

ISO/IEC 29341-1
Edition 2.0 2011-09

INTERNATIONAL
STANDARD

Information technology – UPnP device architecture –
Part 1: UPnP Device Architecture Version 1.0

IS
O

/IE
C

 2
93

41
-1

:2
01

1(
E)

colour
inside

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2011 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this
publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

ISO/IEC 29341-1
Edition 2.0 2011-09

INTERNATIONAL
STANDARD

Information technology – UPnP device architecture –
Part 1: UPnP Device Architecture Version 1.0

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION V
ICS 35.200

PRICE CODE

ISBN 978-2-88912-676-7

colour
inside

CONTENTS

Introduction .. 3
0 Addressing ... 7

0.1 Addressing: Determining whether to use Auto-IP .. 7
0.2 Addressing: Choosing an address .. 7
0.3 Addressing: Testing the address .. 7
0.4 Addressing: Periodic checking for dynamic address availability 8
0.5 Addressing: Device naming and DNS interaction .. 9
0.6 Addressing: Name to IP address resolution .. 9
0.7 Addressing references ... 9

1 Discovery ... 10
1.1 Discovery: Advertisement .. 11

1.1.1 Discovery: Advertisement protocols and standards 11
1.1.2 Discovery: Advertisement: Device available -- NOTIFY with

ssdp:alive .. 12
1.1.3 Discovery: Advertisement: Device unavailable -- NOTIFY with

ssdp:byebye .. 15
1.2 Discovery: Search ... 16

1.2.1 Discovery: Search protocols and standards .. 16
1.2.2 Discovery: Search: Request with M-SEARCH ... 17
1.2.3 Discovery: Search: Response ... 18

1.3 Discovery references ... 20
2 Description ... 20

2.1 Description: Device description .. 23
2.2 Description: UPnP Device Template ... 27
2.3 Description: Service description ... 27
2.4 Description: UPnP Service Template .. 33
2.5 Description: Non-standard vendor extensions ... 33
2.6 Description: UPnP Template Language for devices ... 34

2.6.1 UPnP Template Language for devices .. 35
2.7 Description: UPnP Template Language for services .. 36

2.7.1 UPnP Template Language for services ... 37
2.8 Description: Retrieving a description .. 38
2.9 Description references ... 40

3 Control ... 40
3.1 Control: Protocols .. 42
3.2 Control: Action ... 42

3.2.1 Control: Action: Invoke ... 42
3.2.2 Control: Action: Response .. 45

3.3 Control: Query for variable ... 50
3.3.1 Control: Query: Invoke ... 50
3.3.2 Control: Query: Response .. 51

3.4 Control references ... 54
4 Eventing ... 54

4.1 Eventing: Subscription ... 56
4.1.1 Eventing: Subscribing: SUBSCRIBE with NT and CALLBACK.................... 58

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 2 —

4.1.2 Eventing: Renewing a subscription: SUBSCRIBE with SID 59
4.1.3 Eventing: Canceling a subscription: UNSUBSCRIBE 61

4.2 Eventing: Event messages ... 62
4.2.1 Eventing: Event messages: NOTIFY ... 62

4.3 Eventing: UPnP Template Language for eventing ... 65
4.4 Eventing: Augmenting the UPnP Template Language ... 65
4.5 Eventing references ... 66

5 Presentation ... 66
5.1 Presentation references ... 68

6 Glossary ... 68

29341-1 © ISO/IEC:2011(E)

INFORMATION TECHNOLOGY –
UPNP DEVICE ARCHITECTURE –

Part 1: UPnP Device Architecture Version 1.0

FOREWORD

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards. Their preparation is entrusted to technical committees; any ISO and
IEC member body interested in the subject dealt with may participate in this preparatory work. International
governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC and ISO member bodies.

4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for
the way in which they are used or for any misinterpretation by any end user.

5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent possible in their national and regional publications.
Any divergence between any ISO/IEC publication and the corresponding national or regional publication
should be clearly indicated in the latter.

6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for
any equipment declared to be in conformity with an ISO/IEC publication.

7) All users should ensure that they have the latest edition of this publication.

8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts
and members of their technical committees and IEC or ISO member bodies for any personal injury, property
damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees)
and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC,
ISO or ISO/IEC publications.

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 29341-1 was prepared by UPnP Forum Steering committee1,
was adopted, under the fast track procedure, by subcommittee 25: Interconnection of
information technology equipment, of ISO/IEC joint technical committee 1: Information
technology.

This International Standard replaces ISO/IEC 29341-1, first edition, published in 2008, and
constitutes a technical revision.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title
Information technology – UPnP device architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting
results may be obtained from the address given on the second title page.

—————————
1 UPnP Forum Steering committee, UPnP Forum, 3855 SW 153rd Drive, Beaverton, Oregon 97006 USA. See also

“Introduction”.

29341-1 © ISO/IEC:2011(E)

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 3 —

Introduction

What is UPnP™1 Technology?

UPnP™ technology defines an architecture for pervasive peer-to-peer network connectivity of
intelligent appliances, wireless devices, and PCs of all form factors. It is designed to bring
easy-to-use, flexible, standards-based connectivity to ad-hoc or unmanaged networks whether
in the home, in a small business, public spaces, or attached to the Internet. UPnP technology
provides a distributed, open networking architecture that leverages TCP/IP and the Web
technologies to enable seamless proximity networking in addition to control and data transfer
among networked devices.

The UPnP Device Architecture (UDA) is more than just a simple extension of the plug and
play peripheral model. It is designed to support zero-configuration, "invisible" networking, and
automatic discovery for a breadth of device categories from a wide range of vendors. This
means a device can dynamically join a network, obtain an IP address, convey its capabilities,
and learn about the presence and capabilities of other devices. Finally, a device can leave a
network smoothly and automatically without leaving any unwanted state behind.

The technologies leveraged in the UPnP architecture include Internet protocols such as IP,
TCP, UDP, HTTP, and XML. Like the Internet, contracts are based on wire protocols that are
declarative, expressed in XML, and communicated via HTTP. Using internet protocols is a
strong choice for UDA because of its proven ability to span different physical media, to enable
real world multiple-vendor interoperation, and to achieve synergy with the Internet and many
home and office intranets. The UPnP architecture has been explicitly designed to
accommodate these environments. Further, via bridging, UDA accommodates media running
non-IP protocols when cost, technology, or legacy prevents the media or devices attached to
it from running IP.

What is "universal" about UPnP technology? No device drivers; common protocols are used
instead. UPnP networking is media independent. UPnP devices can be implemented using
any programming language, and on any operating system. The UPnP architecture does not
specify or constrain the design of an API for applications; OS vendors may create APIs that
suit their customers’ needs.

UPnP™ Forum

The UPnP Forum is an industry initiative designed to enable easy and robust connectivity
among stand-alone devices and PCs from many different vendors. The UPnP Forum seeks to
develop standards for describing device protocols and XML-based device schemas for the
purpose of enabling device-to-device interoperability in a scalable networked environment.

The UPnP Implementers Corporation (UIC) is comprised of UPnP Forum member companies
across many industries who promote the adoption of uniform technical device interconnectivity
standards and testing and certifying of these devices. The UIC develops and administers the
testing and certification process, administers the UPnP logo program, and provides
information to UIC members and other interested parties regarding the certification of UPnP
devices. The UPnP device certification process is open to any vendor who is a member of the
UPnP Forum and UIC, has paid the UIC dues, and has devices that support UPnP
functionality. For more information, see http://www.upnp-ic.org.

The UPnP Forum has set up working committees in specific areas of domain expertise. These
working committees are charged with creating proposed device standards, building sample
implementations, and building appropriate test suites. This document indicates specific
technical decisions that are the purview of UPnP Forum working committees.

UPnP vendors can build compliant devices with confidence of interoperability and benefits of
shared intellectual property and the logo program. Separate from the logo program, vendors
may also build devices that adhere to the UPnP Device Architecture defined herein without a

1 UPnP™ is a certification mark of the UPnP™ Implementers Corporation.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 4 —

formal standards procedure. If vendors build non-standard devices, they determine technical
decisions that would otherwise be determined by a UPnP Forum working committee.

In this document

The UPnP Device Architecture (formerly known as the DCP Framework) contained herein
defines the protocols for communication between controllers, or control points, and devices.
For discovery, description, control, eventing, and presentation, the UPnP Device Architecture
uses the following protocol stack (the indicated colors and type styles are used throughout
this document to indicate where each protocol element is defined):

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SSDP [blue] SOAP [blue] GENA [navy-bold]

HTTPMU (multicast) [black] HTTPU (unicast) [black] HTTP [black] HTTP [black]

UDP [black] TCP [black]

IP [black]

At the highest layer, messages logically contain only UPnP vendor-specific information about
their devices. Moving down the stack, vendor content is supplemented by information defined
by UPnP Forum working committees. Messages from the layers above are hosted in UPnP-
specific protocols such as the Simple Service Discovery Protocol (SSDP) and the General
Event Notification Architecture (GENA) defined in this document, and others that are
referenced. The above messages are delivered via HTTP, either a multicast or unicast variety
running over UDP, or the standard HTTP running over TCP. Ultimately, all messages above
are delivered over IP. The remaining clauses of this document describe the content and
format for each of these protocol layers in detail. For reference, colors in [square brackets]
above indicate which protocol defines specific message components throughout this
document.

Two general classifications of devices are defined by the UPnP architecture: controlled
devices (or simply “devices”), and control points. A controlled device functions in the role of a
server, responding to requests from control points. Both control points and controlled devices
can be implemented on a variety of platforms including personal computers and embedded
systems. Multiple devices, control points, or both may be operational on the same network
endpoint simultaneously.

The foundation for UPnP networking is IP addressing. Each device must have a Dynamic Host
Configuration Protocol (DHCP) client and search for a DHCP server when the device is first
connected to the network. If a DHCP server is available, i.e., the network is managed, the
device must use the IP address assigned to it. If no DHCP server is available, i.e., the
network is unmanaged, the device must use Auto IP to get an address. In brief, Auto IP
defines how a device intelligently chooses an IP address from a set of reserved addresses
and is able to move easily between managed and unmanaged networks. If during the DHCP
transaction, the device obtains a domain name, e.g., through a DNS server or via DNS
forwarding, the device should use that name in subsequent network operations; otherwise, the
device should use its IP address.

Given an IP address, Step 1 in UPnP networking is discovery. When a device is added to the
network, the UPnP discovery protocol allows that device to advertise its services to control
points on the network. Similarly, when a control point is added to the network, the UPnP
discovery protocol allows that control point to search for devices of interest on the network.
The fundamental exchange in both cases is a discovery message containing a few, essential
specifics about the device or one of its services, e.g., its type, identifier, and a pointer to more
detailed information. The clause on Discovery below explains how devices advertise, how
control points search, and details of the format of discovery messages.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 5 —

Step 2 in UPnP networking is description. After a control point has discovered a device, the
control point still knows very little about the device. For the control point to learn more about
the device and its capabilities, or to interact with the device, the control point must retrieve
the device's description from the URL provided by the device in the discovery message.
Devices may contain other, logical devices, as well as functional units, or services. The UPnP
description for a device is expressed in XML and includes vendor-specific, manufacturer
information like the model name and number, serial number, manufacturer name, URLs to
vendor-specific Web sites, etc. The description also includes a list of any embedded devices
or services, as well as URLs for control, eventing, and presentation. For each service, the
description includes a list of the commands, or actions, the service responds to, and
parameters, or arguments, for each action; the description for a service also includes a list of
variables; these variables model the state of the service at run time, and are described in
terms of their data type, range, and event characteristics. The clause on Description below
explains how devices are described and how those descriptions are retrieved by control points.

Step 3 in UPnP networking is control. After a control point has retrieved a description of the
device, the control point can send actions to a device's service. To do this, a control point
sends a suitable control message to the control URL for the service (provided in the device
description). Control messages are also expressed in XML using the Simple Object Access
Protocol (SOAP). Like function calls, in response to the control message, the service returns
any action-specific values. The effects of the action, if any, are modeled by changes in the
variables that describe the run-time state of the service. The clause on Control below explains
the description of actions, state variables, and the format of control messages.

Step 4 in UPnP networking is eventing. A UPnP description for a service includes a list of
actions the service responds to and a list of variables that model the state of the service at
run time. The service publishes updates when these variables change, and a control point
may subscribe to receive this information. The service publishes updates by sending event
messages. Event messages contain the names of one of more state variables and the current
value of those variables. These messages are also expressed in XML. A special initial event
message is sent when a control point first subscribes; this event message contains the names
and values for all evented variables and allows the subscriber to initialize its model of the
state of the service. To support scenarios with multiple control points, eventing is designed to
keep all control points equally informed about the effects of any action. Therefore, all
subscribers are sent all event messages, subscribers receive event messages for all evented
variables that have changed, and event messages are sent no matter why the state variable
changed (either in response to a requested action or because the state the service is
modeling changed). The clause on Eventing below explains subscription and the format of
event messages.

Step 5 in UPnP networking is presentation. If a device has a URL for presentation, then the
control point can retrieve a page from this URL, load the page into a browser, and depending
on the capabilities of the page, allow a user to control the device and/or view device status.
The degree to which each of these can be accomplished depends on the specific capabilities
of the presentation page and device. The clause on Presentation below explains the protocol
for retrieving a presentation page.

Audience

The audience for this document includes UPnP device vendors, members of UPnP Forum
working committees, and anyone else who has a need to understanding the technical details
of UPnP protocols.

This document assumes the reader is familiar with the HTTP, TCP, UDP, IP family of
protocols; this document makes no attempt to explain them. This document also assumes
most readers will be new to XML, and while it is not an XML tutorial, XML-related issues are
addressed in detail given the centrality of XML to the UPnP device architecture. This
document makes no assumptions about the reader's understanding of various programming or
scripting languages.

Required vs. recommended

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 6 —

In this document, features are described as Required, Recommended, or Optional as follows:

Required (or Must or Shall).

These basic features must be implemented to comply with the UPnP Device Architecture.
The phrases “must not” and “shall not” indicate behavior that is prohibited that if
performed means the implementation is not in compliance.

Recommended (or Should).

These features add functionality supported by the UPnP Device Architecture and should
be implemented. Recommended features take advantage of the capabilities of the UPnP
Device Architecture, usually without imposing major cost increases. Notice that for
compliance testing, if a recommended feature is implemented, it must meet the specified
requirements to be in compliance with these guidelines. Some recommended features
could become requirements in the future. The phrase “should not” indicates behavior that
is permitted but not recommended.

Optional (or May).

These features are neither required nor recommended by the UPnP Device Architecture,
but if the feature is implemented, it must meet the specified requirements to be in
compliance with these guidelines. These features are not likely to become requirements in
the future.

Acronyms

Acronym Meaning

ARP Address Resolution Protocol

CP Control Point

DCP Device Control Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GENA General Event Notification Architecture

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPMU HTTP (Multicast over UDP)

HTTPU HTTP (Unicast over UDP)

Acronym Meaning

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

UDA UPnP™ Device Architecture

UPC Universal Product Code

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UUID Universally Unique Identifier

XML Extensible Markup Language

References and resources

RFC 2616 — HTTP: Hypertext Transfer Protocol 1.1. <http://www.ietf.org/rfc/rfc2616.txt>.

RFC 2279 — UTF-8, a transformation format of ISO 10646 (character encoding).
<http://www.ietf.org/rfc/rfc2279.txt>.

XML — Extensible Markup Language. W3C recommendation. <http://www.w3.org/TR/2000/REC-
xml-20001006>.

Each clause in this document contains additional information about resources for specific
topics.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 7 —

0 Addressing

Addressing is Step 0 of UPnP™ networking. Through addressing, devices get a network
address. Addressing enables discovery (Step 1) where control points find interesting device(s),
description (Step 2) where where control points learn about device capabilities, control (Step
3) where a control point sends commands to device(s), eventing (Step 4) where control points
listen to state changes in device(s), and presentation (Step 5) where control points display a
user interface for device(s).

The foundation for UPnP networking is IP addressing. Each UPnP device which does not itself
implement a DHCP server must have a Dynamic Host Configuration Protocol (DHCP) client
and search for a DHCP server when the device is first connected to the network (if the device
itself implements a DHCP server, it may allocate itself an address from the pool that it
controls). If a DHCP server is available, i.e., the network is managed, the device must use the
IP address assigned to it. If no DHCP server is available, i.e., the network is unmanaged; the
device must use automatic IP addressing (Auto-IP) to obtain an address.

Auto-IP as defined herein is how a device: (a) determines if DHCP is unavailable, and (b)
intelligently chooses an IP address from a set of link-local IP addresses. This method of
address assignment enables a device to easily move between managed and unmanaged
networks.

This clause provides a definition of the operation of Auto-IP. The operations described in this
clause are detailed and clarified in the reference documents listed below. Where conflicts
between this document and the reference documents exist, the reference document always
takes precedence.

0.1 Addressing: Determining whether to use Auto-IP

A device that supports Auto-IP and is configured for dynamic address assignment begins by
requesting an IP address via DHCP by sending out a DHCPDISCOVER message. The amount
of time this DHCP Client should listen for DHCPOFFERs is implementation dependent. If a
DHCPOFFER is received during this time, the device must continue the process of dynamic
address assignment. If no valid DHCPOFFERs are received, the device may then auto-
configure an IP address.

0.2 Addressing: Choosing an address

To auto-configure an IP address using Auto-IP, the device uses an implementation-dependent
algorithm for choosing an address in the 169.254/16 range. The first and last 256 addresses
in this range are reserved and must not be used.

The selected address must then be tested to determine if the address is already in use. If the
address is in use by another device, another address must be chosen and tested, up to an
implementation dependent number of retries. The address selection should be randomized to
avoid collision when multiple devices are attempting to allocate addresses. It is recommended
that the device choose an address using a pseudo-random algorithm (distributed over the
entire address range from 169.254.1.0 to 169.254.254.255) to minimize the likelihood that
devices that join the network at the same time will choose the same address and
subsequently choose alternative addresses in the same sequence when collisions are
detected. This pseudo-random algorithm may be seeded using the device’s Ethernet
hardware MAC address.

0.3 Addressing: Testing the address

To test the chosen address, the device must use an Address Resolution Protocol (ARP) probe.
An ARP probe is an ARP request with the device hardware address used as the sender's
hardware address and the sender's IP address set to 0s. The device will then listen for
responses to the ARP probe, or other ARP probes for the same IP address. If either of these
ARP packets is seen, the device must consider the address in use and try a different address.
The ARP probe may be repeated for greater certainty that the address is not already in use; it
is recommended that the probe be sent four times at two-second intervals.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 8 —

After successfully configuring a link-local address, the device should send two gratuitous
ARPs, spaced two seconds apart, this time filling in the sender IP address. The purpose of
these gratuitous ARPs is to make sure that other hosts on the net do not have stale ARP
cache entries left over from some other host that may previously have been using the same
address.

Devices that are equipped with persistent storage may record the IP address they have
selected and on the next boot use that address as their first candidate when probing, in order
to increase the stability of addresses and reduce the need to resolve address conflicts.

Address collision detection should not be limited to the address testing phase, when the
device is sending ARP probes and listening for replies. Address collision detection is an
ongoing process that is in effect for as long as the device is using a link-local address. At any
time, if a device receives an ARP packet with its own IP address given as the sender IP
address, but a sender hardware address that does not match its own hardware address, then
the device should treat this as an address collision and should respond as described in either
a) or b) below:

a) Immediately configure a new link-local IP address as described above; or,
b) If the device currently has active TCP connections or other reasons to prefer to keep the

same IP address, and has not seen any other conflicting ARP packets recently (e.g.,
within the last ten seconds) then it may elect to attempt to defend its address once, by
recording the time that the conflicting ARP packet was received, and then broadcasting
one single gratuitous ARP, giving its own IP and hardware addresses as the source
addresses of the ARP. However, if another conflicting ARP packet is received within a
short time after that (e.g., within ten seconds) then the device should immediately
configure a new Auto-IP address as described above.

