

Reference number
ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011

TECHNICAL
REPORT

ISO/IEC
TR

29166

First edition
2011-12-15

Information technology — Document
description and processing languages —
Guidelines for translation between
ISO/IEC 26300 and ISO/IEC 29500
document formats

Technologies de l'information — Description des documents et
langages de traitement — Lignes directrices pour la traduction des
formats de document ISO/CEI 26300 et ISO/CEI 29500

ISO/IEC TR 29166:2011(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2011 – All rights reserved

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved iii

Contents Page

Foreword .. vi

Introduction ... vii

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions ... 2

4 Basic principles ... 4
4.1 Structure of the report .. 4
4.1.1 Enterprise view .. 4
4.1.2 Computational view ... 5
4.1.3 Information view .. 5
4.1.4 Engineering view ... 5
4.1.5 Technical view ... 5
4.2 Approach .. 6

5 Use cases ... 8
5.1 Introduction .. 8
5.2 Word processing documents ... 8
5.2.1 Empty document ... 8
5.2.2 Simple text and paragraph formatting .. 10
5.2.3 Asian language support ... 11
5.2.4 Line breaks in East Asian text ... 14
5.2.5 Text direction ... 16
5.2.6 Phonetic guide functions ... 18
5.2.7 Tables and field functions .. 20
5.2.8 Footnotes and endnotes ... 22
5.2.9 Itemization and numeration .. 24
5.2.10 Indices and tables of contents ... 25
5.2.11 Metadata and settings ... 26
5.2.12 Change tracking and collaboration support ... 28
5.2.13 Bibliographies and optional document parts ... 31
5.2.14 Sub documents and books .. 32
5.2.15 Forms .. 35
5.2.16 Vector graphics ... 36
5.2.17 Font embedding and paper size .. 38
5.2.18 Font metrics and font substitution .. 40
5.2.19 Document fields ... 41
5.2.20 Inclusion of user defined XML ... 43
5.2.21 Mathematical formulas.. 45
5.3 Spreadsheet documents ... 46
5.3.1 Empty spreadsheet document ... 46
5.3.2 Listing and structural features ... 48
5.3.3 Formulas and calculation ... 49
5.4 Presentation documents... 51
5.4.1 Empty presentation document ... 51
5.4.2 Simple text formatting ... 52
5.4.3 Itemization and numeration .. 54
5.4.4 Positioning and layout .. 55
5.4.5 Slide blending and animation effects .. 57
5.4.6 Animations ... 58
5.4.7 Comments .. 60
5.4.8 Multimedia content .. 62

ISO/IEC TR 29166:2011(E)

iv © ISO/IEC 2011 – All rights reserved

5.4.9 Master layout ..64
5.5 Common properties and mutual inclusion of documents ...65
5.5.1 Hyperlinks between documents ...65
5.5.2 Colours ...67
5.5.3 Embedded spreadsheet documents ..69
5.5.4 Simple text formatting and embedded documents ..71
5.5.5 Embedded charts ...73

6 Features and functionality ..74
6.1 Introduction ..74
6.2 Word processing documents ...75
6.2.1 Text formatting ...75
6.2.2 Paragraph formatting ..77
6.2.3 Header and footer ..82
6.2.4 Tables ..82
6.2.5 Itemization and numeration ..84
6.2.6 Metadata language entries ..86
6.2.7 Indices ...86
6.2.8 Change tracking and collaborative functions ...87
6.2.9 Bibliographies and optional document parts ...88
6.3 Spreadsheet documents ...89
6.3.1 Introduction ..89
6.3.2 Formatting ..89
6.3.3 Calculation ..90
6.3.4 Additional properties ...94
6.4 Presentation documents ...95
6.4.1 Introduction ..95
6.4.2 Slides ..95
6.4.3 Text formatting ...96
6.4.4 Master layout ..97
6.5 Common aspects ...98
6.5.1 Alternative presentations ..98
6.5.2 Colour models ..99
6.5.3 Custom XML parts .. 100
6.5.4 Packages ... 100

7 Representation and XML structure ... 102
7.1 Introduction ... 102
7.2 Word processing documents .. 103
7.2.1 Logical structure ... 103
7.2.2 Paragraphs .. 105
7.2.3 Styles ... 106
7.2.4 Tables ... 107
7.2.5 Lists - Itemization and numeration ... 111
7.2.6 Indices .. 112
7.2.7 Change tracking and collaboration support .. 115
7.2.8 Section and page layout .. 118
7.3 Spreadsheet documents .. 120
7.3.1 Logical structure ... 120
7.3.2 Table contents ... 121
7.3.3 Table style ... 123
7.3.4 Formulas and calculation .. 124
7.3.5 Charts ... 126
7.4 Presentation documents .. 128
7.4.1 Logical structure ... 128
7.4.2 Text formatting .. 129
7.4.3 Master layout ... 131
7.4.4 Animations .. 132
7.5 Summary .. 137

8 Translation ... 137

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved v

8.1 Introduction .. 137
8.2 Translation complexity ... 137
8.3 Sample translations .. 139
8.3.1 Easy translation ... 139
8.3.2 Moderate translation ... 143
8.3.3 Difficult translations .. 149
8.4 Guidelines for evaluating translatability ... 150
8.4.1 Translation fidelity ... 151
8.4.2 Document interoperability .. 152

9 Examples and tools ... 153

10 Conclusion ... 154
10.1 Resume ... 155

Bibliography .. 156

ISO/IEC TR 29166:2011(E)

vi © ISO/IEC 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 29166 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 34, Document description and processing languages.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved vii

Introduction

OASIS Open Document Format ODF 1.0 (ISO/IEC 26300) and Office Open XML (ISO/IEC 29500) are both
open document formats for saving and exchanging word processing documents, spreadsheets and
presentations. Both formats are XML based but differ in design and scope.

OASIS ODF 1.0 was published by OASIS as an OASIS standard in May 2005. The second edition of ODF 1.0
has been published by OASIS as a committee specification in July 2006 and accepted as an International
Standard by ISO (ISO/IEC 26300) in December 2006. Office Open XML was first approved in December 2006
by the ECMA International General Assembly as ECMA-376. An updated version was published in November
2008 by ISO (ISO/IEC 29500). The corresponding version, ECMA-376 2nd edition, was published in December
2008.

This Technical Report addresses both developers seeking to implement either the OpenDocument or the
Office Open XML International Standard and template designers and other power users whose competences
cut across the spectrum of XML and XML-related technologies which directly or remotely deal with one or both
of the two International Standards. This Technical Report will be of great assistance to those seeking to
exchange documents between formats, to extract data from or import data into documents, or to write
applications supporting the two formats.

This Technical Report aims at analysing the two International Standards and their underlying concepts in
terms of interoperability issues for a selected set of features. It analyses the way these features are
implemented in both International Standards and estimates the degree of translatability between them using a
table-based comparison. This Technical Report serves as a preliminary technical translation guideline for
evaluating translatability between certain parts of the two International Standards. It does not compare
different implementations which can cause additional kinds of interoperability problems.

Both Office Open XML and OpenDocument formats are basically descriptions of schemas used for word
processing documents, spreadsheets and presentations created by office application suites. Both are open
formats. A key design objective is to guarantee long-term access to data without the legal or technical barriers
associated with proprietary binary formats. XML schema definitions are normative parts of both International
Standards.

Manipulating documents is fundamentally facilitated by separating a document’s layout from its content.
Editing the layout and data components independently of one another affords considerable flexibility in
creating and editing office documents. Defining the structure and content of documents has been the focus of
both International Standards. A document’s layout is ultimately governed by the implementation of the office
suite, in particular by the rendering engine. Thus, as depicted in Figure 1, using exactly the same standard to
describe a document does not guarantee that different office suites will produce identical layouts.
Consequently, this Technical Report focuses more on the definition of guidelines for the translation of
document structure, content and presentation instructions than on the preservation of document layout.

In this Technical Report the two International Standards will be examined in their universality and not by
comparing specific implementations such as Microsoft Office or OpenOffice.org/LibreOffice. For this reason,
various examples have been developed using a simple XML editor which supports both standards. The
names of specific implementations may be used in the use cases to illustrate the real world scenario behind
the use case. The figures in this Technical Report are created for illustration purposes, using available tools
such as OpenOffice 3.* and Microsoft Office 2010. It should not be assumed that the current versions of these
implementations support all the features needed to implement the use case, especially the document
standards and the translation between them.

Several use cases do not mention existing tools, but rather use abstract names such as document format A
(DF-A) and document format B (DF-B).

This Technical Report begins with a presentation of typical use cases characterizing scenarios where specific
features supported by both document formats are used. It then analyses the most important features of one

ISO/IEC TR 29166:2011(E)

viii © ISO/IEC 2011 – All rights reserved

document format and shows how those features can best be represented in the other format. It then reviews
the concepts and various features of the two document formats in order to provide a good understanding of
the formats' common features and especially their differences. Most features can be translated to the other
format with varying degrees of fidelity. For the most important features, this Technical Report provides
detailed information on the implementation of the feature and the extents to which that feature can be
translated, including typical translation rules. Finally, an overview summing up the most important results and
deriving guidelines for the translation between both formats concludes this Technical Report.

The following abbreviations are used throughout this Technical Report:

 ODF, which stands for OpenDocument Format (ISO/IEC 26300:2006);

 OOXML, which stands for Office Open XML (ISO/IEC 29500:2008).

It is hoped that this Technical Report will be useful in understanding how the ODF and OOXML International
Standards compare and how their functionality can be mapped between the two formats. It is a necessary
step to the goal of helping achieve interoperability and harmonization between the two formats.

History of ODF and OOXML

ODF was originally developed by Sun Microsystems between 2000 and 2002 with the following objective:

“To create as a community, the leading international office suite that will run on all major platforms and provide
access to all functionality and data through open-component based APIs and an XML-based file format.” 1

In 2002, the standardization process was initiated at OASIS, and in 2005 the standard was published as
OASIS Open Document Format for Office Applications, abbreviated as OpenDocument or ODF. In 2006,
Open Document Format for Office Applications v.1.0 became an ISO International Standard (ISO/IEC 26300).
Open Document Format for Office Applications v.1.1 has been published by OASIS as an OASIS standard in
February 2007. At the time of writing (June 2011) Version 1.2 has been released as a Committee
Specification 1.0. While version 1.0 of the ODF standard only consists of one part, the current version is
structured into three parts: core, formulas, and packages.

Microsoft followed suit in 2006 via the Open Specification Promise (OSP2) by opening the format of its 2007
version of the Microsoft office suite (version 12) for which it also uses XML as an exchange and storage
format. OOXML is a file format originally developed by Microsoft as a successor to its earlier Office 2003 file
formats. It is used for representing spreadsheet, presentation and word processing documents. In 2006 Office
Open XML became an ECMA standard (ECMA-376, 1st edition). In 2008, a revised version of ECMA-376
became an ISO International Standard (ISO/IEC 29500:2008), which has its equivalent in the ECMA-376,
2nd edition.

ISO/IEC 29500 is structured into four parts, each of which contains normative as well as informative material:
Fundamentals and Markup Language Reference, Open Packaging Conventions, Markup Compatibility and
Extensibility, and Transitional Migration Features.

At the time of writing (June 2011) the following corrigenda and amendments have been published:

 ISO/IEC 29500-1:2008/Cor.1:2010, ISO/IEC 29500-2:2008/Cor.1:2010, ISO/IEC 29500-3:2008/
Cor.1:2010 and ISO/IEC 29500-4:2008/Cor.1:2010, containing minor technical corrections and
editorial modifications;

 ISO/IEC 29500-1:2008/Amd.1:2010 and ISO/IEC 29500-4:2008/Amd.1:2010, containing namespace
changes and modifications concerning the usage of percentage (%) values;

1 http://www.openoffice.org/about_us/ooo_release.html

2 http://www.microsoft.com/interop/osp/default.mspx

http://www.openoffice.org/about_us/ooo_release.html
http://www.microsoft.com/interop/osp/default.mspx

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved ix

 ISO/IEC 29500:2011 (ECMA 376 3rd edition) as a consolidated version of OOXML containing the
above-mentioned corrigenda and amendments;

 ISO/IEC 26300:2006/Cor.1:2010, containing editorial modifications;

 ISO/IEC 26300:2006/Cor.2:2011, fixing editorial errors.

In addition, the following Amendments are under preparation:

 Amendment 1 to ISO/IEC 29500-1:2011 and Amendment 1 to ISO/IEC 29500-4:2011 about ISO 8601
dates;

 Amendment 1 to ISO/IEC 26300:2006 introducing ODF 1.1.

TECHNICAL REPORT ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 1

Information technology — Document description and
processing languages — Guidelines for translation between
ISO/IEC 26300 and ISO/IEC 29500 document formats

1 Scope

This Technical Report provides guidelines for translation between ISO/IEC 26300 and ISO/IEC 29500
document formats. It starts by studying common use cases to identify how the most important functionalities of
one document format can be represented in the other format. This is followed by a thorough review of the
concepts, architectures and various features of the two document formats in order to provide a good
understanding of the commonalities and differences. It is expected that functionalities will be able to be
translated with different degrees of fidelity to the other format. As an illustrative sample of this functionality,
detailed information is provided on the extent to which those functionalities can be translated. This Technical
Report is a necessary step to the goal of helping achieve interoperability and harmonization between the two
formats.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 26300:2006, Information technology — Open Document Format for Office Applications
(OpenDocument) v1.0

ISO/IEC 29500-1:2008, Information technology — Document description and processing languages — Office
Open XML File Formats — Part 1: Fundamentals and Markup Language Reference

ISO/IEC 29500-2:2008, Information technology — Document description and processing languages — Office
Open XML File Formats — Part 2: Open Packaging Conventions

ISO/IEC 29500-3:2008, Information technology — Document description and processing languages — Office
Open XML File Formats — Part 3: Markup Compatibility and Extensibility

ISO/IEC 29500-4:2008, Information technology — Document description and processing languages — Office
Open XML File Formats — Part 4: Transitional Migration Features

ISO/IEC TR 29166:2011(E)

2 © ISO/IEC 2011 – All rights reserved

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
translation type
methods used when translating between ODF and OOXML documents

NOTE This Technical Report distinguishes four translation types:

 one way ODF to OOXML translation;

 one way OOXML to ODF translation;

 round trip ODF to OOXML to ODF translation;

 round trip OOXML to ODF to OOXML translation.

3.2
translation fidelity
quality of a translation process between the ODF and OOXML document formats

NOTE 1 Translation fidelity depends on document properties.

NOTE 2 Translation fidelity cannot be measured in an absolute manner; it depends on the intentions of the document's

authors.

3.3
document type
characterization of the specific purpose and content of a document

NOTE 1 This Technical Report distinguishes three major document types: word processing, spreadsheet and

presentation documents.

NOTE 2 Some document features only exist in one document type; other features have been defined for more than

one document type.

NOTE 3 The association between document type and document feature can be different for ODF and OOXML.

3.4
document property
description of different yet independent dimensions within the specification of a document

NOTE 1 As defined in 4.2 this Technical Report distinguishes the following document properties:

 presentation instructions;

 content;

 dynamic content;

 meta data;

 annotations and security;

 document parts.

NOTE 2 Document properties are implemented using document features.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 3

3.5
document feature
characterization of a document used to implement specific aspects of a document property

NOTE 1 Document features are visible to a user.

NOTE 2 Document features are illustrated by associated use cases in this Technical Report.

NOTE 3 The terms feature, functionality and sub functionality are used to structure the comparison of both document

formats in Clause 6.

NOTE 4 Document features implement document properties.

3.6
document format
synonym for document standard within this Technical Report

3.7
functionality
refinement of document features

NOTE 1 For example, the format of a paragraph is a feature and the height of a line is a functionality.

NOTE 2 In many cases functionality is implemented using XML types or elements.

3.8
sub functionality
itemization of functionality

NOTE 1 For example, the height of a line can be defined as fixed, font-independent, automatic, etc.

NOTE 2 In many cases sub functionality is implemented using XML attributes.

3.9
translatability level
rough scale for translation fidelity

NOTE 1 Translatability levels are used in Clause 6.

NOTE 2 Translatability levels have a three tier range (low, medium, high).

3.10
translation complexity
description of the complexity of the translation process for document features, considering their structures and
associated translation rules

NOTE 1 Translation complexity is a three value metric system (easy, moderate, difficult).

NOTE 2 Translation complexity is used in Clause 8 to classify the translation of document features or functionalities

from one format to the other.

ISO/IEC TR 29166:2011(E)

4 © ISO/IEC 2011 – All rights reserved

4 Basic principles

4.1 Structure of the report

The report is structured according to the viewpoints introduced in the reference model for Open Distributed
Processing ODP (ISO/IEC 10746). Refer to ISO/IEC 10746-1:1998 and ISO/IEC 10746-3:1996.

4.1.1 Enterprise view

The enterprise viewpoint is concerned with the purpose, scope and policies governing the activities of the
specified system within the organization of which it is a part. All requirements that are relevant to defining the
architecture and properties of the system are gathered in this viewpoint.

In clause 5 the TR describes the translation process from the enterprise viewpoint. It focuses on use cases
that describe how a document is used in a specific scenario. Features and functionalities of documents like
presentation instructions, structural information, application context, and the content itself as well as certain
conformance classes based on translation types and properties have been taken into consideration. Users of
document standards and decision makers are the intended readers of this section.

4.1.1.1 Use case template

To facilitate comparisons and a quick overview, use cases are described using the following template:

Textual description:

 Describe the scenario/story the use case is going to tell;
 Include one or more figures demonstrating the use case (optional);
 Define the translation type and fidelity to be demonstrated.

Implementation:

 Describe the features necessary to implement the use case.

Use case3 name:
Translation type and properties:

One-trip translation
ODF  OOXML

or/and
OOXML  ODF

Round trip translation ODFOOXMLODF
or/and

OOXMLODFOOXML

Presentation instructions 

Document content 

Dynamic content 

Metadata 

Annotations and security 

Document parts 

3 For details about the use case table please refer to section 4.2.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 5

Additional properties ...

Required features:
 Feature a including references to standards
 Feature b including references to standards

Requirements:

 Describe the expected behaviour of a feature's translation between both International Standards;
 Describe how the document(s) used in the use case should be defined to achieve the intended

fidelity.

Conclusion:

 Compare the applicable features in both International Standards and the translation rules and fidelity
as elaborated on in clauses 6 and 8.

4.1.2 Computational view

The computational viewpoint is concerned with the functional decomposition of a system into a set of objects
that interact at interfaces: thus enabling system distribution.

In clause 6 the TR describes the translation process from the computational viewpoint. It focuses on the
features and functionalities of a document. The what is described, independent of how the feature is
implemented in the particular standard. Power users and developers are the intended readers of this section.

4.1.3 Information view

The information viewpoint is concerned with the kinds of information handled by a system and constraints on
the use and interpretation of that information. An information specification of a system defines the semantics
of information and the semantics of information processing.

In clause 7 the TR describes the translation process from the information viewpoint. It is focusing on how the
functionality and features of a document are implemented in the standards. The document structure and its
XML markup are described. Power users, developers and persons responsible for the maintenance of the
standards are the intended readers of this section.

4.1.4 Engineering view

The engineering viewpoint is concerned with the infrastructure required to support system distribution. An
engineering specification defines the mechanisms and functions required to support distributed interaction
between objects.

In clause 8 the TR describes the translation process from the engineering viewpoint. It focuses on how the
features and structures are translated and preserved in the translation process. Developers and persons
responsible for the maintenance of the International Standards are the intended readers of this section.

4.1.5 Technical view

The technology viewpoint is concerned with the choice of technology used to support system distribution.

ISO/IEC TR 29166:2011(E)

6 © ISO/IEC 2011 – All rights reserved

In clause 9 the TR describes the translation process from the technical viewpoint. It focuses on available
resources and tools for creating, editing and translating documents. All groups mentioned above are the
intended readers of this section.

4.2 Approach

This TR takes a use case based approach to identify the requirements needed for translating between ODF
and OOXML. As depicted in Figure 2, use cases are selected and categorized along two lines: type of
translation and document properties defining the fidelity of a translation. This approach covers all aspects of
translations between the two document formats. Both International Standards define a storage and exchange
format for documents, including information about both a document’s presentation and its content. The
process of document rendering or laying out is beyond the scope of the actual standards, and thus beyond the
scope of both the translation process and this report.

Graphic fidelity between different rendering engines (i.e. layout implementations), another important category
of uses cases, is also beyond the scope of this report. In such use cases, different rendering engines are
provided with the same information, but may produce visually different results. Since the actual layout process
is not described by either the ODF or the OOXML International Standard, this report does not deal with such
use cases. However, it does cover preservation of layout information and presentation instructions around
format translations so that the selfsame rendering engine can produce the same visual result from the same
information encoded in different formats as depicted in Figure 1. Nevertheless, from a user's point of view in
many use cases the graphical appearance of a document will be the major criterion for the evaluation of the
fidelity of a transformation process. Therefore the graphical appearance of the documents depicted in Figure 1
should be independent of the chosen path.

ODF
Presentation instructions

OOXML
Presentation instructions

Application A Application B Application C

Rendering
engine X

Rendering
engine Y

Rendering
engine Z

Translation

Path A

Path B

Path C

A /= B
ODF

B /= C
OOXML

A /= C
ODF  OOXML

Documents

Applications

Figure 1 — Translation of presentation instructions

Use case descriptions reference subclause 4.2 for the description of demonstrated translation types and
fidelities and clause 6 for a comparison of required features and functionalities.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 7

Translation types

One-time translation

OOXML -> ODF
ODF -> OOXML

Round-trip translation

OOXML -> ODF –> OOXML
ODF -> OOXML -> ODF

Document properties

Presentation instructions

Document content

Dynamic content

Meta data

Document parts

Annotations and security

Figure 2 — Use case category overview

Translation fidelity of a document depends on the following document properties:

 Presentation instructions include all layout and presentation related information such as fonts, spacing,
margins, colours, paper layout and settings, and animation in office documents.

 Document content covers all properties of content (such as text, graphics and formulas) defined
directly by the author of a document.

 Dynamic content covers all aspects of automatically generated content including calculations or form
functionalities such as fields, generated tables or dynamic references.

 Metadata cover all information apart from the core document content. Metadata are used to describe
meta information about the document such as the generator, version, authors and to ensure the
accessibility of documents, for instance by using certificates.

 Annotation and security covers all aspects of annotations used in a document including comments,
change tracking, collaborative functions and security features such as encryption and access control.

 Document parts cover all aspects (editing semantics) of structural document properties such as
paragraphs, headings, headers, footers, tables, lists, footnotes, indices and captions.

Some use cases focus on a one way translation process from standard A to standard B; a typical scenario is
where the author of a document uses a tool that supports a different standard than the tool used by the reader.
In the case that different authors of a document are using tools supporting different standards a round trip
translation process has to be supported. The requirements for such processes are much higher than for one-
way translations because mutual mappings between the International Standards have to be possible.

The report introduces the concept of use cases to demonstrate document features. As depicted in Figure 3,
these features are used to implement the document properties described above. Each feature is refined by
functionalities and sub functionalities. The use cases, together with their required document features, are
introduced in clause 5. Features, functionalities and sub functionalities are described and compared in
clause 6.

ISO/IEC TR 29166:2011(E)

8 © ISO/IEC 2011 – All rights reserved

Use case
Section 5

Document type
Categorized by

Document properties
Section 4

Document features
Section 6, 7

Requires, demonstrates

Functionality
Section 6, 7

Sub functionality
Section 6, 7

Implements

Instantiates

Refines

Figure 3 — Relation between functionality and document properties and features

A detailed description of the XML representations of selected document features used in the use cases is
given in clause 7. These descriptions show how similar features are implemented in specific ways in both
document formats. In some cases a feature is implemented using comparable and easy translatable
structures, in some cases a feature has to be implemented by a combination of corresponding features in the
other document format and in some cases a feature is only available in one of the two formats. Clause 8
concludes the analysis of specific XML representations and introduces examples of characteristic translation
algorithms covering the whole translation spectrum. It gives examples for high visual fidelity as well as for high
structural fidelity. Guidelines for end users telling what can be done and what should be avoided during the
joint preparation of a document will be derived from this variety of translation fidelities.

5 Use cases

5.1 Introduction

This TR takes a use case based approach in order to identify the necessary requirements for translating
between ODF and OOXML documents. It describes the translation process from the ODP enterprise viewpoint
when utilizing use cases and states how a document should be used in a specific scenario. The expected and
observable behaviour of a translation process is described here, as based on the translation types and
documents properties explained above. The comparison of both behavioural types is then used to measure
the fidelity of this translation process.

The TR defines use cases for each of the three major document types and for documents consisting of mutual
included document types.

5.2 Word processing documents

5.2.1 Empty document

Textual description:

When a new document is created either in ODF format or in OOXML format, the user initially sees an empty
document. When the document is saved without any further editing, it is generated without user content but it
contains some initial metadata and presentation instructions. This initial content should be preserved as much
as possible during the translation process.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 9

Figure 4 — Empty word processing document

Implementation:

The term empty document is not defined in both International Standards. Each application has its own initial
metadata and presentation instructions. For example, an empty document has a default section, a default
paragraph and a default definition of a page layout without user defined content.

Use case name: Empty wordprocessing document
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata 

Annotations and security

Document parts

Required features:
 Metadata

o OOXML: Subclause 8.3; 17.*
o ODF: Subclause 3.1

Requirements:

The following behaviour should be maintained no matter which standard is used:

 Presentation and style instructions remain unchanged;
 Metadata remain unchanged.

ISO/IEC TR 29166:2011(E)

10 © ISO/IEC 2011 – All rights reserved

It is not necessarily expected that both International Standards will use similar defaults for metadata.

Conclusion:

Neither ODF nor OOXML can precisely define the term empty document. Thus the content of an empty
document depends more on the application used to create it than on the standard. When an empty document
defined in format A is opened in format B, presentation instructions can be preserved. However, the initial
view of the empty document may be slightly different, depending on the rendering engine. Metadata can be
translated accordingly, even though some information like the application creating the document may be
modified.

5.2.2 Simple text and paragraph formatting

Textual description:

This use case describes the issue of a business letter and its translation between the International Standards
ODF and OOXML with a special focus on formal aspects. The scenario starts with user John who has decided
to file a complaint to his preferred airline about a delayed flight which caused some trouble to his agenda.
John works on his private laptop using format A and starts to write the letter which looks like the one depicted
in Figure 5. After finishing the letter, John emails it to his secretary Mary. Mary imports the document to a tool
using format B to check visual appearance and spelling. Then she emails it to the customer complaints centre
(CCC) of GoFast Air in London. The receiving agent in the CCC in London works again with format A.

Figure 5 — Sample letter

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 11

Implementation:

This sample letter makes use of all typical text formatting features. There is centred text on the top and the
date information is positioned on the right. The receiver’s address is aligned on the left. The letter’s body
paragraph is justified. The letter contains a bold paragraph as the subject line as an example of paragraph
formatting. Embedded italic characters in the body text are used as an example of the text formatting feature
that allows specific attributes for parts of a paragraph to be defined. An image representing the signature of
the author is embedded at the end of this document. Presentation instructions, content and parts of the
document must be preserved during translation.

Use case name: Simple text formatting
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Text formatting

o OOXML: Sublause 8.3, 17.*
o ODF: Subclause 2.3, 4, 9.5, 14.*, 15.4

 Paragraph formatting
o OOXML: Subclause15.2, 17.*
o ODF: Subclause 2.8, 4.2, 9.3, 7.12, 14.*, 15.*

Requirements:

This scenario requires the preservation of presentation instructions during multiple translations of a formal
business document. A formal business letter is a common example of the application of basic text processing
functionality. A formal letter should strictly conform to a set of guidelines which can be divided into aspects of
presentation and content. Regardless of the text processing applications used to create it, a business letter’s
appearance and structure should remain identical throughout the translation process.

Conclusion:

Table 1 and Table 2 in Subclauses 6.2.1 and 6.2.2 show how good the required features can be translated
between the two International Standards. Simple text formatting such as bold or italic characters and
paragraph formatting such as text alignments can easily be converted between the two formats, with the
exception of theme fonts, which are not supported in ODF.

5.2.3 Asian language support

Textual description:

Mr Zhang San is going to sign an employment contract with Huaxia, Inc. The human resources (HR)
department of Huaxia, Inc. prepares the draft in format A. The draft is then sent to Mr Zhang San’s email inbox
to ask for comments. Mr Zhang San opens the draft using software supporting format B. After some

ISO/IEC TR 29166:2011(E)

12 © ISO/IEC 2011 – All rights reserved

discussion Mr Zhang San finally agrees with the content. He signs the contract and sends it back to Huaxia,
Inc. The HR department also signs the contract and prints paper copies.

