles
	9.9.3.6 Bit[28] – rHandle
	9.9.3.7 Bit[29] – V
	9.9.3.8 Bits[31:30] – Res

	10 Interface Types
	10.1 Introduction
	10.2 TPMI_YES_NO
	10.3 TPMI_DH_OBJECT
	10.4 TPMI_DH_PERSISTENT
	10.5 TPMI_DH_ENTITY
	10.6 TPMI_DH_PCR
	10.7 TPMI_SH_AUTH_SESSION
	10.8 TPMI_SH_HMAC
	10.9 TPMI_SH_POLICY
	10.10 TPMI_DH_CONTEXT
	10.11 TPMI_RH_HIERARCHY
	10.12 TPMI_RH_ENABLES
	10.13 TPMI_RH_HIERARCHY_AUTH
	10.14 TPMI_RH_PLATFORM
	10.15 TPMI_RH_OWNER
	10.16 TPMI_RH_ENDORSEMENT
	10.17 TPMI_RH_PROVISION
	10.18 TPMI_RH_CLEAR
	10.19 TPMI_RH_NV_AUTH
	10.20 TPMI_RH_LOCKOUT
	10.21 TPMI_RH_NV_INDEX
	10.22 TPMI_ALG_HASH
	10.23 TPMI_ALG_ASYM (Asymmetric Algorithms)
	10.24 TPMI_ALG_SYM (Symmetric Algorithms)
	10.25 TPMI_ALG_SYM_OBJECT
	10.26 TPMI_ALG_SYM_MODE
	10.27 TPMI_ALG_KDF (Key and Mask Generation Functions)
	10.28 TPMI_ALG_SIG_SCHEME
	10.29 TPMI_ECC_KEY_EXCHANGE
	10.30 TPMI_ST_COMMAND_TAG

	11 Structure Definitions
	11.1 TPMS_EMPTY
	11.2 TPMS_ALGORITHM_DESCRIPTION
	11.3 Hash/Digest Structures
	11.3.1 TPMU_HA (Hash)
	11.3.2 TPMT_HA

	11.4 Sized Buffers
	11.4.1 Introduction
	11.4.2 TPM2B_DIGEST
	11.4.3 TPM2B_DATA
	11.4.4 TPM2B_NONCE
	11.4.5 TPM2B_AUTH
	11.4.6 TPM2B_OPERAND
	11.4.7 TPM2B_EVENT
	11.4.8 TPM2B_MAX_BUFFER
	11.4.9 TPM2B_MAX_NV_BUFFER
	11.4.10 TPM2B_TIMEOUT
	11.4.11 TPM2B_IV

	11.5 Names
	11.5.1 Introduction
	11.5.2 TPMU_NAME
	11.5.3 TPM2B_NAME

	11.6 PCR Structures
	11.6.1 TPMS_PCR_SELECT
	11.6.2 TPMS_PCR_SELECTION

	11.7 Tickets
	11.7.1 Introduction
	11.7.2 A NULL Ticket
	11.7.3 TPMT_TK_CREATION
	11.7.4 TPMT_TK_VERIFIED
	11.7.5 TPMT_TK_AUTH
	11.7.6 TPMT_TK_HASHCHECK

	11.8 Property Structures
	11.8.1 TPMS_ALG_PROPERTY
	11.8.2 TPMS_TAGGED_PROPERTY
	11.8.3 TPMS_TAGGED_PCR_SELECT

	11.9 Lists
	11.9.1 TPML_CC
	11.9.2 TPML_CCA
	11.9.3 TPML_ALG
	11.9.4 TPML_HANDLE
	11.9.5 TPML_DIGEST
	11.9.6 TPML_DIGEST_VALUES
	11.9.7 TPM2B_DIGEST_VALUES
	11.9.8 TPML_PCR_SELECTION
	11.9.9 TPML_ALG_PROPERTY
	11.9.10 TPML_TAGGED_TPM_PROPERTY
	11.9.11 TPML_TAGGED_PCR_PROPERTY
	11.9.12 TPML_ECC_CURVE