The device should respond to conflicting ARP packets as described in either a) or b) above; it
should not ignore conflicting ARP packets. To switch over from one IP address to a new one,
the device should, if possible, cancel any outstanding advertisements made on the previous
address, and must issue new advertisements on the new address. The clause on Discovery
explains advertisements and their cancellations.

After successfully configuring an Auto-IP address, all subsequent ARP packets (replies as
well as requests) containing an Auto-IP source address should be sent using link-level
broadcast instead of link-level unicast, in order to facilitate timely detection of duplicate
addresses. As an alternative, a device which cannot send broadcast ARP replies should send
a unicast ARP reply but then neglect to follow the instructions in RFC 826 about recording
sender information from received ARP requests. This means that, having failed to record the
sender information, the device is likely to send a broadcast ARP request of its own shortly
later, which allows another device using the same IP address to detect the conflict and
respond to it.

IP packets whose source or destination addresses are in the 169.254/16 range must not be
sent to any router for forwarding. IP datagrams with a multicast destination address and an
Auto-IP source address should not be forwarded off the local link. Devices and control points
may assume that all 169.254/16 destination addresses are on-link and directly reachable. The
169.254/16 address range MUST NOT be subnetted.

0.4 Addressing: Periodic checking for dynamic address availability

A device that has auto-configured an IP address must periodically check for the existence of a
DHCP server. This is accomplished by sending DHCPDISCOVER messages. How often this
check is made is implementation dependent, but checking every 5 minutes would maintain a
balance between network bandwidth required and connectivity maintenance. If a
DHCPOFFER is received, the device must proceed with dynamic address allocation. Once a
DHCP assigned address is in place, the device may release the auto-configured address, but
may also choose to maintain this address for a period of time (or indefinitely) to maintain
connectivity.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 9 —

To switch over from one IP address to a new one, the device should, if possible, cancel any
outstanding advertisements made on the previous address, and must issue new
advertisements on the new address. The clause on Discovery explains advertisements and
their cancellations.

0.5 Addressing: Device naming and DNS interaction

Once a device has a valid IP address for the network, it can be located and referenced on that
network through that address. There may be situations where the end user needs to locate
and identify a device. In these situations, a friendly name for the device is much easier for a
human to use than an IP address. If a UPnP device chooses to provide a host name to a
DHCP server and register with a DNS server, the device should either ensure the requested
host name is unique or provide a means for the user to change the requested host name.
Most often, UPnP devices do not provide a host name, but provide URLs using literal
(numeric) IP addresses.

Moreover, names are much more static than IP addresses. Clients referring a device by name
don't require any modification when the IP address of a device changes. Mapping of the
device's DNS name to its IP address could be entered into DNS database manually or
dynamically according to RFC 2136. While devices supporting dynamic DNS updates can
register their DNS records directly in DNS, it is also possible to configure a DHCP server to
register DNS records on behalf of these DHCP clients.

0.6 Addressing: Name to IP address resolution

A device that needs to contact another device identified by a DNS name needs to discover its
IP address. The device submits a DNS query according to RFC1034 and 1035 to the pre-
configured DNS server(s) and receives a response from a DNS server containing the IP
address of the target device. A device can be statically pre-configured with the list of DNS
servers. Alternatively a device could be configured with the list of DNS server through DHCP,
or after the address assignment through a DHCPINFORM message.

0.7 Addressing references

RFC1034 — Domain Names - Concepts and Facilities. <http://www.ietf.org/rfc/rfc1034.txt>.

RFC1035 — Domain Names - Implementation and Specification.
<http://www.ietf.org/rfc/rfc1035.txt>.

RFC 2131 — Dynamic Host Configuration Protocol. <http://www.ietf.org/rfc/rfc2131.txt>.

RFC 2136 — Dynamic Updates in the Domain Name System.
<http://www.ietf.org/rfc/rfc2136.txt>.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 10 —

1 Discovery

Discovery is Step 1 in UPnP™ networking. Discovery comes after addressing (Step 0) where
devices get a network address. Through discovery, control points find interesting device(s).
Discovery enables description (Step 2) where control points learn about device capabilities,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where
control points listen to state changes in device(s), and presentation (Step 5) where control
points display a user interface for device(s).

Discovery is the first step in UPnP networking. When a device is added to the network, the
UPnP discovery protocol allows that device to advertise its services to control points on the
network. Similarly, when a control point is added to the network, the UPnP discovery protocol
allows that control point to search for devices of interest on the network. The fundamental
exchange in both cases is a discovery message containing a few, essential specifics about
the device or one of its services, e.g., its type, universally unique identifier, and a pointer to
more detailed information.

When a new device is added to the network, it multicasts a number of discovery messages
advertising itself, its embedded devices, and its services. Any interested control point can
listen to the standard multicast address for notifications that new capabilities are available.

Similarly, when a new control point is added to the network, it multicasts a discovery message
searching for interesting devices, services, or both. All devices must listen to the standard
multicast address for these messages and must respond if any of their embedded devices or
services match the search criteria in the discovery message.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 11 —

To reiterate, a control point may learn of a device of interest because that device sent
discovery messages advertising itself or because the device responded to a discovery
message searching for devices. In either case, if a control point is interested in a device and
wants to learn more about it, the control point uses the information in the discovery message
to send a description query message. The clause on Description explains description
messages in detail.

When a device is removed from the network, it should, if possible, multicast a number of
discovery messages revoking its earlier announcements, effectively declaring that its
embedded devices and services will no longer be available. When the IP address of a device
is changed, it should revoke any earlier announcements and advertise using the new IP
address.

For devices and control points that have multiple network interfaces, UPnP advertisements
and searches should be sent on all network interfaces enabled for UPnP networking. Each
advertisement or search must specify an address in the LOCATION header that is reachable
on that interface

To limit network congestion, the time-to-live (TTL) of each IP packet for each multicast
message should default to 4 and should be configurable. When the TTL is greater than 1, it is
possible for multicast messages to traverse multiple routers; therefore control points and
devices using non-AutoIP addresses must send an IGMP Join message so that routers will
forward multicast messages to them (this is not necessary when using an Auto-IP address,
since packets with Auto-IP addresses will not be forwarded by routers).

Discovery plays an important role in the interoperability of devices and control points using
different versions of UPnP networking. The UPnP Device Architecture (defined herein) is
versioned with both a major and a minor version, usually written as major.minor, where both
major and minor are integers (for example, version 2.10 [two dot ten] is newer than version
2.2 [two dot two]). Advances in minor versions must be a compatible superset of earlier minor
versions of the same major version. Advances in major version are not required to be
supersets of earlier versions and are not guaranteed to be backward compatible. Version
information is communicated in discovery and description messages. In the former, each
discovery message includes the version of UPnP networking that the device supports (in the
SERVER header); the version of device and service types supported is also included in
relevant discovery messages. As a backup, the latter also includes the same information. This
clause explains the format of version information in discovery messages and specific
requirements on discovery messages to maintain compatibility with advances in minor
versions.

The remainder of this clause explains the UPnP discovery protocol known as SSDP (Simple
Service Discovery Protocol) in detail, enumerating how devices advertise and revoke their
advertisements as well as how control points search and devices respond.

1.1 Discovery: Advertisement
When a device is added to the network, the device advertises its services to control points. It
does this by multicasting discovery messages to a standard address and port
(239.255.255.250:1900). Control points listen to this port to detect when new capabilities are
available on the network. To advertise the full extent of its capabilities, a device multicasts a
number of discovery messages corresponding to each of its embedded devices and services.
Each message contains information specific to the embedded device (or service) as well as
information about its enclosing device. Messages should include duration until the
advertisements expire; if the device remains available, the advertisements should be re-sent
(with new duration). If the device becomes unavailable, the device should explicitly cancel its
advertisements, but if the device is unable to do this, the advertisements will expire on their
own.

1.1.1 Discovery: Advertisement protocols and standards
To send (and receive) advertisements, devices (and control points) use the following subset
of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning
of this document.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 12 —

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]

SSDP [blue]

HTTPMU (multicast) [black]

UDP [black]

IP [black]

At the highest layer, discovery messages contain vendor-specific information, e.g., URL for
the device description and device identifier. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, e.g., device type.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, the above messages are delivered via a multicast variant of HTTP
extended using additional methods and headers. The HTTP messages are delivered via UDP
over IP. For reference, colors in [square brackets] above indicate which protocol defines
specific headers and values in discovery messages listed below.

1.1.2 Discovery: Advertisement: Device available -- NOTIFY with ssdp:alive
When a device is added to the network, it multicasts discovery messages to advertise its root
device, any embedded devices, and any services. Each discovery message contains four
major components:

a) a potential search target (e.g., device type), sent in an NT (Notification Type) header,
b) a composite identifier for the advertisement, sent in a USN (Unique Service Name) header,
c) a URL for more information about the device (or enclosing device in the case of a service),

sent in a LOCATION header, and
d) a duration for which the advertisement is valid, sent in a CACHE-CONTROL header.
To advertise its capabilities, a device multicasts a number of discovery messages. Specifically,
a root device must multicast:

• Three discovery messages for the root device.

 NT USN a

1 upnp:rootdevice uuid:device-UUID::upnp:rootdevice

2 uuid:device-UUID b uuid:device-UUID (for root device UUID)

3 urn:schemas-upnp-org:device:deviceType:v or
urn:domain-name:device:deviceType:v

uuid:device-UUID::urn:schemas-upnp-
org:device:deviceType:v (of root device) or
uuid:device-UUID::urn:domain-
name:device:deviceType:v

a Note that the prefix of the USN header (before the double colon) must match the value of the UDN element
in the device description. (The clause on Description explains the UDN element.)

b Note that the value of this NT header must match the value of the UDN element in the device description.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 13 —

• Two discovery messages for each embedded device.

 NT USN a

1 uuid:device-UUID b uuid:device-UUID

2 urn:schemas-upnp-org:device:deviceType:v or
urn:domain-name:device:deviceType:v

uuid:device-UUID::urn:schemas-upnp-
org:device:deviceType:v or uuid:device-
UUID::urn:domain-name:device:deviceType:v

a Note that the prefix of the USN header (before the double colon) must match the value of the UDN element
in the device description. (The clause on Description explains the UDN element.)

b Note that the value of this NT header must match the value of the UDN element in the device description.

• Once for each service type in each device.

 NT USN a

1 urn:schemas-upnp-org:service:serviceType:v or
urn:domain-name:service:serviceType:v

uuid:device-UUID::urn:schemas-upnp-
org:service:serviceType:v or uuid:device-
UUID::urn:domain-name:service:serviceType:v

a Note that the prefix of the USN header (before the double colon) must match the value of the UDN element
in the device description. (The clause on Description explains the UDN element.)

If a root device has d embedded devices and s embedded services but only k distinct service
types, this works out to 3+2d+k requests. If a particular device or embedded device contains
multiple instances of a particular service type, it is only necessary to advertise the service
type once (rather than once for each instance). This advertises the full extent of the device's
capabilities to interested control points. These messages must be sent out as a series with
roughly comparable expiration times; order is unimportant, but refreshing or canceling
individual messages is prohibited.

Updated UPnP device and service types are required to be fully backward compatible with
previous versions of the same type. Devices must advertise the highest supported version of
each supported type. For example, if a device supports version 2 of the “Audio” service, it
would advertise only version 2, even though it also supports version 1. Control points that
support a given version of a device or service are able to also interact with higher versions
because of this backward compatibility requirement, but only using the functionality that was
defined in the lower version. For example, if a control point supports only version “1” of the
“Audio” service, and a device advertises that it supports version “2” of the “Audio” service, the
control point should recognize and be able to use the device.

Choosing an appropriate duration for advertisements is a balance between minimizing
network traffic and maximizing freshness of device status. Relatively short durations close to
the minimum of 1800 seconds will ensure that control points have current device status at the
expense of additional network traffic; longer durations, say on the order of a day, compromise
freshness of device status but can significantly reduce network traffic. Generally, device
vendors should choose a value that corresponds to expected device usage: short durations
for devices that are expected to be part of the network for short periods of time, and
significantly longer durations for devices expected to be long-term members of the network.
Devices that frequently connect to and leave the network (such as mobile wireless devices)
should use a shorter duration so that control points have a more accurate view of their
availability. Advertisements in the initial set should have comparable durations and the entire
set should be sent as quickly as possible. Subsequent refreshments of the advertisements
may be spread over time rather than being sent as a group.

Devices should wait a random interval less than 100 milliseconds before sending an initial set
of advertisements in order to reduce the likelihood of network storms; this random interval
should also be applied on occasions where the device obtains a new IP address or a new
network interface is installed.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 14 —

Due to the unreliable nature of UDP, devices should send each of the above discovery
messages more than once, although to avoid network congestion discovery messages should
not be sent more than three times. In addition, the device must re-send its advertisements
periodically prior to expiration of the duration specified in the CACHE-CONTROL header; it is
recommended that such refreshing of advertisements be done at a randomly-distributed
interval of less than one-half of the advertisement expiration time, so as to provide the
opportunity for recovery from lost advertisements before the advertisement expires, and to
distribute over time the advertisement refreshment of multiple devices on the network in order
to avoid spikes in network traffic. Note that UDP packets are also bounded in length (perhaps
as small as 512 Bytes in some implementations); each discovery message must fit entirely in
a single UDP packet. There is no guarantee that the above 3+2d+k messages will arrive in a
particular order.

When a device is added to the network, it must send a multicast request with method NOTIFY
and ssdp:alive in the NTS header in the following format. Values in italics are placeholders
for actual values.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 CACHE-CONTROL: max-age = seconds until advertisement expires
 LOCATION: URL for UPnP description for root device
 NT: search target
 NTS: ssdp:alive
 SERVER: OS/version UPnP/1.0 product/version
 USN: advertisement UUID

(No body for request with method NOTIFY, but note that the message must have a blank line
following the last HTTP header.)

The TTL for the IP packet should default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

NOTIFY
Method for sending notifications and events.

*
Request applies generally and not to a specific resource. Must be *.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority (IANA). Must be
239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver should assume the default SSDP port number of
1900.

CACHE-CONTROL
Required. Must have max-age directive that specifies number of seconds the advertisement is valid. After this duration,
control points should assume the device (or service) is no longer available. Should be greater than or equal to 1800
seconds (30 minutes). Specified by UPnP vendor. Integer.

LOCATION
Required. Contains a URL to the UPnP description of the root device. Normally the host portion contains a literal IP
address rather than a domain name in unmanaged networks. Specified by UPnP vendor. Single URL.

NT
Required. Notification Type. Must be one of the following. (cf. table above.) Single URI.

upnp:rootdevice
Sent once for root device.

uuid:device-UUID
Sent once for each device, root or embedded. Device UUID specified by UPnP vendor.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 15 —

urn:schemas-upnp-org:device:deviceType:v
Sent once for each device, root or embedded. Device type and version defined by UPnP Forum working
committee. Specifies the highest supported version of the device type.

urn:schemas-upnp-org:service:serviceType:v
Sent once for each service. Service type and version defined by UPnP Forum working committee. Specifies the
highest supported version of the service type.

urn:domain-name:device:deviceType:v
Sent once for each device, root or embedded. Domain name, device type and version defined by UPnP vendor.
Specifies the highest supported version of the device type. Period characters in the domain name must be
replaced with hyphens in accordance with RFC 2141.

urn:domain-name:service:serviceType:v
Sent once for each service. Domain name, service type and version defined by UPnP vendor. Specifies the
highest supported version of the service type. Period characters in the domain name must be replaced with
hyphens in accordance with RFC 2141.

NTS
Required. Notification Sub Type. Must be ssdp:alive. Single URI.

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. Specified by UPnP
vendor. String. Must accurately reflect the version number of the UPnP Device Architecture supported by the device.
Control points must be prepared to accept a higher minor version number than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing UDA version
1.1.

USN
Required. Unique Service Name. Identifies a unique instance of a device or service. Must be one of the following. (cf. table
above.) The prefix (before the double colon) must match the value of the UDN element in the device description. (The
clause on Description explains the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice
Sent once for root device. Device UUID specified by UPnP vendor.

uuid:device-UUID
Sent once for every device, root or embedded. Device UUID specified by UPnP vendor.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:v
Sent once for every device, root or embedded. Device UUID specified by UPnP vendor. Device type and version
defined by UPnP Forum working committee. Specifies the highest supported version of the device type.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:v
Sent once for every service. Device UUID specified by UPnP vendor. Service type and version defined by UPnP
Forum working committee. Specifies the highest support version of the service type.

uuid:device-UUID::urn:domain-name:device:deviceType:v
Sent once for every device, root or embedded. Device UUID, domain name, device type and version defined by
UPnP vendor. Specifies the highest supported version of the device type. Period characters in the domain name
must be replaced by hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:v
Sent once for service. Device UUID, domain name, service type and version defined by UPnP vendor. Specifies
the highest supported version of the device type. Period characters in the domain name must be replaced by
hyphens in accordance with RFC 2141.

 (No response for a request with method NOTIFY.)

1.1.3 Discovery: Advertisement: Device unavailable -- NOTIFY with ssdp:byebye
When a device and its services are going to be removed from the network, the device should
multicast a ssdp:byebye message corresponding to each of the ssdp:alive messages it
multicasted that have not already expired. If the device is removed abruptly from the network,
it might not be possible to multicast a message. As a fallback, discovery messages must
include an expiration value in a CACHE-CONTROL header (as explained above); if not re-
advertised, the discovery message eventually expires on its own and must be removed from
any control point cache.

(Note: when a control point is about to be removed from the network, no discovery-related
action is required.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 16 —

When a device is about to be removed from the network, it should explicitly revoke its
discovery messages by sending one multicast request for each ssdp:alive message it sent.
Each multicast request must have method NOTIFY and ssdp:byebye in the NTS header in
the following format. Values in italics are placeholders for actual values.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 NT: search target
 NTS: ssdp:byebye
 USN: uuid:advertisement UUID

(No body for request with method NOTIFY, but note that the message must have a blank line
following the last HTTP header.)

The TTL for the IP packet should default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

NOTIFY
Method for sending notifications and events.

*
Request applies generally and not to a specific resource. Must be *.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority (IANA). Must be
239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver should assume the default SSDP port number of
1900.

NT
Required. Notification Type. (See list of required values for NT header in NOTIFY with ssdp:alive above.) Single URI.

NTS
Required. Notification Sub Type. Must be ssdp:byebye. Single URI.

USN
Required. Unique Service Name. (See list of required values for USN header in NOTIFY with ssdp:alive above.) Single URI.

(No response for a request with method NOTIFY.)

Due to the unreliable nature of UDP, devices should send each of the above messages more
than once. As a fallback, if a control point fails to receive notification that a device or services
is unavailable, the original discovery message will eventually expire yielding the same effect.

1.2 Discovery: Search
When a control point is added to the network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. It does this by multicasting on the
reserved address and port (239.255.255.250:1900) a search message with a pattern, or target,
equal to a type or identifier for a device or service. Responses from devices contain discovery
messages essentially identical to those advertised by newly connected devices; the former
are unicast while the latter are multicast.