Figure 6 — Chinese employment contract

The screenshot above is a short employment contract in Chinese. The translated version is shown in Figure 7:

Figure 7 — Translated contract

In the first line of the body of text above, the first character4 华 is dropped into two lines. The employee name
is expressed in Chinese characters with Pin-Yin (phonetic transcription). The contract item list is numbered in
Chinese sequence characters 壹、贰、叁. The first item in the list shows the date which is a mixture of Arabic
numbers and Chinese characters. The second item in the list uses the currency symbol ￥. Another date is
used in the bottom line. It consists of Chinese characters only and is different from the previous date.

4 The first character in the sample text is a SimSun character.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 13

Implementation:

Use case name: Asian language support
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Text formatting

o OOXML: Subclause 17.3.1*, 17.3.2.10,
17.3.2.20, 17.3.2.26, 17.3.3.25-28,
17.15.1, 17.16.4.3.1, 17.16.5.*, 17.18.59,
18.3.1.92, 18.18.6.*, 18.18.27, 18.18.73,
20.1.10.61, M.1.9.2

o ODF: Subclause 5.4, 6.2.*, 12.2.2,
15.2.21, 15.4.*, 15.5.32-33, 15.6

Requirements:

This scenario requires the preservation of presentation instructions during multiple translations of a formal
business document. Chinese document editing usually has to consider the following properties:

a) Font family, which depends on the encoded character set being used. Furthermore, a word processing
document should be able to specify up to four fonts which can be used in the contents of a run, for
example, ASCII font, High ANSI font, East Asian font and Complex Script font.

b) Font size, which may use different measurements from pt (point), e.g. hao (号);

c) Chinese special characters, such as currency symbol ￥, which can be found in certain fonts only. It
requires number formats, especially in spreadsheets that support such currency symbols.

d) Special numbers such as full-width decimal １,２,３; traditional ideograph 甲,乙,丙; zodiac ideograph 子,
丑,寅; Chinese counting 一,二, 三; and Chinese legal simplified, which are used in the numbered list of
the above use case: 壹,贰,叁.

e) Special date and time format such as “August 9, 2008” can be expressed as 二〇〇二年八月九日 or 2008
年 8 月 9 日; “5:36” am can be expressed as 上午五时三十六分 or 上午 5 时 36 分.

f) Digital formats such as 12345 can be expressed as 一万二千三百四十五 or 壹万贰仟叁佰肆拾伍
(popularly used in accounting).

g) Writing direction such as lines from right to left and text flow from top to bottom;

ISO/IEC TR 29166:2011(E)

14 © ISO/IEC 2011 – All rights reserved

h) East Asian typography rules for first and last character per line (kinsoku) such as the characters which
are not allowed to appear at the beginning and end of the lines, or the rule defining whether the space
between Chinese and Western characters should be adjusted or not.

i) Sorting method to be used when sorting data in either word processing tables or spreadsheet tables,
defining whether data should be sorted by Pin-Yin or stroke;

j) Chinese typography settings such as characters above other characters, phonetic transcription Pin-Yin
used in the above use case, and similar;

k) Automatically adjusting the spacing of Latin and Chinese text as well as Chinese text and numbers;

l) Settings for the document grid, which enables precise layout of full-width Chinese characters within a
document by specifying the desired number of characters per line and lines per page for all Chinese text
content in the section.

A formal Chinese document should strictly adhere to these typesetting conventions. A formal Chinese
document’s appearance and structure should remain identical throughout the translation process, regardless
of the word processing applications used to create it.

Conclusion:

Both formats offer support for Asian languages, such as Chinese fonts, sorting methods, kinsoku, text
direction and document grids mentioned in the requirements. But due to differences in descriptive power, the
appearance and structure created by either format may have some discrepancies when translated into
another format. For example, as fonts for text runs (span) both formats support Western fonts, the East Asian
font and the Complex Script font. However, ODF can specify different sizes and weights for each of them
while OOXML can’t. When displaying special numbers in numbering, OOXML provides a number construction
method (counting mode) as well as a number sequence where each sequence can have different numbering
formats, e.g., chineseCountingThousand and chineseCounting. In ODF only the number sequence is
supported, and it can use one numbering format only. Both formats provide date and time formats, but they
are not identical. Therefore it is not known if every format can be translated without difficulty. For example, 二
〇〇八年十二月三十一日星期三 in OOXML cannot be translated into ODF. Differences also occur in
typesetting taboos and rules for Asian languages. OOXML provides a superset of the typesetting taboos and
rules in ODF, therefore some of this information will be lost in the translation. Regarding the phonetic guide,
OOXML specifies the appearance in more detail than ODF does. For example, OOXML allows the distance
between phonetic guide text and phonetic guide base text as well as the phonetic guide text font size to be
appointed; this is not supported by ODF although the font size of the ruby text can be adjusted by the
associated character style.

5.2.4 Line breaks in East Asian text

Textual description:

Chulsoo uses a format A word processing application to write down Korea’s national anthem lyrics for his
cousin who uses a format B word processing application. Since Chulsoo’s cousin is a second generation
American Korean who does not speak Korean well, Chulsoo wants to make sure that his cousin learns correct
Korean including word spacing and the correct grammar rules through the lyrics.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 15

Figure 8 — Korean text with character unit support

Figure 9 — Korean text without character unit support

Implementation:

To ensure the Korean word spacing grammar rules are correctly observed, character units for East Asian text
should be implemented in both word processing formats. At the end of first lines in Figure 8 and Figure 9, the
word is supposed to be one unit after the unit. Format A in Figure 8 changes the line to
correc isplay the Korean words while format B in breaks down one word into two lines. tly d Figure 9

Use case name: Line breaks in East Asian languages
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts

Required features:

OXML: Subclause 21.1.2.2.2,
 Indexes

o O
17.3.1.16

o ODF: Subclause 15.5.34

ISO/IEC TR 29166:2011(E)

16 © ISO/IEC 2011 – All rights reserved

Requirements:

If a format A user choose not to allow Korean texts to wrap in the middle of a word, then at the end of a line, a
Korean word would stick together without breaking into two parts in two different lines regardless of the line
break. After the translation to format B is complete, a user of format B should able to see the Korean word as
one unit. The main requirement in this scenario is that the Korean words at the end of the lines should stay as
one word when the document translates from format A to format B.

Conclusion:

OOXML supports the function that East Asian words should not be broken in case of a line break. DrawingML
also introduces an attribute called @enLnBrk which specifies whether an East Asian word can be broken in
the middle of a word and wrapped onto the next line without a hyphen being added. ODF does not support
line break rules for East Asian words. Furthermore, when users use East Asian in their documentation, both
International Standards do not support hyphenation use in line breaks. Detailed requirements on Japanese
text layout including line breaks are given in the W3C Working Group Note http://www.w3.org/TR/2009/NOTE-
jlreq-20090604/.

5.2.5 Text direction

Textual description:

John needs to figure out how his company's East Asia Division EAD has been working on their quest to
balance the worldwide real estate business. He asks his EAD partner for a sales report. John uses his format
A word processor to open the EAD report provided by his EAD partner who in turn uses a format B word
processor.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 17

Figure 10 — Top to bottom vertically and right to left text flow in paragraphs in OOXML and ODF

Figure 11 — Top to bottom vertically and left to right text flow in an OOXML table

Figure 12 — Top to bottom vertically and left to right text flow in an ODF table

ISO/IEC TR 29166:2011(E)

18 © ISO/IEC 2011 – All rights reserved

Implementation:

Various text flows can occur in a document. Text can flow from top to bottom vertically, left to right horizontally
and vice versa respectively in the entire document or a document part such as a paragraph, a table, and a
section.

Use case name: Text direction
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Text direction

o OOXML: Subclause 17.3.1.41, 17.4.7.3,
17.6.20, 17.18.93

o ODF: Subclause 15.2.19, 15.4.42~43,
15.5.39~37, 15.7.8, 15.8.13, 15.11.1, 15.11.3,
15.27.9~12, 15.27.27

Requirements:

In Figure 10 the text flow in the paragraph is top to bottom vertically. In Figure 11 and Figure 12 the text flow
in the tables is top to bottom vertically for country names and the other texts flow left to right horizontally. The
main requirement in this scenario is that the text flow in a paragraph and a table in a format B document can
be correctly translated into a corresponding paragraph and table in a format A document.

Conclusion:

Text flow in paragraphs and tables can be well translated between both formats. Both International Standards
support top to bottom vertically, right to left horizontally, and vice versa respectively. In OOXML text directions
apply in paragraphs, tables, and sections. In ODF text directions apply in paragraphs, tables, and frames.
However, note that when dealing with text direction within a table, ODF inherits the text direction of the
associated paragraph while OOXML uses separate text directions within the table.

5.2.6 Phonetic guide functions

Textual description:

Yunjung opens a report about the history of the Korean language from her colleague Prof. Kim. Yunjung uses
a word processing application which uses format A to open the file. Prof. Kim had created it with a different
word processing application which uses format B. Figure 13 shows a sample paragraph of the report created
with an OOXML tool.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 19

Figure 13 — Sample ruby text5 in Korean in OOXML

Figure 14 — Possible result of a translation to ODF

Implementation:

One of the more advanced features of word processing is the usage of the ruby text especially in Asian
languages such as Chinese, Japanese, and Korean. The Korean language is based on Hanja (Chinese
characters). These characters are sometimes insufficient to determine meanings if the intended readers of the
text are not familiar with Hanja. To avoid this, Korean text uses ruby text to provide additional information. This
excerpt shows a sample paragraph using ruby texts in a Korean text document. There are right vertical, right,
and bottom ruby texts associated with the base characters in Figure 13.

5 Refer to http://www.w3.org/TR/ruby/ for information about "ruby text"

ISO/IEC TR 29166:2011(E)

20 © ISO/IEC 2011 – All rights reserved

Use case name: Phonetic guide functions
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Text direction

o OOXML: Subclause 17.3.3.25~28; 17.18.75
o ODF: Subclause 5.4; 14.8.4; 15.2.21~28;

15.6.*

Requirements:

During the translation between the two formats, presentation instructions such as the vertical, above and
below ruby text position with its associated base text, as shown in Figure 13, should be preserved. Document
parts should be consistently translated, thus enabling readers to edit the ruby text and super/sub scripts within
their position.

Conclusion:

ODF and OOXML both support ruby text. OOXML supports the @rightVertical attribute, which specifies that
phonetic guide text must be right aligned with respect to the base text, and displayed vertically and to the right
of the base text, regardless of the alignment of the base text. ODF does not support this right vertical
alignment which is used quite often in Asian languages including Korean with Hanja characters.

5.2.7 Tables and field functions

Textual description:

Using format A John plans to provide an invoice summary draft for his marketers to inform them about their
monthly trading results. After filling out the sales report John emails it to his marketers. Using different word
processing applications supporting format B, the marketers wait for the figures so they can spread the news to
their own division staff.

Figure 15 shows a brief excerpt from the sales report.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 21

Implementation:

One of the more advanced features of text processing is the usage of tables and predefined field functions as
seen in Figure 15. This excerpt shows a table with joined cells and common text formatting. Cells are joined
up to span multiple rows and columns. Different cell alignments appear as left, centre and right aligned text. A
hyperlink is inserted into the header row of the table. The figures are presented as nested tables.

Figure 15 — Sample table

Use case name: Tables and field functions
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Tables

o OOXML: Subclause 17.*
o ODF: Subclause 8.1, 15.*

Requirements:

When translating such a document between the ODF and OOXML International Standards, the result must
meet structure related requirements in addition to preserving the visual appearance of simple text and
paragraphs as shown in Figure 5. Document parts must be consistently translated to enable users to edit
hyperlinks, table cells and even complex nested tables after converting the document’s format.

ISO/IEC TR 29166:2011(E)

22 © ISO/IEC 2011 – All rights reserved

Conclusion:

The table tables in subclause 6.2.3 shows that the translation of table structures between ODF and OOXML is
supported in most cases. Problems appear when using table background patterns (not supported by ODF) as
well as sub tables (not supported by OOXML). Another problem is ODF’s lack of support for certain layouts,
such as the right to left layout. Such layout options could be emulated within the options available to ODF, but
even so they would still require a complex translation. ODF’s lack of support for document themes that are
frequently used in OOXML could cause information loss during translation. These differences restrict the
translatability of tables between the two International Standards.

5.2.8 Footnotes and endnotes

Textual description:

Figure 16 — Footnotes and endnotes in OOXML

Figure 17 — Footnotes and endnotes in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 23

John is working on scholarly papers for his standardization forum. He sends two draft papers with footnotes
and endnotes to his colleague Smith to check conformance of contents and references. John uses a format A
word processor. He saves the two drafts as paper1_draft and paper2_draft. Smith makes a few corrections on
John’s papers with his format B word processor and saves them as paper1_final and paper2_final. Afterwards
Smith sends the final versions to the other members of the forum. Some open the files with a format A word
processor, others open them with a format B word processor.

Implementation:

Authors use footnotes and endnotes to present references in a document. A footnote reference mark in the
body of the text is used to indicate that additional information is in a footnote and an endnote reference mark
indicates that additional information is in a endnote. Both footnotes and endnotes use a numbering system to
show readers if they need to look for footnotes at the bottom of the pages or endnotes at the end of the
section or at the end of the document.

Use case name: Footnote and endnote
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Footnote & Endnote

o OOXML: Subclause 11.3.4, 17.11.*
o ODF: Subclause 5.3.1, 6.3.1, 6.6.5,

14.9.2, 15.2.18, 15.2.20, 15.7.9

Requirements:

In both sections footnotes should be located at the bottom of the page under the separation lines. Endnotes
should be located at the end of the document. The main requirement in Figure 16 and Figure 17 is that
endnotes have to be placed at the end of the document.

Conclusion:

The numbering system used for footnotes and endnotes (Arabic and Roman numerals) translates well
between OOXML and ODF. The location of the footnotes is similar in both formats. The thickness and length
of the separation lines are a little bit different but also quite similar.

The major difference is the location of endnotes. The author intends to place the endnote at the end of the
document. OOXML places the endnotes at the end of the document within the same page. ODF places all
endnotes in a new page after the last page of the text. OOXML and ODF also support the location of endnotes
at the end of each section.

ISO/IEC TR 29166:2011(E)

24 © ISO/IEC 2011 – All rights reserved

5.2.9 Itemization and numeration

Textual description:

Besides common table functionality, other important features commonly used in office documents are
numerations and lists, which are often used in non-fictional texts like technical documentations as a common
means of presenting structured information. John gets a documentation paper from his technical department
about how to log on to his new workstation. The document was created using format B. It describes the
related tasks in a few steps. John opens the document using format A to reveal the following:

Figure 18 — Numbered items

Implementation:

The example shown in Figure 18 contains a simple list of instructions typed in plain text. The instructions are
listed using simple numerals and can contain special characters.

Use case name: Itemization and numeration
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content 

Metadata

Annotations and security

Document parts

Required features:
 Itemization and Numeration

o OOXML: Subclause 8.3, 17.9
o ODF: Subclause 4.2, 14.9

Requirements:

During a translation between both International Standards it should be possible to retain the numeration and
the structural order of list items.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 25

Conclusion:

Due to the ambiguous wording of the ODF International Standard for numeration, multiple interpretations of
certain itemization and numeration properties are possible. Both formats have multiple ways of applying
numbering to text segments. Maintaining visual fidelity would probably call for relatively complicated
transformation methods between the two International Standards, even if the logical hierarchy of different
layers of indices was preserved.

The translation of itemization and numeration properties between the International Standards ODF and
OOXML is described in more detail in subclause 6.2.5.

5.2.10 Indices and tables of contents

Textual description:

Figure 19 — Auto-generated indices

After opening a document with his format A application, John Marketer likes to cut out different chapters to
generate a condensed version of the document to email it to his colleagues. The screenshot in Figure 19
shows an example index consisting of a Table of contents and a List of tables of a market report John
downloaded from the internet. It was originally created using format B.

Implementation:

In addition to continuous text and structural and presentation features, large documents can contain indices
and tables of contents, to enhance readability and to make them more human searchable. Indices like the one
shown in Figure 19 should display the document's structure based on headings and page numbers as well as
figures and tables based on their captions. Indices should be generated automatically by the available word
processing application and kept updated as necessary.

ISO/IEC TR 29166:2011(E)

26 © ISO/IEC 2011 – All rights reserved

Use case name: Indices
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content

Dynamic content 

Metadata

Annotations and security

Document parts 

Required features:
 Indices

o OOXML: Subclause 17.16
o ODF: Subclause 7.*

Requirements:

The indices should be adapted automatically; deleted chapters or tables should no longer appear in the index
and the page numbers of the remaining parts of the document should be updated. The main requirement in
this scenario is that the table of contents and an index from a format A document can be correctly translated
into a corresponding table of contents and index in a format B document.

Conclusion:

Although the two document formats differ in their approaches to the generation of tables of contents and
indices, they do indeed offer comparable levels of support for this feature. Implementations must take into
account the different models, which makes the translation much more complex, especially when documents
combine the available models. A more detailed view of index handling is given in subclause 6.2.7. While a
table of contents may retain its property to be generable after translation from OOXML to ODF this property
may be lost for a list of tables/figures. Additionally a user defined appearance of the table of contents will be
lost during a translation process from OOXML to ODF although ODF allows user adjusted appearance of
indices.

5.2.11 Metadata and settings

Textual description:

John authors a text document using format A, which is to be edited by his secretary Mary who uses an
application supporting format B. The original letter is written using an English vocabulary, punctuation and
spell check. When Mary receives the document, her application should immediately recognize which language
was used when creating the document.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 27

Figure 20 — English text with German settings

Figure 21 — English text with English (en-GB) settings

Figure 22 — Language metadata info in ODF and OOXML

Implementation:

To ensure a correct interpretation and description of word processing documents, certain additional
information must be stored as metadata. One example of such metadata is the paragraph style indicating the
language used in authoring a document. Grammar and spelling checkers will need this information when
working with the translated document.

ISO/IEC TR 29166:2011(E)

28 © ISO/IEC 2011 – All rights reserved

The document shown in Figure 20 was written in English with an application normally using German as its
default language. Thus, the written words are not recognized by the German spelling checker, as shown by
the squiggly red lines displayed under each word. In Figure 21, the language settings have been modified, as
evidenced by the absence of the red lines denoting misspelling. Excerpts from the documents’ metadata files
are given in Figure 22, where the position indicating the default language is underlined in red.

Use case name: Metadata and settings
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content

Dynamic content

Metadata 

Annotations and security

Document parts

Required features:
 Metadata

o OOXML: Subclause 17.3
o ODF: Subclause 2.*, 3.1

Requirements:

A target word processing application must be able to correctly interpret a document’s metadata if errors are to
be avoided. Translation tools should ensure adequate mapping or meaningful default mapping of the
metatags when translating between standards.

Conclusion:

Both International Standards support different types of metadata. In OOXML metadata are stored in the
app.xml and core.xml files. ODF stores metadata in meta.xml. Language information is stored in the style.xml
files. It can be adequately translated. Information about document settings contains presentation instructions.
They are stored in setting.xml files. Several metadata such as creating application and creation date have to
be modified during a translation process.

5.2.12 Change tracking and collaboration support

Textual description:

The following scenario illustrates how collaboration between different authors using different text processors
should proceed.

The format A user John Marketer and some of his partners are planning to launch an article in the online
magazine OpenBusinessMag. John Marketer and some other persons will all contribute to it, authoring in
different formats. The first draft of the document will be provided by John himself. Figure 23 illustrates the
initial version of the article.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 29

Figure 23 — Continuous text

John sends this document to his co-author with request for comments. Using the format B commenting and
change tracking feature the co-authors reviews the document. Comments are marked with the initials of the
user entering the comment, with different colours marking comments made by different users. The change
tracking function highlights added, edited, moved or deleted text parts. It shows the obsolete text parts in
coloured comment boxes as shown in Figure 24 and Figure 25.

Figure 24 — Continuous text with annotations

Figure 25 — Continuous text and table with tracked changes

ISO/IEC TR 29166:2011(E)

30 © ISO/IEC 2011 – All rights reserved

After the co-author has sent back the revised version of the article, John can revise the text by accepting or
rejecting the comments and proposed changes.

Implementation:

One of the most important features for editing large documents with multiple authors is called collaborative
functions which include user-specific comments and tracking of changes. These functions enable collaborative
workflows, allowing document editing and reviewing by multiple participants. The information required for such
workflows, including user data, notes or tracked changes, is embedded within the document itself. Proper
adoption of such meta-information plays an important role in the collaborative authoring processes.

This type of application, with its workflow support, substantially alleviates the difficulties of revising documents
with multiple authors. The foundation for this document lifecycle is the proper conversion of meta-information
from one standard to the other, to correctly retain comments and proposed revision information.

Use case name: Change tracking and collaboration
functions
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions

Document content 

Dynamic content

Metadata 

Annotations and security 

Document parts

Required features:
 Change tracking and document revision

o OOXML: Subclause 17.*
o ODF: Subclause 3.1, 4.6, 8.3, 12.3

Requirements:

The references to the paragraphs, words and characters made by John’s co-authors using OOXML should be
accurately translated in Johns ODF supporting application. The information used for change tracking should
also reflect the exact editing (such as highlighted changes) in such a way that it can be accurately reproduced,
since it is vital that all proposed changes be rendered properly.

Conclusion:

Both document formats offer support for revision handling, although there are significant differences in the
scope of their revision-handling functionality and their approach to the underlying technical details. For
example, ODF does not allow for tracking changes made within tables, while OOXML tracks changes to the
content of tables as well as changes to the structure of tables themselves. While ODF only records the fact
that a text attribute, such as the used text font, has changed, OOXML records the full history of changes made,
ensuring the ability to reconstruct the previous text version. Another difference is in the understanding of text
comments. While OOXML allows adding comments to arbitrary text ranges, this feature is not supported by
ODF. However similar functionality may be provided by inserting notes associated with a point within the text

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 31

rather than a range. The table change tracking and document revision in subclause 6.2.8 details how
collaborative functions could be used when translating between the different document formats.

ODF (ISO/IEC 26300) does not provide enough information for a meaningful analysis of the support for
revision-handling and change tracking. For this reason OASIS has introduced the Advanced Document
Collaboration Subcommittee late 2010 that will define corresponding features in upcoming versions of ODF.

5.2.13 Bibliographies and optional document parts

Textual description:

The following scenario illustrates the management of bibliographies and optional document parts.

Format A user John Marketer and his partners working on an article decide to add citations and a bibliography
to the article. John Marketer copies citations from his private bibliography database to the document’s internal
bibliography sources and sends it to his co-authors who are using format B. The co-authors add their
references to the document’s bibliography sources and update the bibliography. One author adds an optional
section to the paper that should only be used in the paper’s long version.

Figure 26 — Citations and bibliographies

Implementation:

In most scientific papers the authors have to provide a bibliography with references to cited articles, books, or
Web sites. In case an author writes several papers it is desirable to have a bibliography database storing the
information about all important papers and to be able to copy the information about the cited papers to the
document. Additionally it is advantageous to store the same information attributes common to all cited papers.

Word processing applications should be able to generate a bibliography from the cited papers and update this
bibliography if some new citations have been added.

With optional text document parts it is important that different applications treat these parts in the same way
and that text remains optional after a mapping between the International Standards.

ISO/IEC TR 29166:2011(E)

32 © ISO/IEC 2011 – All rights reserved

Use case name: Bibliographies
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Bibliography

o OOXML: Subclause 11.3.8
o ODF: Subclause 7.9, 7.1.4

 Glossary document/hidden sections
o OOXML: Subclause 17.12
o ODF: Subclause 4.4.1

Requirements:

A minimum requirement is that citations remain citations and bibliographies remain bibliographies. Thus it
should be possible to add a new and to change or remove an existing citation and regenerate the bibliography.
It is desirable that the type of information stored in the document preserves its semantics, thus an author
should remain an author and a title should remain a title. The document internal “databases” should be
mapped as well as possible.

It is not necessary to translate external bibliography databases between both formats because these
databases depend on the word processing application and not on the document standard.

Conclusion:

Both the ODF and OOXML formats support bibliographies and optional document parts. Unfortunately both
International Standards use different concepts which make it impossible to define generic translations.
However some word processing applications may be able to provide such mappings in a restricted context.

5.2.14 Sub documents and books

Textual description:

Format A user John Marketer decides to split the article on Web services into separate sections to be
assigned to the responsible authors. John wants to compose the article from the sub documents created by
his co-authors. To guarantee a common "layout" of the final document he distributes document templates to
all of them. Each co-worker provides a single chapter that is written in its own document in file format A. All
sub documents are stored independently in the file system.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 33

Master

Chapter 1

Chapter 2

Chapter 3

File 1

File 2

File 3

Figure 27 — Master document referencing its sub documents

The full document is combined using a master document, which allows the sub documents to be merged into
a single document. The styles are automatically adjusted to the master document's layout properties and
settings.

Figure 28 — Linked text sections in an ODF application

ISO/IEC TR 29166:2011(E)

34 © ISO/IEC 2011 – All rights reserved

Figure 29 — Sub documents in an OOXML application

Subsequently the complete document will be send to an external proofreader who uses file format B. The
revised text will then be returned to John Marketers company via email.

Implementation:

Both ODF and OOXML allow large documents to be broken into a number of smaller ones that can be
distributed and edited independently. Both International Standards introduce different terms for the central
document referencing sub documents. OOXML uses the name master document whereas ODF defines the
term global document in its specification. The linked entities are called sub documents in OOXML and linked
text sections in ODF.

Since all chapters in the example above are stored in separate documents, they can be modified
independently by all co-workers. A master document has to be created and references to the appropriate sub
documents. The style properties of the main documents can automatically be applied to all chapters that were
included.

Use case name: Sub documents and books
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content 

Metadata

Annotations and security

Document parts 

Required features:
 Linked text s

ODF: Subclause 2.3.1, 4.4
 Sub documents and books

OOXML: Subclause 11.6

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 35

Requirements:

The full document created by John and his co-workers has to be organized in equivalent document parts
(master and sub documents) when it is opened on ODF or OOXML platforms. After switching from one format
to another, sub documents still have to be readable and writeable as standalone documents. The
representation of the compound document has to be unified automatically. The tables of contents,
bibliographies and other indexes have to be updated without manually editing the master document.

Conclusion:

Both International Standards provide similar features allowing the creation of master or global documents that
combine independent document entities using references. In both cases the formatting can automatically be
unified by the presentation instructions of the master. For this reason the translatability between both
International Standards initially seems to be quite high. The translatability in a particular case is tightly coupled
to the translatability of the features that were used. Since generic mapping for the commonly used citations
and bibliographies seems to be impossible, many translations of compound documents will fail as well.

5.2.15 Forms

Textual description:

John Marketer’s company has been optimizing its internal workflow processes for years. Paper based
workflows have become so rare that almost all corporate forms are digitalized. At John’s company, these
different formats are gathered on an internal website accessed by most people at the company. The
aforementioned workflows sometimes involve the transfer of forms between computers running different word
processing applications. This use case illustrates some simple features commonly used in forms:

Figure 30 — OOXML form

Implementation:

Modern word processing documents are tightly integrated into electronic workflows. They serve as static
output formats for reports or certificates and, with their extended form functionalities, they can also be
integrated as dynamic, data driven front-ends.

The form in Figure 30 shows different textboxes. The form is filled out by an applicant and submitted to a
workflow system which integrates the form’s data directly into applications which further process the data.

ISO/IEC TR 29166:2011(E)

36 © ISO/IEC 2011 – All rights reserved

Use case name: Forms
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content 

Metadata

Annotations and security

Document parts 

Required features:
 Forms

o OOXML: Subclause 17.16
o ODF: Clause 11

Requirements:

To pass this form between applications based on ODF and applications based on OOXML, behaviour and
content type of the form fields needs to be preserved. Translating the form from one format to the other for
processing or viewing should not result in data corruption.

Conclusion:

Both International Standards define forms based on text boxes, check boxes, and drop-down lists.
Nevertheless translation of forms between ODF and OOXML is likely to prove problematic, since the two
technologies diverge strongly in many aspects of form handling. While ODF is directed to the open standard
XForms (Version 1.0 from 2004), OOXML uses simply form fields that support insertion of data through form
controls. Although both concepts work with user-defined XML structures, which help to export structured data
from text processing documents, the translatability potential of forms between the two International Standards
is merely low to average.

5.2.16 Vector graphics

Textual description:

In the following scenario, a logo stored in the common WMF (Windows Metafile) format is embedded into a
format A document by Mary and emailed to John who is using format B. John evaluates and approves the
logo. Ideally, the logo should be displayed by the format B application in a similar way as it has been
displayed by the format A application.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 37

Figure 31 — Embedded vector graphic

Implementation:

Vector graphics are essential elements of modern document content and presentation, especially for printing
purposes. They are flexible in use, editable to a certain extent, and scalable to nearly any size without any
need for special expertise in graphics.