	11.10 Capabilities Structures
	11.10.1 TPMU_CAPABILITIES
	11.10.2 TPMS_CAPABILITY_DATA

	11.11 Clock/Counter Structures
	11.11.1 TPMS_CLOCK_INFO
	11.11.2 Clock
	11.11.3 ResetCount
	11.11.4 RestartCount
	11.11.5 Safe
	11.11.6 TPMS_TIME_INFO

	11.12 TPM Attestation Structures
	11.12.1 Introduction
	11.12.2 TPMS_TIME_ATTEST_INFO
	11.12.3 TPMS_CERTIFY_INFO
	11.12.1 TPMS_QUOTE_INFO
	11.12.2 TPMS_COMMAND_AUDIT_INFO
	11.12.3 TPMS_SESSION_AUDIT_INFO
	11.12.4 TPMS_CREATION_INFO
	11.12.5 TPMS_NV_CERTIFY_INFO
	11.12.6 TPMI_ST_ATTEST
	11.12.7 TPMU_ATTEST
	11.12.8 TPMS_ATTEST
	11.12.9 TPM2B_ATTEST

	11.13 Authorization Structures
	11.13.1 Introduction
	11.13.2 TPMS_AUTH_COMMAND
	11.13.3 TPMS_AUTH_RESPONSE

	12 Algorithm Parameters and Structures
	12.1 Symmetric
	12.1.1 Introduction
	12.1.2 TPMI_AES_KEY_BITS
	12.1.3 TPMI_SM4_KEY_BITS
	12.1.4 TPMI_CAMELLIA KEY_BITS
	12.1.5 TPMU_SYM_KEY_BITS
	12.1.6 TPMU_SYM_MODE
	12.1.7 TPMU_SYM_DETAILS
	12.1.8 TPMT_SYM_DEF
	12.1.9 TPMT_SYM_DEF_OBJECT
	12.1.10 TPM2B_SYM_KEY
	12.1.11 TPMS_SYMCIPHER_PARMS
	12.1.12 TPM2B_SENSITIVE_DATA
	12.1.13 TPMS_SENSITIVE_CREATE
	12.1.14 TPM2B_SENSITIVE_CREATE
	12.1.15 TPMS_SCHEME_SIGHASH
	12.1.16 TPMI_ALG_HASH_SCHEME
	12.1.17 HMAC_SIG_SCHEME
	12.1.18 TPMS_SCHEME_XOR
	12.1.19 TPMU_SCHEME_HMAC
	12.1.20 TPMT_KEYEDHASH_SCHEME

	12.2 Asymmetric
	12.2.1 Signing Schemes
	12.2.1.1 Introduction
	12.2.1.2 RSA_SIG_SCHEMES
	12.2.1.3 ECC_SIG_SCHEMES
	12.2.1.4 TPMS_SCHEME_ECDAA
	12.2.1.5 TPMU_SIG_SCHEME
	12.2.1.6 TPMT_SIG_SCHEME

	12.2.2 Encryption Schemes
	12.2.2.1 Introduction
	12.2.2.2 TPMS_SCHEME_OAEP
	12.2.2.3 TPMS_SCHEME_ECDH

	12.2.3 Key Derivation Schemes
	12.2.3.1 Introduction
	12.2.3.2 TPMS_SCHEME_MGF1
	12.2.3.3 TPMS_SCHEME_KDF1_SP800_56a
	12.2.3.4 TPMS_SCHEME_KDF2
	12.2.3.5 TPMS_SCHEME_KDF1_SP800_108
	12.2.3.6 TPMU_KDF_SCHEME
	12.2.3.7 TPMT_KDF_SCHEME
	12.2.3.8 TPMI_ALG_ASYM_SCHEME
	12.2.3.9 TPMU_ASYM_SCHEME
	12.2.3.10 TPMT_ASYM_SCHEME