1.2.1 Discovery: Search protocols and standards
To search for devices (and be discovered by control points), control points (and devices) use
the following subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is
listed at the beginning of this document.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 17 —

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]

SSDP [blue]

HTTPU (unicast) [black] HTTPMU (multicast) [black]

UDP [black]

IP [black]

At the highest layer, search messages contain vendor-specific information, e.g., the control
point, device, and service identifiers. Moving down the stack, vendor content is supplemented
by information from a UPnP Forum working committee, e.g., device or service types.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, search requests are delivered via a multicast variant of HTTP that has
been extended using additional methods and headers. Search responses are delivered via a
unicast variant of HTTP that has also been extended. Both kinds of HTTP messages are
delivered via UDP over IP. For reference, colors in [square brackets] above indicate which
protocol defines specific headers and values in discovery messages listed below.

1.2.2 Discovery: Search: Request with M-SEARCH
When a control point is added to the network, it should send a multicast request with method
M-SEARCH in the following format. Values in italics are placeholders for actual values.

 M-SEARCH * HTTP/1.1
 HOST: 239.255.255.250:1900
 MAN: "ssdp:discover"
 MX: seconds to delay response
 ST: search target

(No body for request with method M-SEARCH, but note that the message must have a blank
line following the last HTTP header.)

The TTL for the IP packet should default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

M-SEARCH
Method for search requests.

*
Request applies generally and not to a specific resource. Must be *.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority (IANA). Must be
239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver should assume the default SSDP port number of
1900.

MAN
Required by HTTP Extension Framework. Unlike the NTS and ST headers, the value of the MAN header is enclosed in
double quotes; it defines the scope (namespace) of the extension. Must be "ssdp:discover".

MX
Required. Maximum wait time in seconds. Should be between 1 and 120 inclusive. Device responses should be delayed a
random duration between 0 and this many seconds to balance load for the control point when it processes responses. This

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 18 —

value may be increased if a large number of devices are expected to respond. The MX value should not be increased to
accommodate network characteristics such as latency or propagation delay (for more details, see the explanation
below). Specified by UPnP vendor. Integer.

ST
Required. Search Target. Must be one of the following. (cf. NT header in NOTIFY with ssdp:alive above.) Single URI.

ssdp:all
Search for all devices and services.

upnp:rootdevice
Search for root devices only.

uuid:device-UUID
Search for a particular device. Device UUID specified by UPnP vendor.

urn:schemas-upnp-org:device:deviceType:v
Search for any device of this type. Device type and version defined by UPnP Forum working committee.

urn:schemas-upnp-org:service:serviceType:v
Search for any service of this type. Service type and version defined by UPnP Forum working committee.

urn:domain-name:device:deviceType:v
Search for any device of this type. Domain name, device type and version defined by UPnP vendor. Period
characters in the domain name must be replaced with hyphens in accordance with RFC 2141.

urn:domain-name:service:serviceType:v
Search for any service of this type. Domain name, service type and version defined by UPnP vendor. Period
characters in the domain name must be replaced with hyphens in accordance with RFC 2141.

Due to the unreliable nature of UDP, control points should send each M-SEARCH message
more than once. As a fallback, to guard against the possibility that a device might not receive
the M-SEARCH message from a control point, a device should re-send its advertisements
periodically (cf. CACHE-CONTROL header in NOTIFY with ssdp:alive above).

The control point should wait at least the amount of time specified in the MX header for
responses to arrive from devices. The random distribution of responses over the MX interval
means that a responder may send a response at MX seconds after receiving the M-SEARCH
request. The MX value may be adjusted by heuristics at the requester based on, for example,
observed number of responders. Network characteristics affecting the propagation of traffic
cannot be addressed by increasing the MX value because of the reason cited above. A
requester may adapt to network characteristics with heuristics based on observed network
behavior (the exact heuristics are out of scope). The net effect is that the M-SEARCH request
persists at the requester for a period of time exceeding MX such that the characteristics of the
network are properly accommodated to minimize lost responses.

Updated versions of device and service types are required to be fully backward compatible
with previous versions. Devices must respond to M-SEARCH requests for any supported
version. For example, if a device implements “urn:schemas-upnp-org:service:Audio:2”, it
should respond to search requests for both that type and “urn:schemas-upnp-
org:service:Audio:1”. The response should specify the same version as was contained in the
search request. If a control point searches for a device or service of a particular version and
receives no responses (presumably because no device present on the network supports the
specified version), but is willing to operate using a lower version, it may repeat the search
request specifying the lower version.

1.2.3 Discovery: Search: Response
To be found, a device must send a UDP response to the source IP address and port that sent
the request to the multicast channel. Devices respond if the ST header of the M-SEARCH
request is “ssdp:all”, “upnp:rootdevice”, “uuid:” followed by a UUID that exactly matches one
advertised by the device.

Devices should wait a random period of time between 0 seconds and the number of seconds
specified in the MX header of the search request before responding, in order to avoid flooding
the requesting control point with search responses from multiple devices. If the search
request results in the need for multiple responses from the device, those responses should be
spread at random intervals through the time period from 0 to the number of seconds specified

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 19 —

in the MX header. If the search request does not contain an MX header, the device must
silently discard and ignore the search request. Devices may assume an MX value less than
that specified in the MX header. If the MX header specifies a value greater than 120, the
device should assume that it contained the value 120 or less. Devices should not stop
responding to other requests while waiting the random delay before sending a response.

The URL specified in the LOCATION header of the M-SEARCH response must be reachable
by the control point to which the response is directed.

Responses to M-SEARCH are intentionally parallel to advertisements, and as such, follow the
same pattern as listed for NOTIFY with ssdp:alive (above) except that the NT header there is
an ST header here. The response must be sent in the following format. Values in italics are
placeholders for actual values.

 HTTP/1.1 200 OK
 CACHE-CONTROL: max-age = seconds until advertisement expires
 DATE: when response was generated
 EXT:
 LOCATION: URL for UPnP description for root device
 SERVER: OS/version UPnP/1.0 product/version
 ST: search target
 USN: advertisement UUID

(No body for a response to a request with method M-SEARCH, but note that the message
must have a blank line following the last HTTP header.)

(No need to limit TTL for the IP packet in response to a search request.)

Listed below are details for the headers appearing in the listing above. All header values are
case sensitive except where noted.

Headers

CACHE-CONTROL
Required. Must have max-age directive that specifies number of seconds the advertisement is valid. After this duration,
control points should assume the device (or service) is no longer available. Should be greater than or equal to 1800
seconds (30 minutes), although exceptions are defined in the text above. Specified by UPnP vendor. Integer.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
Required by HTTP Extension Framework. Confirms that the MAN header was understood. (Header only; no value.)

LOCATION
Required. Contains a URL to the UPnP description of the root device. Normally the host portion contains a literal IP
address rather than a domain name in unmanaged networks. Specified by UPnP vendor. Single URL.

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. Specified by UPnP
vendor. String. Must accurately reflect the version number of the UPnP Device Architecture supported by the device.
Control points must be prepared to accept a higher version number than the control point itself implements. For example,
control points implementing UDA version 1.0 will be able to interoperate with devices implementing UDA version 1.1.

ST
Required. Search Target. Single URI. If ST header in request was,

ssdp:all
Respond 3+2d+k times for a root device with d embedded devices and s embedded services but only k distinct
service types (see clause 1.1.2 for a definition of each message to be sent). Value for ST header must be the
same as for the NT header in NOTIFY messages with ssdp:alive. (See above.) Single URI.

upnp:rootdevice
Respond once for root device. Must be upnp:rootdevice. Single URI.

uuid:device-UUID
Respond once for each matching device, root or embedded. Must be uuid:device-UUID. Device UUID specified
by UPnP vendor. Single URI.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 20 —

urn:schemas-upnp-org:device:deviceType:v
Respond once for each matching device, root or embedded. Must be urn:schemas-upnp-
org:device:deviceType:v. Device type and version defined by UPnP Forum working committee. Should specify
the version of the device type contained in the M-SEARCH request.

urn:schemas-upnp-org:service:serviceType:v
Respond once for each matching service type. Must be urn:schemas-upnp-org:service:serviceType:v. Service
type and version defined by UPnP Forum working committee. Should specify the version of the service type
contained in the M-SEARCH request.

urn:domain-name:device:deviceType:v
Respond once for each matching device, root or embedded. Domain name, device type and version defined by
UPnP vendor. Period characters in the domain name must be replaced with hyphens in accordance with RFC
2141. Should specify the version of the device type specified in the M-SEARCH request.

urn:domain-name:service:serviceType:v
Respond once for each matching service type. Domain name, service type and version defined by UPnP vendor.
Period characters in the domain name must be replaced with hyphens in accordance with RFC 2141. Should
specify the version of the service type contained in the M-SEARCH request.

USN
Required. Unique Service Name. (See list of required values for USN header in NOTIFY with ssdp:alive above.) Single URI.

If there is an error with the search request (such as an invalid value in the MAN header, a
missing MX header, or other malformed content), the device should silently discard and ignore
the search request; sending of error responses is not recommended due to the possibility of
packet storms if many devices send an error response to the same request.

1.3 Discovery references
RFC 2141 — URN Syntax. <http://www.ietf.org/rfc/rfc2141.txt>.

RFC 2616 — HTTP: Hypertext Transfer Protocol 1.1. <http://www.ietf.org/rfc/rfc2616.txt>.

RFC 2774 — HTTP Extension Framework. <http://www.ietf.org/rfc/rfc2774.txt>.

2 Description

Description is Step 2 in UPnP™ networking. Description comes after addressing (Step 0)
where devices get a network address, and after discovery (Step 1) where control points find
interesting device(s). Description enables control (Step 3) where control points send
commands to device(s), eventing (Step 4) where control points listen to state changes in
device(s), and presentation (Step 5) where control points display a user interface for device(s).

After a control point has discovered a device, the control point still knows very little about the
device -- only the information that was in the discovery message, i.e., the device's (or
service's) UPnP type, the device's universally-unique identifier, and a URL to the device's
UPnP description. For the control point to learn more about the device and its capabilities, or
to interact with the device, the control point must retrieve a description of the device and its
capabilities from the URL provided by the device in the discovery message.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 21 —

The UPnP description for a device is partitioned into two, logical parts: a device description
describing the physical and logical containers, and service descriptions describing the
capabilities exposed by the device. A UPnP device description includes vendor-specific,
manufacturer information like the model name and number, serial number, manufacturer
name, URLs to vendor-specific Web sites, etc. (details below). For each service included in
the device, the device description lists the service type, name, a URL for a service description,
a URL for control, and a URL for eventing. A device description also includes a description of
all embedded devices and a URL for presentation of the aggregate. This clause explains
UPnP device descriptions, and the clauses on Control, Eventing, and Presentation explain
how URLs for control, eventing, and presentation are used, respectively.

Note that a single physical device may include multiple logical devices. Multiple logical
devices can be modeled as a single root device with embedded devices (and services) or as
multiple root devices (perhaps with no embedded devices). In the former case, there is one
UPnP device description for the root device, and that device description contains a
description for all embedded devices. In the latter case, there are multiple UPnP device
descriptions, one for each root device.

A UPnP device description is written by a UPnP vendor. The description is in XML syntax and
is usually based on a standard UPnP Device Template. A UPnP Device Template is produced
by a UPnP Forum working committee; they derive the template from the UPnP Template
Language, which was derived from standard constructions in XML. This clause explains the
format for a UPnP device description, UPnP Device Templates, and the part of the UPnP
Template Language that covers devices.

A UPnP service description includes a list of commands, or actions, the service responds to,
and parameters, or arguments, for each action. A service description also includes a list of
variables. These variables model the state of the service at run time, and are described in
terms of their data type, range, and event characteristics. This clause explains the description
of actions, arguments, state variables, and the properties of those variables. The clause on
Eventing explains event characteristics.

Like a UPnP device description, a UPnP service description is written by a UPnP vendor. The
description is in XML syntax and is usually based on a standard UPnP Service Template. A
UPnP Service Template is produced by a UPnP Forum working committee; they derived the
template from the UPnP Template Language, augmenting it with human language where
necessary. The UPnP Template Language is derived from standard constructions in XML.
This clause explains the format for a UPnP service description, UPnP Service Templates,
typical augmentations in human language, and the part of the UPnP Template Language that
covers services.

UPnP vendors can differentiate their devices by extending services, including additional UPnP
services, or embedding additional devices. When a control point retrieves a particular device's

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 22 —

description, these added features are exposed to the control point for control and
eventing. The device and service descriptions authoritatively document the implementation of
the device.

Retrieving a UPnP device description is simple: the control point issues an HTTP GET
request on the URL in the discovery message, and the device returns the device description.
Retrieving a UPnP service description is a similar process that uses a URL within the device
description. The protocol stack, method, headers, and body for the response and request are
explained in detail below.

As long as the discovery advertisements from a device have not expired, a control point may
assume that the device and its services are available. The device and service descriptions
may be retrieved at any point since the device and service descriptions are static as long as
the device and its services are available. If a device cancels its advertisements or if the
advertisements expire, a control point should assume the device and its services are no
longer available. If a device needs to change one of these descriptions, it must cancel its
outstanding advertisements and re-advertise. Consequently, control points should not assume
that device and service descriptions are unchanged if a device re-appears on the network.

Like discovery, description plays an important role in the interoperability of devices and
control points using different versions of UPnP networking. As explained in the clause on
Discovery, the UPnP Device Architecture is versioned with both a major and a minor version.
The major version and minor version are separate integer numbers; they are not to be
interpreted or compared as though they were a single decimal number, even though they may
appear as such in print. Advances in minor versions must be a compatible superset of earlier
minor versions of the same major version. Advances in major version are not required to be
supersets of earlier versions and are not guaranteed to be backward compatible. Version
information is communicated in description messages as a backup to the information
communicated in discovery messages. This clause explains the format of version information
in description messages.

Device and service types standardized by UPnP Forum working committees or created by
vendors have an integer version. Every later version of a device or service must be a fully
backwardly compatible superset of the previous version, i.e., compared to earlier versions of
the device, it must include all embedded devices and services of the same or later version.
The UPnP device or service type remains the same across all versions of a device whereas
the device or service version must be larger for later versions. Versions of device and service
templates may have non-integer versions (such as “0.9”) during development in the working
committee, but this must become an integer upon standardization. Devices and services may
have a version number greater than the major version number of the architecture they are
designed for (e.g., “Power:2” may be designed to work on UDA version 1.0); there is no direct
correlation between the version of a device or service template and the architecture version
with which it is designed to work. If a non-backward-compatible version of a device or service
is defined, it must have a different device or service name to indicate that it is not backwardly
compatible (and version numbers of the new type should restart at 1).

UPnP device and service types are “building blocks” that may be assembled in various
combinations. Both standard and vendor-defined device types may be embedded in standard
device types. Both standard and vendor-defined device types may be embedded in vendor-
defined device types. Likewise, both standard and vendor-defined service types may be
embedded in both standard and vendor-defined device types. A control point that is capable
of operating with a particular device or service type should recognize that device or service
type even when it is embedded within another device type (standard or vendor-defined) that it
does not recognize. For example, if a standard service type “Print:1” is defined, and a
standard device type “Printer:1” is defined that contains the “Print:1” service, a control point
that wishes to use the “Print:1” service should find and use it whether the service is
embedded within a “urn:schemas-upnp-org:device:Printer:1” device or embedded within a
vendor-defined “urn:acme-com:device:Printer:1” or “urn:acme-
com:device:AcmeMultifunctionPrinter:1” device.

The remainder of this clause first explains how devices are described, explaining details of
vendor-specific information, embedded devices, and URLs for control, eventing, and

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 23 —

presentation. Second, it explains UPnP Device Templates. Third, it explains how services are
described, explaining details of actions, arguments, state variables, and properties of those
variables. Then it explains UPnP Service Templates, and the UPnP Template Language.
Finally, this clause explains in detail how a control point retrieves device and service
descriptions from a device.

2.1 Description: Device description
The UPnP description for a device contains several pieces of vendor-specific information,
definitions of all embedded devices, URL for presentation of the device, and listings for all
services, including URLs for control and eventing. In addition to defining non-standard
devices (which may contain both vendor-defined and standard embedded devices and
services), UPnP vendors may add embedded devices and services to standard devices. To
illustrate these, below is a listing with placeholders (in italics) for actual elements and values.
Some of these placeholders would be specified by a UPnP Forum working committee (colored
red) or by a UPnP vendor (purple). For a non-standard device, all of these placeholders would
be specified by a UPnP vendor. (Elements defined by the UPnP Device Architecture are
colored green for later reference.) Immediately following the listing is a detailed explanation of
the elements, attributes, and values.

 <?xml version="1.0"?>
 <root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>base URL for all relative URLs</URLBase>
 <device>
 <deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 XML to declare other icons, if any, go here
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
 <serviceId>urn:upnp-org:serviceId:serviceID</serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 Declarations for other services defined by a UPnP Forum working committee (if any)
 go here
 Declarations for other services added by UPnP vendor (if any) go here
 </serviceList>
 <deviceList>
 Description of embedded devices defined by a UPnP Forum working committee (if any)
 go here
 Description of embedded devices added by UPnP vendor (if any) go here
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
 </root>

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 24 —

Listed below are details for each of the elements, attributes, and values appearing in the
listing above. All elements and attributes are case sensitive; HTTP specifies case sensitivity
for URLs; other values are not case sensitive except where noted. The order of elements is
insignificant. Except where noted: required elements must occur exactly once (no duplicates),
and recommended or optional elements may occur at most once. Note that some
implementations may strictly enforce the length limits for various elements noted below, and
therefore working committees are advised to heed all limits specified.

xml
Required for all XML documents. Case sensitive.

root
Required. Must have urn:schemas-upnp-org:device-1-0 as the value for the xmlns attribute; this references the UPnP
Template Language (described below). Case sensitive. Contains all other elements describing the root device, i.e.,
contains the following sub elements:

specVersion
Required. Contains the following sub elements:

major
Required. Major version of the UPnP Device Architecture. Must be 1.

minor
Required. Minor version of the UPnP Device Architecture. Must be 0 in devices that implement UDA
version 1.0. Must accurately reflect the version number of the UPnP Device Architecture supported by
the device. Control points must be prepared to accept a higher version number than the control point
itself implements.

URLBase
Optional. Defines the base URL. Used to construct fully-qualified URLs. All relative URLs that appear elsewhere
in the description are combined with this base URL according to the rules in RFC 2396. If URLBase is empty or
not given, the base URL is the URL from which the device description was retrieved (which is the preferred
implementation; use of URLBase is no longer recommended). Specified by UPnP vendor. Single URL.

device
Required. Contains the following sub elements:

deviceType
REQUIRED. UPnP device type. Single URI.

For standard devices defined by a UPnP Forum working committee, MUST begin with “urn:schemas-
upnp-org:device:” followed by the standardized device type suffix, a colon, and an integer device
version i.e. urn:schemas-upnp-org:device:deviceType:ver. The highest supported version of the
device type MUST be specified.

For non-standard devices specified by UPnP vendors, MUST begin with “urn:”, followed by a Vendor
Domain Name, followed by “:device:”, followed by a device type suffix, colon, and an integer version,
i.e., “urn:domain-name:device:deviceType:ver”. Period characters in the Vendor Domain Name MUST
be replaced with hyphens in accordance with RFC 2141. The highest supported version of the device
type MUST be specified.