Use case name: Vector graphics
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Vector graphics

o OOXML: Subclause 8.6
o ODF: Subclause 9.3

Requirements:

Vector graphics embedded in documents should maintain their appearance, scaling, and quality when
translating documents between the two formats. There should be no discernible difference between graphics
presentation under ODF and OOXML. This applies equally to graphics properties such as pixel size, colour
encoding etc.

Conclusion:

Unlike bitmap graphics which are represented simply through a MIME type and are virtually platform-
independent, vector graphics pose bigger translation challenges. OOXML essentially defines its own
DrawingML format to which the now obsolete VML (Vector Markup Language) was a precursor. ODF
recommends the use of SVG (Scalable Vector Graphics) which is not as rich in features and functionality as
DrawingML. The ODF International Standard merges the SVG namespace with ODF’s namespaces, so the
SVG objects in ODF documents can’t be handled by generic SVG tools and technologies. These types of

ISO/IEC TR 29166:2011(E)

38 © ISO/IEC 2011 – All rights reserved

disparities could pose potential interoperability problems between the two International Standards in the area
of vector graphics.

5.2.17 Font embedding and paper size

Textual description:

Mary is a graphic designer. Her computer is equipped with a large font library. One day she sends a design
draft to John using format A. However John’s computer can only process documents in format B and has
limited fonts installed. Mary thus embeds all the fonts used in the document, and sets the paper size for
printing to 14cm width and 15cm height. John opens the document and noticed that the paper size is almost
correct, however, some text cannot be displayed using the expected fonts although he could still read the text.

Figure 32 — OOXML document with embedded fonts and 14 x 15cm paper size

Figure 33 — ODF document using similar fonts and 14 x 15cm paper size

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 39

Implementation:

When a computer does not have enough fonts installed, font embedding will help the user to display the
document in the same way as the original. It is implemented by adding the font data into the document, thus
the font goes with the document to ensure the proper font is available where required. Document size will
increase to some extent after font embedding. Some protected fonts are unable to embed without
authorization.

For paper size for printing, the software usually has a set of predefined names for frequently used paper sizes,
e.g. A4, B5, etc. Additionally, it allows the user to define special paper sizes which are not listed in the
predefined list. The paper size setting affects the layout of the document typesetting.

Use case name: Font embedding and paper size
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Font embedding

o OOXML: Subclause 17.8
o ODF: -

 Paper size
o OOXML: Subclause 17.6
o ODF: Subclause 15.2

Requirements:

Ideally, both document formats would support font embedding. However, in case font embedding is not
supported in a target format, the translator should capture enough information from the source format to allow
the software find similar fonts to display the document using certain algorithms to ensure the text is still
readable.

Ideally, it is required that both document formats share the same definition for frequently used paper sizes. If a
type of common paper size, e.g. letter, is not defined in the source format, the right width and height of the
paper corresponding to letter should be able to be specified in the source, and when it is translated into the
target format, the size will still be mapped to letter. In any case, the paper size should be consistent in the
source and target documents.

Conclusion:

OOXML supports embedded fonts whereas ODF does not support this feature. Therefore there is no way to
embed a font in an ODF document. When an OOXML document with embedded fonts is translated into the
ODF format, we can expect that the text will still be readable, however, the fonts may not be exactly matching.

ISO/IEC TR 29166:2011(E)

40 © ISO/IEC 2011 – All rights reserved

On the other hand, paper size information can be kept consistent in the source and target documents, thus the
documents will be printed out using the same paper size.

5.2.18 Font metrics and font substitution

Textual description:

Mary writes a letter using format A and emails it to John using format B. The letter is typed using proprietary
fonts. John opens the letter, reviews it, prints it out, signs it and sends it to the mail centre for postage.

Figure 34 — Proprietary font and substituted fonts in OOXML and ODF tools

Implementation:

New fonts such as Microsoft’s C-fonts (Calibri, Cambria, Candara, etc.) or company specific fonts like the
tele-* fonts of German Telekom are not available in every environment. To guarantee high visual fidelity the
metrics of the available fonts are used to identify an alternative font in case the primary font is not available.

Use case name: Font metrics
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Font metrics

o OOXML: Subclause 17.81, 7.8.2,
17.8.3.10

o ODF: Subclause 2.6, 14.6

Requirements:

The document John opens should look similar in terms of line and page breaks as in Mary's environment.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 41

Conclusion:

Font substitution is a process by which an application, when it cannot locate a specific font, attempts to locate
the closest possible match as a suitable alternative to the intended appearance of the font. However, based
on the availability of a font an application might not be able to locate the specified font. The exact algorithm
which is used for font substitution is highly dependent on the characteristics which are most desirable when
performing the substitution. Typical criteria are similar appearance of each glyph to maximize visual familiarity
or similar physical characteristics to minimize changes in line height and breaking. Both document formats
consider font substitution as being implementation dependent.

OOXML (WML) uses font properties such as name, family, metrics, the Panose-1 typeface classification
number, and code pages and Unicode sub-ranges referring to ISO/IEC 14496-22:2007 for each font used in
the document. OOXML recommends that applications looking for the closest match considering specific
properties, for example the Panose-1 classification number for the current font using the mechanism defined
in §4.2.7.17 of ISO/IEC 14496-22:2007. However, applications are free to apply different strategies.

A document in ODF may contain font face declarations. A font face declaration provides information (font
descriptors) about the fonts used in the document, so that these fonts or fonts that are very close to these
fonts may be located on other systems. Font face declarations directly correspond to the @font-face font
description of the Cascading Style Sheet specification 6 and the <font-face> element of Scalable Vector
Graphics specification7. Conforming applications should implement the CSS2 font matching algorithm but they
may also implement variants of it. They are especially allowed to implement a font matching based only on the
font face declarations, that is, a font matching that is not applied to every character independently but only
once for each font face declaration.

Because both formats refer to different standards for the definition of font properties and matching algorithms,
translatability between the International Standards is limited. The visual appearance of documents may differ
because of the implementation dependency of font substitution.

5.2.19 Document fields

Textual description:

In the first week of every month John’s company invites its partners to send over representatives for a
business luncheon and business update meeting. For this purpose Johns office sends out hand signed letters
every month. To automate this recurring task, Mary, using format A has created a letter template with
document fields that automate tasks such as including addressee addresses for mass mailings, portions of
text or the current date. When John using format B reopens one of these template-generated letters for review,
amendment and printing, certain fields are auto-completed, which saves him both time and trouble.

Figure 35 — Field function displaying the current date

6 CSS2: Cascading Style Sheets, level 2; http://www.w3.org/TR/1998/REC-CSS2-19980512, W3C, 1998

7 SVG: Scalable Vector Graphics 1.1, http://www.w3.org/TR/2003/REC-SVG11-20030114/, W3C, 2003

ISO/IEC TR 29166:2011(E)

42 © ISO/IEC 2011 – All rights reserved

Implementation:

The concept of document fields was introduced to provide text documents with dynamic content. Fields have
become one of the most basic tools in preparing document templates. Fields automatically update to include
changing data in the document. Combining fields with auto text creates a powerful documentation toolbox.

Use case name: Generic fields
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content

Dynamic content 

Metadata

Annotations and security

Document parts

Required features:
 Generic fields

o OOXML: Subclause 17.16
o ODF: Subclause 6, 11.3

Requirements:

The document created by Mary should contain the same document fields when it is opened by John, and
function the same way on both ODF and OOXML platforms. The current system date, for example, should be
recognized by the application which opens the document and should be displayed correctly in the
automatically updated date fields. It is important that applications correctly interpret all formats and
conventions.

Conclusion:

Document fields such as date, time, or page numbers can be translated between both International Standards.
Unlike ODF, OOXML allows text fields to contain content that can be associated to user-generated XML
schema. This functionality is used by third-party applications to extend the document's functionality, i.e. by
dynamically inserting (meta-)data into a document, or by extracting data in order to perform calculations,
please refer to subclause 5.2.20 about the inclusion of user defined XML.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 43

5.2.20 Inclusion of user defined XML

Textual description:

Figure 36 — User defined XML

John Marketer’s company wants to undertake a customer satisfaction survey. John is therefore going to
create a digital form using his word processing application. This document has to be exchanged via email.
The data contained in the completed surveys has to be exported to XML. Since John’s company has a large
number of customers, he wants to reduce the effort of manual post-processing or transcription as far as
possible. Hence he is using a format A feature that allows him to bind a control of his form to an XML attribute
or element.

This following XML document is an example of a given XML schema. It looks like:

<survey>
 <date>2010-03-18T00:00:00</date>
 <name>Customer 77</name>
 <question1>Yes</question1>
 <question2>Yes</question2>
 <question3>Yes</question3>
 <question4>Yes</question4>
 <question5>Yes</question5>
 <question6>No</question6>
</survey>

Some participants of the survey use format A, as John Marketer does, others use format B.

ISO/IEC TR 29166:2011(E)

44 © ISO/IEC 2011 – All rights reserved

Implementation:

OOXML offers the possibility to bind so called content controls to custom XML parts. This can be done using
third party tools (e.g. Content Control Toolkit), scripting or manually editing the OOXML package. Whenever
an OOXML form with a binding to a custom XML part is changed, the relating XML data within the package
will be changed as well. In the other direction modified XML data will lead to modified content of the form.

ODF uses XForms8 to map the content of document parts such as text fields or check boxes to XML elements
and attributes. A filled out form can be submitted – similar to an html form – to a host or can be directly written
to a file.

Use case name: User defined XML
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions

Document content 

Dynamic content

Metadata ()9

Annotations and security

Document parts 

Required features:
 Form and control attributes

o ODF: Subclause 11.2, 11.4.3
 Custom XML

o OOXML: Subclause 18.16, 22.5, 23,
Annex F

Requirements:

The document created by John has to contain the equivalent controls when it is opened by a format B user,
and has to be bound to exactly the same XML elements and attributes using ODF and OOXML applications.
The bindings have to persist after converting in both directions from OOXML to ODF and from ODF to
OOXML.

Conclusion:

Both International Standards define similar controls or components to create digital forms. Nonetheless, the
technologies differ in many aspects of form handling. ODF 1.0 (XForms 1.0) and OOXML (custom XML)
enable the user or developer to bind the values of a form to user defined XML elements or XML attributes. But
both variants differ especially in the way the XML data is stored. In the case of custom XML, the data is part of
the document package itself. XForms bind the XML data to a file that can be submitted or written to the file
system.

8 ISO/IEC 26300 refers to the 2004 version of XForms 1.0.

9 The ODF 1.2 Committee Specification provides a solution utilizing metadata concepts.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 45

Currently the concepts of XForms (ODF) and the combination of content controls and Custom XML (OOXML)
vary strongly in their underlying concepts. Therefore the translatability potential of both solutions can be
classified as low.

The upcoming version ODF 1.2 introduces an RDF metadata feature which offers a solution for metadata
annotation whose intent and purpose are comparable to the usage of custom XML in OOXML.

After losing a patent suit in 2009, Microsoft has been banned from selling copies of Microsoft Word containing
the custom XML technology. Therefore Word 2007 added features allowing content controls to be mapped to
XML data stored in a DOCX file. Hence content controls and XML data stored within DOCX or DOCM files
should not be affected by this modification.

5.2.21 Mathematical formulas

Textual description:

John uses his format A application to write an article he intends to publish in a journal. The article contains
several embedded formulas, which require special formatting to appear in a certain way so as to properly
resemble formulas. He emails the article to Mary, his secretary, to look over and correct. Mary views and
modifies the document using her format B application.

Figure 37 — Embedded formula

Implementation:

In ODF formulas are described using the W3C recommendation MathML and anchored as part of drawing
elements within or between text paragraphs. With the additional semantic content definition (in the form of
semantic tags and annotations) provided by MathML, equations could also be communicated in different ways.
MathML encodes the notational structure of an expression in a sufficiently abstract way to facilitate rendering
to various media. Thus, the same presentation markup can be rendered with relative ease on screen in either
wide and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensible way when
spoken.

Formulas in OOXML are described in the shared Office Math Markup Language (OMML) language. These
formulas are embedded in OOXML documents. They support features such as revision markings, images and
regular styles and formatting found in regular WordprocessingML. OMML can be transformed into MathML via
XSLT.

ISO/IEC TR 29166:2011(E)

46 © ISO/IEC 2011 – All rights reserved

Use case name: Formulas
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security 

Document parts

Required features:
 Formulas

o OOXML: Subclause 8.6; 17.5
o ODF: Subclause 9.3

Requirements:

The formula John inserts in the document should be displayed on Mary's system in a form equivalent to that
created by John thus all elements of the formula such as operators and operands must be identifiable and
modifiable. Formula elements may not be omitted, swapped or placed in the wrong position.

Conclusion:

Mathematical content such as formulas is represented via MathML in ODF, even though ODF does not import
or reference the MathML schema definition. For this reason it cannot be guaranteed that ODF documents
containing equations are always schema compliant. OOXML implements the shared markup language OMML
for handling mathematical formulas. In OOXML shared part types can refer to both MathML and OMML even
though OOXML uses only OMML as its native format for formulas. Because OOXML is able to understand
MathML the translatability between both International Standards utilizing XSLT transformations is quite high.
Nevertheless the translatability depends very much on the implementation of the translator. In many situations
the result of a translation process looks like an equation but it is simply a character string or a graphic and
cannot be further edited like an equation.

Change tracking is not possible in MathML.

5.3 Spreadsheet documents

5.3.1 Empty spreadsheet document

Textual description:

When a new document is created either in ODF format or in OOXML format, the user initially receives an
empty document, even though it may look differently in the application user interface. When the document is
saved without any further editing, a document is generated without user content. However, it does contain
some metadata as well as some initial settings, e.g. default sheets, style information and presentation
instructions. Some extra information which could be specified depends on the applications, for example, the
initial number of sheets, the number of rows and columns in each sheet, the settings of sheets and views,

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 47

number styles and currency styles, etc. This initial content should be preserved as far as possible during the
translation process.

Figure 38 — Empty spreadsheet document

Implementation:

The term empty document is not defined in both International Standards. Some default information like
settings, styles, presentation instructions and metadata are defined by the application. For example, an empty
document has one or more default worksheets and a default definition of sheet or page layout without user-
defined content. Generally, the application supports a presentation view and one or more sheets without user-
defined content.

Use case name: Empty presentation document
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata 

Annotations and security

Document parts

Required features:
 OOXML: Subclause 8.4; 12, 18
 ODF: Subclause 2.2, 2.3.4; 2.4; 3; 8.5; 14; 15

ISO/IEC TR 29166:2011(E)

48 © ISO/IEC 2011 – All rights reserved

Requirements:

When a document is translated from one format into another, all the default styles of cell, row, column, and
table, as well as page layout and master page styles should remain unchanged in the target format in order to
facilitate further editing. Furthermore, default settings, presentation instructions and metadata should be
preserved if possible: for example, the initial number of sheets, the number of rows and columns in each sheet,
settings of sheets and views, number styles and currency styles. It is not expected that both International
Standards will necessary use similar defaults for metadata.

Conclusion:

Neither ODF nor OOXML precisely define the term empty document. Thus the content of an empty document
depends more on the creating application than on the International Standard. When an empty document
defined in format A is opened in format B, default settings, styles, presentation instructions as well as
metadata can be preserved. However, the initial view of the empty document may be slightly different,
depending on the rendering engine. Metadata can be translated accordingly, even though some information
like the application creating the document may be modified.

5.3.2 Listing and structural features

Textual description:

John Marketer makes use of a spreadsheet document to store contact information of his personal clients
using a format A application on his private laptop. The table has 5 columns and about 400 entries with names,
addresses and birthdays. The top row contains the title of the columns containing first name, surname,
address, notes and date of birth. To facilitate navigation, the top row is fixed, and will not move while scrolling
down the rows. The screenshot shows an excerpt from the spreadsheet. John emails this document to his
secretary Mary to update the customer database manually. Mary is using a format B application on her
workstation. After she has finished the work she returns the document to John.

Figure 39 — Address list in a sheet

Implementation:

One of the main applications for spreadsheets is the listing and structuring of large amounts of data in sortable
tables. Presentation instructions can define the frames, shading and colours used for highlighting and
structuring certain parts of the spreadsheet. This use case illustrates the most important functionalities used in
spreadsheets. The graphical characteristics of this sheet include its fixed top row, the grey shading of the top
row, the coloured text in a single cell and the highlighting coloured frame on a complete row. The last column
uses date formatting which formats any entry as a date.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 49

Use case name: Listing and structural features
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Formatting

o OOXML: Subclause 8.4, 12, 17.4, 18.*,
21.2

o ODF: Subclause 2.3.4, 6.7, 9.3, 14.7,
15.*

Requirements:

When employee Mary opens John's list, it should remain obvious that certain elements, such as the row
marked red or the red text, are more relevant than others. All the applied presentation characteristics created
in format A must be reproduced accurately in Mary's format B application. Mapping of colours is covered in
subclause 5.5.2.

Conclusion:

Though certain non-vital features such as shared formulas are not supported by both International Standards,
and features like cell protection are implemented with different granularity, more important features such as
highlighted cell borders, background images and the assignment of formulas and functions to particular cells
are well-translatable. For this use case, the level of translatability with respect to preservation of content and
presentation is high. See subclause 6.3.2 for more details.

5.3.3 Formulas and calculation

Textual description:

John is working for a big marketing services company. The IT department of John’s company provides format
A spreadsheet templates like the one shown in Figure 40 to the employees enabling them to place orders for
their demand on new computer equipment. John is using the template in a format B application and returns it
to the company's format A environment.

Implementation:

In addition to storing and organizing data, spreadsheets are a powerful tool for managing complex and
dynamic calculations. Within a spreadsheet, any cell can contain a formula which references the values of
other cells using row and column numbers.

ISO/IEC TR 29166:2011(E)

50 © ISO/IEC 2011 – All rights reserved

Use case name: Formulas and calculation
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content 

Metadata

Annotations and security

Document parts

Required features:
 Calculation

o OOXML: Subclause 18.*
o ODF: Subclause 8.1

Figure 40 — Spreadsheet based invoice template

Requirements:

The essential part of this spreadsheet consists of a table for the invoice line items and Total Due cell for
automatically calculating the total cost of the items ordered. Each time a new line item is added, the Total Due
field is updated automatically. Translation of calculation spreadsheets should preserve formula logic as well as
presentation and layout information.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 51

Conclusion:

One problem likely to arise when translating spreadsheets is that formula evaluation is generally application
dependent; calculations may work differently if used in different applications. Possible workarounds for such
difficulties could be:

 The use of self-written formulas as against the native out of the box ones provided by the application
which might pose problems during adaptation to non-native platforms;

 The mapping of formulas to specific programming/script languages.

The general underlying problem is the lack of a uniform implementation standard for formulas; such a
standard would go a long way towards alleviating formula incompatibilities. The OOXML International
Standard includes a documented formula syntax, but ODF does not include a standardized syntax for
formulas. The ODF 1.2 Committee Specification includes a standardized Open Formula syntax, which may
enable implementers to more reliably map formulas between ODF and OOXML spreadsheets. This is less of a
conversion/mapping problem than an end user inconvenience. Further details are given in subclause 6.3.3.

5.4 Presentation documents

5.4.1 Empty presentation document

Textual description:

When a new document is created either in ODF format or in OOXML format, the user initially receives an
empty document, even though it may look different in the software user interface. For example, in Microsoft
Office, the user sees an empty title/subtitle slide. When the document is saved without any further editing, a
document is generated without user content but with some metadata as well as some initial settings, e.g.
various styles, masters and slide layout information, page layout and presentation instructions. This initial
content should be preserved as far as possible during the translation process.

Figure 41 — Empty presentation document

ISO/IEC TR 29166:2011(E)

52 © ISO/IEC 2011 – All rights reserved

Implementation:

The term empty document is not defined in both International Standards. Generally, an application defines
some default information like settings, master layout, presentation instructions and metadata. An application
may define a default slide without any user-defined content.

Use case name: Empty presentation document
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata 

Annotations and security

Document parts

Required features:
 OOXML: Subclause 8.5; 13; 19.*
 ODF: Subclause 2.2; 2.3.3; 2.4; 3; 9.10; 9.11;

14;15

Requirements:

OOXML and ODF maintain their own default sets of slide layouts, slide masters, handout masters, notes
masters and colour schemes. If a document is translated from one format into another these entities should
remain unchanged during the translation in order to facilitate further editing. Furthermore, default presentation
and style instructions as well as metadata should be preserved if possible. It is not expected that both
International Standards will necessary use similar defaults for metadata.

Conclusion:

Neither ODF nor OOXML precisely define the term empty document. Thus the content of an empty document
depends more on the creating application than on the International Standard. When an empty document
defined in format A is opened in format B, default slide layouts, slide/handout/notes masters, colour schemes
and presentation instructions can be preserved. However, the initial view of the empty document may be
slightly different, depending on the rendering engine. Metadata can be translated accordingly, even though
some information like the application creating the document may be modified.

5.4.2 Simple text formatting

The basic features of presentation documents are quite similar to those of text processing documents. The
following scenario describes the common features of presentation documents exemplified by a simple
presentation of an Annual Report. The annual report was created by John Marketer using a format A
application and should be reviewed by his secretary Mary using a format B application. John uses a
customized design to layout the presentation.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 53

Textual description:

Mary opens the annual report for review. She checks to make sure the formatting is correct and there are no
grammatical errors.

Figure 42 — Simple text formatting in presentation documents

Implementation:

The introductory slide makes use of common text formatting features such as centred and bold text. The slide
consists of text and a footline consisting of the author's initials, date and slide number. The design defines text
fonts, background colours and the position of the footline's elements.

Use case name: Simple text formatting
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Formatting

o OOXML: Subclause 2.3.3, 13.3, 19.*,
21.1

o ODF: Subclause 4.4, 14.6, 15.*

ISO/IEC TR 29166:2011(E)

54 © ISO/IEC 2011 – All rights reserved

Requirements:

Any corrections Mary makes in format B, (such as changes to fonts, indentation or layout) should be
reproduced without significant discrepancies when John reopens the presentation using his format A
application.

Conclusion:

The requirements of this use case concerning text properties are relatively easy to translate between the two
International Standards. Details can be found in subclause 6.4.2. Because ODF does not support the concept

of themes10 it is solely possible to map theme's properties such as colours, fonts, and effects to the ODF
master layout but not vice versa. Thus round trip translation is not supported for themes.

5.4.3 Itemization and numeration

Textual description:

John Marketer shows the following slide to the management board during their annual executive board
meeting where he aims to present the company's achievements for the past year in short concise points. The
slide has been cross-checked by Mary.

Figure 43 — Itemization and numeration in presentation documents

Implementation:

This slide contains a text list similar to that used in word processing applications. The list is comprised of a
combination of both numbered bullet point and list items. The bullet points are demarcated by symbols, while
the main points are demarcated by numerals.

10 Please consider that themes are not used in this use case. The example can be implemented utilizing styles.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 55

Use case name: Itemization and numeration
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content 

Metadata

Annotations and security

Document parts 

Required features:
 Itemization and numeration

o OOXML: Subclause 13.3.*
o ODF: Subclause 4.4

Requirements:

The combination of bullet points and numbered list items should be displayed identically by both applications,
since any change in indentation, formatting or symbols used could cause confusion or distortion of facts.

Conclusion:

The minor problems evident in the translatability of itemization and numeration in word processing documents
also apply to presentations because ODF implements these features identical for all document types. In this
use case, however, translatability between the two International Standards is on a high level.

5.4.4 Positioning and layout

Textual description:

John Marketer has created a slide, which portrays projected results for two different years. These two years
will be compared with three short bullet points, and the difference between the statistics for the two years
should be recognized easily at the first glance. The slide has been crosschecked by Mary.

ISO/IEC TR 29166:2011(E)

56 © ISO/IEC 2011 – All rights reserved

Figure 44 — Positioning and layout in presentation documents

Implementation:

The slide contains two sections. Each contains distinctive text. The text in each section is a combination of
headers, regular text portions and numbered list items. The two sections differ in content but not, however, in
format.

Use case name: Positioning and layout
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Positioning and layout

o OOXML: Subclause 13.3.9
o ODF: Subclause 14.15

Requirements:

In this use case, the fragmentation of the text into two separate windows is significant. When Mary opens the
slide in her format B application, it should display precisely as it did in John's format A application. All changes
made by Mary should be visible to John when he reopens the document and display as they did in the format
B application.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 57

Conclusion:

In this use case, translatability is high for both content and presentation instructions.

5.4.5 Slide blending and animation effects

Textual description:

To enhance the presentation she has prepared, Mary applies visual animation effects between the slide
transitions. John reviews the presentation shortly before a board meeting using his format A application.

Figure 45 — Slide blending in presentation documents

Implementation:

Instead of simple transfers from slide to slide, Mary uses blending effects where one slide blends over into
another, as in the fades or push transitions illustrated in Figure 45. Animation transitions make the slide
changes appear more fluid and give the presentation a smoother overall look.

ISO/IEC TR 29166:2011(E)

58 © ISO/IEC 2011 – All rights reserved

Use case name: Slide blending and effects
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Presentation

o OOXML: Subclause 19.5
o ODF: Subclause 13.1, 15.36

Requirements:

The same visual effects should be visible when John opens the presentation using format A. If Mary later
alters or adds to the effects already applied using a format B application, such changes should be reflected
the next time John reopens the document using format A. A round trip translation should be possible.

Conclusion:

Certain features such as time line functionality or transitioning slides along Bezier curves or polylines are not
supported by ODF. OOXML provides a far richer set of features which are only marginally translatable, or
indeed impossible to transform into ODF. This makes for restricted translatability between the two
International Standards with regard to animated slide transition features.

5.4.6 Animations

Textual description:

To be able to visualize the quoted statistics better, John Marketer adds some animations to be displayed to
the right of the text box. He wants Mary to review and make sure the statistics displayed are correct before he
presents them at a meeting.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 59

Figure 46 — Slide before animation

Figure 47 — Slide after animation

Implementation:

The bars shown in Figure 47 seem animated as they appear one by one with the help of graphic effects which
are triggered by a mouse click or shown at timed intervals. The embedded animation is visible for as long as
the slide is active.

ISO/IEC TR 29166:2011(E)

60 © ISO/IEC 2011 – All rights reserved

Use case name: Animations
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Presentation

o OOXML: Subclause 19.5
o ODF: Subclause 9.7

Requirements:

Mary should be able to replay these animations in her format B environment without noticing any difference;
any changes she makes to the animations should also be reproducible in John's format A environment.

Conclusion:

Both International Standards have a well-developed set of tools to animate graphic elements. There could be
slight difficulties in translatability between applications since animations based on OOXML can be
manipulated with finer granularity than those based on ODF. This imposes more constraints on the translation
of ODF based applications. One possible way of circumventing some of these setbacks is through the use of
SMIL (Synchronized Multimedia Integration Language), which offers a common animation platform for the two
International Standards. While SMIL animations can be embedded in ODF presentations, the presentation
markup used in OOXML uses similar concepts as SMIL.

5.4.7 Comments

Textual description:

After most parts of the annual report have been created by John, he wants to hear feedback on the layout of
presentation as well as contents of it. He asks Mary to give some comments on the presentation document.
John will check Mary’s comments on his format A application after she creates a few comments using her
format B application.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 61

Figure 48 — Presentation document with comment

Implementation:

The comments on the slide should not be visible during a slide show. They should be visible when editing the
presentation. Small comment author’s initial text box is appeared where the author has placed it on the slide.
When a user clicks on this small initial comment box, it should open and show content of the comment, date
and time it was created and the author of the comment.

Use case name: Comment
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions

Document content 

Dynamic content

Metadata 

Annotations and security 

Document parts

Required features:
 Comment

o OOXML: Subclause 19.4
o ODF: Subclause 14.4.2

Requirement:

John should be able to see Mary’s comments on his slides. Any comment created by Mary’s format B
application should be shown in John’s format B application.

ISO/IEC TR 29166:2011(E)

62 © ISO/IEC 2011 – All rights reserved

Conclusion:

The translatability of comment between the two formats is very low. In this use case, comments in format A
documents are not shown in format B and vice versa. Even though the two International Standards provide
visually similar comment function, the structures used by the two formats are quite different. ODF stores
comments on the slides together with other information as <note> element, while OOXML stores the comment
part in a separate XML-document as <cm>.

5.4.8 Multimedia content

Textual description:

To make a more lively presentation, John has decided to incorporate multimedia / audio content into his
slides. He instructs Mary on where and how to place the multimedia elements. Subsequently he crosschecks
the new slides to ensure everything is working smoothly.