	12.2.4 RSA
	12.2.4.1 TPMI_ALG_RSA_SCHEME
	12.2.4.2 TPMT_RSA_SCHEME
	12.2.4.3 TPMI_ALG_RSA_DECRYPT
	12.2.4.4 TPMT_RSA_DECRYPT
	12.2.4.5 TPM2B_PUBLIC_KEY_RSA
	12.2.4.6 TPMI_RSA_KEY_BITS
	12.2.4.7 TPM2B_PRIVATE_KEY_RSA

	12.2.5 ECC
	12.2.5.1 TPM2B_ECC_PARAMETER
	12.2.5.2 TPMS_ECC_POINT
	12.2.5.3 TPM2B_ECC_POINT
	12.2.5.4 TPMI_ALG_ECC_SCHEME
	12.2.5.5 TPMI_ECC_CURVE
	12.2.5.6 TPMT_ECC_SCHEME
	12.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

	12.3 Signatures
	12.3.1 TPMS_SIGNATURE_RSASSA
	12.3.2 TPMS_SIGNATURE_RSAPSS
	12.3.3 TPMS_SIGNATURE_ECDSA
	12.3.4 TPMU_SIGNATURE
	12.3.5 TPMT_SIGNATURE

	12.4 Key/Secret Exchange
	12.4.1 Introduction
	12.4.2 TPMU_ENCRYPTED_SECRET
	12.4.3 TPM2B_ENCRYPTED_SECRET

	13 Key/Object Complex
	13.1 Introduction
	13.2 Public Area Structures
	13.2.1 Description
	13.2.2 TPMI_ALG_PUBLIC
	13.2.3 Type-Specific Parameters
	13.2.3.1 Description
	13.2.3.2 TPMU_PUBLIC_ID
	13.2.3.3 TPMS_KEYEDHASH_PARMS
	13.2.3.4 TPMS_ASYM_PARMS
	13.2.3.5 TPMS_RSA_PARMS
	13.2.3.6 TPMS_ECC_PARMS
	13.2.3.7 TPMU_PUBLIC_PARMS
	13.2.3.8 TPMT_PUBLIC_PARMS

	13.2.4 TPMT_PUBLIC
	13.2.5 TPM2B_PUBLIC

	13.3 Private Area Structures
	13.3.1 Introduction
	13.3.2 Sensitive Data Structures
	13.3.2.1 Introduction
	13.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC
	13.3.2.3 TPMU_SENSITIVE_COMPOSITE
	13.3.2.4 TPMT_SENSITIVE

	13.3.3 TPM2B_SENSITIVE
	13.3.4 Encryption
	13.3.5 Integrity
	13.3.6 _PRIVATE
	13.3.7 TPM2B_PRIVATE

	13.4 Identity Object
	13.4.1 Description
	13.4.2 _ID_OBJECT
	13.4.3 TPM2B_ID_OBJECT

	14 NV Storage Structures
	14.1 TPM_NV_INDEX
	14.2 TPMA_NV (NV Index Attributes)
	14.3 TPMS_NV_PUBLIC
	14.4 TPM2B_NV_PUBLIC

	15 Context Data
	15.1 Introduction
	15.2 TPM2B_CONTEXT_SENSITIVE
	15.3 TPMS_CONTEXT_DATA
	15.4 TPM2B_CONTEXT_DATA
	15.5 TPMS_CONTEXT
	15.6 Parameters of TPMS_CONTEXT
	15.6.1 sequence
	15.6.2 savedHandle
	15.6.3 hierarchy

	15.7 Context Protection
	15.7.1 Context Integrity
	15.7.2 Context Confidentiality

	16 Creation Data
	16.1 TPMS_CREATION_DATA
	16.2 TPM2B_CREATION_DATA