The device type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor
MUST be <= 64 chars, not counting the version suffix and separating colon.

friendlyName
Required. Short description for end user. Should be localized (cf. ACCEPT-LANGUAGE and
CONTENT-LANGUAGE headers). Specified by UPnP vendor. String. Should be < 64 characters.

manufacturer
Required. Manufacturer's name. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-
LANGUAGE headers). Specified by UPnP vendor. String. Should be < 64 characters.

manufacturerURL
Optional. Web site for Manufacturer. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-
LANGUAGE headers). May be relative to base URL. Specified by UPnP vendor. Single URL.

modelDescription
Recommended. Long description for end user. Should be localized (cf. ACCEPT-LANGUAGE and
CONTENT-LANGUAGE headers). Specified by UPnP vendor. String. Should be < 128 characters.

modelName
Required. Model name. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-LANGUAGE
headers). Specified by UPnP vendor. String. Should be < 32 characters.

modelNumber

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 25 —

Recommended. Model number. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-
LANGUAGE headers). Specified by UPnP vendor. String. Should be < 32 characters.

modelURL
Optional. Web site for model. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-
LANGUAGE headers). May be relative to base URL. Specified by UPnP vendor. Single URL.

serialNumber
Recommended. Serial number. May be localized (cf. ACCEPT-LANGUAGE and CONTENT-
LANGUAGE headers). Specified by UPnP vendor. String. Should be < 64 characters.

UDN
Required. Unique Device Name. Universally-unique identifier for the device, whether root or
embedded. Must be the same over time for a specific device instance (i.e., must survive reboots).
Must match the value of the NT header in device discovery messages. Must match the prefix of the
USN header in all discovery messages. (The clause on Discovery explains the NT and USN headers.)
Must begin with uuid: followed by a UUID suffix specified by a UPnP vendor. Single URI.

UPC
Optional. Universal Product Code. 12-digit, all-numeric code that identifies the consumer package.
Managed by the Uniform Code Council. Specified by UPnP vendor. Single UPC.

iconList
Required if and only if device has one or more icons. Specified by UPnP vendor. Contains the
following sub elements:

icon
Recommended. Icon to depict device in a control point UI. May be localized (cf. ACCEPT-
LANGUAGE and CONTENT-LANGUAGE headers). Icon sizes to support are vendor-
specific. Contains the following sub elements:

mimetype
Required. Icon's MIME type (cf. RFC 2045, 2046, and 2387). Single MIME image type. At
least one icon should be of type “image/png” (Portable Network Graphics, see IETF RFC
2083).

width
Required. Horizontal dimension of icon in pixels. Integer.

height
Required. Vertical dimension of icon in pixels. Integer.

depth
Required. Number of color bits per pixel. Integer.

url
Required. Pointer to icon image. (XML does not support direct embedding of binary data.
See note below.) Retrieved via HTTP. May be relative to base URL. Specified by UPnP
vendor. Single URL.

serviceList
Optional. Contains the following sub elements:

service
Optional. Repeated once for each service defined by a UPnP Forum working committee. If
UPnP vendor differentiates device by adding additional, standard UPnP services, repeated
once for additional service. Contains the following sub elements:

serviceType
Required. UPnP service type. MUST NOT contain a hash character (#, 23 Hex in UTF-8).
Single URI.

For standard service types defined by a UPnP Forum working committee, MUST begin with
“urn:schemas-upnp-org:service:” followed by the standardized service type suffix, colon,
and an integer service version i.e. urn:schemas-upnp-org:device:serviceType:ver. The
highest supported version of the service type MUST be specified.

For non-standard service types specified by UPnP vendors, MUST begin with “urn:”,
followed by a Vendor Domain Name, followed by “:service:”, followed by a service type
suffix, colon, and an integer service version, i.e., “urn:domain-
name:service:serviceType:ver”. Period characters in the Vendor Domain Name MUST be
replaced with hyphens in accordance with RFC 2141. The highest supported version of the
service type MUST be specified.

The service type suffix defined by a UPnP Forum working committee or specified by a UPnP
vendor MUST be <= 64 characters, not counting the version suffix and separating colon.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 26 —

serviceId
REQUIRED. Service identifier. MUST be unique within this device description. Single URI.

For standard services defined by a UPnP Forum working committee, MUST begin with
“urn:upnp-org:serviceId:” followed by a service ID suffix i.e. urn:upnp-
org:serviceId:serviceID. If this instance of the specified service type (i.e. the
<serviceType> element above) corresponds to one of the services defined by the
specified device type (i.e. the <deviceType> element above), then the value of the service
ID suffix MUST be the service ID defined by the device type for this instance of the service.
Otherwise, the value of the service ID suffix is vendor defined. (Note that upnp-org is used
instead of schemas-upnp-org in this case because an XML schema is not defined for each
service ID.)

For non-standard services specified by UPnP vendors, MUST begin with “urn:”, followed by
a Vendor Domain Name, followed by “:serviceId:”, followed by a service ID suffix, i.e.,
“urn:domain-name:serviceId:serviceID”. If this instance of the specified service type (i.e. the
<serviceType> element above) corresponds to one of the services defined by the
specified device type (i.e. the <deviceType> element above), then the value of the service
ID suffix MUST be the service ID defined by the device type for this instance of the service.
Period characters in the Vendor Domain Name MUST be replaced with hyphens in
accordance with RFC 2141.

The service ID suffix defined by a UPnP Forum working committee or specified by a UPnP
vendor must be <= 64 characters

SCPDURL
Required. URL for service description (nee Service Control Protocol Definition URL). (cf.
clause below on service description.) May be relative to base URL. Specified by UPnP
vendor. Single URL.

controlURL
Required. URL for control (cf. clause on Control). May be relative to base URL. Specified by
UPnP vendor. Single URL.

eventSubURL
Required. URL for eventing (cf. clause on Eventing). May be relative to base URL. Must be
unique within the device; no two services may have the same URL for eventing. If the
service has no evented variables, it should not have eventing (cf. clause on Eventing); if the
service does not have eventing, this element must be present but should be empty, i.e.,
<eventSubURL></eventSubURL>. Specified by UPnP vendor. Single URL.

deviceList
Required if and only if root device has embedded devices. Contains the following sub elements:

device
Required. Repeat once for each embedded device defined by a UPnP Forum working
committee. If UPnP vendor differentiates device by embedding additional UPnP devices,
repeat once for each embedded device. Contains sub elements as defined above for root
sub element device.

presentationURL
Recommended. URL to presentation for device (cf. clause on Presentation). May be relative to base
URL. Specified by UPnP vendor. Single URL.

Control points SHOULD recognize and interoperate with services using serviceId values other
than the value defined by the device type. If multiple instances of a service exist, control
points SHOULD by default (unless directed otherwise by user action) use the service instance
associated with the serviceId value defined by the device type. If none of the instances of the
service have the serviceId value defined by the device type, the control point may use any
service instance. When only one instance of the service exists, control points SHOULD use
that instance even if the serviceId value does not match that defined by the device type.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values.

Control points and devices shall ignore any XML comments or XML processing instructions
embedded in UPnP device and service descriptions that they do not understand.

UPnP device descriptions shall be encoded using UTF-8.

When the value of any text element or attribute contains one or more characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text must be escaped in accordance

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 27 —

with the provisions of clause 2.4 of the XML specification and each such character replaced
with the equivalent numeric representation or string (such as “&” or “<”). Such
characters appearing in URLs may also be escaped in accordance with the URL escaping
rules specified in Clause 2.4 of RFC 2396.

XML does not support directly embedding binary data, e.g., icons in UPnP device descriptions.
Binary data may be converted into text (and thereby embedded into XML) using an XML data
type of either bin.base64 (a MIME-style base 64 encoding for binary data) or bin.hex
(hexadecimal digits represent octets). Alternatively, the data can be passed indirectly, as it
were, by embedding a URL in the XML and transferring the data in response to a separate
HTTP request; the icon(s) in UPnP device descriptions are transferred in this latter manner.

If any icons are included, at least one should be in the Portable Network Graphics (PNG)
format defined in RFC 2083, indicated by the MIME type “image/png”, and not use
progressive encoding. No specific icon sizes are recommended due to the wide variety
preferred by various control points; control point vendors are encouraged to publish
implementation guidelines.

Note that in version 1.0 of the UPnP Device Architecture, the serviceList element was
Required, and it was required to contain at least one service element. These requirements
were subsequently rescinded to accommodate the Gateway and Basic device types. If the
device has no services, the serviceList element may be omitted entirely, or it may be present
but contain no service elements.

2.2 Description: UPnP Device Template
The listing above also illustrates the relationship between a UPnP device description and a
UPnP Device Template. As explained above, the UPnP device description is written by a
UPnP vendor, in XML, following a UPnP Device Template. A UPnP Device Template is
produced by a UPnP Forum working committee as a means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Device
Template or a UPnP device description. Recall that some placeholders would be defined by a
UPnP Forum working committee (colored red), i.e., the UPnP device type identifier, required
UPnP services, and required UPnP embedded devices (if any). If these were defined, the
listing would be a UPnP Device Template, codifying the standard for this type of device. UPnP
Device Templates are one of the key deliverables from UPnP Forum working committees.

Taking this another step further, the remaining placeholders in the listing above would be
specified by a UPnP vendor (colored purple), i.e., vendor-specific information. If these
placeholders were specified (as well as the others), the listing would be a UPnP device
description, suitable to be delivered to a control point to enable control, eventing, and
presentation.

Put another way, the UPnP Device Template defines the overall type of device, and each
UPnP device description instantiates that template with vendor-specific information. The first
is created by a UPnP Forum working committee; the latter, by a UPnP vendor.

2.3 Description: Service description
The UPnP description for a service defines actions and their arguments, and state variables
and their data type, range, and event characteristics.

Each service may have zero or more actions. Each action may have zero or more arguments.
Any combination of these arguments may be input or output parameters. If an action has one
or more output arguments, one these arguments may be marked as a return value. Each
argument should correspond to a state variable. This direct-manipulation programming model
reinforces simplicity.

Each service must have one or more state variables.

In addition to defining non-standard services, UPnP vendors may add actions and services to
standard devices, and may embed standard services and devices in non-standard devices.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 28 —

To illustrate these points, below is a listing with placeholders (in italics) for actual elements
and values. For a standard UPnP service, some of these placeholders would be defined by a
UPnP Forum working committee (colored red) or specified by a UPnP vendor (purple). For a
non-standard service, all of these placeholders would be specified by a UPnP vendor.
(Elements defined by the UPnP Device Architecture are colored green for later
reference.) Immediately following the listing is a detailed explanation of the elements,
attributes, and values.

 <?xml version="1.0"?>
 <scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>actionName</name>
 <argumentList>
 <argument>
 <name>formalParameterName</name>
 <direction>in xor out</direction>
 <retval />
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 Declarations for other arguments defined by UPnP Forum working committee (if any)
 go here
 </argumentList>
 </action>
 Declarations for other actions defined by UPnP Forum working committee (if any)
 go here
 Declarations for other actions added by UPnP vendor (if any) go here
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueList>
 <allowedValue>enumerated value</allowedValue>
 Other allowed values defined by UPnP Forum working committee (if any) go here
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>
 </stateVariable>
 Declarations for other state variables defined by UPnP Forum working committee
 (if any) go here
 Declarations for other state variables added by UPnP vendor (if any) go here
 </serviceStateTable>
 </scpd>

Listed below are details for each of the elements, attributes, and values appearing in the
listing above. All elements and attributes (including action, argument, and state variable
names) are case sensitive; values are not case sensitive except where noted. Except where
noted, the order of elements is insignificant. Except where noted, required elements must
occur exactly once (no duplicates), and recommended or optional elements may occur at most
once.

xml
Required for all XML documents. Case sensitive.

scpd
Required. Must have urn:schemas-upnp-org:service-1-0 as the value for the xmlns attribute; this references the UPnP
Template Language (explained below). Case sensitive. Contains all other elements describing the service, i.e., contains
the following sub elements:

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 29 —

specVersion
Required. Contains the following sub elements:

major
Required. Major version of the UPnP Device Architecture. Must be 1.

minor
Required. Minor version of the UPnP Device Architecture. Must be 0 in devices that implement UDA
version 1.0. Must accurately reflect the version number of the UPnP Device Architecture supported by
the device. Control points must be prepared to accept a higher version number than the control point
itself implements.

actionList
Required if and only if the service has actions. (Each service may have >= 0 actions.) Contains the following sub
element(s):

action
Required. Repeat once for each action defined by a UPnP Forum working committee. If UPnP vendor
differentiates service by adding additional actions, repeat once for each additional action. Contains the
following sub elements:

name
Required. Name of action. Must not contain a hyphen character (-, 2D Hex in UTF-8) nor a
hash character (#, 23 Hex in UTF-8). Case sensitive. First character must be a USASCII
letter (A-Z, a-z), USASCII digit (0-9), an underscore ("_"), or a non-experimental Unicode
letter or digit greater than U+007F. Succeeding characters must be a USASCII letter (A-Z, a-
z), USASCII digit (0-9), an underscore ("_"), a period ("."), a Unicode combiningchar, an
extender, or a non-experimental Unicode letter or digit greater than U+007F. The first three
letters must not be "XML" in any combination of case.

For standard actions defined by a UPnP Forum working committee, must not begin with X_
nor A_.

For non-standard actions specified by a UPnP vendor and added to a standard service,
must begin with X_.

String. Should be < 32 characters.

argumentList
Required if and only if parameters are defined for action. (Each action may have >= 0
parameters.) Contains the following sub element(s):

argument
Required. Repeat once for each parameter. Contains the following sub elements:

name
Required. Name of formal parameter. Should be name of a state
variable that models an effect the action causes. Must not contain a
hyphen character (-, 2D Hex in UTF-8). First character must be a
USASCII letter (A-Z, a-z), USASCII digit (0-9), an underscore ("_"), or a
non-experimental Unicode letter or digit greater than U+007F.
Succeeding characters must be a USASCII letter (A-Z, a-z), USASCII
digit (0-9), an underscore ("_"), a period ("."), a Unicode combiningchar,
an extender, or a non-experimental Unicode letter or digit greater than
U+007F. The first three letters must not be "XML" in any combination of
case.String. Case sensitive. Should be < 32 characters.

direction
Required. Whether argument is an input or output parameter. Must be
in xor out. Any in arguments must be listed before any out arguments.

retval
Optional. Identifies at most one out argument as the return value. If
included, must be the first out argument. (Element only; no value.)

relatedStateVariable
Required. Must be the name of a state variable. Case Sensitive.
Defines the type of the argument; see further explanation below.

serviceStateTable
Required. (Each service must have > 0 state variables.) Contains the following sub element(s):

stateVariable
Required. Repeat once for each state variable defined by a UPnP Forum working committee. If UPnP
vendor differentiates service by adding additional state variables, repeat once for each additional
variable. sendEvents attribute defines whether event messages will be generated when the value of

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 30 —

this state variable changes; non-evented state variables have sendEvents="no"; default is
sendEvents="yes". Contains the following sub elements:

name
Required. Name of state variable. Must not contain a hyphen character (-, 2D Hex in UTF-8).
First character must be a USASCII letter (A-Z, a-z), USASCII digit (0-9), an underscore ("_"),
or a non-experimental Unicode letter or digit greater than U+007F. Succeeding characters
must be a USASCII letter (A-Z, a-z), USASCII digit (0-9), an underscore ("_"), a period ("."),
a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater
than U+007F. The first three letters must not be "XML" in any combination of case. Case
sensitive.

For standard variables defined by a UPnP Forum working committee, must not begin with
X_ nor A_.

For non-standard variables specified by a UPnP vendor and added to a standard service,
must begin with X_.

String. Should be < 32 characters.

dataType
Required. Same as data types defined by XML Schema, Part 2: Datatypes. Defined by a
UPnP Forum working committee for standard state variables; specified by UPnP vendor for
extensions. Must be one of the following values:

ui1
Unsigned 1 Byte int. Same format as int without leading sign.

ui2
Unsigned 2 Byte int. Same format as int without leading sign.

ui4
Unsigned 4 Byte int. Same format as int without leading sign.

i1
1 Byte int. Same format as int.

i2
2 Byte int. Same format as int.

i4
4 Byte int. Same format as int. Must be between -2147483648 and 2147483647.

int
Fixed point, integer number. May have leading sign. May have leading zeros. (No
currency symbol.) (No grouping of digits to the left of the decimal, e.g., no
commas.)

r4
4 Byte float. Same format as float. Must be between 3.40282347E+38 to
1.17549435E-38.

r8
8 Byte float. Same format as float. Must be between -1.79769313486232E308
and -4.94065645841247E-324 for negative values, and between
4.94065645841247E-324 and 1.79769313486232E308 for positive values, i.e.,
IEEE 64-bit (8-Byte) double.

number
Same as r8.

fixed.14.4
Same as r8 but no more than 14 digits to the left of the decimal point and no more
than 4 to the right.

float
Floating point number. Mantissa (left of the decimal) and/or exponent may have a
leading sign. Mantissa and/or exponent may have leading zeros. Decimal
character in mantissa is a period, i.e., whole digits in mantissa separated from
fractional digits by period. Mantissa separated from exponent by E. (No currency
symbol.) (No grouping of digits in the mantissa, e.g., no commas.)

char
Unicode string. One character long.

string
Unicode string. No limit on length.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 31 —

date
Date in a subset of ISO 8601 format without time data.

dateTime
Date in ISO 8601 format with optional time but no time zone.

dateTime.tz
Date in ISO 8601 format with optional time and optional time zone.

time
Time in a subset of ISO 8601 format with no date and no time zone.

time.tz
Time in a subset of ISO 8601 format with optional time zone but no date.

boolean
“0” for false or “1” for true. The values “true”, “yes”, “false”, or “no” may also be
used but are not recommended.

bin.base64
MIME-style Base64 encoded binary BLOB. Takes 3 Bytes, splits them into 4 parts,
and maps each 6 bit piece to an octet. (3 octets are encoded as 4.) No limit on
size.

bin.hex
Hexadecimal digits representing octets. Treats each nibble as a hex digit and
encodes as a separate Byte. (1 octet is encoded as 2.) No limit on size.

uri
Universal Resource Identifier.

uuid
Universally Unique ID. Hexadecimal digits representing octets. Optional
embedded hyphens are ignored.

defaultValue
Recommended. Expected, initial value. Defined by a UPnP Forum working committee or
delegated to UPnP vendor. Must match data type. Must satisfy allowedValueList or
allowedValueRange constraints.

allowedValueList
Recommended. Enumerates legal string values. Prohibited for data types other than string.
At most one of allowedValueRange and allowedValueList may be specified. Sub elements
are ordered (e.g., see NEXT_STRING_BOUNDED). Contains the following sub elements:

allowedValue
Required. A legal value for a string variable. Defined by a UPnP Forum working
committee for standard state variables; specified by UPnP vendor for extensions.
string. Must be < 32 characters.

allowedValueRange
Recommended. Defines bounds for legal numeric values; defines resolution for numeric
values. Defined only for numeric data types. At most one of allowedValueRange and
allowedValueList may be specified. Contains the following sub elements:

minimum
Required. Inclusive lower bound. Defined by a UPnP Forum working committee or
delegated to UPnP vendor. Single numeric value.

maximum
Required. Inclusive upper bound. Defined by a UPnP Forum working committee or
delegated to UPnP vendor. Single numeric value.

step
Recommended. Size of an increment operation, i.e., value of s in the operation v =
v + s. Defined by a UPnP Forum working committee or delegated to UPnP vendor.
Single numeric value.

The relatedStateVariable element of an argument definition must be the name of a state
variable defined in the same service description. relatedStateVariable defines the type of the
argument; there is not necessarily any semantic relationship between an argument and the
relatedStateVariable used to define its type. relatedStateVariable must specify the name of a
stateVariable in the serviceStateTable which has the same dataType, allowedValueList,
and allowedValueRange as the argument. If no stateVariable exists with an appropriate

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 32 —

definition, the working committee (or vendor) must define an additional state variable for that
purpose; state variables which are defined solely for the purpose of describing the type of an
argument should have a name that includes the prefix “A_ARG_TYPE_”.