Figure 49 — Multimedia content in presentation documents

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 63

Figure 50 — Control icons for multimedia content

Implementation:

John has embedded three multimedia elements (audio) each associated with additional graphic elements,
serving as clickable icons. When an audio is played, animated forward, backward and end icons appear.

Use case name: : Multimedia content
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Multimedia content and vector graphics

o OOXML: Subclause 15.2.2, 15.2.10
o ODF: Subclause 9.8

Requirements:

When John reopens the slide, all media assets should be properly referenced, and the animated icons should
work in the same way they did in Mary's application.

ISO/IEC TR 29166:2011(E)

64 © ISO/IEC 2011 – All rights reserved

Conclusion:

The only means provided by ODF to implement these functionalities is SMIL which is a good alternative to the
usual <animations> element when mixtures of multiple animations are running at the same time. ODF’s use of
SMIL for certain animation effects is not likely to give rise to any major translatability issues since the schema
and syntax of OOXML’s PresentationML is loosely based on SMIL.

5.4.9 Master layout

Textual description:

Mary creates slide templates for layouts she tends to use very often such as recuring topics, weekly jour fixes
or periodical board meetings. John decides to introduce some general changes to the layout. He opens one of
the layout tempates emailed to him by Mary and edits it.

Figure 51 — OOXML master slide in presentation documents

Figure 52 — ODF master layout in presentation documents

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 65

Implementation:

Mary uses the master slide to simultaneously edit layout on multiple slides (see Figure 51). John then
manipulates the master slide to further adjust the slide layout (see Figure 52) and returns the improved
template to Mary.

Use case name: Master layout
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions

Document content 

Dynamic content

Metadata 

Annotations and security

Document parts 

Required features:
 Presentation Masters

o OOXML: Subclause 8.5, 19.*, 20.1
o ODF: Subclause 9.*, 13.5, 14.*, 15.36

Requirements:

The changes made by John should be reflected in the slide master when Mary reopens the presentation in
format B. John should also be able to automatically see the master changes reflected on each individual slide
without having to open the master slide settings.

Conclusion:

Translatability between the master slides in OOXML and master layouts in ODF is very high and satisfies
most requirements. For more details see subclause 6.4.4.

5.5 Common properties and mutual inclusion of documents

This section describes document properties that are independent of a document type. Two use cases for
basic properties such as hyperlinks and colours are described in this section. In addition, use cases for mutual
included documents are given. Both ODF and OOXML allow including documents of type A into a document
of type B. The resulting documents cannot be categorized by a specific type even though the top level
document has a specific type.

5.5.1 Hyperlinks between documents

Textual description:

John sends a format A text processing document to Mary to inform her where she can find the information
indicated by hyperlinks in the document. Mary is using a format B word processing application. The annual
report file is a format B presentation document located on the shared computer of John and Mary.

ISO/IEC TR 29166:2011(E)

66 © ISO/IEC 2011 – All rights reserved

Figure 53 — Hyperlinks in a text document

Implementation:

Hyperlinks should be able to lead users to target destinations. Destinations could be a file, web address or a
particular location of a file. Hyperlinks are shown in blue and underlined. In this use case, the first hyperlink is
either an absolute path or a relative path to a file that is located on the same computer system. The second
hyperlink refers to a certain website.

Use case name: Hyperlinks between documents
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content

Dynamic content 

Metadata

Annotations and security

Document parts 

Required features:
 Formatting

o OOXML: Subclause 15.3, 17.16.2.2,
17.16.5.25, 18.3.1.47~48, 20.1.4.1.15,
20.1.4.1.19, 21.1.2.3.5~6,
22.2.2.11~14

o ODF: Subclause 3.1.14, 5.1.4, 7.12.7,
9.3.10

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 67

Requirement:

Hyperlink parts should be distinguished from other text parts and should lead to the destinations. When Mary
clicks the blue underlined hyperlinks, she should be able to open a format B presentation file, as well as the
web site. After she has visited the hyperlinked destinations, the colour should change to another colour to
show that the links have been visited.

Conclusion:

Hyperlinks from ODF that follow the URL and the file in a certain location work in OOXML. A hyperlink from
OOXML that follows the URL works in ODF. However, a hyperlink from OOXML that follows the destination to
a certain location of the file may not work in ODF because ODF supports only relative paths in hyperlinks
while OOXML supports both relative and absolute paths.

5.5.2 Colours

Textual description:

When Mary creates templates for word processing and presentation documents in her format B application
she defines a set of colours that should be used in all documents for texts, lines and shapes. John uses these
templates in his format A application.

Figure 54 — Colour definition in an ODF application

ISO/IEC TR 29166:2011(E)

68 © ISO/IEC 2011 – All rights reserved

Figure 55 — Colour definition in an OOXML application

Implementation:

Use case name: Colours
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Colour

o OOXML: Subclause 20.1.2.3, 20.1.4,
14.2.7

o ODF: Subclause 15.17

OOXML defines colours in different models. A single colour can be defined either in the red, green, blue
(RGB) colour model or in the hue, saturation, lightness (HSL) colour model. ODF solely uses the RGB model.
OOXML uses themes and accents to define groups of colours and to reference to a single colour. ODF uses
direct references to the specification of a colour. More sophisticated support to end users is provided by ODF
applications, not by the standard itself.

Requirements:

When John uses the templates in his format A environment the colours should be defined in a similar way as
in Mary's format B environment.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 69

Conclusion:

While OOXML supports different ways to represent, group and reference colours, ODF uses solely one colour
model. It is possible to translate colour specifications defined in the RGB-model between both formats, and
additionally from HSL to RGB within OOXML. Thus the basic translatability of colours is high although round
trip translation of higher level concepts and HSL defined colours is not possible or must be performed on
application level.

5.5.3 Embedded spreadsheet documents

Textual description:

John wants to pass on information, contained in a format A spreadsheet, to Paul, who is using format B.
Instead of recreating the portion of the spreadsheet he wants to send, he simply embeds the pertinent
spreadsheet information in a text document containing a note and instructions as shown in Figure 56.

Figure 56 — Spreadsheet embedded in a word processing document

Implementation:

An obvious advantage of this approach is that the data in the embedded spreadsheet can be edited and
manipulated directly as a dynamic source by the spreadsheet engine rather than being handled statically.

ISO/IEC TR 29166:2011(E)

70 © ISO/IEC 2011 – All rights reserved

ODF accomplishes this by making use of the <insertion> element which contains the information required to
identify any insertion of content. Placing a frame within the text area, such as a drawing shape in which a
spreadsheet has been embedded, can also be used to create the same effect.

OOXML proposes two options for embedding a spreadsheet within a text document:

 Embedded Packages - Two documents (in this case: a SpreadsheetML document embedded in a
WordprocessingML document) are stored together in a format defined by OOXML as an embedded
package.

 Embedded Objects – The data stored in the object is identified by a unique string (ProgID) which
identifies the kind of object data to be embedded.

Use case name: Embedded spreadsheet documents
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Embedded spreadsheets

o OOXML: Subclause 15.2
o ODF: Subclause 8, 9.3

Requirements:

When Paul opens the document containing the embedded spreadsheet, he expects all edited features of the
spreadsheet such as colour boundaries and highlighted text to be presented exactly as they were when John
saved the original spreadsheet. For example, the date format needs to be maintained exactly, since an
incorrect representation of the original date data could lead to confusion or errors.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 71

Conclusion:

Translation of embedded objects between ODF and OOXML does not present any major barriers; both
International Standards support Object Linking and Embedding (OLE) as well as alternative image
representations of linked objects. Slight translation difficulties may occur in the latter case, since when
representing alternative images OOXML may refer to elements of the deprecated VML format which is not an
open standard.

5.5.4 Simple text formatting and embedded documents

Textual description:

John Marketer’s secretary creates a spreadsheet containing several sample newsletter layouts, and saves it in
format B before sending it to John who opens it with his format A supporting application.

Figure 57 — Spreadsheet with simple text and embedded documents

ISO/IEC TR 29166:2011(E)

72 © ISO/IEC 2011 – All rights reserved

Implementation:

In spreadsheet documents, portions of text are often included as cell content. The use case illustrates one
such scenario which is also associated with the formatting and inclusion of graphics.

Spreadsheets often contain formatted text as cell content. This use case illustrates one such scenario which is
also associated with formatting and the inclusion of graphics.

The example given in Figure 57 contains three rows and three columns. Column A contains a short text
description. Column B contains comments describing the newsletter layout. Column C contains a short text
sample formatted using the proposed layout. In addition to paragraph and word formatting, the sample layout
in column C also contains embedded graphic elements. Each layout sample fits into the last cell on the row
which bears the scaled down proportions of a letter-format page, and is displayed as a page in miniature. The
layout samples included in the sheet can either be linked to or embedded within the document.

Use case name: Simple text formatting and
embedded documents
Translation type and properties:

One-trip translation 

Round trip translation

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts 

Required features:
 Formatting

o OOXML: Subclause 12.3, 15.2
o ODF: Subclause 9.3

Requirements:

In translating the information needed to present this spreadsheet using a format A application, all presentation
instructions settings should be preserved. The graphic elements and images should likewise maintain their
original graphical appearance.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 73

Conclusion:

Translation between ODF and OOXML does not present any major barriers as both International Standards
support Object Linking and Embedding (OLE) as well as alternative image representations of linked objects.
Translating vector graphics could pose slight problems as mentioned in subclause 5.5.1.

5.5.5 Embedded charts

Textual description:

John creates a slide which serves to compare the result forecasts between two years at a board meeting.
Mary has been asked to add the chart to the annual report, which will include many of the points John
discussed at the board meeting for additional visualisation.

Figure 58 — Diagram in presentation documents

Implementation:

Presentation documents can contain simple embedded graphics, called shapes in ODF. Diagrams used in
presentation documents in the case of ODF are basically drawing shapes which differ only in their
attribute/style-family elements. Presentation shapes are assigned presentation attributes with a style from the
presentation family, while drawing shapes are assigned drawing attributes with a style from the graphic family.
In addition, presentation shapes are further classified based on usage. Examples of such classifications
include text, graphic or, as shown in Figure 58, chart. The chart is created from a spreadsheet document and
embedded into the presentation.

ISO/IEC TR 29166:2011(E)

74 © ISO/IEC 2011 – All rights reserved

Use case name: Embedded charts
Translation type and properties:

One-trip translation 

Round trip translation 

Presentation instructions 

Document content 

Dynamic content

Metadata

Annotations and security

Document parts

Required features:
 Diagrams

o OOXML: Subclause 14; 12.3
o ODF: Subclause 9.2; 10

Requirements:

When Mary reviews the document, it is displayed in exactly the same way it looks in John format A
application: The lines, colours and proportions should be the same in both applications. When John opens the
improved slide set the diagram should display like in Mary's format B application.

Conclusion:

The original view would, to a great extent, be retained during a translation between the International
Standards as the translatability between graphic components is high.

6 Features and functionality

6.1 Introduction

This section explains the features needed to implement the use cases described in clause 5. The tables in the
following subsections summarize the availability of various features for each of the two document formats as
well as offering an estimate of the translatability level of the various features, which is defined as follows:

 Low translatability; either one of the International Standards does not support this feature at all, or the
way the feature is implemented differs so significantly that feature translation is impossible without
information loss.

 Medium translatability; these features are supported in both formats, although some aspects may
differ and workarounds may be required. Features marked as medium may support a one way
translation, but will result in information loss during round trip translations. The "Notes" column
provides further details on each relevant feature.

 High translatability; these features are supported by both International Standards, round trip
translation should pose no problems.

The characterization of translatability by the above mentioned metric indicates whether it is possible or in
general impossible to translate a feature between the International Standards. It cannot be assumed that a

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 75

given tool actually has an implementation for all translations, indicated as high. On the other hand it cannot be
excluded that a given tool has a specific implementation for a translation, indicated as low. Translation rules
will always be tool specific.

It is important to note that the focus of this section is to describe the translatability of various document
features between formats and not to engender discussion about the relevance of certain features or to make
recommendations for the addition or removal of features from one of the International Standards. All
characterizations are focused on strictly conformant OOXML documents. Transitional conformance as
described in ISO/IEC 29500-4 is not considered. All statements about ODF refer to ISO/IEC 26300.

Technical remark

XML elements and attributes in this Technical Report are shown in an unqualified style like <element> and
@attribute instead of <ns:element> and @ns:attribute. The namespaces can be derived easily from the
application context if necessary.

6.2 Word processing documents

6.2.1 Text formatting

This subclause describes the attributes that define the functionality and sub functionality of text formatting in
word processing documents. Both formats support formatting text at the paragraph level as well as finer
granularity. OOXML calls this capability a run, ODF calls it a span. The following table summarizes the
features which appear in the use cases described in clause 5. Examples of XML representations in both
formats are given in subclause 7.2.2.

Table 1 — Text formatting

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Bold text (font
weight)

 Yes

17.3.2.1

Yes

14.6.3

Medium In addition to bold, ODF allows font
weight to be specified numerically
(100-900).

Text borders Yes

17.3.2.4

No Low ODF only supports borders on
whole paragraphs.

Whitespaces Yes

17.15.1.18

17.18.7

ISO/IEC
29500-3

10.

Yes

1.6

Medium Because certain OOXML elements
(such as the @preserve attribute
defined separately in
ISO/IEC 29500-3), are not
supported by ODF, translatability of
this feature could be problematic.

Capitalization

All upper
case

Yes

17.3.2.5

Yes

15.4.2

High

Small caps Yes

17.3.2.33

Yes

15.4.1

High

All lower
case

No Yes

15.4.2

Low

Text colour

ISO/IEC TR 29166:2011(E)

76 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

RGB Yes

17.3.2.6

Yes

14.7.8

High

Background
colour

Yes

17.3.2.6

Yes

15.4.37

High

Based on
theme

Yes

17.15.1.20

17.18.97

No Medium ODF has no concept of a document
theme.

Blinking text No Yes

15.4.36

Low OOXML supports only blinking
backgrounds, but no blinking text.

Text
highlighting

Yes

17.3.2.15

No Medium Only a limited range of colours is
available for text highlighting.

Complex
script support

 Yes

17.3.2.7

Yes

15.4.13

15.4.14

Medium The formats differ in how complex
scripts (east-Asian, right-to-left
scripts) are supported.

East-Asian
text

Packing two
lines into one

Yes

17.3.2.10

No Low

Brackets
around two-
lined text

Yes

17.3.2.10

17.18.8

No Low In ODF, left and right brackets can
be specified independently.

Vertical text Yes

17.3.2.10

Yes

15.4.42

Medium ODF supports rotating text by 0, 90
and 270 deg.; OOXML supports
only 0 and 90 deg. rotation.

Emphasis
marks

Yes

17.3.2.12

Yes

15.4.40

Medium ODF offers more fine-grained
support. Marks can be placed above
or below text.

Font selection

By font name Yes

17.8

Yes

15.4.13

High

By font family Yes

17.8.3.9

Yes

15.4.14

High

Theme fonts Yes

17.18.96

No Low ODF does not support the concept
of document themes.

Font effects

Emboss Yes

17.3.2.13

Yes

15.4.26

High

Imprint /
engrave

Yes

17.3.2.18

Yes

15.4.26

Medium OOXML has an effect termed
imprint while ODF offers engrave.

Outline Yes

17.3.2.23

Yes

15.4.5

High

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 77

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Shadow Yes

17.3.2.31

Yes

9.5.1

Medium ODF allows for fine-grained control
of text-shadow parameters, OOXML
only allows turning the shadow on or
off.

Manual
specification
of run/ span
width

 Yes

17.3.2.14

17.3.2.43

Yes

15.4.41

Medium/
low

OOXML uses absolute values, ODF
uses percentages. This may lead to
translation problems.

Italic text Yes

17.3.2.16

Yes

15.4.25

Medium ODF supports italic and oblique text,
OOXML makes no such distinction.

Kerning Yes

17.3.2.19

Yes

15.4.35

High

Text language Yes

17.3.2.20

Yes

15.4.23

High

Enable/
disable spell
checking for
run/ span

 Yes

17.3.2.21

17.15.1.52

No Low ODF does not support this feature.

Raised/
lowered text

 Yes

17.3.2.24

Yes

15.4.12

Medium OOXML uses absolute values, ODF
uses percentages. This may lead to
translation problems.

Strikethrough Yes

17.3.2.37

17.3.2.9

Yes

15.4.34

Medium OOXML allows single and double
strikethrough. ODF offers more fine-
grained control of strikethrough
options and styles.

Underline Yes

17.3.2.40

Yes

15.4.28

Medium The note on strikethrough applies
equally to text underlining.

6.2.2 Paragraph formatting

In the context of word processing documents, a paragraph is the smallest unit of text upon which layout is
performed. Both document formats support applying the text formatting properties given above on a per-
paragraph basis. In fact OOXML simply embeds a run-properties element within the paragraph format
whereas ODF paragraph styles may contain paragraph and text properties. Examples of XML representations
in both formats are given in subclause 7.2.2.

ISO/IEC TR 29166:2011(E)

78 © ISO/IEC 2011 – All rights reserved

Table 2 — Paragraph formatting

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Line height

Fixed Yes

17.3.1.33

Yes

15.5.1

High

Minimum Yes

17.3.1.33

Yes

15.5.2

High

Line
spacing

No Yes

15.5.3

Low

Font-
independent
line spacing

No Yes

15.5.4

Low

Automatic Yes

17.3.1.33

No Low OOXML provides a (Boolean) option
that specifies HTML-like line
spacing.

Text alignment
(left/ right/
centered/
justified)

 Yes

17.3.1.13

Yes

15.5.5

Medium OOXML supports a range of
additional values for Arabic and Thai
text.

For last line
in
paragraph

No Yes

15.5.6

Low

Justify
single word

No Yes

15.5.7

Low

Keep paragraph
on same page
as following
paragraph

 Yes

17.3.1.15

Yes

15.5.8

High

Do not split
paragraph into
multiple pages

 Yes

17.3.1.14

Yes

15.5.10

15.5.9

15.5.8

 Medium OOXML only supports keeping a
paragraph on a page without
specifying the minimum number of
lines and the position of the
paragraph.

Tab stops Yes Yes High

Position Yes

17.3.1.37

Yes

7.12.6

 High

Type (left,
centre,
right,
decimal)

Yes

17.3.1.37

Yes

7.12.6

Medium OOXML does not support specifying
the decimal character.

Type (bar,
clear, list)

Yes

17.18.84

No Low These tab stop styles are supported
in OOXML but their use is
discouraged.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 79

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Leader
properties

Yes

17.18.72

Yes

7.12.6

Medium The formats support different kinds
of leader styles. ODF reuses the
same styles which allows for
underline and strikethrough. OOXML
supports a fixed list of styles.

Default tab
stop

Yes

17.15.1.25

Yes

15.5.12

14.2

High

Hyphenation OOXML only allows suppressing
automatic hyphenation on a per-
paragraph basis.

Last word
on page

Yes

17.15.1.10

Yes

15.4.44

High

max.
consecutive
hyphenated
lines

Yes

17.15.1.22

No

Low

Drop Caps Yes

17.3.1.11

Yes

15.5.15

Medium OOXML handles drop caps via
specialized text frames. ODF’s
approach is more straight-forward.

Register truth
(same text line
distance across
multiple pages /
columns)

 No Yes

15.2.12

 Medium ODF supports a paragraph style
attribute which can specify the
reference line distance for all
paragraphs. This functionality is not
supported directly by OOXML.
Fixed width tables in OOXML may
be able to compensate for this
drawback, however there may be
difficulties in translatability.

Margins

Absolute,
relative

No Yes Medium OOXML only supports absolute
values for paragraph margins.

Left/right/
top/bottom

Yes Yes Medium OOXML supports contextual spacing
where top/bottom spacing is ignored
for identically formatted paragraphs.

First line indent Yes Yes High

Absolute,
relative

Yes

17.3.1.12

Yes

15.5.18

Medium OOXML only supports absolute
values for first-line indentation.

Based on
font size

No Yes

15.5.19

 Low ODF supports an auto-text-indent
property specifying that the first line
of a paragraph is indented by a
value that is based on the current
font size.

Page/ column
break

 Before
paragraph

Yes

17.3.1.23

Yes

2.8

Medium OOXML does not support column
breaks as paragraph properties.

ISO/IEC TR 29166:2011(E)

80 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Background
colour

 Yes

17.3.1.31

Yes

15.5.23

Medium OOXML allows using theme colour
attributes. ODF does not support the
concept of a document theme.

Background
pattern

 Yes

17.3.1.31

No

Low

Background
image

 No

Yes

15.5.24

 No

Filter No Yes

15.5.24

 No

Opacity
(percent)

No Yes

15.5.24

 No ODF manipulates the opacity of the
background image in the form of a
percentage, while in OOXML the
background colour (or filled vector
graphics) can be influenced
indirectly via alpha colour
transformations which can be used
to modify opacity. Alpha colour
transformations are expressed as
percentages.

Embedded
Images

 Yes

15.2.14

Yes

9.3.2

Medium Bitmaps can be easily translated.
However, due to discrepancies
between SVG (used by ODF) and
DrawingML (used by OOXML), there
is a high probability that compatibility
issues will arise when vector
graphics are to be translated.

Borders Yes Yes High

Top/bottom/
left/ right

Yes

17.3.1.24

Yes

15.5.25

High

Between/

bar

Yes

17.3.1.24

No Low In OOXML a paragraph may have a
bar (a border on the inner side of the
paragraph when a book-like layout is
used). Additionally a between border
can be specified for paragraphs with
identical border formatting. ODF
allows for merging the borders of
consecutive, identically formatted
paragraphs.

Colour Yes

17.3.4

No Medium OOXML allows for using theme
colour attributes. ODF does not
support the concept of a document
theme.

Frame
effect

Yes

17.3.4

No Low

Shadow
effect

Yes

17.3.4

Yes

15.5.28

Medium ODF offers more fine-grained control
of shadow parameters.

Spacing Yes

17.3.4

Yes

15.5.27

High

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 81

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

Width Yes

17.3.4

Yes

15.5.26

High

Type Yes

17.18.2

Yes

15.5.26

Medium OOXML documents can specify art
borders, a concept not supported by
ODF. While both document formats
support a wide range of border
styles, the sets differ. However,
common styles (single/ double/
dotted lines) are supported by both
formats.

Padding Yes

17.3.1.11

Yes

15.5.27

 High

Shadow Yes

17.3.2.31

17.3.1.29

Yes

15.5.28

 High

Line numbering No Yes

14.9.1

Low OOXML only supports line
numbering on a per-section level,
not as a paragraph setting.
Individual paragraphs can be
exempted from line numbering.

 (Re-)set
start value

No Yes

15.5.31

Low

Vertical
alignment (top,
middle, bottom,
baseline)

 Yes

17.3.1.39

17.18.91

Yes

15.27.11

Asian / complex
text layout
properties

Add space
between
Asian, ctl
and
Western
text

Yes

17.3.1.2

Yes

15.5.32

Medium OOXML allows for specifying extra
spacing between Asian and Roman
text as well as Asian Text and
Numbers. ODF allows for spacing
between Asian, ctl (complex text
layout) and Western text (but not
numbers).

Allow
punctuation
to hang into
margin

Yes

17.3.1.21

Yes

15.5.33

High

Snap to
layout grid

Yes

17.3.2.34

Yes

15.2.21

15.5.38

High

Line
breaking
behaviour
(strict /
auto)

Yes

17.3.1.16

Yes

15.5.34

Medium OOXML allows more specific
settings (kinsoku).

ISO/IEC TR 29166:2011(E)

82 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Transla-
tability

Notes

 Writing mode
(lr/rl/tb)

 Yes

17.3.1.6

Yes

15.2.19

Medium OOXML only supports setting
paragraph properties to right-to-left
or left-to-right.

Text frames Yes

17.3.1.11

Yes

9.3

High

 Suppress
overlap

Yes

17.3.1.36

 Yes

15.30.5

Medium In ODF chart text label overlaps may
be suppressed. In OOXML this
feature is supported with reference
to drawing objects. If a text is treated
like a drawing object (for example by
being grouped with a text) this
feature can be used.

Lists Yes

17.9

Yes

4.3

High

6.2.3 Header and footer

OOXML and ODF both support the definition of header and footer. While OOXML assigns them to the whole
document or to single sections, ODF aligns them with the concept of a master page. OOXML supports
multiple content types; ODF supports textual headers and footers. Both International Standards use the terms
header and footer in a slightly different way. To display additional content types than text on the top or bottom
of a page, in ODF this content has to be associated with the page instead with the header and footer.

Table 3 — Header and footer

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Content type Yes

11.3.6/9

Yes

14.4

Medium ODF supports text only but
other content can be added as
part of the master page.

Properties

Separate
definitions for
right, left, first
page

Yes

17.10

Yes

14.4

Medium ODF allows separate
definitions for right and left
pages.

Formatting Yes

17.6.11

Yes

14.3

15.3

Medium ODF allows formatting
headers and footers while
OOXML allows formatting
pages including headers and
footers.

6.2.4 Tables

Both OOXML and ODF support the insertion of tables inside a document. Both formats allow table cells to
span across multiple rows and / or columns and provide detailed control over the display of table elements.
The table below covers the table features from the use case in subclause 5.2.3 and highlights further areas
where functionality varies between the document formats. While OOXML uses the concept of tables only in
WordprocessingML, ODF use the same concept for word processing and spreadsheet documents. Therefore

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 83

the following comparison is also valid concerning the description of ODF spreadsheets. Examples of XML
representations in both formats are given in subclause 7.2.4.

Table 4 — Tables

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Table
properties

 Right-to-left
layout

Yes

17.7.6.1

No Medium ODF does not support rtl layout for
tables. However the functionality
can be emulated by reversing the
cell order appropriately.

Alignment of
whole table
(left, center,
right, auto,
indented)

Yes

17.4.29

Yes

15.8.2

Medium ODF has no support for floating
tables. However, this functionality
may be emulated by placing a table
inside a frame.

Background
colour

Yes

17.4.32

Yes

15.8.8

Medium ODF does not support document
themes, so information may be lost
in translation.

Background
pattern

Yes

17.4.32

No Low

Background
image

Yes

17.2.1

Yes

15.8.8

High

Data
alignment

Horizontal /
vertical

Yes

17.3.1.13

Yes

15.11.1

High OOXML aligns cell data in tables
embedded in word processing
documents at paragraph level.

Column
settings

 Adjust
column width

Yes

17.4.16

Yes

15.9.1

High

Row settings

 Adjust row
height

Yes

17.4.81

Yes

15.10.1

High

Cell settings

 Span
multiple
columns

Yes

17.4.17

Yes

8.1.3

High

Span
multiple rows

Yes

17.4.85

Yes

8.1.3

High OOXML does this via the <vMerge>
element.

ISO/IEC TR 29166:2011(E)

84 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Sub tables No Yes

8.1.3

8.2.6

Low ODF supports the concept of sub
tables, e.g. tables embedded
seamlessly within a table cell. While
the same effect may be reproduced
by splitting and rejoining cells in the
containing table, this would require
a translator who could render the
complete table internally.

Borders

 Colour /
width / style

Yes

17.4.67

Yes

8.3.3

15.8.12

Medium Both formats allow the same values
as for paragraph borders.

Table
headings

 No Yes

8.2.2

8.2.4

Low OOXML has no way of identifying
certain table cells as being part of a
table header. It does contain a
<tblHeader> element; however this
specifies that the affected row
should be repeated on every page
the table spans.

6.2.5 Itemization and numeration

Since ODF and OOXML differ in the way they handle numbering (e.g. of lists or headings), the following two
subsections contain a short discussion of each document format's approach. Numbering in this context
includes the handling of bulleted (itemized) lists as both document formats handle them the same way as
numbered lists. Examples of XML representations in both formats are given in subclause 7.2.5.

6.2.5.1 Numbering in ODF

ODF contains two ways of expressing lists: an approach based on the nesting of the individual XML tags used
to define the list (structural approach) and another one in which regular paragraphs are marked as belonging
to a list (attribute approach). The numbering and list formatting applied to a list item or heading is determined
by a list style associated to the list (or numbered paragraph).

The structural approach is reminiscent of the way lists are constructed in XHTML11 with specialized tags
denoting lists and list items and the list level being determined by the nesting of list tags in the XML
representation of the document content. The attribute approach, on the other hand, simply annotates regular
paragraphs with attributes identifying them as items of a specific list style at a certain list level. Both
approaches are functionally equivalent, however only the attribute approach can be used to apply numbering
information to headings.

Unfortunately, the ODF International Standard is worded ambiguously and thus allows for different
interpretations of the attribute approach described above. It is unspecified whether the numbering logically
resides with the list style or if there is a global counter for each list level which needs to be restarted manually.
For example, the XML code in Figure 59 may be rendered as in Figure 60 when the numbering resides with
the list style. However, when a global counter is used, the list would show up as in Figure 61.

11 http://www.w3.org/TR/xhtml1/

http://www.w3.org/TR/xhtml1/

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 85

Figure 59 — Numeration in ODF - XML

Figure 60 — Numeration in ODF - counter associated with list style

Figure 61 — Numeration in ODF - global counter

6.2.5.2 Numbering in OOXML

OOXML has no distinct concept of lists. Instead, it uses an approach similar to the ODF attribute approach
explained above. List items (and headings) are simply regular paragraphs to which special properties are
attached which contain information about list structure (an identifier for the list the paragraph belongs to and
its list level) and a reference to the formatting information for the list. Headings are treated in the same way,
except that they contain additional information about the heading’s outline level within the document.

A detailed explanation of the concepts used for numbering information in OOXML is contained in Part 1,
subclause 17.9 of the OOXML International Standard. Numbering information may be applied to a paragraph
in three different ways.

 In the simplest case, the paragraph is annotated with a reference to a numbering definition which in
turn inherits the actual numbering settings from an abstract numbering definition.

 Alternatively, a numbering style may be applied to the paragraph via one of two distinct yet equivalent
approaches. In both cases, the numbering style is not referenced directly; rather, a numbering
definition which references the style via its associated abstract numbering definition is applied as
shown above.

 The numbering style may also reference a separate numbering definition.

6.2.5.3 Comparison of numbering and enumeration

Both document formats offer a comparable level of support for numbered and/or bulleted lists. OOXML allows
for more flexibility when specifying the formatting of nested numbering. To give an example: using individual
suffixes, prefixes and separators on each level, in OOXML the third-level heading - 1.2.3 heading - looks like:

Section I,2.b) heading

ISO/IEC TR 29166:2011(E)

86 © ISO/IEC 2011 – All rights reserved

ODF allows the specification of one common prefix, suffix, and separator for the whole numbering. Thus using
the prefix: "Section ", and the suffix: ")" the example will look like:

 Section I.2.b) heading

Since both formats offer multiple ways of applying numbering information to text segments, a translation
implementation will most likely require fairly complex processing in order to retain the best possible fidelity.

6.2.6 Metadata language entries

Under both platforms, the code is defined by a two or three letter language code taken from the ISO 639
International Standard optionally followed by a hyphen (-) and a two-letter country code taken from the
ISO 3166 International Standard.

This is how the default language for a run would be specified under OOXML:

<w:lang w:val="fr-CA"/>

The language definition is quite similar for ODF. Generally it could be determined that the metadata for
language information can be adequately translated from one format to the other.

6.2.7 Indices

Office documents may contain various types of indices, including the table of contents, but also indices of
figures, tables, etc. Since the two document formats follow different approaches in the way indices are
represented, this section offers an overview of both approaches in subclauses 6.2.7.1 and 6.2.7.2. Examples
of XML representations in both formats are given in subclause 7.2.6.

6.2.7.1 Indices in ODF

ODF supports three different types of indices: tables of content, alphabetical indices and user-defined indices.
Each index in turn is composed of two parts: an index template specifying all the information needed to
generate the index and an index body containing a rendition of the index, using standard text processing
markup.

The information contained within the index template varies according to the index type. The index template
specifies the source material for the index, along with an optional title and a template specifying how the title
and each index entry should be rendered.

For example, the table of contents described in the use case 5.2.10 is built from the document's headings.
Since the index has no title, the template would not specify one. Each entry is built from:

 The entry's title;
 A tab stop;
 The page number of the heading.

ODF has three ways to specify the source material for the table of contents:

 Text outline: the document structure, i.e. the headings and their associated outline level are used to
generate the table of contents.

 Index marks: this approach only indexes paragraphs and headings which are explicitly marked with
an index mark.

 Styles: the index is built from paragraphs to which certain text formatting styles are applied.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 87

6.2.7.2 Indices in OOXML

In OOXML, the concepts of tables of content and indices are implemented as dynamic content fields. Thus, a
table of content is represented by a TOC field and its presentation and source material are specified by the
field switches.

The source material may be based on the following:

 Paragraph-outline level; this approach corresponds to ODF's approach to using the document
structure.

 Index marks (implemented via TC fields in OOXML) or bookmarks;
 Styles; this approach is similar to the third approach offered by ODF.
 A sequence; commonly used for lists of figures, tables, etc.

6.2.7.3 Summary

Although the two document formats differ in their approaches to the generation of tables of contents and
indices, they do offer comparable levels of support for these features. Implementations will have to take into
account the different models, which causes some complexity, especially when documents combine many of
the approaches outlined above.

6.2.8 Change tracking and collaborative functions

Both document formats offer support for change tracking and textual annotations in word processing
documents. In addition to the common operations, OOXML allows highlighting text regions with a limited set of
colours (for more information, see subclause 6.2.1). ODF’s change tracking support is more coarse-grained
than that of OOXML in that formatting changes, including those in tables, are recorded but no information
about the previous state is kept so that the previous state cannot be reconstructed by rejecting the changes.
Examples of XML representations in both formats are given in subclause 7.2.7.

Table 5 — Annotations

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Text insertion Yes

17.13.5

Yes

4.6.3

Medium Change tracking in lists may
cause problems in ODF.

Text deletion Yes

17.13.5

Yes

4.6.4

Medium Change tracking in lists may
cause problems in ODF.

Formatting
changes

 Yes

17.13.5

Yes

4.6.5

Medium ODF only records the fact that a
change has occurred. However,
no further information is
recorded, so that it is impossible
to reconstruct the previous
state.

Comments Yes

17.13.4

No Medium OOXML allows adding
comments to arbitrary text
ranges. This is not supported by
ODF, however similar
functionality may be provided by
inserting notes (associated with
a point in the text, not a range).

ISO/IEC TR 29166:2011(E)

88 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Text
highlighting

 Yes

17.3.2.15

No Medium Although ODF does not support
text highlighting, the
functionality may be emulated
by setting the text background
colour (see the section on text
formatting).

Metadata

 Name Yes

17.13

Yes

3.1.6

High

Date / Time Yes

17.13

Yes

3.1.9

High

Author
shorthand for
comments

Yes

17.13

17.13.4

Yes

12.3

8.3.3

High

6.2.9 Bibliographies and optional document parts

Both the ODF and OOXML formats support bibliographies. ODF introduces a <bibliography-mark> element
that contains the text and information for a bibliography index entry. This entry supports attributes for several
types of bibliographical data that a bibliography index may contain. Some attributes are user defined. The
entries may be stored in the document or in an external database. They are stored as bibliography-marks
within the document and contain all attribute values that have been defined.

OOXML uses the customXML feature to implement bibliographies. Thus there are no hard coded attributes
used to describe an entry. Instead the entry’s properties can be defined outside the standard.

From these approaches it is obvious that no generic mapping between ODF and OOXML bibliographies exists.
On the other hand an ODF implementation could map its entries to OOXML by introducing a corresponding
XML schema as custom XML. An OOXML application can map its entries to ODF in case a semantic mapping
exists which will be obvious in most cases.

Both International Standards use different approaches when it comes to optional document parts. ODF
supports the concept of hidden and conditional sections. This property of a section is defined by
corresponding text section attributes.

OOXML introduces the term glossary document. Within a WordprocessingML file, the glossary document is a
supplemental storage location for additional document content which should travel with the document, but
which should not be displayed or printed as part of the main document until it is explicitly added to that
document by a deliberate action. Glossary document parts can contain any block level WordprocessingML
element. Title pages are typical parts of a glossary document in OOXML.

Again both document formats support optional text but use totally different concepts. Generic mapping seems
to be impossible, although some word processing applications may be able to provide such mapping in a
restricted context.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 89

6.3 Spreadsheet documents

6.3.1 Introduction

This section describes the properties which may be applied to the elements of spreadsheet documents. For
the purposes of this paper, the properties to be examined have been narrowed down to formatting and
calculation functions and those in any way related to such. Examples of XML representations in both formats
are given in subclause 7.3.

ODF spreadsheets have tables as root elements. Tables in turn contain rows. Rows are divided into cells by
columns. ODF does not differentiate between tables embedded in word processing documents and those
which make up spreadsheets. Essentially the same XML structures, nodes and attributes are used in both
cases. The only difference is the <spreadsheet> element used within the <body> element as against the
<text> element used in word processing documents.

In a similar vein, OOXML has <workbook>s as root elements. Workbooks contain <worksheets>. These
sheets are further divided into a grid of <cells>.

6.3.2 Formatting

The cell is the most elementary unit of a spreadsheet to which properties can be applied. Rows, columns and
tables (ODF) or worksheets (OOXML) can also be manipulated

The following table summarizes the features pertaining to formatting for the use cases covered. For more
information, see subclause 6.2.1.

Table 6 — Spreadsheet formatting

Functionality
Sub

functionality
OOXML ODF

Translata-
bility

Notes

Row fixing Yes

18.3.1.66

Yes

Low This functionality can be applied
in ODF only by manipulating the
horizontal/vertical @Split Mode
and @Split Position attributes via
the settings.xml file. This file is
undefined and application
specific.

Cell / Row
background
Shading

 Yes

17.4.33

Yes

15.11.6

15.10.3

High

Coloured text
in a single cell

 Yes

18.3.1.53

18.4.7

Yes

14.7.7

15.4.3

High

Highlighted
colour frame
on single row

 Yes

18.8.5

Yes

15.5.25

High

Date
formatting

 Yes

18.17.4

Yes

6.7.7

High

Graphic cell
content

ISO/IEC TR 29166:2011(E)

90 © ISO/IEC 2011 – All rights reserved

Functionality
Sub

functionality
OOXML ODF

Translata-
bility

Notes

 Linked Yes

21.2.2.63

Yes

9.3.2

High

Embedded Yes

21.2.2.63

Yes

9.3.2

Medium When using embedded images,
the use of vector graphics could
prove problematic due to the
different vector graphic formats
used by ODF and OOXML.

Spreadsheet-
Embedding in
other
applications

 Yes

18.3.1.60

Yes

9.3.7

Medium A few problems could arise due to
the use, by OOXML, of VML-
which is not supported by ODF- in
certain areas.

6.3.3 Calculation

OOXML and ODF calculations are performed by equations also known as formulas.

In OOXML named formulas are known as functions. Formulas are represented by the text of the formula and
the text version of the last computed value for that formula. The return value of a function is specified within
the @t-attribute of the cell containing the formula.

The ODF spreadsheet document content model contains a spreadsheet calculation setting for formulas.
The presentation of the value of a variable is set using a <variable-set> variable setter element in which the
attribute @formula contains the formula to compute the value of the variable field. Settings pertaining to the
calculation of formulas are set via the <calculation-settings> element. The @formula attribute generally
contains the formula for a table cell.

This section describes the translation of functionality provided by the properties used in applying formulas to
cells as well as their behaviour and underlying logic operations, as used in the use case example in subclause
5.3.3.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 91

Table 7 — Spreadsheet calculation

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Assigning
formulas/
functions to a
cell

 Yes

18.3.1.40

Yes

8.1.3

High

Manual/
automatic
calc. mode

 Yes

18.18.4

No Low In OOXML the formulas can be
executed whenever a cell value
changes or when a user initiates
an action. Can be configured in
ODF:
config:name='AutoCalculate'

Shared
formulas

 Yes

18.3.1.40

No Low In OOXML primary/ shared
formulas are used to cut down
redundancy where a formula is
used more than once. This
functionality is not present in
ODF although OOXML formulas
can be translated to ODF with
some effort.

Externally
referenced
formulas

 Yes

18.14

18.14.1

18.18.11

No Medium In ODF cells but not formulas
can be referenced. OOXML
allows the direct referencing of
both.

Caching of
externally
referenced
workbook

 Yes

18.10.1.95

18.14.7

Yes
8.3.2

Medium External workbooks cannot be
referenced in ODF but sheets of
external workbooks can be
referenced.

Defined
names in
place of cell
references in
formulas

 Yes

18.17.2.5

No Low Names to be used in place of
references or formulas do not
exist in ODF.

Auto filtering Yes

18.3.2

Yes
8.7

Medium Both formats support filter criteria
for table rows based on specific
properties of table cells and
rows.

Both formats, OOXML and ODF support several mathematical and statistical inline functions. Several of these
functions are identical; others are only defined in one of the two International Standards. The following table
shows, which functions are only defined in one of the International Standards and which of those functions

can be mapped to the other International Standard using mathematical or other transformations.12

12 ODF 1.0 does not define any formula language. For this reason the list of ODF functions has been generated by
OpenOffice.org, the quasi reference implementation of ODF 1.0. A complete list of the supported mathematical functions
including several functions that are not supported by OpenOffice.org is introduced in ODF 1.2. For this reason the
translatability between math functions in ODF 1.2 and OOXML will be well defined and better than the translatability
shown in the table below.

ISO/IEC TR 29166:2011(E)

92 © ISO/IEC 2011 – All rights reserved

Table 8 — Math functions in OOXML and ODF

OOXML function ODF function Remarks

Can be converted ACOT Can be converted to OXML according to the
following example:

ACOT(B12) = ACOS(B12/SQRT(1+B12^2))

Can be converted ACOTH Can be converted to OXML according to the
following example:

ACOTH(B12)=LN((B12+1)/(B12-1))/2

AVERAGEIF Not supported OOXML only

AVERAGEIFS Not supported OOXML only

Not supported B ODF only

Not supported BASE ODF only

Not supported BESSELI ODF only

Can be converted COMBINA Can be converted to OXML according to the
following example:

COMBINA(A3;A4)=COMBIN(A3+A4-1;A4)

Not supported CONVERT ODF only

CONVERT CONVERT_ADD Name changed

Note: unit conversion function in OOXML is
named CONVERT, while in ODF it is named
CONVERT_ADD. It is important not to confuse it
with ODF CONVERT, which converts European
currencies.

Can be converted COT Can be converted to OXML according to the
following example:

COT(A1) = COS(A1)/SIN(A1)

Can be converted COTH Can be converted to OXML according to the
following example:

COTH(A1) = COSH(A1)/SINH(A1)

COUNTIFS Not supported OOXML only

CUBEKPIMEMBER Not supported OOXML only

CUBEMEMBER Not supported OOXML only

CUBEMEMBERPROPERTY Not supported OOXML only

CUBERANKEDMEMBER Not supported OOXML only

CUBESET Not supported OOXML only

CUBESETCOUNT Not supported OOXML only

CUBEVALUE Not supported OOXML only

Not supported CUMIPMT ODF only

CUMIPMT CUMIPMT_ADD Name changed

Not supported CUMPRINC ODF only

CUMPRINC CUMPRINC_ADD Name changed

Not supported CURRENT ODF only

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 93

OOXML function ODF function Remarks

Not supported DAYS ODF only

Not supported DAYSINMONTH ODF only

Not supported DAYSINYEAR ODF only

Not supported DDE ODF only

Not supported DECIMAL ODF only

Not supported DURATION ODF only

DVAR DVAR Name changed

Not supported EASTERSUNDAY ODF only

EFFECT EFFECT_ADD Name changed

Not supported EFFECTIVE ODF only

Not supported FORMULA ODF only

Not supported GAUSS ODF only

Not supported GCD_ADD ODF only

GETPIVOTDATA Not supported OOXML only

IFERROR Can be converted Can be converted to ODF according to the
following example:

IFERROR(A2;B2)=IF(ISERROR(A2);B2;A2)

Not supported ISEVEN ODF only

ISEVEN ISEVEN_ADD Name changed

Not supported ISFORMULA ODF only

Not supported ISLEAPYEAR ODF only

Not supported ISODD ODF only

ISODD ISODD_ADD Name changed

Not supported LCM ODF only

LCM LCM_ADD Name changed

MIDB Not supported OOXML only

Not supported MONTHS ODF only

Not supported MUNIT ODF only

Not supported NOMINAL ODF only

NOMINAL NOMINAL_ADD Name changed

Not supported PERMUTATIONA ODF only

Not supported PHI ODF only

Not supported ROT13 ODF only

Not supported SHEET ODF only

Not supported SHEETS ODF only

Not supported STYLE ODF only

SUMIFS Not supported OOXML only

ISO/IEC TR 29166:2011(E)

94 © ISO/IEC 2011 – All rights reserved

OOXML function ODF function Remarks

Not supported WEEKNUM ODF only

WEEKNUM WEEKNUM_ADD Name changed

Not supported WEEKS ODF only

Not supported WEEKSINYEAR ODF only

Not supported YEARS ODF only

ZTEST Can be converted Can be converted to ODF according to the
following example:

ZTEST(A1;n;sigma)=
IF(ZTEST(A1;n;sigma)>0.5;
2*(1ZTEST(A1;n;sigma));2*ZTEST(A1;n;sigma))

6.3.4 Additional properties

This table contains an extended list relating to the analysis of the translatability of selected functionalities for
spreadsheet documents.

Table 9 — Additional spreadsheet functionality

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Width
adjustment

 Yes

18.3.1.13

Yes

8.1.1

15.7.4

Medium In ODF columns must have fixed
width; relative width is only an
option, specified as a
percentage.

Alignment Yes

18.8.1

Yes

15.11.1

8.1.3

Medium In ODF L, R, C, margins exist.

Additionally, OOXML offers
header and footer margins.

Page number Yes

18.8.1

18.18.88

Yes

15.11.1

8.1.3

High

Table or
worksheet
background/
image

 Yes

18.8.1

18.18.40

No Low

Shadow Yes

18.8.1

Yes

15.11.12

15.11.13

High

Vertical
alignment

 Yes

13.3.3

Yes

6.2.3

15.2.2

High

Shadow Yes

18.3.1.67

Yes

15.5.24

High OOXML (SpreadsheetML)
applications are not required to
render according to the shadow
flag.

Cell border Yes

18.8.36

Yes

15.2.9

High

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 95

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Rotation
angle/align

 Yes

18.8.4

Yes

15.11.7

8.1.3

High

Cell protect Yes

18.8.33

Yes

15.11.14

8.1.3

Medium In OOXML cell protection does
not take effect unless the sheet
has been protected.

6.4 Presentation documents

6.4.1 Introduction

ODF and OOXML use different approaches to define presentation documents. In ODF, presentation
documents are composed of a set of <page> elements within an <presentation> element. A <page> element
acts as a container for content.

OOXML presentation documents are based on PresentationML, a framework loosely based on SMIL, in which
all definitions are stored as a schema (XSD) which can be one of either structural or presentation level data
types.

Examples of XML representations in both formats are given in subclause 7.4.

6.4.2 Slides

6.4.2.1 OOXML slides

In OOXML, the transition from one slide to another is performed via animation effects that are displayed in
between slides. Slides, layouts and notes can be defined via masters. These master layout components can
be overridden individually by specifying local attribute values within each presentation slide.

Hierarchy and inheritance are central to the concept of slides in OOXML.

6.4.2.2 ODF slides

ODF animation effects are carried out on so called presentation shapes (these are differentiated from drawing
shapes by the @class attribute).

It is possible to specify multiple effects for each shape within a page. However this could be hampered by the
application on which the presentation is running which can in some cases restrict the extent to which this
feature can be utilized.

Several effects can also be initiated at the same time via animation groups:

ISO/IEC TR 29166:2011(E)

96 © ISO/IEC 2011 – All rights reserved

Animation effects:

Appear_on_mouse_click
Appear_after_10_seconds

Execute effects when
slide is presented

Figure 62 — Animation effects

As an alternative, the animations in ODF presentation documents can be manipulated using the XML based
SMIL language on which the OOXML PresentationML schema is loosely based.

6.4.3 Text formatting

This section contains properties that may be applied to text in presentation documents based on the use
cases in subclause 5.4. Text formatting in presentation documents is similar to text formatting in word
processing and spreadsheet documents. Examples of XML representations in both formats are given in
subclause 7.4.2.

Table 10 — Text formatting

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Bold type Yes

19.2.1.1

Yes

14.6.3

15.4.32

Medium In addition to bold, ODF allows
font weight to be specified
numerically (100-900).

Listing and
itemization

 Yes

21.1.2.4.1

(19.3.1.5,

19.3.1.35

19.3.1.52)

Yes

7.1

Medium Since both formats offer multiple
ways of applying numbering
information to text segments, an
implementation will most likely
require fairly complex
processing in order to retain the
best possible graphical fidelity.

Text
animation

 Yes

19.5

M.3.4.7

Yes

15.15

Medium ODF: setting attributes via
<frames> controlling style or
SMIL.

OOXML: build animations can
be applied.

Text language Yes

21.1.2.3.9

Yes

15.4.23

High

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 97

6.4.4 Master layout

ODF makes use of master pages for creating slides. A master page is actually a reference to a specific page
layout which is used as a base template when beginning to develop a presentation. This template specifies
properties common to each page, such as size, content, headers, and footers, which are displayed on every
page in a presentation. ODF specifies that all documents must contain at least one master page element.

OOXML follows a similar principle. In Microsoft Office 2007/2010 these layout templates are known as slide
masters. Slide layouts can override definitions that were pre-set by masters, and can be applied additionally to
individual Office presentation slides. This makes for more flexibility - with regard to master layouts - while
using OOXML.

Examples of XML representations in both formats are given in subclause 7.4.3.

The following table compares the functionality based on the use cases in subclause 5.4 dealing with
presentation documents.

Table 11 — Master layout

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Layout and
positioning

 Yes

19.7.15

Yes

14.15

High

Animations Yes

19.5.1
M3.4
(SMIL)

Yes

9.7
9.8
(SMIL)

Medium OOXML animations can be
applied in a greater number of
ways than ODF specified ones.
This provides for more
granularities in creating slide
animations.

 Specialized
path
descriptions

Yes

19.5.4

No Low OOXML allows for animation via
motion descriptions over
polyline or Bezier paths. ODF
does not support this.

Timeline
functionality
(using time
nodes)

Yes

19.3.1.48

19.5.87

No Low In addition to inheritance from,
or overriding of, master-layouts:
OOXML makes use of the
concept of time-lines to
orchestrate its animations. ODF
does not support the concept of
timelines.

Slide
synchroni-
zation

 Yes

19.6

No Low An update function used by
OOXML for synchronizing slides
being loaded from SharePoint
servers. ODF documents can at
most load texts stored in a SQL
database if an appropriate driver
has been installed.

Applying
sounds to
slides

 Yes

19.5.69

Yes

9.7.1

High

Diagrams Yes

20.1.2.2.1

Yes

9.7.2

High

ISO/IEC TR 29166:2011(E)

98 © ISO/IEC 2011 – All rights reserved

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Slide blending
and effects

 Yes

19.3.1.50

Yes

9.7

9.8.1

15.36.2

Medium In ODF specification of multiple
effects could become
problematic since the
application on which the
presentation is being run can in
some cases restrict the extent to
which this feature can be
utilized. The restriction varies
from application to application.

Multimedia
content

 Yes

19.3.1.33

Yes

9.8

13.

15.36.10

Medium In OOXML media can be
orchestrated to play in sync with
a slides timeline. If the media
supplying the sound for instance
is a CD other attributes such as
track indexes or the start or end
track can be specified.

Vector
graphics

 Yes

20.1

M.5

Yes

9.2.6

14.14.2

Low Due to the use of different
graphic engines, the vector
graphics are not translatable.
However both ODF and OOXML
individually support the
representation of vector
graphics.

Master layout Yes

19.2.1.36

Yes

14.4

High

6.5 Common aspects

This section covers functionalities spanning multiple document types.

6.5.1 Alternative presentations

Metadata, such as alternative text representations for non-text entities within a document, play an important
role not only in granting people with disabilities better access to document content, but also in improving the
automated extraction and processing of information contained within a document.

The following table gives a brief comparison of alternative presentations supported by ODF and OOXML.

Table 12 — Alternative presentations

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Alternative
text

 Images Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Image maps No Yes

9.3.11

Low OOXML does not support image
maps.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 99

Functionality
Sub
functionality

OOXML ODF
Translata-
bility

Notes

Lines /
arrows

Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Auto shapes Yes

18.3.1.56

17.3.3.19

Yes

9.3

High

Grouped
objects

Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Sounds Yes

18.3.1.56

17.3.3.19

No Low

Videos Yes

18.3.1.56

17.3.3.19

No Low

Charts Yes

18.3.1.56

17.3.3.19

Yes

9.3

High

Text-box,
titles,
captions

Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Links Yes

18.3.1.56

17.3.3.19

Yes

9.3.10

High

6.5.2 Colour models

OOXML refers to http://www.w3.org/Graphics/Color/sRGB as a normative standard defining sRGB as the
primary colour model supported by the International Standard. Following part 1 (20.1.2.3) of the International
Standard, colours in the RGB space can be defined in three different ways:

 Using byte RGB values in the interval [0..255] (sRGB);
 Using real (%) RGB values in the interval [0..1] (scRGB);
 Using HSL values in the (hue x saturation x lightness) colour space with h in [0..360*6000] and s , l in

[0..1];

The RGB colour model is an additive colour model in which red, green, and blue light is added together in
various ways to reproduce a broad array of colours. It is important to notice that different RGB colour models
such as sRGB, Adobe RGB, or scRGB (16 bit) exist. Even if a colour has the same 8 bit RGB-representation it
can look different in different colour models. Thus the RGB values are not sufficient to specify a colour
unambiguously.

HSL describes colours as points in a cylinder whose central axis ranges from black at the bottom to white at
the top, with neutral colours in between. The angle around the axis corresponds to hue, the distance from the

ISO/IEC TR 29166:2011(E)

100 © ISO/IEC 2011 – All rights reserved

axis corresponds to saturation, and the distance along the axis corresponds to lightness. HSL can be mapped
to RGB using simple transformations.

ODF does not reference any specific colour model (15.17), thus it is up to the implementation to decide which
8 bit RGB model to use. For this reason translatability between OOXML and ODF and even between different
ODF implementation may be limited.

OOXML uses the concepts of themes (M.4.3.2) and accents to specify a family of related colours to be used
within one package. A package theme contains a colour scheme that itself is a set of colours. The colour
scheme is responsible for defining a list of twelve colours. The twelve colours consist of six accent colours,
two dark colours, two light colours, and a colour for a hyperlink and another for a followed hyperlink. The
colours defined in an OOXML colour scheme can be mapped to RGB equivalents in ODF. Thus the colour of
every OOXML entity can be mapped to an equivalent colour of the corresponding ODF entity. Due to the
indirect definition of schemes, reverse mapping from ODF colours to OOXML colour schemes is not possible.

6.5.3 Custom XML parts

Custom parts of documents contain arbitrary XML markup not necessarily defined by the document's standard
itself. OOXML (Subclause 22.5) allows arbitrary XML instances to be stored in a document, and the nodes of
a particular XML instance may be bound to form controls (content controls). ODF does not support arbitrary
custom XML parts, so these would be lost in a round trip to ODF.

6.5.4 Packages

A package is an aggregation of document parts or other types of content. It provides a convenient way to
store and distribute documents. ODF and OOXML use specific concepts to aggregate the document parts in a
package. There is no need for an explicit translation from an ODF package to an OOXML package or vice
versa. Instead the target package format will be generated implicitly during the translation process.

6.5.4.1 ODF packages

ODF supports two ways of document representation:

 A single XML document;
 A collection of several sub documents within a package. Each sub document stores a part of the

complete document. ODF supports text documents, drawing documents, presentation documents,
spreadsheet documents, chart documents and image documents. At least the four XML-files
meta.xml, setting.xml, style.xml and content.xml are combined in a package. The document body in
content.xml contains an element indicating the type the document. ODF uses the ZIP file format

specification from PKWARE13.

ISO/IEC 26300:2006 does not support digital signatures. However, the ODF 1.2 Committee Specification from
OASIS supports the digital signature specification from W3C.

The manifest file manifest.xml describing the content of an ODF package contains:

 The package relationships;
 Information about the files contained in the package list;
 The media type of each file;
 Information about encryption and decryption in the package.

13 http://www.pkware.com/products/enterprise/white_papers/appnote.txt, PKWARE Inc., 2004.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 101

The files in an ODF package have explicit relationships as shown in Figure 63.

Figure 63 — Explicit relationships in ODF packages

6.5.4.2 OOXML packages

In OOXML, a document is represented as a set of related parts that are stored in a container called package.
OOXML packages can contain word processing, spreadsheet and presentation documents together with other
referenced content. Different document types are stored in different physical files/parts of the package.

OOXML uses the same ZIP format as ODF. Encryption and decryption of OOXML packages is vendors
specific. OOXML uses the digital signature specification from W3C and some additional package specific
digital signatures.

The files in an OOXML package have either explicit or implicit relationships stored in _rels-files as shown in
Figure 64. In an explicit relation the relationship item contains information about (a link to) the referenced item.
In an implicit relation the relationship item contains information about (a link to) a container storing the
referenced item.