The allowedValueList and allowedValueRange elements may be used to indicate optional
device capabilities. Working committees may require all values in the list or range to be
supported by all vendors (no options), require a minimum subset with additional values being
optional, or allow vendors to entirely decide which portions or the list or range to support.
Vendors may add additional, vendor-specific values to the allowedValueList by using the
“X_” prefix on the vendor-defined allowedValues, if permitted by working committees.
However, it should be noted that greater flexibility in optional capabilities reduces the number
of values that control points can depend on to be present, with corresponding impacts on
interoperability. If device capabilities are expected to change during device operation, working
committees should define separate actions to detect device capabilities rather than
embedding capabilities information in the service description, because the latter requires
cancellation of advertisements and readvertisement each time the service description
document is changed. If the service description is used to convey capabilities information, the
device must omit from the service description any optional elements (actions, allowedValues,
etc.) that are not implemented.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values.

Control points and devices shall ignore any XML comments or XML processing instructions
embedded in UPnP device and service descriptions that they do not understand.

UPnP service descriptions shall be encoded using UTF-8.

When the value of any text element or attribute contains one or more characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text must be escaped in accordance
with the provisions of clause 2.4 of the XML specification and each such character replaced
with the equivalent numeric representation or string (such as “&” or “<”). Such
characters appearing in URLs may also be escaped in accordance with the URL escaping
rules specified in Clause 2.4 of RFC 2396.Note that it is logically possible for a service to
have no actions but have state variables and eventing; though unlikely, such a service would
be an autonomous information source. However, a service with no state variables is
prohibited.

Unlike device descriptions, service descriptions and associated values should not use locale-
specific values; this includes service descriptions, values of action arguments, and values of
state variables. Instead, most action arguments and state variables should use values that are
expressed in a locale-independent manner; applications should convert and/or format the
information from a standard form into the correct language and/or format for the locale. For
example, dates are represented in a locale-independent format (ISO 8601), and integers are
represented without locale-specific formatting (e.g., no currency symbol, no grouping of digits).
String values should be represented in either a standard 'locale' or in a locale-independent
manner. Variables with an allowedValueList should use token values in the language of UPnP
standards and not reflect strings intended to be displayed in a localized user interface.

However, there may be some cases where an action's behavior is locale-dependent. In this
case, an argument should be defined to indicate the locale, perhaps using the same encoding
as the ACCEPT-LANGUAGE and CONTENT-LANGUAGE headers (RFC 1766). If there are
multiple locale-dependent actions, the service may include an action to set a state variable to
indicate the locale and eliminate the need to pass a locale identifier separately to each action.

Services standardized by UPnP Forum working committees have an integer version. Every
later version of a service must be a superset of the previous version, i.e., it must include all
actions and state variables exactly as they are defined by earlier versions of the service. The
UPnP service type remains the same across all versions of a service whereas the service
version must be larger for later versions. Versions of device and service templates may have
non-integer versions (such as “0.9”) during development in the working committee, but this

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 33 —

must become an integer upon standardization. Devices and services may have a version
number greater than the major version number of the architecture they are designed for (e.g.,
“Power:2” may be designed to work on UDA version 1.0).

2.4 Description: UPnP Service Template
The listing above also illustrates the relationship between a UPnP service description and a
UPnP Service Template. As explained above, the UPnP description for a service is written by
a UPnP vendor, in XML, following a UPnP Service Template. A UPnP Service Template is
produced by a UPnP Forum working committee as a means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Service
Template or a UPnP service description. Recall that some placeholders would be defined by a
UPnP Forum working committee (colored red), i.e., actions and their parameters, and states
and their data type, range, and event characteristics. If these were specified, the listing above
would be a UPnP Service Template, codifying the standard for this type of service. Along with
UPnP Device Templates (cf. clause on Description), UPnP Service Templates are one of the
key deliverables from UPnP Forum working committees.

Taking this another step further, the remaining placeholders in the listing above would be
specified by a UPnP vendor (colored purple), i.e., additional, vendor-specified actions and
state variables. If these placeholders were specified (as well as the others), the listing would
be a UPnP service description, suitable for effective control of the service within a device.

Put another way, the UPnP Service Template defines the overall type of service, and each
UPnP service description instantiates that template with vendor-specific additions. The first is
created by a UPnP Forum working committee; the latter, by a UPnP vendor.

2.5 Description: Non-standard vendor extensions
As explained above, UPnP vendors may differentiate their devices and extend a standard
device by including additional services and embedded devices. Similarly, UPnP vendors may
extend a standard service by including additional actions or state variables. Naming
conventions for each of these are listed in the table below and explained in detail above.

Type of extension Standard Non-Standard

device type urn:schemas-upnp-
org:device:deviceType:v urn:domain-name:device:deviceType:v

service type urn:schemas-upnp-
org:service:serviceType:v urn:domain-name:service:serviceType:v

service ID urn:upnp-org:serviceId:serviceID urn:domain-name:serviceId:serviceID

action name Does not begin with X_ or A_. Begins with X_.

state variable name Does not begin with X_ or A_
(except A_ARG_TYPE). Begins with X_.

XML elements in device
or service description

Defined by the UPnP Template
Language.

Arbitrary XML scoped by an XML namespace and
nested within an element that begins with X_.

XML attributes in
device or service
description

Defined by the UPnP Template
Language.

Arbitrary attributes scoped by an XML namespace
and begin with X_.

As the last two rows of the table above indicate, UPnP vendors may also add non-standard
XML to a device or service description. Each addition must be scoped by a vendor-supplied
XML namespace. Arbitrary XML must be enclosed in an element that begins with X_, and this
element must be a sub element of a standard element that contains sub elements. Non-
standard attributes may be added to standard elements provided these attributes are scoped
by an XML namespace and begin with X_.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 34 —

To illustrate this, below are listings with placeholders (in italics) for actual elements and
values. Some of these placeholders would be specified by a UPnP vendor (purple) and some
are defined by the UPnP Device Architecture (green).

 <RootStandardElement xmlns="urn:schemas-upnp-org:device-1-0"
 xmlns:n="domain-name:schema-name">
 other XML
 <AnyStandardElement n:X_VendorAttribute="arbitrary string value">
 other XML
 </AnyStandardElement>
 other XML
 </RootStandardElement>

RootStandardElement
Required. A standard root element. xmlns attribute defines namespaces, in this case, a standard UPnP namespace and a
non-standard namespace with the prefix n.

For device descriptions, must be root.

For service descriptions, must be scpd.

AnyStandardElement
Required. Any standard element, root or otherwise, content of text or element only. Must already be included as
part of the standard device or service description. X_VendorAttribute must begin with X_. (Prefix A_ is reserved.)
May have an arbitrary string value.

 <EltOnlyStandardElement n:X_VendorAttribute="vendor value">
 <n:X_VendorElement xmlns:n="domain-name:schema-name">
 arbitrary XML
 </n:X_VendorElement>
 </EltOnlyStandardElement>

EltOnlyStandardElement
Required. Element with content of element only. Must already be included as part of the standard device or service
description.

For device descriptions, must be one of: root, specVersion, device, iconList, icon, serviceList, service, and/or deviceList.

For service descriptions, must be one of: scpd, actionList, action, argumentList, argument, serviceStateTable,
stateVariable, allowedValueList, and/or allowedValueRange.

X_VendorElement
Required. Must begin with X_. (Prefix A_ is reserved.) Must have a value for the xmlns attribute. May contain
arbitrary XML.

Control points that do not understand these XML additions must ignore them.

2.6 Description: UPnP Template Language for devices
The paragraphs above explain UPnP device descriptions and illustrate how one would be
instantiated from a UPnP Device Template. As explained, UPnP Device Templates are
produced by UPnP Forum working committees, and these templates are derived from the
UPnP Template Language. This template language defines valid templates for devices and
services. Below is a listing and explanation of this language as it pertains to devices.

The UPnP Template Language is written in XML syntax and is derived from XML Schema
(Part 1: Structures, Part 2: Datatypes). XML Schema provides a set of XML constructions that
express language concepts like required vs. optional elements, element nesting, and data
types for values (as well as other properties not of interest here). The UPnP Template
Language uses these XML Schema constructions to define elements like specVersion,
URLBase, deviceType, et al listed in detail above. Because the UPnP Template Language is
constructed using another, precise language, it is unambiguous. And because the UPnP
Template Language, UPnP Device Templates, and UPnP device descriptions are all machine-
readable, automated tools can automatically check to ensure the latter two have all required
elements, are correctly nested, and have values of the correct data types.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 35 —

Below is the UPnP Template Language for devices as defined by the UPnP Device
Architecture herein. The elements it defines are used in UPnP Device Templates; they are
colored green here, and they are colored green in the listing above. Below is where these
elements are defined; above is where they are used.

Immediately following this is a brief explanation of the XML Schema elements, attributes, and
values used. The reference to XML Schema at the end of the clause has further details.

2.6.1 UPnP Template Language for devices

 <?xml version="1.0"?>
 <Schema name="device-1-0"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="root" content="eltOnly">
 <element type="specVersion" />
 <element type="URLBase" minOccurs="0" maxOccurs="1" />
 <element type="device" />
 </ElementType>
 <ElementType name="specVersion" content="eltOnly">
 <element type="major" />
 <element type="minor" />
 </ElementType>
 <ElementType name="major" dt:type="int" content="textOnly" />
 <ElementType name="minor" dt:type="int" content="textOnly" />
 <ElementType name="URLBase" dt:type="uri" content="textOnly" />
 <ElementType name="device" content="eltOnly">
 <element type="deviceType" />
 <element type="friendlyName" />
 <element type="manufacturer" />
 <element type="manufacturerURL" minOccurs="0" maxOccurs="1" />
 <element type="modelDescription" minOccurs="0" maxOccurs="1" />
 <element type="modelName" />
 <element type="modelNumber" minOccurs="0" maxOccurs="1" />
 <element type="modelURL" minOccurs="0" maxOccurs="1" />
 <element type="serialNumber" minOccurs="0" maxOccurs="1" />
 <element type="UDN" />
 <element type="UPC" minOccurs="0" maxOccurs="1" />
 <element type="iconList" minOccurs="0" maxOccurs="1" />
 <element type="serviceList" minOccurs="0" maxOccurs="1"/>
 <element type="deviceList" minOccurs="0" maxOccurs="1" />
 <element type="presentationURL" minOccurs="0" maxOccurs="1" />
 </ElementType>
 <ElementType name="deviceType" dt:type="uri" content="textOnly" />
 <ElementType name="friendlyName" dt:type="string" content="textOnly" />
 <ElementType name="manufacturer" dt:type="string" content="textOnly" />
 <ElementType name="manufacturerURL" dt:type="uri" content="textOnly" />
 <ElementType name="modelDescription" dt:type="string" content="textOnly" />
 <ElementType name="modelName" dt:type="string" content="textOnly" />
 <ElementType name="modelNumber" dt:type="string" content="textOnly" />
 <ElementType name="modelURL" dt:type="uri" content="textOnly" />
 <ElementType name="serialNumber" dt:type="string" content="textOnly" />
 <ElementType name="UDN" dt:type="uri" content="textOnly" />
 <ElementType name="UPC" dt:type="string" content="textOnly" />
 <ElementType name="iconList" content="eltOnly">
 <element type="icon" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="icon" content="eltOnly">
 <element type="mimetype" />
 <element type="width" />
 <element type="height" />
 <element type="depth" />
 <element type="url" />
 </ElementType>
 <ElementType name="mimetype" dt:type="string" content="textOnly" />
 <ElementType name="width" dt:type="int" content="textOnly" />
 <ElementType name="height" dt:type="int" content="textOnly" />
 <ElementType name="depth" dt:type="int" content="textOnly" />
 <ElementType name="url" dt:type="uri" content="textOnly" />
 <ElementType name="serviceList" content="eltOnly">
 <element type="service" minOccurs="0" maxOccurs="*" />
 </ElementType>
 <ElementType name="service" content="eltOnly">
 <element type="serviceType" />
 <element type="serviceId" />

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 36 —

 <element type="SCPDURL" />
 <element type="controlURL" />
 <element type="eventSubURL" />
 </ElementType>
 <ElementType name="serviceType" dt:type="uri" content="textOnly" />
 <ElementType name="serviceId" dt:type="uri" content="textOnly" />
 <ElementType name="SCPDURL" dt:type="uri" content="textOnly" />
 <ElementType name="controlURL" dt:type="uri" content="textOnly" />
 <ElementType name="eventSubURL" dt:type="uri" content="textOnly" />
 <ElementType name="deviceList" content="eltOnly">
 <element type="device" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="presentationURL" dt:type="uri" content="textOnly" />
 </Schema>

ElementType
Defines an element in the new, derived language. name attribute defines element name. dt:type attribute defines the data
type for the value of element in the new, derived language.

element
References an element for the purposes of declaring nesting. minOccurs attribute defines minimum number of times the
element must occur; default is minOccurs = 1; optional elements have minOccurs = 0. maxOccurs attribute defines
maximum number of times the element must occur; default is maxOccurs = 1; elements that can appear one or more times
have maxOccurs = *. Content= “textOnly” means the element does not contain subelements; content=“eltOnly” means the
element contains subelements.

2.7 Description: UPnP Template Language for services
The paragraphs above explain UPnP service descriptions and illustrate how one would be
instantiated from a UPnP Service Template. Like UPnP Device Templates, UPnP Service
Templates are produced by UPnP Forum working committees, and these templates are
derived from the UPnP Template Language. This template language defines valid templates
for devices and services. As explained above, the UPnP Template Language is written in XML
syntax and is derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Below is a
listing of this language as it pertains to services. The elements it defines are used in UPnP
Service Templates; they are colored green here, and they are colored green in the listing above.
Below is where these elements are defined; above is where they are used.

Immediately following this is a brief explanation of the XML Schema elements, attributes, and
values used. The reference to XML Schema at the end of the clause has further details.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 37 —

2.7.1 UPnP Template Language for services

 <?xml version="1.0"?>
 <Schema name="service-1-0"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="scpd" content="eltOnly">
 <element type="specVersion" />
 <element type="actionList" minOccurs="0" maxOccurs="1" />
 <element type="serviceStateTable" />
 </ElementType>
 <ElementType name="specVersion" content="eltOnly">
 <element type="major" />
 <element type="minor" />
 </ElementType>
 <ElementType name="major" dt:type="int" content="textOnly" />
 <ElementType name="minor" dt:type="int" content="textOnly" />
 <ElementType name="actionList" content="eltOnly">
 <element type="action" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="action" content="eltOnly">
 <element type="name" />
 <element type="argumentList" minOccurs="0" maxOccurs="1" />
 </ElementType>
 <ElementType name="name" dt:type="string" content="textOnly" />
 <ElementType name="argumentList" content="eltOnly">
 <element type="argument" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="argument" content="eltOnly">
 <element type="name" />
 <element type="direction" />
 <element type="retval" minOccurs="0" maxOccurs="1" />
 <element type="relatedStateVariable" />
 </ElementType>
 <ElementType name="direction" dt:type="string" content="textOnly" />
 <ElementType name="retval" content="empty" />
 <ElementType name="relatedStateVariable" dt:type="string" content="textOnly" />
 <ElementType name="serviceStateTable" content="eltOnly">
 <element type="stateVariable" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="stateVariable" content="eltOnly">
 <element type="name" />
 <element type="dataType" />
 <element type="defaultValue" minOccurs="0" maxOccurs="1" />
 <group minOccurs="0" maxOccurs="1" order="one">
 <element type="allowedValueList" />
 <element type="allowedValueRange" />
 </group>
 <AttributeType name="sendEvents" />
 <attribute default="yes" type="sendEvents" required="no" />
 </ElementType>
 <ElementType name="dataType" dt:type="string" content="textOnly" />
 <ElementType name="defaultValue" dt:type="string" content="textOnly" />
 <ElementType name="allowedValueList" content="eltOnly">
 <element type="allowedValue" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="allowedValue" content="textOnly" />
 <ElementType name="allowedValueRange" content="eltOnly">
 <element type="minimum" />
 <element type="maximum" />
 <element type="step" minOccurs="0" maxOccurs="1" />
 </ElementType>
 <ElementType name="minimum" dt:type="number" content="textOnly" />
 <ElementType name="maximum" dt:type="number" content="textOnly" />
 <ElementType name="step" dt:type="number" content="textOnly" />
 </Schema>

attribute
References an attribute in the new, derived language for the purposes of declaring in which elements it may appear. Like
any XML element, the AttributeType element may have attributes of its own. Using the required attribute within this element
indicates whether the attribute must be present; optional attributes have required = no.

AttributeType
Defines an attribute in the new, derived language. Like any XML element, the AttributeType element may have attributes of
its own. Using the name attribute within this element defines the name of the attribute as it will be used in the derived
language.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 38 —

element
References an element for the purposes of declaring nesting. minOccurs attribute defines minimum number of times the
element must occur; default is minOccurs = 1; optional elements have minOccurs = 0. maxOccurs attribute defines
maximum number of times the element must occur; default is maxOccurs = 1; elements that can appear one or more times
have maxOccurs = *. Content= “textOnly” means the element does not contain subelements; content=“eltOnly” means the
element contains subelements.

ElementType
Defines an element in the new, derived language. name attribute defines element name. dt:type attribute defines the data
type for the value of element in the new, derived language. model attribute indicates whether elements in the new, derived
language can contain elements not explicitly specified here; when only previously specific elements may be used, model =
closed. content attribute indicates what content may contain; elements that contain only other elements have content =
eltOnly; elements that contain only strings have content = textOnly.

group
Organizes content into a group to specify a sequence. minOccurs attribute defines minimum number of times the
group must occur. maxOccurs attribute defines maximum number of times the group must occur. order attribute
constrains the sequence of elements; when at most one element is allowed, order = one.

2.8 Description: Retrieving a description
As explained above, after a control point has discovered a device, it still knows very little
about the device. To learn more about the device and its capabilities, the control point must
retrieve the UPnP description for the device using the URL provided by the device in the
discovery message. Then, the control point must retrieve one or more service descriptions
using the URL(s) provided in the device description. This is a simple HTTP-based process
and uses the following subset of the overall UPnP protocol stack. (The overall UPnP protocol
stack is listed at the beginning of this document.)

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, description messages contain vendor-specific information, e.g., device
type, service type, and required services. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, e.g., model name,
model number, and specific URLs. Messages from the layers above are hosted in UPnP-
specific protocols, defined in this document. In turn, the above messages are delivered via
HTTP over TCP over IP. For reference, colors in [square brackets] above indicate which
protocol defines specific header and body elements in the description messages listed below.

Using this protocol stack, retrieving the UPnP device description is simple: the control point
issues an HTTP GET request to the URL in the discovery message, and the device returns its
description in the body of an HTTP response. Similarly, to retrieve a UPnP service description,
the control point issues an HTTP GET request to the URL in the device description, and the
device returns the description in the body of an HTTP response. The headers and body for
the response and request are explained in detail below.

First, a control point must send a request with method GET in the following format. Values in
italics are placeholders for actual values.

 GET path to description HTTP/1.1
 HOST: host for description:port for description
 ACCEPT-LANGUAGE: language preferred by control point

(No body for request to retrieve a description, but note that the message must have a blank
line following the last HTTP header.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 39 —

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

GET
Method defined by HTTP.

path to description
Path component of device description URL (LOCATION header in discovery message) or of service description URL
(SCPDURL element in device description). Single, relative URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of device description URL (LOCATION header in
discovery message) or of service description URL (SCPDURL element of device description). If the port is empty or not
given, port 80 is assumed.