ISO/IEC TR 29166:2011(E)

102 © ISO/IEC 2011 – All rights reserved

Figure 64 — Explicit and implicit relationships in OOXML packages

7 Representation and XML structure

7.1 Introduction

This subclause describes the implementation of selected features that have been used in the use cases in
clause 5. The descriptions refer to clause 6 for a detailed elaboration of differences between the
implementations of the associated functionalities in ODF and OOXML.

In this subclause the features of word processing, spreadsheet and presentation documents are discussed
separately. For each type of document, the discussion focuses on:

 Logical structures; here we describe how a document is composed of smaller parts. The
representation and XML structure of a document are explained.

 Features; here we explain the representation and XML structure of selected features that have been
used in clauses 5 and 6.

Some figures are generated by the XML editor Oxygen utilizing the schema definitions of both document
formats. ODF's RelaxNG schema definitions have been converted to XSD schema definitions before the
figures have been generated. These figures are used to describe the XML structure of a document and its
features. In the figures  indicates elements, indicates groups, and indicates attributes. Additional
figures show sample XML code of the use cases introduced in clause 5 to illustrate the implementation of
specific features.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 103

7.2 Word processing documents

7.2.1 Logical structure

7.2.1.1 Word processing documents in ODF

ODF denotes word processing documents as text documents. A text document contains a prelude, main
document content, and an epilogue:

 The prelude contains the document's form data, change tracking information, and variable
declarations.

 The document's main content contains zero or more text content groups (represented as <text-
content>) and a single page sequence. The XML structure of the document's main content is depicted
in Figure 65, where all possible elements in a text content group are listed. Text content can be a
choice among XML elements such as

o paragraph (and heading),
o text section (and index),
o table
o list, and
o graphical shape.

As well as such normal content, text content can also include some extensional content. For example,
a table of contents (<table-of-content>) provides the user with a guide through the content of the
document. Change marks (<change-marks>) are used to mark the changed regions. A text section
(<section>) is a named region of paragraph level text content. Sections start and end on paragraph
boundaries and can contain any number of paragraphs

 The epilogue contains elements that implement enhanced table features.

ISO/IEC TR 29166:2011(E)

104 © ISO/IEC 2011 – All rights reserved

Figure 65 — XML structure of the main content in ODF

7.2.1.2 Word processing documents in OOXML

In OOXML a document describes the graphic background and the attributes of a document and the document
body. The document body is a sequence of zero or more sections that are composed of block level elements,
followed by section properties (<sectPr>). Its XML structure is depicted in Figure 66. A block level element is a
choice of elements such as paragraphs, tables or run level elements. External content can be imported into
the main document by one or more <altChunk> elements. A document can also contain structured document
tags (<sdt>) and custom markup (<customXML>), which apply user-defined semantics to arbitrary document
content. Detailed information about sections is given in subclause 7.2.8.2.

7.2.1.3 Summary

Many concepts in ODF and OOXML are very similar such as paragraphs, tables, and sections, etc. Other
concepts are defined and implemented in different ways in the two formats.

 There are more types of block level elements in ODF than in OOXML. For example, paragraphs (<p>)
and headings (<h>) are represented by different elements in ODF. In OOXML both structures are
represented by the same element <p>. ODF has list elements (<list>), but OOXML does not have
these types of elements.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 105

 The concept of a section is introduced in both formats but the details are defined differently in ODF
and OOXML. More information about sections is given in subclause 7.2.8.

Figure 66 — XML structure of word processing documents in OOXML

7.2.2 Paragraphs

7.2.2.1 Paragraphs in ODF

The paragraph element <p> in ODF consists of zero or more <paragraph-content> elements. A typical
paragraph content is text contained in span elements , which represents portions of text that are
attributed using a certain text style or class. Spans can be nested. With the exception of spans, a <paragraph-
content> element can be a choice of nearly 100 different types of elements in a flat structure. For example:

 Field elements display information about the current document or about a specific part of the current
document, such as the author, the current page number, or the document creation date. These fields
are collectively referred to as document fields. The group of document fields includes: date and time
fields, page number fields, sender and author fields, chapter fields, file name fields and document
template fields.

 <a> elements represent hyperlinks in documents.
 <ruby> elements represent Ruby texts that are usually displayed above or below the main text.
 <change-marks> elements record information of changes.

7.2.2.2 Paragraphs in OOXML

In OOXML a paragraph element <p> defines a distinct division of content that begins on a new line. The
contents of a paragraph consist of a combination of the following types of content:

ISO/IEC TR 29166:2011(E)

106 © ISO/IEC 2011 – All rights reserved

 Paragraph properties; all rich formatting elements at the paragraph level are stored within the <pPr>
element. Some examples of paragraph properties are alignment, border, hyphenation override,
indentation, line spacing, shading, text direction, and widow/orphan control.

 External references such as hyperlinks and sub documents
 Run-level content such as runs, mathematical content, smart tags and custom markup. The contents

of a run consist of run properties <rPr> together with a choice of run content such as text, graphics
(drawing), internal references or embedded objects.

7.2.2.3 Summary

Paragraphs are represented by an element <p> in ODF and OOXML. But the XML structures of <p> in ODF
and OOXML are not similar. ODF supports more types of elements in a paragraph than OOXML does. The
element in ODF corresponds to the run <r> element in OOXML.

7.2.3 Styles

Many objects in a document have formatting properties. Subclause 5.2.2 introduces a related use case. In the
two International Standards, formatting information is used in different ways.

7.2.3.1 Styles in ODF

In ODF formatting properties are stored within styles. They exist as independent entities which are referenced
by name. As shown in Figure 67, a paragraph style named “P1” defined in <style> is referenced by the
@style-name attribute of the <p> element.

Figure 67 — Styles in ODF

In ODF each style belongs to a kind of style family. The family is specified by the attribute @family of the
element <style> and refers to specific elements such as paragraph, text, section, table, table-column, table-
row, table-cell, table-page, chart, default, drawing-page, graphic, presentation, control and ruby.

7.2.3.2 Styles in OOXML

In OOXML formatting properties are associated with elements. For example the formatting information of a
paragraph is stored within the element <pPr> and the formatting information of a run is stored within the
element <rPr>. An example is shown in Figure 68.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 107

<w:p>
 <w:pPr>
 <w:jc w:val="center"/>
 <w:rPr>
 <w:rFonts w:ascii="Times New Roman"/>

……

 </w:rPr>
 </w:pPr>
 <w:r>
 <w:rPr>
 <w:rFonts w:ascii="Times New Roman" />
 ……
 </w:rPr>
 <w:t>John Marketer</w:t>
 </w:r>
</w:p>

Figure 68 — Formatting properties in OOXML

7.2.3.3 Summary

Both International Standards use different concepts to assign styles to paragraphs. Similar concepts are used
for other document parts such as table, list, and page layout. Detailed information about text formatting and
paragraph formatting is given in subclauses 6.2.1 and 6.2.2.

7.2.4 Tables

7.2.4.1 Tables in ODF

In ODF every column in a table has a column description element <table-column> whose primary use is to
reference a table column style that specifies properties such as the column's width. A row in a table is
described by the <table-row> element.

Sample XML code of the use case introduced in subclause 5.2.7 is shown in Figure 69. The style names used
in the XML code are implementation dependent. In ODF the table consists of four columns and nine rows, the
element <table> includes four column elements <table-column> and nine row elements <table-row>.

The <table-cell> and <covered-table-cell> elements specify the content of the table cells. They are contained
in <table row> elements. A table cell can contain paragraphs and other text content as well as sub tables.
Table cells may be empty. Cells can span more than one column or row. For example the cell surrounded by
a rectangle in Figure 69 spans two columns and two rows. The number of columns or rows that a cell spans is
specified by the attribute @number-columns-spanned or @number-rows-spanned of the element <table-cell>.
When a cell covers another cell because a column or row span value is greater than one, a <covered-table-
cell> element must appear in the table to describe the covered cell.

All parts of a table such as column, row, cell and the entire table itself use the attribute @style-name to
specify the name of their specific style.

ISO/IEC TR 29166:2011(E)

108 © ISO/IEC 2011 – All rights reserved

Figure 69 — Excerpt from the XML code of <table> in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 109

7.2.4.2 Tables in OOXML

In OOXML, a table is a set of paragraphs (and other block level content) arranged in rows and columns. A
<tbl> element has two elements that define its properties:

 <tblPr> that defines the set of table-wide properties such as style and width;
 <tblGrid> that defines the grid layout of the table.

A <tbl> element can also contain an arbitrary number of rows, where each row is specified by a <tr> element.
Each <tr> element can contain an arbitrary non-zero number of cells, where each cell is specified by a <tc>
element. All elements <tbl>, <tr> and <tc> have specific properties <*Pr> to describe their style name.

Sample XML code of the use case introduced in subclause 5.2.7 is shown in Figure 70. The table consists of
four columns and nine rows. The table element <tbl> includes nine row elements <tr> and the <tblGrid> has
four <gridCol> elements to define the grid layout.

A <hMerge> element contained in the cell property element <tcPr> specifies that this cell is part of a
horizontally merged set of cells in a table. The @val attribute of this element determines how this cell is
defined with respect to the previous cell in the table i.e., whether this cell continues the horizontal merge or
starts a new merged group of cells. Similarly, the <vMerge> element specifies that this cell is part of a
vertically merged set of cells in the table. The <gridSpan> element specifies the number of grid columns in the
parent table's table grid which shall be spanned by the current cell. This property allows cells to be merged in
case they span vertical boundaries of other cells in the table.

The XML code of the cell surrounded by a rectangle in Figure 70 and in Figure 69 describes the same cell in
the referenced use case.

7.2.4.3 Summary

In ODF and OOXML the structures of tables are quite similar. The representation of tables, described by
<table> element in ODF and <tbl> element in OOXML, is based on a grid of rows and columns. Rows take
precedence over columns. A table is divided into rows, described by the <table-row> element in ODF and the
<tr> element in OOXML. Rows are divided into cells. A table consists of one or more rows and a row consists
of one or more cells. Cells are allowed to span over columns and rows. They can contain another table. Table,
row and cell have their own specific properties.

ODF allows the specification of column level properties. The element <table> has a <table-column> sub
element to describe its column’s formatting information. OOXML only supports the specification of the width of
a column using the element <tblGrid>.

ISO/IEC TR 29166:2011(E)

110 © ISO/IEC 2011 – All rights reserved

Figure 70 — Excerpt from the XML code of <tbl> in OOXML

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 111

7.2.5 Lists - Itemization and numeration

7.2.5.1 Lists in ODF

In ODF a list is represented by the <list> element whose XML structure is depicted in Figure 71. A list contains
an optional list header, followed by any number of list items. Every list has a list level, which is determined by
the nesting of the <list> elements. If a list is not contained within another list, the list level is 1. If the list is
contained within another list, the list level is the list level of the list in which it is contained incremented by one.
If a list is contained in a table cell or text box, the list level returns to 1, even though the table or text box itself
may be nested within another list.

The optional attribute @style-name of a list specifies the style name that is applied to the list. The list styles
contain relevant layout information, such as

 type of list item label, such as bullet or number,
 list item label width and distance,
 bullet character or image (if any),
 number format for the bullet numbering (if any), and
 paragraph indent for list items.

The list header element <list-header> or each list item element <list-item> contains a sequence of paragraphs,
headings or list elements. Lists can be nested. A list item cannot contain tables. If a list header or a list item
has numbering applied, an optional <number> element includes the text of the formatted number. This text
can be used by applications that do not support numbering, but it will be ignored by applications that support
numbering.

Figure 71 — XML structure of <list> in ODF

ISO/IEC TR 29166:2011(E)

112 © ISO/IEC 2011 – All rights reserved

Numbered paragraphs represented by the element <numbered-paragraph> may use the same continuous
numbering properties that list items use, and therefore form an equivalent, alternative way of specifying lists. A
list in the <list> representation could be converted into a list in the <numbered-paragraph> representation and
vice versa.

7.2.5.2 Lists in OOXML

In OOXML there is no special element to represent a list. List items are simply regular paragraphs <p> to
which special properties are attached to specify the list structure and a reference to the associated formatting
information.

Sample XML code for the first list item in the use case introduced in subclause 5.2.9 is shown in Figure 72.
The <pPr> element stores the formatting properties at paragraph level. <pPr> has sub elements such as
<pStyle> and <numPr>. If the value of attribute @val contained in <pStyle> is ListParagraph, it means that the
paragraph is a list item. The <numPr> element is used to specify the numbering information.

<w:p ……>
<w:pPr>

<w:pStyle w:val="ListParagraph"/>
<w:numPr>

<w:ilvl w:val="0"/>
<w:numId w:val="1"/>

</w:numPr>
……

</w:pPr>
<w:r ……>

<w:rPr>…… </w:rPr>
<w:t xml:space="preserve">Turn on screen</w:t>

</w:r>
</w:p>

Figure 72 — An example of a list item in OOXML

7.2.5.3 Summary

The two International Standards describe the structure of lists in different ways. In OOXML lists can be used in
all places where paragraphs <p> are allowed. In ODF, lists (<list> and <numbered-paragraph>) can only be
used in places where they are explicitly allowed. Detailed information of itemization and numbering is given in
subclause 6.2.5.

A paragraph in OOXML has more properties than a list item in ODF. Therefore a list defined by a paragraph
element in OOXML can be more complex than a list in ODF.

7.2.6 Indices

7.2.6.1 Indices in ODF

There are seven types of index entries in ODF: chapter information, entry text, page number, fixed string,
bibliography information, tab stop, and hyperlink start and end. These entries are referenced by the different
types of indices:

 Table of contents represented by the <table-of-index> element; a table of contents provides the user
with a guide through the content of the document. It is typically found at the beginning of a document
and contains the chapter headings with their respective page numbers.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 113

 Index of illustrations represented by the <illustration-index> element; the index of illustrations lists all
images and graphics in the current document or chapter. The index entries can be derived from the
illustration's caption or its name.

 Index of tables represented by the <table-index> element; the index of tables lists all tables in the
current document or chapter. It works in exactly the same way as the index of illustrations.

 Index of objects represented by the <object-index> element; the index of objects lists all objects in the
current document or chapter. It gathers its entries from the known object types.

 User-defined index represented by the <user-index> element; a user-defined index combines the
capabilities of the indexes discussed earlier in this subclause. A user-defined index can gather entries
from the following sources: index marks, paragraphs formatted using particular paragraph styles,
tables, images, or objects and text frames.

 Alphabetical index represented by the <alphabetical-index> element; an alphabetical index gathers its
entries solely from index marks.

 Bibliography represented by the <bibliography> element; a bibliography gathers its entries from
bibliography index marks.

All types of indices have the same structure. An index consists of two parts:

 Index source; the index source is specific for the type of index it is used for. It contains the information
necessary to generate the index content.

 Index body represented by the <index-body> element; the index body is the same for all types of
indices. It contains the text generated from the information in the index source. The text contained in
an index body is the common text content. The content of the index body can be generated at any
time from the information contained in the index source and the remainder of the document.

Both parts are used to define an index element. For example Figure 73 depicts the structure of the <table-of-
content> element in ODF. In the <table-of-content> element the <table-of-content-source> element contains:

 an optional template element <index-title-template> for the index title,
 any number of optional template elements <table-of-content-entry-template> for index entries and

one per level,

 any number of optional elements <index-source-styles> to be used for gathering index entries and
some attributes.

Specify the style which is similar to the style

of a text section

Figure 73 — XML structure of <table-of-content> in ODF

ISO/IEC TR 29166:2011(E)

114 © ISO/IEC 2011 – All rights reserved

Sample XML code of the use case introduced in subclause 5.2.10 is shown in Figure 74.

Figure 74 — Excerpt from the XML code of <table-of-content > in ODF

7.2.6.2 Indices in OOXML

The concepts of tables of contents and indices are implemented as dynamic content fields in OOXML. There
are two types of fields, simple and complex. Simple fields are able to wrap a single run. The run text stores a
cached version of the field data from the last time the fields were updated. Complex fields can surround
multiple runs. Both the simple and complex fields use functions to define their dynamic data. The keyword
TOC means for example that the function returns the table of contents.

In Figure 75 sample XML code of the use case introduced in subclause 5.2.10 is shown to illustrate the
structure of an index in OOXML.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 115

<w:p>
<w:r>

<w:fldChar w:fldCharType="begin" />
</w:r>
<w:r>

<w:instrText>TOC </w:instrText>
 </w:r>
<w:r>

<w:fldChar w:fldCharType="separate" />
</w:r>

</w:p>
<w:p>

<w:pPr>
<w:tabs>

<w:tab w:val="right" w:leader="dot" … />
 </w:tabs>

 </w:pPr>
<w:r>

<w:t>Abstract</w:t>
</w:r>

 <w:r> <w:tab/> </w:r>
<w:hyperlink w:anchor="_Toc241565766">

 <w:fldSimple w:instr="_Toc241565766">
<w:r>

<w:t>1</w:t>
 </w:r>

</w:fldSimple>
</w:hyperlink> </w:p>

 <w:p>
<w:r>

<w:fldChar w:fldCharType="end" />
 </w:r>

 </w:p>
……
<w:p ……>

 <w:pPr>
 <w:pStyle w:val="Heading1"/>
 </w:pPr>
 <w:bookmarkStart w:id="0" w:name="_Toc241565766"/>
 <w:r ……">
 <w:t>Abstract</w:t>
 </w:r>
 <w: bookmarkEnd w:id="0"/>
 </w:p>

XML code for the indexed
heading in the document

Start of the table of contents
complex field

Separation between the
function and cached content

End of the table of contents
field

Hyperlink pointing to a
bookmark surrounding the
chapter heading

Function for retrieving the
page number of a bookmark

Specify the function is the
Table of Contents

XML code for the first item of
the table of content in
Figure 19

Figure 75 — Excerpt from the XML code of <table of content> in OOXML

7.2.6.3 Summary

In ODF different types of elements are used for different types of index entries. Although these elements have
a similar structure, the definition of the index source for different types of indices is different. In OOXML all
kinds of indices are implemented by the same mechanism, namely dynamic content fields. However, a
function must be specified for special fields. Detailed information is given in subclause 6.2.7.

7.2.7 Change tracking and collaboration support

7.2.7.1 Change tracking and collaboration support in ODF

In ODF all tracked changes in text documents are represented by the <tracked-changes> element. The
element whose XML structure is shown in Figure 76 is defined as follows:

ISO/IEC TR 29166:2011(E)

116 © ISO/IEC 2011 – All rights reserved

 The @track-changes attribute determines whether or not the track and record changes for this
document should be recorded.

 A sequence of zero or more <changed-region> elements; for every changed region of a document
there is one entry in the list of tracked changes. Every <changed-region> element has an @id
attribute. The elements that mark the start and end of a region use this @id to identify the region to
which they belong.

Figure 76 — XML structure of <tracked-changes> in ODF

The types of region content can be insertion, deletion or format change. The XML structures of their <change-
info> elements are identical. The location of each <changed-region> is defined by a <change> element whose
@region-id attribute has the same value as the @id of the <changed-region>. The inserted content can be a
piece of text within a paragraph, a whole paragraph, or a whole table. The inserted content is part of the text
document itself and is marked by a <change-start> and a <change-end> element. The deleted content is
represented by a <text-content> element whose structure is shown in Figure 65.

In ODF an annotation is represented by an <annotation> element inserted at a selected point. The text in an
annotation is contained in a sequence of zero or more paragraph <p> or list elements <list>. An <annotation>
element includes optional elements <creator>, <date> and <date-string> to record the author and the creation
date and time of the annotation. Figure 77 shows sample XML code defining how an annotation is inserted
between the strings “The” and “first”.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 117

<text:p text:style-name=…>
The

 <office:annotation>
 <dc:creator>…</dc:creator>
 <dc:date>…</dc:date>
 <text:p text:style-name=…>
 <text:span text:style-name=…> Who has written this citation?</text:span>
 </text:p>
 </office:annotation>

first one gives a statement about the problems
 ……

</text:p>

Text content in the comment

The annotation inserted
between strings “The”
and “first”.

Text content in the document

Figure 77 — Excerpt from the XML code of an annotation in ODF

7.2.7.2 Change tracking and collaboration support in OOXML

Within an OOXML document the following types of revisions can be used to track the changes to a document:
deletions, moves, changes to run, paragraph, table, numbering and section properties, and changes to
custom XML markup. There are 17 different types of elements to represent these different types of changes.

In OOXML annotations refer to various types of supplementary markup which can be stored inside or around
a region of text within the document's contents. The types of supplementary markup include: comments,
revisions, spelling and/or grammatical errors, bookmark information and optional editing permissions.

A comment in a document is divided into two components:

 Comment anchor; the text on which the comment applies. It is the cross structure annotation which
defines the region of text on which the comment in anchored.

 Comment content; the contents of the comment. It is the actual content stored in the comment part.

In the use case depicted in Figure 24 the string “first one” is a region of text tied to a comment. The XML code
of the comment anchor is shown in Figure 78(a). The <commentRangeStart> and <commentRangeEnd>
elements delimit the run content to which the comment with the "@id=4" applies. The <commentReference>
element links the selected content to a comment in the comments part with the associated "@id=4". The XML
code of the comment content is shown in Figure 78(b). A comment can contain an arbitrary amount of block
level content like paragraphs and tables.

ISO/IEC TR 29166:2011(E)

118 © ISO/IEC 2011 – All rights reserved

(a) XML code of the comment anchor (b) XML code of the comment content

……
<w:commentRangeStart w:id="4"/>
<w:r w:rsidRPr="009E3D9B">

<w:rPr> …… </w:rPr>
<w:t xml:space="preserve">first one </w:t>

</w:r>
<w:commentRangeEnd w:id="4"/>
<w:r ……>

<w:rPr>
 <w:rStyle w:val="CommentReference"/>

</w:rPr>
<w:commentReference w:id="4"/>

</w:r>
……

<w:comments>
 ……

<w:comment w:id="4" w:author=… w:date=… w:initials="kpe">
 <w:p …>
 <w:pPr>
 <w:pStyle w:val="CommentText"/>
 <w:rPr> … </w:rPr>
 </w:pPr>
 <w:r …>
 <w:rPr>
 <w:rStyle w:val="CommentReference"/>
 …
 </w:rPr>
 <w:annotationRef/>
 </w:r>
 <w:r ……>
 <w:rPr> … </w:rPr>
 <w:t>Who has written this citation?<w:t>
 </w:r>
 </w:p>

</w:comment>
……

</w:comments>

The document content
referencing the comment with
id="4".

The textual content of the
comment with id ="4".

Figure 78 — Excerpt from the XML code of comments in OOXML

7.2.7.3 Summary

Both International Standards support change tracking that stores information about the author, date and the
changed content. In ODF all tracked changes are represented by one element. In OOXML specific elements
are used to track different types of changes. Therefore OOXML offers more complex mechanisms to support
change tracking than ODF. A detailed comparison is given in subclause 6.2.8.

Comments in ODF are inserted at certain points in the document. In OOXML comments consist of anchor and
content parts that are associated via an @id attribute.

7.2.8 Section and page layout

7.2.8.1 Section and page layout in ODF

A text section is a named region of paragraph level text content. Sections start and end on paragraph
boundaries and can contain any number of paragraphs. Sections have two uses in ODF:

 They can be used to assign certain formatting properties to a region of text.
 They can be used to group text that is automatically acquired from some external data source.

Sections can contain regular text content, see Figure 65, or the text can be contained in an external file and
linked to the section. Sections support two ways of linking to external content:

 A resource identified by an XLink, represented by a <section-source> element;
 Dynamic Data Exchange (DDE), represented by a <dde-source> element.

In ODF a text section has properties defining the section style, such as text columns, background colour or
pattern, and the configuration of notes. Properties about pages are defined in page layouts and master pages.
The <page-layout> element specifies the physical properties of a page. This element contains a <page-layout-

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 119

properties> element which specifies the formatting properties of the page and two optional elements
specifying the properties of headers and footers.

A master page is a template for pages in a document. It contains a reference to a <page-layout> and static
content such as headers, footers, or background graphics that are displayed on all pages in the document that
use the master page.

7.2.8.2 Section and page layout in OOXML

In OOXML, sections are groups of paragraphs that have a specific set of properties used to define the pages.
The layout of a page within a section is controlled by the section's properties. For example each section can
have a specific page orientation and its own headers and footers. As shown in Figure 79 the <sectPr>
element defines properties such as <footnotePr>, <endnotePr> and <pgSz> to specify the properties of
footnotes, endnotes and the page size.

Figure 79 — XML structure of <sectPr> in OOXML

ISO/IEC TR 29166:2011(E)

120 © ISO/IEC 2011 – All rights reserved

A <sectPr> element can be applied in three different ways:

 When stored as the last child element of the body element mentioned in Figure 66, the <sectPr>
element defines the section properties for the final section of the document.

 When stored as the last child element of the last paragraph in a section which is not the final section
of the document, the <sectPr> element defines this section's properties.

 When specified as a child element of <sectPrChange>, the <sectPr> element specifies a set of
section properties that were modified to track all revisions when the document was set.

7.2.8.3 Summary

Sections are groups of paragraphs. In both International Standards sections are used to assign formatting
properties to different parts of a document. However, there are many differences:

 In ODF sections can contain text from some external data sources. Sections can also be write-
protected or hidden. Such features are not defined at section level in OOXML.

 In ODF sections are allowed to contain another section. This is not possible in OOXML.
 In ODF a list can only belong to one section. In OOXML a list is allowed to start in one section and

end in another section.

 In OOXML sections are used to define the properties of page layouts. The layout information in ODF
is described in page layouts and master pages, but not in sections.

7.3 Spreadsheet documents

7.3.1 Logical structure

7.3.1.1 Spreadsheet documents in ODF

In ODF spreadsheet documents are composed of a prelude, main content and an epilogue as shown
in Figure 80. The content of spreadsheet documents mainly consists of a sequence of tables. The
spreadsheet document prelude contains the document's form data, change tracking information, calculation
setting for formulas, validation rules for cell content and declarations for label ranges. The XML structure of a
table embedded in a spreadsheet document is the same as in a word processing document. For details refer
to subclause 7.2.4. The epilogue of spreadsheet documents contains declarations for named expressions,
database ranges, data pilot tables, consolidation operations and DDE links.

Figure 80 — Structure of a spreadsheet document in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 121

7.3.1.2 Spreadsheet documents in OOXML

In OOXML the <workbook> element, the root element of a spreadsheet document, contains elements and
attributes that encompass the data content of the workbook. Some sample XML code from a workbook is
shown in Figure 81. The workbook's child elements have their own sub clause references.

 The <workbookPr> element stores basic workbook settings such as the date system to use, file
protection settings, calculation settings, and smart tag behaviors.

 The <calcPr> element defines the collection of properties the application uses to record calculation
status and details.

 The <bookViews> element specifies the collection of workbook views in the enclosing workbook.
Each view can specify a window position, filter options and other configurations.

 The element <sheets> represents the collection of sheets in the workbook. Each element <sheet>
refers to a sheet. The element <sheet> has three required attributes @name, @sheetId and @id.

The sheets are the central structure within a workbook. They contain text, numbers, dates, formulas and other
elements of a workbook. The type of sheet can either be a worksheet, dialog sheet or chart sheet. A
worksheet is a two dimensional grid of cells that are organized into rows and columns. Inside a worksheet the
data can be split up into three distinct sections. The first section contains sheet properties. The second
contains the data, using the required <sheetData> element. Various supporting features such as sheet
protection and filter information can be found right after <sheetData>.

<workbook ……>

 <workbookPr ……/>

 <bookViews>

 <workbookView xWindow="0" yWindow="90" ……/>

 ……

 </bookViews>

 <sheets>

 <sheet name="Sheet1" sheetId="1" r:id="rId1"/>

 ……

 </sheets>

The attribute @sheetId specifies the internal
identifier for the sheet.

The attribute @name specifies the unique name
of the sheet.

The attribute @r:id references the part of the
workbook where the definition for this sheet is
stored.

Figure 81 — Excerpt from the XML code of an empty spreadsheet document in OOXML

7.3.1.3 Summary

The concept table in ODF is similar to the concept worksheet in OOXML. The basic structure is a two
dimensional grid of cells that are organized into rows and columns. In ODF the XML structure of a table is
identical in word processing and spreadsheet documents. In OOXML tables and worksheets are defined
separately.

7.3.2 Table contents

As mentioned above, the concept table in ODF is similar to the concept worksheet in OOXML. Each horizontal
set of cells in a table/worksheet is called a row. Each row has a heading numbered sequentially. Each vertical
set of cells in a table/worksheet is called a column. Each column has an alphabetic heading. Each cell is
identified by a cell reference; a combination of its column and row headings.

The cell is the primary place in which data is stored and operated on. A cell can have a number of properties
such as numeric, text, date or time formatting, alignment, font, colour and border. Instead of data, a cell can

ISO/IEC TR 29166:2011(E)

122 © ISO/IEC 2011 – All rights reserved

contain a formula, which is an instruction for calculating the associated data. A spreadsheet document can
contain additional features such as comments, hyperlinks, images and sorted and filtered tables.

7.3.2.1 Table contents in ODF

In ODF a cell is represented by the <table-cell> element, a child element of <table-row> as mentioned in
subclause 7.2.4. The structure of <table-row> is shown in Figure 82. The @value-type attribute in ODF
specifies the type of value that can appear in a cell. It may contain one of the following values: float
percentage or currency (numeric types), date, time, a boolean or a string.

Figure 82 — XML structure of <table-row> in ODF

7.3.2.2 Table contents in OOXML

 as
a boolean, date, error, number or string. The <c> element has a sequence of zero or more child elements:

 strings to be expressed directly in the cell definition instead of implementing

is element. Cells containing formulas store the last calculated result of the

element provides a convention for extending spreadsheetML within the markup
specification.

In OOXML the element <sheetData> contains information about each cell of a worksheet. Its structure is
shown as Figure 83. The information about a cell's location (reference), value, data type, formatting, and
formula is defined by the <c> element. The @t attribute of <c> specifies the type of the value in a cell such

 The <f> element contains the definition of a formula.
 The <is> element allows

the shared string table.
 The <v> element expresses the value contained in a cell. If the cell contains a string this value is an

index in the shared string table pointing to the actual string value. Otherwise the value of the cell is
expressed directly in th
formula in this element.

 The <extLst>

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 123

Figure 83 — XML structure of <sheetData> in OOXML

7.3.2.3 Summary

In ODF tables in a spreadsheet document are identical to tables in a word processing document. In OOXML a
spreadsheet document has a specific definition. It consists of separate parts that implement different
functionalities. For example the data of a worksheet is stored in an associated part, all string literals are stored
in a single shared string part, and comments are stored in a comments part. Refer to subclause 7.3.4 for
detailed information and examples.

7.3.3 Table style

7.3.3.1 Table style in ODF

In ODF the @style-name attribute references a table style. Different types of <style> elements are used to
describe different element styles:

 The table style describes the formatting properties of the table such as width and background colour.

ISO/IEC TR 29166:2011(E)

124 © ISO/IEC 2011 – All rights reserved

 The table row style stores the formatting properties of a table row such as height and background
colour.

 The table column style stores formatting properties of a table column such as width and background
colour. It is specified by a <style> element with a family attribute value known as the @table-column.

 The <table cell style> stores the formatting properties of a cell such as background colour, number
format, vertical alignment and borders.

Table cell content validations specify validation rules for the contents of table cells. The <content-validation>
element specifies such validation rules. All validation rules that exist in a document are contained in the
<content-validations> element. The validation rules themselves are named and referenced from the table cell
using their name.

7.3.3.2 Table style in OOXML

In OOXML a style is a named collection of formatting elements.

 A cell style specifies number format, cell alignment, font information, cell border specifications, colours
and background / foreground fills.

 Table styles specify formatting elements for a table's regions. They can, for example, make the
header row and totals bold, and apply light gray fills to alternating rows in the data portion of the table
to achieve striped or banded rows.

 PivotTable styles specify formatting elements for the regions of a pivot table for example first and
second level subtotals, row axis, column axis, and page fields.

7.3.3.3 Summary

A comparison of table styles and formatting functionality in ODF and OOXML is concluded in subclause 6.3.2.

7.3.4 Formulas and calculation

Formulas allow calculations to be performed within table cells. Many similar concepts are used in ODF and
OOXML. In the use case introduced in subclause 5.3.3 the values of the column Description are strings and
the value of the column Line Total is defined by Quantity plus Unit Price. Sample XML code of the example is
shown in Figure 84 and Figure 85 to illustrate the different representations in ODF and OOXML.

7.3.4.1 Formulas and calculation in ODF

In ODF every formula should begin with a namespace prefix specifying the syntax and semantics used within
the formula. Typically, the formula itself begins with an equals (=) sign and includes arguments such as
numbers, text, named ranges, operators, logical operators, function calls and relative or absolute addresses of
cells that contain numbers.

7.3.4.2 Formulas and calculation in OOXML

In OOXML a formula is an expression that contains entities such as constants, operators, cell references, calls
to functions and names. Examples of predefined formulas are AVERAGE, MAX, MIN, and SUM. A function
takes one or more arguments on which it operates, producing a result. For example in the formula
SUM(B1:B4), there is one argument, B1:B4, which is the closed range of cells B1–B4. Formulas in OOXML
support types like array, error, logical, number, and text.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 125

<table:table-row table:style-name="ro3">
……
<table:table-cell table:style-name="ce3" office:value-type="string">

<text:p>Flatscreen</text:p>
</table:table-cell>
……
<table:table-cell table:style-name="ce21" office:value-type="float" office:value="295">

<text:p>295.00</text:p>
</table:table-cell>
<table:table-cell table:style-name=… table: formula="of:=[.D3]*[.E3]"

office: value-type="float" office:value="295">
<text:p>295.00 <text:s text:c="2"/></text:p>

</table:table-cell>
……

</table:table-row>

Number

String

Formula

Result of the formula

Figure 84 — Example of a formula in ODF

<row r="3" spans="2:6" x14ac:dyDescent="0.3">
……
<c r="C3" s="12" t="s">

<v>10</v>
</c>
<c r="D3" s="20">

<v>1</v>
</c>
<c r="E3" s="22">

<v>295</v>
</c>
<c r="F3" s="25">

<f>D3*E3</f>
<v>295</v>

</c>
</row>

<sst xmlns=…… count="18" uniqueCount="18">
<si>

<t>Product ID</t>
</si>
……
<si>

<t>Line Total</t>
</si>

……
<si>

<t>Flatscreen</t>
</si>
<si>

<t>TOTAL DUE</t>
</si>
……

</sst>

XML code in sheet1.xml XML code in sharedStrings.xml

Index

Number

Formula and
its result

10th <si>

Figure 85 — Example of a formula in OOXML

7.3.4.3 Summary

The formulas and calculations supported in ODF and OOXML have some differences as explained in
subclause 6.3.3. The main differences are:

ISO/IEC TR 29166:2011(E)

126 © ISO/IEC 2011 – All rights reserved

 In ODF the @formula attribute of the <table-cell> element contains a formula for a table cell. In
OOXML a formula is represented by an <f> element that contains the text of the formula and a <v>
element that contains the value of the last evaluation of the formula. This pair of elements is included
in a <c> element, which is part of a <row> element.

 In ODF all content is stored in one file named content.xml. In OOXML string values are not stored in a
cell unless they are the result of a calculation. Generally strings are stored in a shared string table.

 Cell ranges are expressed in different ways.

7.3.5 Charts

Charts define a visualisation of numeric data. Charts define the source of the data and how they should be
visualised.

7.3.5.1 Charts in ODF

ODF defines 11 basic chart types which are: line, area, circle, ring, scatter, radar, bar, stock, bubble, surface
and gantt.

The <chart> element represents an entire chart including title, legend, and the graphical object that visualises
the underlying data called the plot area. Its XML structure is shown in Figure 86. The @class attribute
specifies the chart type. Charts are always contained within other XML documents. There are two types of
chart container documents:

 Containers that do not provide data for the chart; the chart data is contained in a <table> element
inside the <chart> element.

 Containers that provide data for the chart; the chart data is contained in a <table> element in the
parent document, for example in a spreadsheet or text document. The chart data is specified by the
@cell-rangeaddress attribute of the <plot-area> element. The <plot-area> element represents the
visualisation container of all data series in the chart.

Figure 86 — XML structure of <chart> in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 127

7.3.5.2 Charts in OOXML

OOXML defines11 basic charts, which are: column chart, bar chart, line chart, pie chart, area chart, scatter
chart, stock chart, surface chart, doughnut chart, bubble chart and radar chart. Most chart types have three
dimensional representations. 3D charts have extra properties to describe depth, floor or walls as well as some
other rendering effects.

A <chartSpace> element specifies overall settings for a single chart. It is the root node for a chart. A chart is
represented by a <chart> element whose XML structure is shown as Figure 87. The <plotArea> element is the
only mandatory child element of <chart>. It specifies the plot area of the chart. Different chart types have
different child elements of <plotArea>. The chart XML files can be reused and shared among different
applications such as a spreadsheet, presentation and word processing.

Figure 87 — XML structure of <chart> in OOXML

7.3.5.3 Summary

Although the names of chart types are different in ODF and OOXML, most of them find a corresponding type
in the other format.

ISO/IEC TR 29166:2011(E)

128 © ISO/IEC 2011 – All rights reserved

7.4 Presentation documents

7.4.1 Logical structure

7.4.1.1 Presentation documents in ODF

In ODF presentation documents are composed of a prelude, main content and an epilogue as shown in
Figure 88.

 The presentation content prelude equals that of a drawing document but may contain additional
declarations.

 The presentation content epilogue may contain presentation settings and elements that implement
enhanced table features.

 The main document content contains a sequence of pages represented by the <page> element which
acts as a container for content.

The <page> element contains

 a sequence of office forms (group <office-forms>),
 shapes (group <shape>),
 animations (choice of element <animations> or <animation-element>),
 presentation notes (<notes>). The <notes> element contains zero or more <shape> elements and

some additional attributes.

The attributes that may be associated with the <page> element are page name, page style, master page,
presentation page layout, header declaration, footer declaration, date and time declaration and id.

Figure 88 — XML structure of a presentation document in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 129

7.4.1.2 Presentation documents in OOXML

A presentation document starts with a <presentation> root element that refers to a slide list, a slide master list,
a notes master list, and a handout master list, which refer to all of the corresponding objects in the
presentation.

 A slide is a frame containing text and/or images, comments, notes and layout definitions. It can be a
part of one or more custom presentations. A comment is an annotation intended for the person
maintaining the presentation slide deck. A note is text intended for the presenter or the audience. A
slide layout defines the visualisation of the elements of a slide.

 The slide master list refers to all slide masters of the presentation document.
 A notes master contains information about the format of notes pages.
 A handout is a printed set of slides that can be handed out to an audience for future reference. A

handout master defines the format of a handout.

A <presentation> element has several sub elements describing the properties of the presentation. Some
example XML code from a presentation is shown in Figure 89.

Figure 89 — Excerpt from the XML code of <presentation> in OOXML

7.4.1.3 Summary

The structure of presentation documents in ODF and OOXML is very different.

7.4.2 Text formatting

7.4.2.1 Text formatting in ODF

In ODF the <shape> group defines different kinds of shapes such as rectangle, line, poly line and circle as
well as a <frame> element. Most drawing shapes contain text which may contain paragraphs and lists.

The <frame> element is a container that contains enhanced content like text boxes, images or objects. The
<frame> element can be used in many places. It may include text box elements <text-box> to place text. A

ISO/IEC TR 29166:2011(E)

130 © ISO/IEC 2011 – All rights reserved

<text-box> element contains attributes and a sequence of zero or more <text-content> elements, similar to
word processing documents; see Figure 65.

Sample XML code from the use case introduced in subclause 5.4.2 is shown in Figure 90. The page consists
of a sequence of <frame> elements which contain text content. In Figure 90 the italic strings denote style
names.

Figure 90 — Excerpt from the XML code of <frame> in ODF

7.4.2.2 Text formatting in OOXML

In OOXML, the <sld> element specifies a slide within the slide list and properties specific to the slide's
appearance in the outline view. Sample XML code of the slide introduced in subclause 5.4.2 is given
in Figure 91.

Figure 91 — Excerpt from the XML code of a slide in OOXML

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 131

The <cSld> element specifies a container for slide information. The <spTree> element specifies all shape-
based objects that can be referenced from a given slide. Text and effects are attached to shapes that are
contained within the <spTree> element. A single shape is specified by the <sp> element. As in ODF, shapes
can contain text content. All visible text and visible text related properties are contained within the element
<txBody>. A paragraph included in <txBody> is similar to a paragraph in word processing documents.

The <txStyles> element can be used to specify text styles within the slide master that will be discussed in
subclause 7.4.3.

7.4.2.3 Summary

In ODF and OOXML text in presentations is similar to text in word processing and spreadsheet documents.
Although the text containers in ODF and OOXML are different, the text formatting supported by both
International Standards is similar. For details refer to subclause 6.4.3.

7.4.3 Master layout

7.4.3.1 Master layout in ODF

In ODF master and layout are defined in styles.

 The <master-page> element is used to define master pages as common backgrounds for drawing
pages. It specifies the style information of headers and footers, forms, styles, shapes and
presentation notes. Each drawing page is directly linked to one master page, which is specified by the
@master-page-name attribute in the drawing pages style.

 Physical properties like the sizes, borders and orientation of the master page are specified in the
<page-layout> element together with two optional elements that specify the properties of headers and
footers. Both a page and a master can reference a page layout with the @page-layout-name attribute.

7.4.3.2 Master layout in OOXML

In OOXML a slide master <sldMaster> element contains the definition of formatting, text, and objects that
appear on each slide in the presentation that is associated with the slide master. A slide layout is based on a
slide master. As shown in Figure 92, a slide master has two main elements:

 The <cSld> element specifies the common slide elements such as shapes and their attached text
bodies. The structures of <cSld> in slides and slide masters are similar.

 The <txStyles> element specifies the formatting of the text within each shape. The other properties
within a slide master specify colour information, headers and footers, timing and transition information
for all corresponding presentation slides, and style information for title text, body text and other slide
texts. All types of styles have the same structure.

 The <sldLayoutIdLst> element specifies the slide layout identification list. This list is contained within
the slide master and is used to determine which layouts are used within the slide master file.

ISO/IEC TR 29166:2011(E)

132 © ISO/IEC 2011 – All rights reserved

Figure 92 — XML structure of <sldMaster> in OOXML

7.4.3.3 Summary

A presentation document contains one or more slide master parts. Subclause 5.4.9 introduces a related use
case. Detailed information is given in subclause 6.4.4.

In OOXML a slide master is associated to a layout list. The slide layout contains a template slide design that
can be applied to any existing slide. When applied to an existing slide all corresponding content should be
mapped to the new slide layout. In ODF a master and a layout contain different style information. A slide
refers to a master and a layout.

7.4.4 Animations

7.4.4.1 Animations in ODF

As shown in Figure 88 each page has an optional <animations> element, which is a container for animation
effects. The structure of the <animations> element is shown as Figure 93. If there is a <show-shape> element
for a shape, this shape is automatically invisible before the effect is executed. The attributes of the <show-
shape> and <show-text> elements are used to specify the @id of the shape/text using this effect together with
the type, direction, speed and other properties of the effect. The elements <hide-shape> and <hide-text>
make a shape and the text of a shape invisible. The element <dim> fills a shape in a single colour. The
element <play> starts the animation of a shape that supports animation. The element <sound> may be used
in all animation effects that support sound. The sound file referenced by the @XLink attribute is played when
the effect is executed.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 133

Figure 93 — XML structure of <animations> in ODF

Sample XML code of the use case introduced in subclause 5.4.6 is shown in Figure 94. The yellow bar has no
animation and the blue and green bars appear one after the other with certain effects which are triggered by a
mouse click or shown at timed intervals. The elements <show-shape> with id of “1051001” and “1051002”
refer to <g> elements with the same @id.

Synchronized Multimedia Integration Language (SMIL) based shape animations can be used instead of
animations specified by the <animations> elements if one of the following features is required:

 Multiple animations per shape;
 A mixture of animations starting upon user interaction and starting automatically with each page;
 Multiple animations running at the same time;
 Additional effects "programmed" in XML by combining basic animation elements;
 Document transformations to SVG including SMIL.

The XML code from the same use case using SMIL is shown in Figure 95.

ISO/IEC TR 29166:2011(E)

134 © ISO/IEC 2011 – All rights reserved

……
<draw:g draw:name=… draw:layer="layout">

<draw:path …> … </draw:path>
</draw:g>
<draw:g draw:name=… draw:id="1051001" draw:layer="layout">

<draw:path …> … </draw:path>
</draw:g>
<draw:g draw:name=… draw:id="1051002" draw:layer="layout">

<draw:path …> … </draw:path>
</draw:g>
<presentation:animations>

<presentation:show-shape draw:shape-id="1051001" presentation:effect="appear" presentation:speed="fast"/>
<presentation:show-shape draw:shape-id="1051002" presentation:effect="appear" presentation:speed="fast"/>

</presentation:animations>

……

Yellow bar

Blue bar

Green bar

Animation for the
shape with

id“1051001”

Figure 94 — Excerpt from the XML code of <animations> in ODF

Figure 95 — Excerpt from the XML code of a slide using SMIL animation in ODF

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 135

7.4.4.2 Animations in OOXML

In OOXML an animation describes all animation effects that are defined for one slide and also the animation
effects that occur during a transition between slides. Animations on one slide are inherently time based and
consist of animation effects on objects or text. Slide transition effects appear before any animation on a slide.
All elements described in the animations are contained in the <transition> and <timing> elements within the
slide <sld> element.

Figure 96 — XML structure of <tnLst> in OOXML

In OOXML a <timing> element specifies the timing information for handling all animations and timed events
within the corresponding slide. The information is tracked via time nodes within the <timing> element, which
includes three sub elements:

 The <extLst> element specifies the extension list with modification abilities.
 The <bldLst> element specifies the list of graphic elements to build. It defines how the different sub

shapes or sub components of an object like text, diagrams, and charts are displayed.

 The <tnLst> element specifies a list of time node elements used in an animation sequence. It
describes the animation behaviors and the timeline. The structure of the <tnLst> element is shown in

ISO/IEC TR 29166:2011(E)

136 © ISO/IEC 2011 – All rights reserved

Figure 96. The timeline is an important aspect for animations on a slide. It moderates the amount of
time that the animations use from beginning to end. A timeline is composed of timing nodes that
define at which point a certain animation is shown. There are three types of time nodes:

o Parallel (<par>); a parallel time node that can be activated along with other parallel time
nodes.

o Sequence (<seq>); a sequence time node that can only be activated when the preceding
node finishes.

o Exclusive (<excl>); a time node that is used to suspend all other timelines when it is activated.

The XML code of the use case introduced in subclause 5.4.6 is shown in Figure 97.

Figure 97 — Excerpt from the XML code of animated slides in OOXML

7.4.4.3 Summary

Shapes and other graphic entities can be animated in a presentation document. The animation is executed
when the slide is displayed during a presentation. Subclause 5.4.6 introduces a related use case. Detailed
information is given in subclause 6.4.2.

ODF defines and supports presentation animation in two ways. Each slide can have an optional <animations>
element for simple animation effects or SMIL can be used for complex animations. The schema for animation
in OOXML is loosely based on the syntax and concepts from SMIL. The definition of animations in OOXML is
more complex than in ODF and allows more effects to be defined.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 137

7.5 Summary

Clause 7 analyses and compares the XML representations of several features of ODF and OOXML
documents. Although ODF and OOXML use many similar concepts like paragraph, table, or master, the XML
representations of these concepts are different; this reduces the translation fidelity between the two
International Standards. According to these differences the complexity of corresponding translations between
OOXML and ODF can be divided into three types.

 Easy type; components of this type have direct and obvious relationships. They are easy to translate
from one format into the other. For example, simple paragraphs and tables are of the easy type.

 Moderate type; components of this type do not correspond directly with each other or they use
different XML structures. From a logical point of view, most components and features have
corresponding components and features. For example, page layout can be translated with moderate
effort.

 Difficult type; components of this type are very difficult to translate or cannot be translated at all.
OOXML and ODF use different concepts and design ideas to implement these components and their
features. For example, change tracking and collaborations are difficult to translate. While tracked
changes are represented by one element in ODF, OOXML uses nearly twenty elements to track the
changes of different elements such as run, paragraph, table and numbering.

8 Translation

8.1 Introduction

This section describes the three types of translation complexity introduced in the previous section and gives
typical examples of each type. Guidelines for evaluating translatability between the two International
Standards will be derived from the use cases introduced in clause 5, the evaluation of features and functions
in clause 6, and the examples of structures, features and translations given in clauses 7 and 8.

8.2 Translation complexity

As explained in clause 7, ODF and OOXML use different approaches to describe the logical structure and
features of documents. Similar features and the corresponding functionality of ODF and OOXML documents
are implemented in different ways. Therefore it is necessary to define mappings between these
implementations in order to be able to translate between both document formats. In this section we define the
translation complexities which depend on the complexity of the structures and the translation rules between
the two document formats. The translation complexity can be easy for 1:1 or 1:n mappings between
corresponding elements and attributes, moderate for n:m mappings between corresponding elements and
attributes, and difficult if complex mapping algorithms are required.

The easy type uses a 1:1 or 1:n mapping between the two formats. In a 1:1 mapping XML elements and
attributes can be mapped directly to corresponding entities. In a 1:n mapping one XML element or attribute in
format A can be mapped to n elements attributes in format B respectively. In other words, when a translation
occurs, format A’s features and functions can be translated directly to format B's features and functions and
vice versa. Figure 98 shows an example of a 1:1 mapping or 1:n mapping type.

In the following three figures, A and B denote formats. The colours dark and light blue represent structures
such as elements and attributes. Shapes represent features. For instance, if A denotes ODF then B denotes
OOXML and vice versa. Both shapes in Figure 98 are circles. This implies that the two formats use similar
structures. For this structure format A is a superset of B which means the elements and attributes in format B
can be mapped to format A, while format A's elements and attributes can be partially mapped to format B.

ISO/IEC TR 29166:2011(E)

138 © ISO/IEC 2011 – All rights reserved

A

B

Figure 98 — Easy translation complexity

The moderate type uses n:m mapping. Both formats support similar features. As depicted in Figure 99, the
features are implemented using different elements or attributes in the two formats. In other words when a
translation occurs a feature in format A, consisting of n elements and attributes, will be mapped to a
corresponding feature in format B, consisting of m elements and attributes.

A

B

Figure 99 — Moderate translation complexity

The difficult type uses complex algorithms for translations of features between both formats. As depicted in
Figure 100, the features in formats A and B are different even though the elements and attributes used for
their implementation in each format can overlap. Therefore it is only possible to implement a feature existing in
format A by applying a complex algorithm that works with format B elements and attributes. This mapping is
only possible in the direction from format A to format B, round tripping is only possible if the translation
processes is traced within the document. In the worst case a feature cannot be translated between the two
formats.

A B

Figure 100 — Difficult translation complexity

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 139

8.3 Sample translations

8.3.1 Easy translation

8.3.1.1 Text and paragraph formatting

In this translation example, we will consider common functionalities of text and paragraph formatting in word
processing documents. The selected functionalities are bold, italic, underline, strikethrough, font size, line
spacing, and justification. Figure 101 shows which functionalities of text and paragraph formatting are used in
the sample sentence. Figure 102 and Figure 103 show the sample sentence in ODF and OOXML using the
same text and paragraph formatting functionalities.

Figure 101 — Selected text formatting functionalities

Figure 102 — Text formatting of an ODF document

Figure 103 — Text formatting of an OOXML document

Although the selected functionality is the same in both formats, the structures of the instance documents are
different. As described in subclause 7.2.3 and depicted in Figure 104, OOXML mixes styles and content in
serial order while ODF uses separate elements for styles and contents.

ISO/IEC TR 29166:2011(E)

140 © ISO/IEC 2011 – All rights reserved

Figure 104 — Paragraph formatting in OOXML and ODF

Table 13 shows how paragraph formatting can be translated between the OOXML elements and the
corresponding ODF elements and attributes.

Table 13 — Translation rules for paragraph formatting

Functionality OOXML ODF

Bold Element : b Element- <style:text-properties>

Attribute- @fo:font-weight=”bold”

Italic Element: i Element- <style:text-properties>

Attribute- @fo:font-style=”italic”

Underline Element: u Element- <style:text-properties>

Attribute- @style:text-underline-style=”solid”

Strikethrough Element: strike Element- <style:text-properties>

Attribute- @style:text-line-through-style=”solid”

Font size Element: sz Element- <style:text-properties>

Attribute- @fo:font-size=”20pt”

Justification Element: jc Element- <style:paragraph-properties>

Attribute- @style:justfy-single-word=”false”

Line spacing Element: spacing Element- <style:paragraph-properties>

Attribute- @fo:line-height=”250%”

This example is characterized by a simple mapping between attributes, but not every “source has a target”:
some attributes or attribute values can’t be translated. Therefore the visual appearance of the translated
documents may be different and the result of round tripping will not always be an identical document.

8.3.1.2 Math functions in spreadsheets

This example focuses on the translation of mathematical functions such as ABS, COS, EVEN, POWER and
SUM that are typically used in spreadsheets as shown in Figure 105. The sample mathematical functions of
both formats can be almost identically translated between both formats.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 141

Figure 105 — Sample mathematical functions in a spreadsheet

As explained in subclauses 7.3.2 and 7.3.4 the implementations of mathematical functions in the two formats
are different. OOXML uses predefined formulas and the element <f> while ODF uses the <table-cell> element
and the @formula attribute. Another difference is that ODF does not support value types to distinguish types
such as floats and strings while OOXML does. Figure 106 shows the elements, attributes and values that are
used in the two formats.

Figure 106 — Translation of mathematical functions in a spreadsheet

Table 14 lists the corresponding elements, formulas and attributes for the sample function in both formats. It
can be recognized that an easy 1:1 translation can be defined between the corresponding entities.

ISO/IEC TR 29166:2011(E)

142 © ISO/IEC 2011 – All rights reserved

Table 14 — Mathematical functions and corresponding entities in OOXML and ODF

Formula OOXML ODF

ABS Element : f

Predefined formula: <f>ABS(-1)</f>
Element- <table:table-cell>

Attribute- @table:formula="of:=ABS(-1)"

COS Element: f

Predefined formula: <f>COS(-1)</f>
Element- <table:table-cell>

Attribute- @table:formula="of:=COS(-1)"

EVEN Element: f

Predefined formula: <f>EVEN(-1)</f>
Element- <table:table-cell>

Attribute- @table:formula="of:=EVEN(-1)"

POWER Element: f

Predefined formula: <f>POWER(2,2)</f>
Element- <table:table-cell>

Attribute- @table:formula="of:=POWER(2;2)"

SUM Element: f

Predefined formula: <f>SUM(1,1)</f>
Element- <table:table-cell>

Attribute- @table:formula="of:=SUM(1;1)"

Many mathematical functions exist in both formats and can be translated easily. However, as described in
subclause 6.3.3 and shown in Table 15, some functions exist only in one format. Some functions can be
computed from an existing function, for example COT = COS/SIN. Other functions only exist in one format
and cannot be translated. There the translation complexity for mathematical functions is easy but the
translatability level is only medium.

Table 15 — Mathematical functions that exist only in one format14

OOXML only ODF only

MDETERM BESSELI

MINVERSE BESSELJ

MMULT BESSELK

ROMAN BESSELY

SUMPRODUCT COMBINA

SUMX2MY2 CONVERT

SUMX2PY2 CONVERT_ADD

SUMXMY2 COT

 COTH

 COUNTBLANK

 COUNTIF

 DELTA

 ERF

 ERFC

 GCD_ADD

 GESTEP

 ISEVEN

 ISODD

 LCM_ADD

14 ODF 1.0 does not define any formula language. For this reason the list of ODF functions has been generated by
OpenOffice.org, the quasi reference implementation of ODF 1.0. A complete list of the supported mathematical functions
including several functions that are not supported by OpenOffice.org is introduced in ODF 1.2.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 143

This example is characterized by a simple mapping between elements and attributes but not every “source
has a target”. Some elements or attributes can’t be translated. Therefore the structure and content of
translated documents may be different and the result of round tripping will not always be an identical
document.

8.3.2 Moderate translation

8.3.2.1 Slide blending and effects in presentations

Figure 45 illustrates slide blending in presentation documents. Slide blending and effects in presentations are
usually composed of a transition type, duration time and directions of slide effects. As explained in
subclause 7.4.4, ODF and OOXML have different structures to express various types of slide blending and
effects. ODF uses elements such as <transition> and <transitionFilter> for slide blending and attributes such
as @type, @subtype, @direction and @dur to control start time, duration time, effect directions and repetition.
OOXML uses <transition> elements as parents and <blinds>, <circle>, <dissolve>, <pull>, and <push>
elements as children in order to define a transition type. Each transition type has an attribute @dir to define
the direction of the effect. Another difference is that ODF may use SMIL. Figure 107 and Figure 108 illustrate
the difference of the two formats.

Figure 107 — Slide blending and effects in OOXML

Figure 108 — SMIL based slide blending and effects in ODF

Figure 109 shows the mapping of slide blending and effects that are used in the example described above.