ACCEPT-LANGUAGE
Recommended for retrieving device descriptions. Preferred language(s) for description. If no description is available in this
language, device may return a description in a default language. RFC 1766 language tag(s).

After a control point sends a request, the device takes the second step and responds with a
copy of its description. Including expected transmission time, a device must respond within 30
seconds. If it fails to respond within this time, the control point should re-send the request. A
device must send a response in the following format. Values in italics are placeholders for
actual values.

 HTTP/1.1 200 OK
 CONTENT-LANGUAGE: language used in description
 CONTENT-LENGTH: Bytes in body
 CONTENT-TYPE: text/xml
 DATE: when responded

The body of this response is a UPnP device or service description as explained in detail
above.

Listed below are details for the headers appearing in the listing above. All header values are
case sensitive except where noted.

Headers

CONTENT-LANGUAGE
Required if and only if request included an ACCEPT-LANGUAGE header. Language of description. RFC 1766 language
tag(s).

CONTENT-LENGTH
Required. Length of body in Bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

SERVER
(No SERVER header is required for description messages.)

Note that because HTTP 1.1 allows use of chunked encoding, some devices may send the
description using chunked encoding if the GET request specifies HTTP 1.1. It is therefore
recommended that all implementations that include HTTP 1.1 in the GET request support
receiving chunked encoding.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 40 —

2.9 Description references
ISO 8601 — ISO (International Organization for Standardization). Representations of dates
and times, 1988-06-15. <http://www.w3.org/TR/1998/NOTE-datetime-19980827>

RFC 822 — Standard for the format of ARPA Internet text messages.
<http://www.ietf.org/rfc/rfc822.txt>.

RFC 1123 — Includes format for dates, for, e.g., HTTP DATE header.
<http://www.ietf.org/rfc/rfc1123.txt>

RFC 1766 — Format for language tag for, e.g., HTTP ACCEPT-LANGUAGE header.
<http://www.ietf.org/rfc/rfc1766.txt>. See also <http://www.loc.gov/standards/iso639-2> for language
codes.

RFC 2045 — Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. <http://www.ietf.org/rfc/rfc2045.txt>.

RFC 2046 — Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
<http://www.ietf.org/rfc/rfc2046.txt>.

RFC 2083 — PNG (Portable Network Graphics) Specification Version 1.0.
<http://www.ietf.org/rfc/rfc2083.txt>. See also <http://www.w3.org/TR/REC-png.html>

RFC 2387 — Format for representing content type, e.g., mimetype element for an icon.
<http://www.ietf.org/rfc/rfc2387.txt>

RFC 2396 — Uniform Resource Identifiers: Generic Syntax.<http://www.ietf.org/rfc/rfc2396.txt>.

RFC 2616 — HTTP: Hypertext Transfer Protocol 1.1. <http://www.ietf.org/rfc/rfc2616.txt>.

UPC — Universal Product Code. 12-digit, all-numeric code that identifies the consumer
package. Managed by the Uniform Code Council. <http://www.uc-
council.org/main/ID_Numbers_and_Bar_Codes.html>.

XML — Extensible Markup Language. <http://www.w3.org/TR/2000/REC-xml-20001006>.

XML Schema (Part 1: Structures, Part 2: Datatypes) — Grammar defining UPnP Template
Language. <http://www.w3.org/TR/xmlschema-1>, <http://www.w3.org/TR/xmlschema-2>.

3 Control

Control is Step 3 in UPnP™ networking. Control comes after addressing (Step 0) where
devices get a network address, after discovery (Step 1) where control points find interesting
device(s), and after description (Step 2) where control points learn about device capabilities.
Control is independent of eventing (Step 4) where control points listen to state changes in
device(s). Through control, control points invoke actions on devices and poll for values.
Control and eventing are complementary to presentation (Step 5) where control points display
a user interface provided by device(s).

Given knowledge of a device and its services, a control point can ask those services to invoke
actions and receive responses indicating the result of the action. Invoking actions is a kind of
remote procedure call; a control point sends the action to the device's service, and when the
action has completed (or failed), the service returns any results or errors.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 41 —

To control a device, a control point invokes an action on the device's service. To do this, a
control point sends a suitable control message to the control URL for the service (provided in
the controlURL sub element of service element of device description). In response, the
service returns any results or errors from the action. The effects of the action, if any, may also
be modeled by changes in the variables that describe the run-time state of the service. When
these state variables change, events are published to all interested control points. This clause
explains the protocol stack for, and format of, control messages. The clause on Eventing
explains event publication.

Working committees and vendors may define actions to allow control points to determine the
current value of one or more state variables. Similar to invoking an action, a control point
sends the defined query message to the control URL for the service. In response, the service
provides the value of the variable or variables; each service is responsible for keeping its
state table consistent so control points can poll and receive meaningful values for those state
variables for which query actions are defined. The clause on eventing explains automatic
notification of variable values.

As long as the discovery advertisements from a device have not expired, a control point may
assume that the device and its services are available. If a device cancels its advertisements,
a control point must assume the device and its services are no longer available.

UPnP control messages and responses shall be encoded using UTF-8.

While UDA does define a means to invoke actions and poll for values, UDA does not specify
or constrain the design of an API for applications running on control points; OS vendors may
create APIs that suit their customers’ needs.

If a large amount of data must be sent in association with an action (particularly if the amount
of data is not known in advance), it is not recommended to send the data as part of a SOAP
argument or as a MIME attachment to the SOAP message. Instead, it is recommended that
out-of-band transfer be used. For example, a URL could be sent as an argument value, and
an HTTP GET, PUT, or POST be used to transfer the data. HTTP chunked encoding can be
used when the amount of data is not known in advance.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 42 —

The remainder of this clause explains in detail how control messages are formatted and sent
to devices.

3.1 Control: Protocols
To invoke actions and poll for values, control points (and devices) use the following subset of
the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of
this document.)

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]

SOAP [blue]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, control messages contain vendor-specific information, e.g., argument
values. Moving down the stack, vendor content is supplemented by information from a UPnP
Forum working committee, e.g., action names, argument names, variable names. Messages
from the layers above are hosted in UPnP-specific protocols, defined in this document. In turn,
the above messages are formatted using a Simple Object Access Protocol (SOAP) header
and body elements, and the messages are delivered via HTTP over TCP over IP. For
reference, colors in [square brackets] above indicate which protocol defines specific header
elements in the subscription messages listed below.

3.2 Control: Action
Control points may invoke actions on a device's services and receive results or errors back.
The action, results, and errors are encapsulated in SOAP, sent via HTTP requests, and
received via HTTP responses.

3.2.1 Control: Action: Invoke
The Simple Object Access Protocol (SOAP) defines the use of XML and HTTP for remote
procedure calls. UDA uses SOAP to deliver control messages to devices and return results or
errors back to control points.

SOAP defines additional HTTP headers, and to ensure that these are not confused with other
HTTP extensions, SOAP follows the HTTP Extension Framework (RFC 2774) and specifies a
SOAP-unique URI in the MAN header and prefixes the HTTP method with M-. In this case, the
method is M-POST. Using M-POST requires the HTTP server to find and understand the
SOAP-unique URI and SOAP-specific headers.

To provide firewalls and proxies greater administrative flexibility, SOAP specifies that
requests must first be attempted without the MAN header or M- prefix. If the request is
rejected with a response of "405 Method Not Allowed", then a second request must be sent
using the MAN header and M-prefix. If that request is rejected with a response of "501 Not
Implemented" or "510 Not Extended", the request fails. (Other HTTP responses should be
processed according to the HTTP specification.)

Below is a listing of a control message sent using the POST method (without the MAN header)
followed by an explanation of the headers and body. This is immediately followed by a listing
of a control message sent using the M-POST method and MAN header.

To invoke an action on a device's service, a control point must send a request with method
POST in the following format. Values in italics are placeholders for actual values.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 43 —

 POST path of control URL HTTP/1.1
 HOST: host of control URL:port of control URL
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>in arg value</argumentName>
 other in args and their values go here, if any
 </u:actionName>
 </s:Body>
 </s:Envelope>

Listed below are details for the request line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Request line

POST
Method defined by HTTP.

path control URL
Path component of URL for control for this service (controlURL sub element of service element of device description).
Single, relative URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service (controlURL sub
element of service element of device description). If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, which must be “utf-8”.

MAN
(No MAN header in request with method POST.)

SOAPACTION
Required header defined by SOAP. Must be the service type, hash mark, and name of action to be invoked, all enclosed in
double quotes. If used in a request with method M-POST, header name must be qualified with HTTP name space defined
in MAN header. Single URI. The specified service version MUST indicate the version of the service that the control point
wants to use while invoking the action. Its value may be any version of the service type in which the specified action was
defined.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 44 —

actionName
Required. Name of element is name of action to invoke. xmlns namespace attribute must be the
service type enclosed in double quotes; the version specified must be the same version specified in
the SOAPACTION header. Case sensitive. Must be the first sub element of Body. Contains the
following, ordered sub element(s):

argumentName
Required if and only if action has in arguments. Value to be passed to action. Repeat once
for each in argument. (Element name not qualified by a namespace; element nesting context
is sufficient.) Case sensitive. Single data type as defined by UPnP service description. Every
“in” argument in the definition of the action in the service description must be included, in the
same order as specified in the service description (SCPD) that was downloaded from the
device.

If the CONTENT-TYPE header specifies an unsupported value (other then “text/xml”) the
device must return an HTTP status code “415 Unsupported Media Type”.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values.

Devices and control points shall ignore any XML comments or XML processing instructions
they may receive that they do not understand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
devices must accept requests that use other legal XML namespace prefixes.

If an action has no “in” arguments, it is valid to combine the opening and closing XML tags
(e.g., “<actionname/>” instead of “<actionname></actionname>”).

When the value of any argument contains one or more characters reserved as markup (such
as ampersand (“&”) or less than (“<”)), the text must be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs may also be escaped in accordance with the URL escaping rules specified
in Clause 2.4 of RFC 2396.

Note that because HTTP 1.1 allows use of chunked encoding, some control points may send
the action request using chunked encoding if the POST method header specifies HTTP 1.1.
Device implementations that do not support receiving action requests using chunked encoding
should return a 505 HTTP Version Not Supported error.

If a request with POST is rejected with a response of "405 Method Not Allowed", then a
control point must send a second request with method M-POST and MAN in the following
format. Values in italics are placeholders for actual values.

 M-POST path of control URL HTTP/1.1
 HOST: host of control URL:port of control URL
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 MAN: "http://schemas.xmlsoap.org/soap/envelope/"; ns=01
 01-SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

(Message body for request with method M-POST is the same as body for request with method
POST. See above.)

Request line

M-POST
Method defined by HTTP Extension Framework (RFC 2774).

path of control URL
Path component of URL for control for this service (controlURL sub element of service element of device description).
Single, relative URL.

HTTP/1.1

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 45 —

HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service (controlURL sub
element of service element of device description). If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, which must be “utf-8”.

MAN
Required. Must be "http://schemas.xmlsoap.org/soap/envelope/". ns directive defines namespace (e.g., 01) for other
SOAP headers (e.g., SOAPACTION).

SOAPACTION
Required header defined by SOAP. Must be the service type, hash mark, and name of action to be invoked, all enclosed in
double quotes. The specified service version MUST indicate the version of the service that the control point wants to use
while invoking the action. Its value may be any version of the service type in which the specified action was defined. If used
in a request with method M-POST, header name must be qualified with HTTP name space defined in MAN header. Single
URI.

3.2.2 Control: Action: Response
The service must complete invoking the action and respond within 30 seconds, including
expected transmission time (measured from the time the action message is transmitted until
the time the associated response is received). Actions that take longer than this should be
defined to return early and send an event when complete. If the service fails to respond within
this time, what the control point should do is application-specific. The service must send a
response in the following format. Values in italics are placeholders for actual values.

 HTTP/1.1 200 OK
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 EXT:
 SERVER: OS/version UPnP/1.0 product/version

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>out arg value</argumentName>
 other out args and their values go here, if any
 </u:actionNameResponse>
 </s:Body>
 </s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.

200 OK
HTTP success code.

Headers

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 46 —

CONTENT-LANGUAGE
(No CONTENT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, which must be “utf-8”.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
Required. Confirms that the MAN header was understood. (Header only; no value.)

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String. Must accurately
reflect the version number of the UPnP Device Architecture supported by the device. Control points must be prepared to
accept a higher minor version number (but the same major version number) than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing UDA version
1.1.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

actionNameResponse
Required. Name of element is action name prepended to Response. xmlns namespace attribute must
be service type enclosed in double quotes; the version specified must be the same version specified in
the SOAPACTION header in the original invocation request. Case sensitive. Must be the first sub
element of Body. Contains the following sub element:

argumentName
Required if and only if action has out arguments. Value returned from action. Repeat once
for each out argument. If action has an argument marked as retval, this argument must be
the first element. (Element name not qualified by a namespace; element nesting context is
sufficient.) Case sensitive. Single data type as defined by UPnP service description. Every
“out” argument in the definition of the action in the service description must be included, in
the same order as specified in the service description (SCPD) available from the device.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values.

Control points and devices shall ignore any XML comments or XML processing instructions
they may receive that they do not understand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points must accept responses that use other legal XML namespace prefixes.

If an action has no “out” arguments, it is valid to combine the opening and closing XML tags
(e.g., “<actionnameResponse/>” instead of
“<actionnameResponse></actionnameResponse>”).

When the value of any argument contains one or more characters reserved as markup (such
as ampersand (“&”) or less than (“<”)), the text must be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs may also be escaped in accordance with the URL escaping rules specified
in Clause 2.4 of RFC 2396.

If a control point uses an HTTP/1.0 binding on a SOAP request without setting the KeepAlive
token, the Device MUST close the socket after responding. If a control point uses an

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 47 —

HTTP/1.1 binding on a SOAP request, and sets the Connection: CLOSE token, the Device
MUST close the socket after responding.

Note that because HTTP 1.1 allows use of chunked encoding, some devices may send the
action response using chunked encoding if the POST request specifies HTTP 1.1. It is
therefore recommended that all implementations that include HTTP 1.1 in the POST request
support receiving chunked encoding.

If the service encounters an error while invoking the action sent by a control point, the service
must send a response within 30 seconds, including expected transmission time. Out
arguments must not be used to convey error information; out arguments must only be used to
return data; error responses must be sent in the following format. Values in italics are
placeholders for actual values.

 HTTP/1.1 500 Internal Server Error
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 EXT:
 SERVER: OS/version UPnP/1.0 product/version

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>
 <faultcode>s:Client</faultcode>
 <faultstring>UPnPError</faultstring>
 <detail>
 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>
 </UPnPError>
 </detail>
 </s:Fault>
 </s:Body>
 </s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.

500 Internal Server Error
HTTP error code.

Headers

CONTENT-LANGUAGE
(No CONTENT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, which must be “utf-8”.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
Required. Confirms that the MAN header was understood. (Header only; no value.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 48 —

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String. Must accurately
reflect the version number of the UPnP Device Architecture supported by the device. Control points must be prepared to
accept a higher version number than the control point itself implements. For example, control points implementing UDA
version 1.0 will be able to interoperate with devices implementing UDA version 1.1.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

Fault
Required element defined by SOAP. Error encountered while invoking action. Should be qualified with
SOAP namespace. Contains the following sub elements:

faultcode
Required element defined by SOAP. Value must be qualified with the SOAP namespace.
Must be Client.

faultstring
Required element defined by SOAP. Must be UPnPError.

detail
Required element defined by SOAP. Contains the following subelement:

UPnPError
Required element defined by UDA. Contains the following subelements:

errorCode
Required element defined by UDA. Code identifying what error was
encountered. See table immediately below for values. Integer.

errorDescription
Recommended element defined by UDA. Short description. See table
immediately below for recommended values; other values may be used
by vendors. Human-readable string. Recommend < 256 characters.

The following table summarizes defined error types and the corresponding value for the
errorCode and errorDescription elements.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 49 —

errorCode errorDescription Description

401 Invalid Action No action by that name at this service.

402 Invalid Args Could be any of the following: not enough in args, too many in args, no
in arg by that name, one or more in args are of the wrong data type.

403 (Do Not Use) (This code has been deprecated.)

501 Action Failed May be returned in current state of service prevents invoking that
action.

600 Argument Value Invalid The argument value is invalid

601 Argument Value Out of
Range

An argument value is less than the minimum or more than the
maximum value of the allowedValueRange, or is not in the
allowedValueList.

602 Optional Action Not
Implemented

The requested action is optional and is not implemented by the device.

603 Out of Memory The device does not have sufficient memory available to complete the
action. This may be a temporary condition; the control point may
choose to retry the unmodified request again later and it may succeed
if memory is available.

604 Human Intervention
Required

The device has encountered an error condition which it cannot resolve
itself and required human intervention such as a reset or power cycle.
See the device display or documentation for further guidance.

605 String Argument Too Long A string argument is too long for the device to handle properly.

606 Action not authorized The action requested requires authorization and the sender was not
authorized.

607 Signature failure The sender's signature failed to verify.

608 Signature missing The action requested requires a digital signature and there was none
provided.

609 Not encrypted This action requires confidentiality but the action was not delivered
encrypted.

610 Invalid sequence The <sequence> provided was not valid.

611 Invalid control URL The controlURL within the <freshness> element does not match the
controlURL of the action actually invoked (or the controlURL in the
HTTP header).

612 No such session The session key reference is to a non-existent session. This could be
because the device has expired a session, in which case the control
point needs to open a new one.

600-699 TBD Common action errors. Defined by UPnP Forum Technical Committee.

700-799 TBD Action-specific errors for standard actions. Defined by UPnP Forum
working committee.

800-899 TBD Action-specific errors for non-standard actions. Defined by UPnP
vendor.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values.

Control points and devices shall ignore any XML comments or XML processing instructions
they may receive that they do not understand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points must accept responses that use other legal XML namespace prefixes.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 50 —

3.3 Control: Query for variable
The QueryStateVariable action has been deprecated by the UPnP Forum and should not be
used by control points except in limited testing scenarios due to inconsistent results. Working
committees and vendors should explicitly define actions for querying of state variables for
which this capability is desired. Such explicit query actions may include multiple state
variables, if desired. The following definition of QueryStateVariable is retained in the UPnP
Device architecture for reference and for backward compatibility with early implementations.

In addition to invoking actions on a device's service, control points may also poll the service
for the value of a state variable by sending a query message. A query message may query
only one state variable; multiple query messages must be sent to query multiple state
variables.

This query message is decoupled from the service's eventing (if any). If a variable is
moderated, then querying for the value of the variable will generally yield more up-to-date
values than those received via eventing. The clause on Eventing describes event moderation.

3.3.1 Control: Query: Invoke
To query for the value of a state variable, a control point must send a request in the following
format. Values in italics are placeholders for actual values.

 POST path of control URL HTTP/1.1
 HOST: host of control URL:port of control URL
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 SOAPACTION: "urn:schemas-upnp-org:control-1-0#QueryStateVariable"

 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:QueryStateVariable xmlns:u="urn:schemas-upnp-org:control-1-0">
 <u:varName>variableName</u:varName>
 </u:QueryStateVariable>
 </s:Body>
 </s:Envelope>

Listed below are details for the request line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Request line

POST
Method defined by HTTP.

path of control URL
Path component of URL for control for this service (controlURL sub element of service element of device description).
Single, relative URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service (controlURL sub
element of service element of device description). If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 51 —

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, e.g., utf-8.