ISO/IEC TR 29166:2011(E)

144 © ISO/IEC 2011 – All rights reserved

Figure 109 — Translations of slide blending

This example is characterized by the implementation of similar features using different logical structures.
Therefore it is necessary to define translation rules between corresponding sets of elements and attributes.
Due to the different expressiveness of both formats it is not possible to translate any slide blending and effect.

8.3.2.2 Headers and footers in word processing documents

The logical structure and translatability of headers and footers has been discussed in subclauses 7.2.8
and 6.2.3. OOXML uses a <section> element which is a child of the <body> element. A section defines page
layout, headers and footers. The header and footer refer to header.xml and footer.xml files through
<relationship> elements as shown in Figure 110. ODF uses a reference to a <style> file inside the <body>
element. The <style> file defines the <page-layout> element that in turn defines <header style> and <footer
style> as shown in Figure 111.

Figure 110 — Headers and footers in OOXML

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 145

Figure 111 — Headers and footers in ODF

Figure 112 illustrates sample mappings of headers and footers between both formats.

Figure 112 — Translation of headers and footers

This example is characterized by the implementation of similar features using different concepts including the
utilization of different logical and physical structures. Therefore it is necessary to define complex translation
rules between corresponding sets of elements and attributes. Because both formats allow different documents
parts to be a member of a header or footer is not possible to define a total mapping between both formats.

8.3.2.3 Formatting of spreadsheets

Figure 39 gives an example of formatting features in spreadsheets such as text colour, numbers, and dates.
Even though the translatability of these features is high, the concepts used to implement these features are
different as shown in Figure 113 and Figure 114.

Figure 113 — Formatting of spreadsheets in OOXML

ISO/IEC TR 29166:2011(E)

146 © ISO/IEC 2011 – All rights reserved

Figure 114 — Formatting of spreadsheets in ODF

OOXML combines the definitions of the formatting features in the <formatCode> while ODF distributes the
definitions of the formatting features to several elements as shown in Figure 115 and Figure 116. Therefore
the <formatCode> in OOXML maps to several sub elements of <number-style> in ODF.

Figure 115 — Translation of formatting features

Figure 116 shows a sample mapping of corresponding formatting features of a spreadsheet document. This
example is characterized by the implementation of similar features using different concepts including the
utilization of different logical and physical structures. Therefore it is necessary to define complex translation
rules between corresponding elements and attribute values.

Figure 116 — Translation of formatting features in XML

8.3.2.4 Master layout in presentations

Figure 51 and Figure 52 illustrate the basic templates of master slides and the master layout in both formats.
Translatability and the structure of masters have been discussed in subclauses 6.4.4 and 7.4.3. ODF defines
<masterslide> and <layout> separately while OOXML defines <layout> as a child element of <masterslide> as
shown in Figure 117.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 147

Figure 117 — Master layouts in ODF and OOXML

As depicted in Figure 118 and Figure 119, the assignment of a layout definition to a slide is implemented in
different ways in both formats. Layouts assignments in ODF presentation documents are based on three
independent entities while layout assignments in OOXML are based on four partially dependent entities.

Figure 118 — Assignment of a layout definition in ODF

ISO/IEC TR 29166:2011(E)

148 © ISO/IEC 2011 – All rights reserved

Figure 119 — Assignment of a layout definition in OOXML

In the master slide depicted in Figure 51, the boxes start with the sentence “click to add…” everywhere where
the author can insert his textual content. These so-called placeholders have to be translated between both
formats as shown in the example in Figure 120.

Figure 120 — Translation of placeholders

Table 16 lists the existing placeholders in OOXML and ODF. There are comparable and specific placeholders
in both formats. This example is characterized by the implementation of similar features using different
concepts including the utilization of different logical and physical structures. Therefore it is necessary to define
complex translation rules between corresponding high level concepts and low level elements and attributes.

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 149

Table 16 — Placeholder lists in OOXML and ODF

OOXML ODF

title title

body outline

ctrTitle subtitle

subtitle text

dt graphic

sldNum object

ftr chart

hdr table

obj orgchart

chart page

tbl notes

clipArt handout

dgm header

media footer

sldImg date-time

pic page-number

8.3.3 Difficult translations

8.3.3.1 Equations

Figure 37 depicts an example of a mathematical equation. ODF represents mathematical equations utilizing
MathML while OOXML utilizes the shared markup language OMML. In OOXML shared part types can refer to
both MathML and OMML even though OOXML uses only OMML as its native format for formulas. OMML is
contained within elements of the document file. In ODF MathML can be stored in an external referenced file as
shown in Figure 125.

Figure 125 — Equations in ODF and OOXML

This example is characterized by the utilization of different languages to define specific content. Concepts and
structure are different in both formats. One possible way to define a translation is to use a graphic
representation of the equation. In this case the result of a translation process looks like an equation but it is
simply a character string or a graphic and cannot be further edited as an equation. Therefore the definition of
translation rules requires complex algorithms or is otherwise impossible.

ISO/IEC TR 29166:2011(E)

150 © ISO/IEC 2011 – All rights reserved

8.4 Guidelines for evaluating translatability

This TR focuses on an analysis and comparison of the two International Standards ISO/IEC 26300:2006 and
ISO/IEC 29500:2008. As already mentioned in the introduction, ISO has published several corrigenda and
amendments to both standards. OASIS has published errata and new versions 1.1 and 1.2 of ODF. Therefore
this TR can only give a snapshot analysis of the basic versions of both ISO/IEC International Standards.
Evaluations of other variants or versions of the two International Standards will produce different evaluation
results. Nevertheless the translatability levels and complexity that have been introduced in this report can still
be applied.

Model
e.g. ODF or

OOXML

Controller
Office suite

View
Rendering

engine

Figure 121 — MVC pattern applied to the architecture of office suites

There is a huge difference between evaluating the translatability between the two International Standards and
evaluating the interoperability between office applications. As depicted in the model-view-controller pattern in
Figure 121 a comparison between the International Standards focuses on the model. If the two models are
incompatible it is hard or even impossible to define a translation between certain model elements. The TR
focuses directly on the identification and categorization of such incompatibilities between the models.

Nevertheless it is possible to have identical views on incompatible parts of the models. The mathematical
expression discussed in subclause 8.3.3.1 can have identical views for a MathML, OMML, or even a graphical
representation within the models. As a result the structural properties of a document cannot be translated
although the visual fidelity of specific translations may be excellent.

Office suites (controller) are free to implement a whole International Standard or only a subset of a standard.
Additionally they are free to provide some functionality that can be mapped to the standard (model) but that is
not directly supported by the International Standard. An example of such behaviour is the support for the
CMYK colour model in OpenOffice.org that is mapped to equivalent RGB colours in the model. A user may not
be aware which features are implemented by the controller and which features are directly supported by the
model. For this reason the combination of model, view and controller, in other words the office suites together
with their input and output filters and their rendering engines, have to be improved to give a better impression
of document interoperability to the end user.

Every office suite runs in a technical IT-environment and references external resources such as user
preferences, dictionaries, glossaries, bibliographies, and font definitions. Documents may refer to external files
such as other (sub) documents, XML data, audio, video, and database files. These dependencies have a
great impact on the translatability or at least on the view of the documents. Even if it is possible to translate all
features that are represented in the document (model) it may happen that the visual fidelity of the target
document is poor because the rendering software (view) is running in a different environment. Additionally all
files that are referenced from the source document must be available in the environment of the target

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 151

document and the references have to be adjusted. For these reasons it may be hard for an end user to
distinguish between the translatability of standards and the interoperability of applications.

Therefore the evaluation of the translatability of the two document standards covers only one aspect of the
general goal of interoperability and every assessment has to distinguish clearly between the different aspects
including model, view, and controller.

For these reasons we believe that there is no simple and unique solution to obtaining comprehensive (MVC)
interoperability. Translation between document formats covers only one important but quite theoretical aspect
of improving document interoperability. The interoperability of the rendering engines and the interoperability of
the office suites are of similar importance from a practical, user oriented point of view. However, nobody
should expect that documents can be 100% translated between document formats. A generic translator will be
able to map approximately (up to) 80% of the most common features. Furthermore, the number of translators
grows quadratic considering the number of formats and their versions. Thus the governance of the translators
will become a crucial challenge because their number will increase quickly.

8.4.1 Translation fidelity

In subclause 4.2 a set of document properties such as presentation instructions, document content, dynamic
content, metadata, annotation & security and document parts & structure have been introduced as a
framework for the definition of translation fidelity. Following this approach the translatability of a document has
to be evaluated along a number of different dimensions depending on the intention of the translation.

When the focus of the translation process is on the preservation of the visual appearance of the document the
presentation instructions and the content are of special importance. Typical use cases are short and long time
storage of a document and workflows with read-only access to the translated document like displaying the
document in different environments and on different devices. Typically the target format of such translations
will be PDF/A or some eBook format.

When the focus of the translation process is on the preservation of content and structure of the document the
static and dynamic content together with the document's parts are of special importance. Typical use cases
are workflows with read/write access to the translated document. If the changes performed during the
workflow should be traced, annotations and security have to be considered. If the visual appearance should
be preserved, the presentation instructions have to be considered, too. These use cases are typical for
translations between office formats such as OOXML and ODF.

The value of metadata will probably change during a translation process due to the nature of metadata.
Nevertheless the structure of metadata should be preserved during a translation if required.

For these reasons the translation fidelity cannot be measured using an absolute measure. The fidelity
depends strongly on the reasons for and the goals of the translation. It is absolutely necessary to know why a
document should be translated before the translatability of a document and its features can be evaluated.

The following conclusion can be drawn from the discussion of the translation complexity in subclauses 7.5
and 8.2. In case of easy and moderate complexity a subset of the functionality of format A can be mapped to
the equivalent functionality in format B. In most cases round tripping is possible. With difficult translations
some functionality of format A can be mapped to the corresponding functionality in format B but round tripping
and read/write access cannot be ensured.

Whether for example the mapping of an attribute with real values in the interval [0,1] to an integer attribute
with the values {0,1} provides sufficient fidelity or not depends on the intention of the document's authors or
the application context. Therefore high fidelity can only be guaranteed if a document uses only those features

ISO/IEC TR 29166:2011(E)

152 © ISO/IEC 2011 – All rights reserved

und functionalities that are identical in both formats, even for easy translations. The translatability levels
introduced in clause 6 can be used as a guideline to estimate how well a document feature can be translated
between both formats.

It is preferable that the developers of office applications provide information about their methods used to
implement the various features of the supported International Standards in a manner that Microsoft does for

word processing15, presentation16, and spreadsheet17 documents. From this information power users can
estimate the set of translatable document features, at least for the considered applications.

8.4.2 Document interoperability

Interoperability of documents depends on a common understanding of the syntax, semantics and structure of
document formats. Both ISO/IEC 26300:2006 and ISO/IEC 29500:2008 are based on XML which provides a
common syntax. In any case document features expressed by element names and attribute names/values
could be ambiguous and inconsistent: Both International Standards don't share the same semantics. Identical
functionalities could be implemented utilizing different structures: Both International Standards don't require
the same implementation strategy. To achieve interoperability, these differences have to be resolved and
appropriate translation rules have to be defined as far as possible. Due to commercial interest, the adaptation
of both document standards in the near future seems to be unrealistic. However providing guidelines such as
those presented in this Technical Report can improve interoperability and help to avoid unnecessary problems.

Document interoperability is influenced by document standards, application software and user environments.
Therefore harmonizing the International Standards is not sufficient to achieve complete interoperability. In
order to process a document consistently, the application software has to be harmonized and the user
environments have to be aligned. Reference implementations that support specific features are a prerequisite
for the definition and evaluation of standardized behaviour and presentation fidelity. Without reference
implementations it is impossible to define the intention of the document's producer and without being able to
define this intention it is impossible to compare it with the consumer's perception. Interoperability is always
measured between different entities, one of which has to act as a reference system.

To improve document interoperability, joint efforts have to be made by developers, users and standards
bodies. It is important to:

 Carry out conformance tests ensuring that the software is implementing the International Standard in
a correct way:

o Validate documents;

 Carry out interoperability tests and assessments ensuring maximum interoperability between
documents and application software respectively;

 Provide test libraries with best practice documents and templates for selected application areas;
 Approach interoperability at higher abstractions:

o Identify interoperable subsets or profiles of the International Standards;
o Develop document templates which only use interoperable features of the International

Standards;
o Harmonize the semantics of document formats with ontologies and meta models;

15 Differences for wordprocessing documents: http://office.microsoft.com/en-gb/word-help/differences-between-the-
opendocument-text-odt-format-and-the-word-docx-format-HA010283563.aspx?mode=print

16 Differences for presentation documents: http://office.microsoft.com/en-us/powerpoint-help/differences-between-the-
opendocument-presentation-odp-format-and-the-powerpoint-pptx-format-HA010287723.aspx?mode=print

17 Differences for spreadsheet documents: http://office.microsoft.com/en-us/excel-help/differences-between-the-

opendocument-spreadsheet-ods-format-and-the-excel-xlsx-format-HA010287722.aspx?mode=print

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 153

 Use adequate implementation strategies:
o Avoid the usage of unspecified default values in both the International Standard and the

application software;
o Choose implementation options carefully to ensure that the software is implemented in an

interoperable way.

9 Examples and tools

The TR focuses on the translatability of the two document formats ODF and OOXML. The interoperability of
supporting office applications has not been analysed. In practice a typical user is often interested in finding
solutions for the latter problem. For this reason this section gives a short overview on the tools available at the
time of writing.

Generic translation rules between ODF and OXML are typically defined between the particular XML schemas
and executed on the corresponding XML instances stored in the document’s package. From this assumption it
can be concluded that only schema valid documents can be translated, otherwise the translation rules cannot
be executed. For this reason it is necessary to be able to validate documents. The following online validators
are available for ODF:

 OpenDocument Fellowship provides an OpenDocument validation service for ODF 1.0 documents
at http://opendocumentfellowship.com/validator

 Oracle provides an ODF validator supporting ODF 1.0, ODF1.1, and ODF 1.2 documents
at http://tools.services.openoffice.org/odfvalidator/

 Alex Brown from Griffin Brown Digital Publishing Ltd. provides the Office-o-tron validator for ODF 1.0
documents at http://www.probatron.org:8080/officeotron/officeotron.html

 The Package Explorer provided by Wouter van Vugt from CodeCounsil supports validation against
ODF 1.0, 1.1 and 1.2.

The following validators are available for OOXML documents:

 Alex Brown from Griffin Brown Digital Publishing Ltd. provides the office-o-tron validator for
transitional OOXML documents at http://www.probatron.org:8080/officeotron/officeotron.html

 Jesper Stocholm provides an ISO/IEC 29500 validator service using the latest up-to-date version of
the base schemas of ISO/IEC 29500 at http://29500.idippedut.dk/

 The Microsoft OpenXML SDK-Tool contains an ISO/IEC 29500 (transitional) validator
 The Package Explorer provided by Wouter van Vugt from CodeCounsil supports validation against

ECMA 376-1, ECMA 376-2 (transitional), and ISO/IEC 29500 strict and transitional.

In addition XML tools like Oxygen or XMLSpy can be used to perform syntactic XML and even semantic
validation of documents. Tool dependent translation rules that take the characteristics of the tools into
consideration do not presume that the documents are valid. They can be specific to the appropriate tools and
take tool specific implementations of the International Standards into consideration.

When translating between the two document formats, the ODF "reference implementations" OpenOffice 3.*
and LibreOffice 3.* respectively are able to read and translate OOXML documents into ODF. Microsoft Office
2010 supports both the ODF and OOXML document formats as native storage and exchange formats.
Therefore it is able to read and write ODF documents as well as transitional OOXML documents. The same is
true for Hancom Office 2010, a Korean Office Suite provided by Haansoft Corporation. A comprehensive

overview on existing office suites and the supported document formats is given in the English Wikipedia18.

18 http://en.wikipedia.org/wiki/Office_suite

http://tools.services.openoffice.org/odfvalidator/
http://www.probatron.org:8080/officeotron/officeotron.html
http://www.probatron.org:8080/officeotron/officeotron.html
http://29500.idippedut.dk/

ISO/IEC TR 29166:2011(E)

154 © ISO/IEC 2011 – All rights reserved

Release 4 of the OpenXML / ODF translator, a plug-in for Microsoft Office 2007, was released in June 2010
by DIaLOGIKa. The translator is able to read ODF files and map them to ISO/IEC 29500:2008 transitional.

This compilation of tools shows that the major vendors provide ODF  OOXML translation tools. Yet after
looking a little bit deeper into the documentation or statistics of the translators it becomes apparent that only a
subset of document features has been translated. For several (sub)-functionalities, using the terminology of
this TR, the functionality could be seen as incompatible, or as not available in the target format, or as simply
not having been implemented. Some functionalities are “lost during the translation process” of their
parent/master entities. Some documentations state that a feature or functionality has been translated in a
specific way; it has been re-implemented using other functionalities of the target format. Because neither ODF
nor OOXML support any tracing attributes that specify the source of a set of XML elements, round trip
translation is restricted to simple functionalities.

10 Conclusion

The “ODF - OOXML Translation – Guidelines" Technical Report contains four major technical clauses.
Clause 5 (Use cases) introduces scenarios describing typical situations occurring when word processing
documents, presentations or spreadsheets are exchanged between office suites that are using different
external storage formats such as the ISO/IEC International Standards OOXML and ODF. Based on the
translation types and document properties explained in clause 4 (Basic principles), expected and observable
behaviour of the translation process, or the author’s intensions and the reader’s perceptions as introduced in
the OASIS interoperability model, are described. The comparison of both behaviours is used as a metric for
the fidelity of the translation process. Some use cases focus on the layout of a document before and after the
translation process. Such visual interoperability or presentation fidelity is an important criterion for many users
but it depends more on the rendering engines used by the particular office suites than on the translatability of
the presentation instructions supported by the document formats. Of even higher importance is the possibility
to preserve the other document properties identified in clause 4 such as document content, dynamic content,
meta data, annotations and security, and document parts.

Clause 6 (Features and functionality) of the TR summarizes the features and functionalities that are necessary
to implement the document properties introduced in the use cases. The tables introduced in clause 6
summarize how the features, functionalities and sub functionalities that are used to implement the document
properties can be translated between ODF and OOXML. Translatability levels have been defined for every
(sub)-functionality indicating if the translatability of the functionality is low, medium, or high. The tables give a
comprehensive overview on the document models used in ODF and OOXML. They collect document features
and functionalities that belong together, independent of the location in the standard that introduces these
features. Nevertheless these locations are referenced to support the reader who wants to dive deeper into the
definition of a specific feature. The limitation on features with high translatability eases the development of
portable documents and document templates.

Clause 7 (Representation and XML structure) derives some examples from the use cases introduced in
clause 5, showing how both International Standards implement specific features. This section goes into XML
details and explains for example, how paragraphs and tables are defined in ODF and OOXML and how
functionalities such as alignment, border, hyphenation override, indentation, line spacing, shading, and text
direction are specified. The understanding of such XML details is a prerequisite for the understanding of the
translation strategies introduced in clause 8 (Translation). This section defines translation complexity, which
depend on the complexity of the structures and translation rules between the two document formats. The
translation complexity can be easy, moderate, and difficult. Concluding the examples for the translation
complexity, clause 8 introduces guidelines for the evaluation of translatability between ODF and OOXML.
These guidelines define requirements and restrictions on the utilization of document features to be able to

ISO/IEC TR 29166:2011(E)

© ISO/IEC 2011 – All rights reserved 155

define feature preserving one-way and round trip translations between both document formats. They consider
the intention of the editors of a document concerning the requested fidelity, starting from the preservation of
the visual appearance and ending with the preservation of the logical structure and content of a document.

10.1 Resume

The authors of the TR have learned a lot about both ISO/IEC International Standards and document
interoperability during the preparation of the Technical Report. Like for many other interoperability related
problems it is impossible to define a generic solution of the translation problem. On the other hand several
proprietary solutions already exist. Of course, as long as no standardized translation rules have been defined,
every solution will be proprietary. But is it realistic to wait for standardized rules; to define translation rules for
two moving targets? Probably not! But it seems to be realistic to introduce subsets or profiles of document
features that are important for specific application areas and that avoid fancy features that may be nice to use
but prevent interoperability. For such subsets a corresponding document model including mappings to
available document formats can be formally defined and validated. Such an approach solves the problem
resulting from different versions of the document formats and eases the definition of translation rules between
the different formats.

Different tools will in many cases produce different results of a translation between the two document formats.
Therefore the tool must be carefully chosen depending on the given requirements, the available environments
and the intention of the document's producers and consumers.

Another lesson learned is that a comprehensive documentation of how a standard is interpreted and
implemented helps a lot to understand the behaviour of the appropriate office suites and the implementation of
filters and translation rules. Therefore it seems to be desirable to provide comprehensive documentation such

as the description of the ODF implementation in Microsoft Office19, the community forum of OpenOffice.org20,
and to further activities like the OASIS interoperability and conformance TC21. It should be identified clearly
which parts of a standard allow different implementations and probably have to be refined in later versions.

The authors hope that this Technical Report transfers a lot of this expert knowledge to the reader. The report
should guide users creating and exchanging documents and templates between tools supporting both
International Standards. It should encourage standards bodies as well as the developers of office suites to
translate some of the ideas into future versions of the standards and products.

19 DII information about ODF 1.1 implementation: http://www.documentinteropinitiative.org/OASISODF1.1/reference.aspx

20 OpenOffice community forum: http://user.services.openoffice.org/en/forum/

21 OASIS interoperability TC: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=oic

ISO/IEC TR 29166:2011(E)

156 © ISO/IEC 2011 – All rights reserved

Bibliography

[1] ISO/IEC 10746-1:1998, Information technology — Open Distributed Processing — Reference model:
Overview

[2] ISO/IEC 10746-3:1996, Information technology — Open Distributed Processing — Reference Model:
Architecture

ISO/IEC TR 29166:2011(E)

ICS 35.060; 35.240.30
Price based on 156 pages

© ISO/IEC 2011 – All rights reserved

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Basic principles
	4.1 Structure of the report
	4.1.1 Enterprise view
	4.1.1.1 Use case template

	4.1.2 Computational view
	4.1.3 Information view
	4.1.4 Engineering view
	4.1.5 Technical view

	4.2 Approach

	5 Use cases
	5.1 Introduction
	5.2 Word processing documents
	5.2.1 Empty document
	5.2.2 Simple text and paragraph formatting
	5.2.3 Asian language support
	5.2.4 Line breaks in East Asian text
	5.2.5 Text direction
	5.2.6 Phonetic guide functions
	5.2.7 Tables and field functions
	5.2.8 Footnotes and endnotes
	5.2.9 Itemization and numeration
	5.2.10 Indices and tables of contents
	5.2.11 Metadata and settings
	5.2.12 Change tracking and collaboration support
	5.2.13 Bibliographies and optional document parts
	5.2.14 Sub documents and books
	5.2.15 Forms
	5.2.16 Vector graphics
	5.2.17 Font embedding and paper size
	5.2.18 Font metrics and font substitution
	5.2.19 Document fields
	5.2.20 Inclusion of user defined XML
	5.2.21 Mathematical formulas

	5.3 Spreadsheet documents
	5.3.1 Empty spreadsheet document
	5.3.2 Listing and structural features
	5.3.3 Formulas and calculation

	5.4 Presentation documents
	5.4.1 Empty presentation document
	5.4.2 Simple text formatting
	5.4.3 Itemization and numeration
	5.4.4 Positioning and layout
	5.4.5 Slide blending and animation effects
	5.4.6 Animations
	5.4.7 Comments
	5.4.8 Multimedia content
	5.4.9 Master layout

	5.5 Common properties and mutual inclusion of documents
	5.5.1 Hyperlinks between documents
	5.5.2 Colours
	5.5.3 Embedded spreadsheet documents
	5.5.4 Simple text formatting and embedded documents
	5.5.5 Embedded charts

	6 Features and functionality
	6.1 Introduction
	6.2 Word processing documents
	6.2.1 Text formatting
	6.2.2 Paragraph formatting
	6.2.3 Header and footer
	6.2.4 Tables
	6.2.5 Itemization and numeration
	6.2.5.1 Numbering in ODF
	6.2.5.2 Numbering in OOXML
	6.2.5.3 Comparison of numbering and enumeration

	6.2.6 Metadata language entries
	6.2.7 Indices
	6.2.7.1 Indices in ODF
	6.2.7.2 Indices in OOXML
	6.2.7.3 Summary

	6.2.8 Change tracking and collaborative functions
	6.2.9 Bibliographies and optional document parts

	6.3 Spreadsheet documents
	6.3.1 Introduction
	6.3.2 Formatting
	6.3.3 Calculation
	6.3.4 Additional properties

	6.4 Presentation documents
	6.4.1 Introduction
	6.4.2 Slides
	6.4.2.1 OOXML slides
	6.4.2.2 ODF slides

	6.4.3 Text formatting
	6.4.4 Master layout

	6.5 Common aspects
	6.5.1 Alternative presentations
	6.5.2 Colour models
	6.5.3 Custom XML parts
	6.5.4 Packages
	6.5.4.1 ODF packages
	6.5.4.2 OOXML packages

	7 Representation and XML structure
	7.1 Introduction
	7.2 Word processing documents
	7.2.1 Logical structure
	7.2.1.1 Word processing documents in ODF
	7.2.1.2 Word processing documents in OOXML
	7.2.1.3 Summary

	7.2.2 Paragraphs
	7.2.2.1 Paragraphs in ODF
	7.2.2.2 Paragraphs in OOXML
	7.2.2.3 Summary

	7.2.3 Styles
	7.2.3.1 Styles in ODF
	7.2.3.2 Styles in OOXML
	7.2.3.3 Summary

	7.2.4 Tables
	7.2.4.1 Tables in ODF
	7.2.4.2 Tables in OOXML
	7.2.4.3 Summary

	7.2.5 Lists - Itemization and numeration
	7.2.5.1 Lists in ODF
	7.2.5.2 Lists in OOXML
	7.2.5.3 Summary

	7.2.6 Indices
	7.2.6.1 Indices in ODF
	7.2.6.2 Indices in OOXML
	7.2.6.3 Summary

	7.2.7 Change tracking and collaboration support
	7.2.7.1 Change tracking and collaboration support in ODF
	7.2.7.2 Change tracking and collaboration support in OOXML
	7.2.7.3 Summary

	7.2.8 Section and page layout
	7.2.8.1 Section and page layout in ODF
	7.2.8.2 Section and page layout in OOXML
	7.2.8.3 Summary

	7.3 Spreadsheet documents
	7.3.1 Logical structure
	7.3.1.1 Spreadsheet documents in ODF
	7.3.1.2 Spreadsheet documents in OOXML
	7.3.1.3 Summary

	7.3.2 Table contents
	7.3.2.1 Table contents in ODF
	7.3.2.2 Table contents in OOXML
	7.3.2.3 Summary

	7.3.3 Table style
	7.3.3.1 Table style in ODF
	7.3.3.2 Table style in OOXML
	7.3.3.3 Summary

	7.3.4 Formulas and calculation
	7.3.4.1 Formulas and calculation in ODF
	7.3.4.2 Formulas and calculation in OOXML
	7.3.4.3 Summary

	7.3.5 Charts
	7.3.5.1 Charts in ODF
	7.3.5.2 Charts in OOXML
	7.3.5.3 Summary

	7.4 Presentation documents
	7.4.1 Logical structure
	7.4.1.1 Presentation documents in ODF
	7.4.1.2 Presentation documents in OOXML
	7.4.1.3 Summary

	7.4.2 Text formatting
	7.4.2.1 Text formatting in ODF
	7.4.2.2 Text formatting in OOXML
	7.4.2.3 Summary

	7.4.3 Master layout
	7.4.3.1 Master layout in ODF
	7.4.3.2 Master layout in OOXML
	7.4.3.3 Summary

	7.4.4 Animations
	7.4.4.1 Animations in ODF
	7.4.4.2 Animations in OOXML
	7.4.4.3 Summary

	7.5 Summary

	8 Translation
	8.1 Introduction
	8.2 Translation complexity
	8.3 Sample translations
	8.3.1 Easy translation
	8.3.1.1 Text and paragraph formatting
	8.3.1.2 Math functions in spreadsheets

	8.3.2 Moderate translation
	8.3.2.1 Slide blending and effects in presentations
	8.3.2.2 Headers and footers in word processing documents
	8.3.2.3 Formatting of spreadsheets
	8.3.2.4 Master layout in presentations

	8.3.3 Difficult translations
	8.3.3.1 Equations

	8.4 Guidelines for evaluating translatability
	8.4.1 Translation fidelity
	8.4.2 Document interoperability

	9 Examples and tools
	10 Conclusion
	10.1 Resume