MAN
(No MAN header in request with method POST.)

SOAPACTION
Required header defined by SOAP. Must be "urn:schemas-upnp-org:control-1-0#QueryStateVariable". If used in a
request with method M-POST, header name must be qualified with HTTP name space defined in MAN header. Single URI.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

QueryStateVariable
Required element defined by UPnP. Action name. xmlns namespace attribute must be "urn:schemas-
upnp-org:control-1-0". Must be the first sub element of Body. Contains the following, ordered sub
element:

varName
Required element defined by UPnP. Variable name. Must be qualified by
QueryStateVariable namespace. Values is name of state variable to be queried. String.

For future extensibility, when processing XML like the listing above, as specified by the
Flexible XML Processing Profile (FXPP), devices and control points must ignore: (a) any
unknown elements and their sub elements or content, and (b) any unknown attributes and
their values.

If a request with POST is rejected with a response of "405 Method Not Allowed", then a
control point must send a second request with method M-POST and MAN as explained above.

3.3.2 Control: Query: Response
To answer a query for the value of a state variable, the service must respond within 30
seconds, including expected transmission time. If the service fails to respond within this time,
what the control point should do is application-specific. The service must send a response in
the following format. Values in italics are placeholders for actual values.

 HTTP/1.1 200 OK
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 EXT:
 SERVER: OS/version UPnP/1.0 product/version

 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:QueryStateVariableResponse xmlns:u="urn:schemas-upnp-org:control-1-0">
 <return>variable value</return>
 </u:QueryStateVariableResponse>
 </s:Body>
 </s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Response line

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 52 —

HTTP/1.1
HTTP version.

200 OK
HTTP success code.

Headers

CONTENT-LANGUAGE
(No CONTENT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, e.g., utf-8.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
Required. Confirms that the MAN header was understood. (Header only; no value.)

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

QueryStateVariableResponse
Required element defined by UPnP and SOAP. xmlns namespace attribute must be "urn:schemas-
upnp-org:control-1-0". Must be the first sub element of Body. Contains the following sub element:

return
Required element defined by UPnP. (Element name not qualified by a namespace; element
nesting context is sufficient.) Value is current value of the state variable specified in
varName element in request.

For future extensibility, when processing XML like the listing above, as specified by the
Flexible XML Processing Profile (FXPP), devices and control points must ignore: (a) any
unknown elements and their sub elements or content, and (b) any unknown attributes and
their values.

When the value of any variable contains one or more characters reserved as markup (such as
ampersand (“&”) or less than (“<”)), the text must be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs may also be escaped in accordance with the URL escaping rules specified
in Clause 2.4 of RFC 2396.

If the service cannot provide a value for the variable, then the service must send a response
within 30 seconds, including expected transmission time. The response must be sent in the
following format. Values in italics are placeholders for actual values.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 53 —

 HTTP/1.1 500 Internal Server Error
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 EXT:
 SERVER: OS/version UPnP/1.0 product/version

 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>
 <faultcode>s:Client</faultcode>
 <faultstring>UPnPError</faultstring>
 <detail>
 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>
 </UPnPError>
 </detail>
 </s:Fault>
 </s:Body>
 </s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the
listing above. All header values and element names are case sensitive; values are not case
sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.

500 Internal Server Error
HTTP error code.

Headers

CONTENT-LANGUAGE
(No CONTENT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml. Should include character coding used, e.g., utf-8.

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
Required. Confirms that the MAN header was understood. (Header only; no value.)

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String. Must accurately
reflect the version number of the UPnP Device Architecture supported by the device. Control points must be prepared to
accept a higher version number than the control point itself implements. For example, control points implementing UDA
version 1.0 will be able to interoperate with devices implementing UDA version 1.1.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be "http://schemas.xmlsoap.org/soap/envelope/".
Must include encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub
elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the following sub
element:

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 54 —

Fault
Required element defined by SOAP. Why the service did not return a value for the variable. Should be
qualified with SOAP namespace. Contains the following sub elements:

faultcode
Required element defined by SOAP. Value should be qualified with SOAP namespace. Must
be Client.

faultstring
Required element defined by SOAP. Generic UPnP string describing errorCode. See table
immediately below for values.

detail
Required element defined by SOAP. Contains the following sub elements:

UPnPError
Required element defined by UPnP. Contains the following sub elements:

errorCode
Required element defined by UPnP. Code identifying what error was
encountered. See table immediately below for values. Integer.

errorDescription
Recommended element defined by UPnP. Short description. See table
immediately below for values. String. Recommend < 256 characters.

The following table summarizes defined error types and the corresponding value for the
errorCode and errorDescription elements.

errorCode errorDescription Description

401 Invalid Action No action by that name at this service.

404 Invalid Var No state variable by that name at this service.

600-624 TBD Common action errors. Defined by UPnP Forum Technical Committee.

625-649 TBD Reserved for future use.

650-674 TBD Action-specific errors for standard actions. Defined by UPnP Forum working
committee.

675-699 TBD Action-specific errors for non-standard actions. Defined by UPnP vendor.

The device shall return the error code 401 Invalid Action if the QueryStateVariable action is not
implemented.

For future extensibility, devices and control points must ignore (a) any unknown elements and
their sub elements or content, and (b) any unknown attributes and their values.

3.4 Control references
RFC 1123 — Includes format for dates, for, e.g., HTTP DATE header.
<http://www.ietf.org/rfc/rfc1123.txt>.

RFC 2396 — Uniform Resource Identifiers: Generic Syntax.<http://www.ietf.org/rfc/rfc2396.txt>.

RFC 2616 — HTTP: Hypertext Transfer Protocol 1.1. <http://www.ietf.org/rfc/rfc2616.txt>.

RFC 2774 — HTTP Extension Framework. <http://www.ietf.org/rfc/rfc2774.txt>.

SOAP — Simple Object Access Protocol. <http://www.w3.org/TR/2000/NOTE-SOAP-20000508>.

XML — Extensible Markup Language. <http://www.w3.org/TR/2000/REC-xml-20001006>.

4 Eventing

Eventing is Step 4 in UPnP™ networking. Eventing comes after addressing (Step 0) where
devices get a network address, after discovery (Step 1) where control points find interesting
device(s), and after description (Step 2) where control points learn about device capabilities.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 55 —

Eventing is intimately linked with control (Step 3) where control points send actions to devices.
Through eventing, control points listen to state changes in device(s). Control and eventing are
complementary to presentation (Step 5) where control points display a user interface provided
by device(s).

After a control point has (1) discovered a device and (2) retrieved a description of the device
and its services, the control point has the essentials for eventing. As the clause on
Description explains, a UPnP service description includes a list of actions the service
responds to and a list of variables that model the state of the service at run time. If one or
more of these state variables are evented, then the service publishes updates when these
variables change, and a control point may subscribe to receive this information. Throughout
this clause, publisher refers to the source of the events (typically a device's service), and
subscriber refers to the destination of events (typically a control point).

To subscribe to eventing, a subscriber sends a subscription message. If the subscription is
accepted, the publisher responds with a duration for the subscription. To keep the
subscription active, a subscriber must renew its subscription before the subscription expires.
When a subscriber no longer needs eventing from a publisher, the subscriber should cancel
its subscription. This clause explains subscription, renewal, and cancellation messages in
detail below.

The publisher notes changes to state variables by sending event messages. Event messages
contain the names of one of more state variables and the current value of those variables,
expressed in XML. A special initial event message is sent when a subscriber first subscribes;
this event message contains the names and values for all evented variables and allows the
subscriber to initialize its model of the state of the service. To support scenarios with multiple
control points, eventing can be used to keep interested control points informed about the
effects of actions performed by other control points or using other mechanisms for device
control (such as front panel controls). All subscribers are sent all event messages,
subscribers receive event messages for all evented variables (not just some), and event

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 56 —

messages are sent no matter why the state variable changed (either in response to a
requested action or because the state the service is modeling changed). This clause explains
the format of event messages in detail below.

Some state variables may change value too rapidly for eventing to be useful. One alternative
is to filter, or moderate, the number of event messages sent due to changes in a variable's
value. Some state variables may contain values too large for eventing to be useful; for this, or
other reasons, a service may designate one or more state variables as non evented and never
send event messages to subscribers. To determine the current value for such non-evented
variables, control points must poll the service explicitly, presuming that an action is provided
to obtain the value of the state variable. This clause explains how variable eventing is
described within a service description.

To send and receive subscription and event messages, control points and services use the
following subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed
at the beginning of this document.)

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]

GENA [navy]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, subscription and event messages contain vendor-specific information like
URLs for subscription and duration of subscriptions or specific variable values. Moving down
the stack, vendor content is supplemented by information from a UPnP Forum working
committee, like service identifiers or variable names. Messages from the layers above are
hosted in UPnP-specific protocols, defined in this document. In turn, the above messages are
delivered via HTTP that has been extended using additional methods and headers. The HTTP
messages are delivered via TCP over IP. For reference, colors in [square brackets] above
indicate which protocol defines specific header elements in the subscription messages listed
below.

The remainder of this clause first explains subscription, including details of subscription
messages, renewal messages, and cancellation messages. Second, it explains in detail how
event messages are formatted and sent to control points, and the initial event message.
Finally, it explains the UPnP Template Language as it pertains to eventing.

4.1 Eventing: Subscription
A service has eventing if and only if one or more of the state variables are evented.

If a service has eventing, it publishes event messages to interested subscribers. The
publisher maintains a list of subscribers, keeping for each subscriber the following information.

unique subscription identifier
Required. Must be unique over the lifetime of the subscription, however long or short that may be. Generated by publisher
in response to subscription message. Recommend universally-unique identifiers to ensure uniqueness. Single URI.

delivery URL for event messages
Required. Provided by subscriber in subscription message. Single URL.

event key
Required. Key is 0 for initial event message. Key must be sequentially numbered for each subsequent event message;
subscribers can verify that no event messages have been lost if the subscriber has received sequentially numbered event
keys. Must wrap from 4294967295 to 1 (32-bit unsigned decimal integer). Some implementations may include leading “0”
characters in the event key, which should be ignored.

subscription duration

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 57 —

Required. Amount of time, or duration until subscription expires. Single integer or keyword “infinite”.

The publisher should accept as many subscriptions as it can reasonably maintain and deliver.

The publisher may wish to persist subscriptions across power failures. While control points
can recover from complete network failure, if the problem is brief and localized to the device,
reusing stored subscriptions may speed recovery.

The list of subscribers is updated via subscription, renewal, and cancellation messages
explained immediately below and event messages explained later in this clause.

To subscribe to eventing for a service, a subscriber sends a subscription message containing
a URL for the publisher, a service identifier for the publisher, and a delivery URL for event
messages. The subscription message may also include a requested duration for the
subscription. The URL and service identifier for the publisher come from a description
message. As the clause on Description explains, a description message contains a device
description. A device description contains (among other things), for each service, an eventing
URL (in the eventSubURL element) and a service identifier (in the serviceId element); these
correspond to the URL and service identifier for the publisher, respectively. The URL for the
publisher must be unique to a particular service within this device.

The subscription message is a request to receive all event messages. No mechanism is
provided to subscribe to event messages on a variable-by-variable basis. A subscriber is sent
all event messages from the service. This is one factor to be considered when designing a
service.

If the subscription is accepted, the publisher responds with a unique identifier for this
subscription and a duration for this subscription. A duration should be chosen that matches
assumptions about how frequently control points are removed from the network; if control
points are removed every few minutes, then the duration should be similarly short, allowing a
publisher to rapidly deprecate any expired subscribers; if control points are expected to be
semi-permanent, then the duration should be very long, minimizing the processing and traffic
associated with renewing subscriptions.

As soon as possible after the subscription is accepted, the publisher also sends the first, or
initial event message to the subscriber. This message includes the names and current values
for all evented variables. (The data type and range for each variable is described in a service
description. The clause on Description explains this in more detail.) This initial event message
is always sent, even if the control point unsubscribes before it is delivered. The device must
insure that the control point has received the response to the subscription request before
sending the initial event message, to insure that the control point has received the SID
(subscription ID) and can thereby correlate the event message to the subscription.

To keep the subscription active, a subscriber must renew its subscription before the
subscription expires by sending a renewal message. The renewal message is send to the
same URL as the subscription message, but the renewal message does not include a delivery
URL for event messages; instead the renewal message includes the subscription identifier.
The response for a renewal message is the same as one for a subscription message.

If a subscription expires, the subscription identifier becomes invalid, and the publisher stops
sending event messages to the subscriber and can clean up its list of subscribers. If the
subscriber tries to send any message other than a subscription message, the publisher will
reject the message because the subscription identifier is invalid.

When a subscriber no longer needs eventing from a particular service, the subscriber should
cancel its subscription. Canceling a subscription generally reduces service, control point, and
network load. If a subscriber is removed abruptly from the network, it might be impossible to
send a cancellation message. As a fallback, the subscription will eventually expire on its own
unless renewed.

Subscribers should monitor discovery messages from the publisher. If the publisher cancels
its advertisements, subscribers should assume that their subscriptions have been effectively
cancelled.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 58 —

Below is an explanation of the specific format of requests, responses, and errors for
subscription, renewal, and cancellation messages.

4.1.1 Eventing: Subscribing: SUBSCRIBE with NT and CALLBACK
For each service in a device, a description message contains an eventing URL (eventSubURL
sub element of service element in the device description) and the UPnP service identifier
(serviceId sub element in service element in device description). To subscribe to eventing for
a particular service, a subscription message is sent to that service's eventing URL. (Note that
the eventing URL may be relative to the base URL.) The message contains that service's
identifier as well as a delivery URL for event messages. A subscription message may also
include a requested subscription duration.

To subscribe to eventing for a service, a subscriber must send a request with method
SUBSCRIBE and NT and CALLBACK headers in the following format. Values in italics are
placeholders for actual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 CALLBACK: <delivery URL>
 NT: upnp:event
 TIMEOUT: Second-requested subscription duration

(No body for request with method SUBSCRIBE, but note that the message must have a blank
line following the last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

SUBSCRIBE
Method to initiate or renew a subscription.

publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description). Single, relative
URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub element in
service element in device description). If the port is missing or empty, port 80 is assumed.

CALLBACK
Required. Location to send event messages to. Defined by UPnP vendor. If there is more than one URL, when the service
sends events, it will try these URLs in order until one succeeds. One or more URLs each enclosed by angle brackets (“<”
and “>”). Each URL shall be an HTTP over TCP URL (prefixed by “http://”). The device shall not truncate this URL in any
way; if insufficient memory is available to store the entire CALLBACK URL, the device must reject the subscription.

NT
Required. Notification Type. Must be upnp:event.

SID
(No SID header is used to subscribe.)

TIMEOUT
Recommended. Requested duration until subscription expires, either number of seconds or infinite. Recommendation by a
UPnP Forum working committee. Defined by UPnP vendor. Consists of the keyword “Second-” followed (without an
intervening space) by either an integer or the keyword “infinite”.

If there are enough resources to maintain the subscription, the publisher should accept it. To
accept the subscription, the publisher assigns a unique identifier for the subscription, assigns
a duration for the subscription, and sends an initial event message (explained in detail later in
this clause). To accept a subscription request, a publisher must send a response in the

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 59 —

following format within 30 seconds, including expected transmission time. Values in italics are
placeholders for actual values.

 HTTP/1.1 200 OK
 DATE: when response was generated
 SERVER: OS/version UPnP/1.0 product/version
 SID: uuid:subscription-UUID
 TIMEOUT: Second-actual subscription duration

(No body for response to a request with method SUBSCRIBE, but note that the message must
have a blank line following the last HTTP header.)

If the device sends the response over HTTP/1.0 without setting the KeepAlive token, or over
HTTP/1.1 with the Connection: CLOSE header, the device MUST insure that the TCP FIN flag
is sent BEFORE sending the initial event message. In all other cases, (unless the response is
chunked), a Content-Length MUST be specified, (and set to 0), prior to sending the initial
event.

Listed below are details for headers appearing in the listing above. All header values are case
sensitive except where noted.

Headers

DATE
Recommended. When response was generated. “rfc1123-date” as defined in RFC 2616.

SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String. Must accurately
reflect the version number of the UPnP Device Architecture supported by the device. Control points must be prepared to
accept a higher version number than the control point itself implements. For example, control points implementing UDA
version 1.0 will be able to interoperate with devices implementing UDA version 1.1.

SID
Required. Subscription identifier. Must be universally unique. Must begin with uuid:. Defined by UPnP vendor. Single URI.

TIMEOUT
Required. Actual duration until subscription expires, either number of seconds or infinite. Recommendation by a UPnP
Forum working committee. Defined by UPnP vendor. Should be greater than or equal to 1800 seconds (30 minutes).
Keyword Second- followed by an integer (no space) or keyword infinite.

If a publisher cannot accept the subscription, or if there is an error with the subscription
request, the publisher must send a response with one of the following errors. The response
must be sent within 30 seconds, including expected transmission time.

Errors

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must respond with HTTP
error 400 Bad Request.

Missing or invalid CALLBACK
412 Precondition Failed. If CALLBACK header is missing or does not contain a valid HTTP URL, the publisher must
respond with HTTP error 412 Precondition Failed.

Invalid NT
412 Precondition Failed. If NT header does not equal upnp:event, the publisher must respond with HTTP error 412
Precondition Failed.

Unable to accept subscription
5xx. If a publisher is not able to accept a subscription (such as due to insufficient resources), it must respond with a HTTP
500-series error code.

Other errors may be returned by layers in the protocol stack below the UPnP protocols.
Consult documentation on those protocols for details.

4.1.2 Eventing: Renewing a subscription: SUBSCRIBE with SID
To renew a subscription to eventing for a particular service, a renewal message is sent to that
service's eventing URL. (Note that the eventing URL may be relative to the base URL.)

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 60 —

However, unlike an initial subscription message, a renewal message does not contain either
the service's identifier nor a delivery URL for event messages. Instead, the message contains
the subscription identifier assigned by the publisher, providing an unambiguous reference to
the subscription to be renewed. Like a subscription message, a renewal message may also
include a requested subscription duration.

The renewal message uses the same method as the subscription message, but the two
messages use a disjoint set of headers; renewal uses SID and subscription uses NT and
CALLBACK. A message that includes SID and either of NT or CALLBACK headers is an error.

To renew a subscription to eventing for a service, a subscriber must send a request with
method SUBSCRIBE and SID header in the following format. Values in italics are
placeholders for actual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID
 TIMEOUT: Second-requested subscription duration

(No body for method with request SUBSCRIBE, but note that the message must have a blank
line following the last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

SUBSCRIBE
Method to initiate or renew a subscription.

publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description). Single, relative
URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub element in
service element in device description). If the port is missing or empty, port 80 is assumed.

CALLBACK
(No CALLBACK header is used to renew an event subscription.)

NT
(No NT header is used to renew an event subscription.)

SID
Required. Subscription identifier. Must be the subscription identifier assigned by publisher in response to subscription
request. Must be universally unique. Must begin with uuid:. Defined by UPnP vendor. Single URI.

TIMEOUT
Recommended. Requested duration until subscription expires, either number of seconds or infinite. Recommendation by a
UPnP Forum working committee. Defined by UPnP vendor. Keyword Second- followed by an integer (no space) or
keyword infinite.

To accept a renewal, the publisher reassigns a duration for the subscription and must send a
response in the same format and with the same conditions as a response to a request for a
new subscription, except that the initial event message is not sent again.

If a publisher cannot accept the renewal, or if there is an error with the renewal request, the
publisher must send a response with one of the following errors. The response must be sent
within 30 seconds, including expected transmission time.

Errors

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 61 —

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must respond with HTTP
error 400 Bad Request.

Invalid SID
412 Precondition Failed. If a SID does not correspond to a known, un-expired subscription, the publisher must respond
with HTTP error 412 Precondition Failed.

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the publisher must respond with HTTP error 412
Precondition Failed.

Unable to accept renewal
5xx. If the publisher is not able to accept a renewal, it must respond with a HTTP 500-series error code.

Other errors may be returned by layers in the protocol stack below the UPnP protocols.
Consult documentation on those protocols for details.

4.1.3 Eventing: Canceling a subscription: UNSUBSCRIBE
When eventing is no longer needed from a particular service, a cancellation message should
be sent to that service's eventing URL. (Note that the eventing URL may be relative to the
base URL.) The message contains the subscription identifier. Canceling a subscription
generally reduces service, control point, and network load. If a control point is removed
abruptly from the network, it might be impossible to send a cancellation message. As a
fallback, the subscription will eventually expire on its own unless renewed.

To cancel a subscription to eventing for a service, a subscriber should send a request with
method UNSUBSCRIBE in the following format. Values in italics are placeholders for actual
values.

 UNSUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID

(No body for request with method UNSUBSCRIBE, but note that the message must have a
blank line following the last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All
header values are case sensitive except where noted.

Request line

UNSUBSCRIBE
Method to cancel a subscription.

publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description). Single, relative
URL.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub element in
service element in device description). If the port is missing or empty, port 80 is assumed.

CALLBACK
(No CALLBACK header is used to cancel an event subscription.)

NT
(No NT header is used to cancel an event subscription.)

SID
Required. Subscription identifier. Must be the subscription identifier assigned by publisher in response to subscription
request. Must be universally unique. Must begin with uuid:. Defined by UPnP vendor. Single URI.

TIMEOUT

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 62 —

(No TIMEOUT header is used to cancel an event subscription.)

To cancel a subscription, a publisher must send a response in the following format within 30
seconds, including expected transmission time.

 HTTP/1.1 200 OK

If there is an error with the cancellation request, the publisher must send a response with one
of the following errors. The response must be sent within 30 seconds, including expected
transmission time.

Errors

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must respond with HTTP
error 400 Bad Request.

Invalid SID
412 Precondition Failed. If a SID does not correspond to a known, un-expired subscription, the publisher must respond
with HTTP error 412 Precondition Failed.

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the publisher must respond with HTTP error 412
Precondition Failed.

Other errors may be returned by layers in the protocol stack below the UPnP protocols.
Consult documentation on those protocols for details.

4.2 Eventing: Event messages
A service publishes changes to its state variables by sending event messages. These
messages contain the names of one or more state variables and the current value of those
variables. Event messages should be sent as soon as possible to get accurate information
about the service to subscribers and allow subscribers to display a responsive user interface.
If the value of more than one variable is changing at the same time, the publisher should
bundle these changes into a single event message to reduce processing and network traffic.

As explained above, an initial event message is sent when a subscriber first subscribes; this
event message contains the names and values for all evented variables and allows the
subscriber to initialize its model of the state of the service. This message should be sent as
soon as possible after the publisher accepts a subscription. This message should always be
sent, even if the control point unsubscribes before the message is delivered.

Event messages are tagged with an event key. A separate event key must be maintained by
the publisher for each subscription to facilitate error detection (as explained below). The event
key for a subscription is initialized to 0 when the publisher sends the initial event message.
For each subsequent event message, the publisher increments the event key for a
subscription, and includes that updated key in the event message. Any implementation of
event keys should handle overflow and wrap the event key from 4294967295 back to 1 (not 0).
Subscribers must also handle this special case when the next event key is not an increment of
the previous key. Should be implemented as a 4 Byte (32 bit) unsigned integer.

If there is no response from a subscriber to any event message, the publisher should continue
to attempt to send subsequent event messages to the subscriber until the subscription expires.

To repair an event subscription, e.g., if a subscriber has missed one or more event messages,
a subscriber must unsubscribe and re-subscribe. By doing so, the subscriber will get a new
subscription identifier, a new initial event message, and a new event key.

All UPnP event messages shall be encoded using UTF-8.

4.2.1 Eventing: Event messages: NOTIFY
To send an event message, a publisher must send a request with method NOTIFY in the
following format. Values in italics below are placeholders for actual values.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 63 —

 NOTIFY delivery path HTTP/1.1
 HOST: delivery host:delivery port
 CONTENT-TYPE: text/xml
 CONTENT-LENGTH: Bytes in body
 NT: upnp:event
 NTS: upnp:propchange
 SID: uuid:subscription-UUID
 SEQ: event key

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>
 <variableName>new value</variableName>
 </e:property>
 Other variable names and values (if any) go here.
 </e:propertyset>

Listed below are details for the request line, headers, and body elements appearing in the
listing above. All header values are case sensitive except where noted. All body elements and
attributes are case sensitive; body values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements
must occur exactly once (no duplicates), and recommended or optional elements may occur at
most once. In particular, a single propertyset element shall not include more than one
property element that specifies the same variableName element; separate event notification
messages must be used.

Request line

NOTIFY
Method to notify client about event.

delivery path
Path component of delivery URL (CALLBACK header in subscription message). Destination for event message. Single,
relative URL. Must be one of the URLs contained in the CALLBACK header, without truncation or modification.

HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of delivery URL (CALLBACK header in subscription
message). If the port is missing or empty, port 80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in event messages.)

CONTENT-LENGTH
Required. Length of body in Bytes. Integer.

CONTENT-TYPE
Required. Must be text/xml.

NT
Required. Notification Type. Must be upnp:event.

NTS
Required. Notification Sub Type. Must be upnp:propchange.

SID
Required. Subscription identifier. Must be universally unique. Must begin with uuid:. Defined by UPnP vendor. Single URI.

SEQ
Required. Event key. Must be 0 for initial event message. Must be incremented by 1 for each event message sent to a
particular subscriber. To prevent overflow, must be wrapped from 4294967295to 1. 32-bit unsigned value represented as a
single decimal integer without leading zeroes (some implementations may include leading zeroes, which should be ignored
by the recipient).

Body

propertyset
Required. xmlns namespace attribute must be urn:schemas-upnp-org:event-1-0. Contains the following sub element.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 64 —

property
Required. Repeat once for each variable name and value in the event message. Must be qualified by
propertyset namespace. Contains the following sub element.

variableName
Required. Element is name of a state variable that changed (name sub element of stateVariable
element in service description). Must not be qualified with any namespace. Value is the new value for
this state variable. Case sensitive. Single data type as specified by UPnP service description.

For future extensibility, when processing XML like the listing above, devices and control
points must ignore: (a) any unknown elements and their sub elements or content, and (b) any
unknown attributes and their values. Note that when subscribing to eventing with a service
that is of a higher version than what is supported by the control point, event notifications may
be sent by the service to the control point containing state variable names which are not
recognized by the control point. The control point should discard and ignore such
unrecognized state variables within event notification messages.

When the new value of any variable contains one or more characters reserved as markup
(such as ampersand (“&”) or less than (“<”)), the text must be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs that appear as values may also be escaped in accordance with the URL
escaping rules specified in Clause 2.4 of RFC 2396.

Control points and devices shall ignore any XML comments or XML processing instructions
they may receive that they do not understand.

Note that because HTTP 1.1 allows use of chunked encoding, some devices may send the
event notification using chunked encoding if the SUBSCRIBE request specified HTTP 1.1. It is
therefore recommended that all implementations that include HTTP 1.1 in the SUBSCRIBE
request support receiving chunked encoding.

To acknowledge receipt of this event message, a subscriber must respond within 30 seconds,
including expected transmission time. If a subscriber does not respond within 30 seconds, or
if the publisher is unable to connect to the subscription URL, the publisher should abandon
sending this message to the subscriber but should keep the subscription active and send
future event messages to the subscriber until the subscription expires or is cancelled. The
subscriber must send a response in the following format.

 HTTP/1.1 200 OK

(No body for a request with method NOTIFY, but note that the message must have a blank
line following the last HTTP header.)

If a device sends an event to a control point using HTTP/1.0 without the KeepAlive token, the
Control Point MUST close the socket after responding. If a device sends an event to a control
point using HTTP/1.1 and sets the Connection: CLOSE token, the Control Point MUST close
the socket after responding.

If there is an error with the event message, the subscriber must respond with one of the
following errors. The response must be sent within 30 seconds, including expected
transmission time.

Errors

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the subscriber must respond with HTTP error 412
Precondition Failed.

Invalid SID
412 Precondition Failed. If a SID does not correspond to a known subscription, the subscriber must respond with HTTP
error 412 Precondition Failed. (Service must terminate this SID when it receives this error response.)

Missing NT or NTS header
400 Bad Request. If the NT or NTS header is missing, the subscriber must respond with HTTP error 400 Bad Request.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 65 —

Invalid NT header
412 Precondition Failed. If NT header does not equal upnp:event, the subscriber must respond with HTTP error 412
Precondition Failed.

Invalid NTS header
412 Precondition Failed. If NTS header does not equal upnp:propchange, the subscriber must respond with HTTP error
412 Precondition Failed.

Other errors may be returned by layers in the protocol stack below the UPnP protocols.
Consult documentation on those protocols for details.

4.3 Eventing: UPnP Template Language for eventing
The UPnP Template Language defines well-formed templates for devices and services. To a
lesser extent, it also provides a template for the body of event messages. The clause on
Description explains the UPnP Template Language as it pertains to devices and services. As
explained in that clause, the UPnP Template Language is written in XML syntax and is
derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Below is a listing of this
language as it pertains to eventing. The elements it defines are used in event messages; they
are colored green here, and they are colored green in the listing above. Below is where these
elements are defined (though it is a minimal definition); above is where they are used.

Immediately following this is a brief explanation of the XML Schema elements, attributes, and
values used. The reference to XML Schema at the end of this clause has further details.

UPnP Template Language for eventing

 <?xml version="1.0" ?>
 <Schema name="urn:schemas-upnp-org:event-1-0"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="propertyset" content="eltOnly">
 <element type="property" minOccurs="1" maxOccurs="*" />
 </ElementType>
 <ElementType name="property" content="eltOnly" />
 </Schema>

element
References an element for the purposes of declaring nesting. maxOccurs attribute defines maximum number of times the
element must occur; default is maxOccurs = 1; elements that can appear one or more times have maxOccurs = *.

ElementType
Defines an element in the new, derived language. name attribute defines element name. model attribute indicates whether
elements in the new, derived language can contain elements not explicitly specified here; when only unspecified sub
elements may be included, model=open. content attribute indicates what content may contain; elements that contain only
other elements have content = eltOnly.

As explained in the clause on Description, the UPnP Template Language for services also
specifies a sendEvents attribute for a state variable. The default value for this attribute is yes.
To denote that a state variable is evented, the value of this attribute is yes (or the attribute is
omitted) in a service description; to denote that a state variable is non-evented, the value is
no. Note that if all of a service's state variables are non-evented, the service has nothing to
publish, and control points cannot subscribe and will not receive event messages from the
service.

4.4 Eventing: Augmenting the UPnP Template Language
It is useful to augment the description of devices and services with annotations that are not
captured in the UPnP Template Language. To a lesser extent, there is value in these
annotations to capture event filtering, or moderation.

As explained above, some state variables may change value too rapidly for eventing to be
useful. Below is a recommended vocabulary for UPnP Forum working committees or UPnP
vendors to document moderation in the number of event messages sent due to changes in a
variables value.

maximumRate = n
Optional. State variable v will not be part of an event message more often than n seconds. If v is the only variable changing,
then an event message will not be generated more often than every n seconds. If v ceases to change after an event

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 66 —

message has been sent but before n seconds have transpired, an event message must be sent with the new value of v.
Recommended for variables that model continuously changing properties. Single integer.

minimumDelta = n
Optional. State variable v will not be part of an event message unless its value has changed by more than n *
allowedValueRange step since the last time an event message was sent that included v, e.g., unless v has been
incremented n times. (cf. INCREMENT, INCREMENT_BOUNDED, and INCREMENT_WRAP explained in the clause on
Control.) Only defined variables with number and real data type. Recommended for variables that model counters. Single
integer.

The publisher can send out any changed moderated variable when an event goes out. The
publisher should make its best attempt to meet moderation rules described above, but the
publisher can flush recent changes when it sends out events.

Note that moderation affects events only and not state table updates. Specifically, control
actions which return the value of state variables may return a more current value than
published via eventing. Put another way, moderation means that not all state table changes
result in events.

Decisions about which variables to event and any possible moderation is up to the
appropriate UPnP Forum working committee (for standard services) or a UPnP vendor (for
non-standard services).

4.5 Eventing references
RFC 2396 — Uniform Resource Identifiers: Generic Syntax.<http://www.ietf.org/rfc/rfc2396.txt>.

RFC 2616 — HTTP: Hypertext Transfer Protocol 1.1. <http://www.ietf.org/rfc/rfc2616.txt>.

XML — Extensible Markup Language. <http://www.w3.org/TR/2000/REC-xml-20001006>.

XML Schema (Part 1: Structures, Part 2: Datatypes) — Grammar defining UPnP Template
Language. <http://www.w3.org/TR/xmlschema-1>, <http://www.w3.org/TR/xmlschema-2>.

5 Presentation

Presentation is Step 5 in UPnP™ networking. Presentation comes after addressing (Step 0)
where devices get network addresses, after discovery (Step 1) where control points find
interesting device(s), and after description (Step 2) where control points learn about device
capabilities. Presentation exposes an HTML-based user interface for controlling and/or
viewing device status. Presentation is complementary to control (Step 3) where control points
send actions to devices, and eventing (Step 4) where control points listen to state changes in
device(s).

After a control point has (1) discovered a device and (2) retrieved a description of the device,
the control point is ready to begin presentation. If a device has a URL for presentation, then
the control point can retrieve a page from this URL, load the page into a browser, and
depending on the capabilities of the page, allow a user to control the device and/or view
device status. The degree to which each of these can be accomplished depends on the
specific capabilities of the presentation page and device.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 67 —

The URL for presentation is contained within the presentationURL element in the device
description. The device description is delivered via a description message. The clause on
Description explains the device description and description messages in detail.

Retrieving a presentation page is a simple HTTP-based process and uses the following
subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the
beginning of this document.)

UPnP vendor [purple]

UPnP Device Architecture [green]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, the presentation page is specified by a UPnP vendor. Moving down the
stack, the UPnP Device Architecture specifies that this page be written in HTML. The page is
delivered via HTTP over TCP over IP. For reference, colors in [square brackets] are included
for consistency with other clauses in this document.

To retrieve a presentation page, the control point issues an HTTP GET request to the
presentation URL, and the device returns a presentation page.

Unlike the UPnP Device and Service Templates, and standard device and service types, the
capabilities of the presentation page are completely specified by the UPnP vendor. The
presentation page is not under the auspices of a UPnP Forum working committee. The page
must be an HTML page; it should be version HTML 3.0 or later. However, other design
aspects are left to the vendor to specify. This includes, but is not limited to, all capabilities of
the control point's browser, scripting language or browser plug-ins used, and means of
interacting with the device. To implement a presentation page, a UPnP vendor may wish to
use UPnP mechanisms for control and/or eventing, leveraging the device's existing
capabilities but is not constrained to do so.

Presentation pages should use mechanisms provided by HTML for localization (e.g., META
tag with charset attribute). Control points should use the ACCEPT-LANGUAGE and
CONTENT-LANGUAGE feature of HTTP to try to retrieve a localized presentation page.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 68 —

Specifically, a control point may include a HTTP ACCEPT-LANGUAGE header in the request
for a presentation page; if an ACCEPT-LANGUAGE header is present in the request, the
response must include a CONTENT-LANGUAGE header to identify the page's language.

5.1 Presentation references
HTML — HyperText Markup Language. <http://www.w3.org/TR/html4>.

6 Glossary

action
Command exposed by a service. Takes one or more input or output arguments. May have a
return value. For more information, see clauses on Description and Control.

argument
Parameter for action exposed by a service. May be in xor out. For more information, see
clauses on Description and Control.

control point
Retrieves device and service descriptions, sends actions to services, polls for service state
variables, and receives events from services.

device
Logical device. A container. May embed other logical devices. Embeds one or more services.
For more information, see clause on Description.

device description
Formal definition of a logical device, expressed in the UPnP™ Template Language. Written in
XML syntax. Specified by a UPnP vendor by filling in the placeholders in a UPnP Device
Template, including, e.g., manufacturer name, model name, model number, serial number,
and URLs for control, eventing, and presentation. For more information, see clause on
Description.

device type
Standard device types are denoted by urn:schemas-upnp-org:device: followed by a unique
name assigned by a UPnP Forum working committee. One-to-one relationship with UPnP
Device Templates. UPnP vendors may specify additional device types; these are denoted by
urn:domain-name:device: followed by a unique name assigned by the vendor, where domain-
name is a domain name registered to the vendor. For more information, see clause on
Description.

event
Notification of one or more changes in state variables exposed by a service. For more
information, see clause on Eventing.

GENA
General Event Notification Architecture. The event subscription and notification protocol
defined in clause 4 of this specification.

publisher
Source of event messages. Typically a device's service. For more information, see clause on
Eventing.

root device
A logical device that is not embedded in any other logical device. For more information, see
clause on Description.

service
Logical functional unit. Smallest units of control. Exposes actions and models the state of a
physical device with state variables. For more information, see clause on Control.

29341-1 © ISO/IEC:2011(E)

XXXX: © IEC:2010 — 69 —

service description
Formal definition of a logical service, expressed in the UPnP Template language. Written in
XML syntax. Specified by a UPnP vendor by filling in any placeholders in a UPnP Service
Template. (Was SCPD.) For more information, see clause on Description.

service type
Standard service types are denoted by urn:schemas-upnp-org:service: followed by a unique
name assigned by a UPnP forum working committee, colon, and an integer version number.
One-to-one relationship with UPnP Service Templates. UPnP vendors may specify additional
services; these are denoted by urn:domain-name:service: followed by a unique name
assigned by the vendor, colon, and a version number, where domain-name is a domain name
registered to the vendor. For more information, see clause on Description.

SOAP
Simple Object Access Protocol. A remote-procedure call mechanism based on XML that
sends commands and receives values over HTTP. For more information, see clause on
Control.

SSDP
Simple Service Discovery Protocol. A multicast discovery and search mechanism that uses a
multicast variant of HTTP over UDP. Defined in clause 1 on Discovery.

state variable
Single facet of a model of a physical service. Exposed by a service. Has a name, data type,
optional default value, optional constraints values, and may trigger events when its value
changes. For more information, see clauses on Description and Control.

subscriber
Recipient of event messages. Typically a control point. For more information, see clause on
Eventing.

UPnP Device Template
Template listing device type, required embedded devices (if any), and required services.
Written in XML syntax and derived from the UPnP Template Language. Defined by a UPnP
Forum working committee. One-to-one relationship with standard device types. For more
information, see clause on Description.

UPnP Service Template
Template listing action names, parameters for those actions, state variables, and properties of
those state variables. Written in XML syntax and derived from the UPnP Template Language.
Defined by a UPnP Forum working committee. One-to-one relationship with standard service
types. For more information, see clause on Description.

UPnP Template Language
Defines the elements and attributes used in UPnP Device and Service Templates. Written in
XML syntax and derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Defined by
the UPnP Device Architecture herein. For more information, see clause on Description.

29341-1 © ISO/IEC:2011(E)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

