

Reference number
ISO/IEC 11404:2007(E)

© ISO/IEC 2007

INTERNATIONAL
STANDARD

ISO/IEC
11404

Second edition
2007-12-15

Information technology — General-
Purpose Datatypes (GPD)

Technologies de l'information — Types de données

ISO/IEC 11404:2007(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2007 – All rights reserved

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved iii

Contents Page

Foreword.. vi
0 Introduction ... vii
1 Scope ..1
2 Normative references ..1
3 Terms and definitions ...2
4 Conformance..8
4.1 Direct conformance ...8
4.2 Indirect conformance ..9
4.3 Conformance of a mapping standard ..9
4.4 GPD program conformance..10
5 Conventions used in this International Standard...10
5.1 Formal syntax...10
5.2 Text conventions ...11
6 Fundamental notions ..11
6.1 Datatype..11
6.2 Value space ..12
6.3 Datatype properties ...12
6.3.1 Equality ...13
6.3.2 Order ...13
6.3.3 Bound..13
6.3.4 Cardinality ..14
6.3.5 Exact and approximate ...14
6.3.6 Numeric...14
6.4 Primitive and non-primitive datatypes ..15
6.5 Datatype generator ..15
6.6 Characterizing operations ..15
6.7 Datatype families ...16
6.8 Aggregate datatypes ...17
6.8.1 Homogeneity ..17
6.8.2 Size..17
6.8.3 Uniqueness...17
6.8.4 Aggregate-imposed identifier uniqueness..18
6.8.5 Aggregate-imposed ordering ...18
6.8.6 Access method ..18
6.8.7 Recursive structure ...19
6.8.8 Structured and unstructured ..19
6.8.9 Mandatory and optional components..19
6.9 Provisions associated with datatypes...19
7 Elements of the Datatype Specification Language ..21
7.1 IDN character-set ...21
7.2 Whitespace ...22
7.3 Lexical objects ...23
7.3.1 Identifiers..23
7.3.2 Digit-string..23
7.3.3 Character-literal and string-literal ..23
7.3.4 Keywords..24
7.4 Annotations ..24
7.5 Values ...25

ISO/IEC 11404:2007(E)

iv © ISO/IEC 2007 – All rights reserved

7.5.1 Independent values... 25
7.5.2 Dependent values ... 26
7.6 GPD program text ... 27
8 Datatypes ... 27
8.1 Primitive datatypes ... 28
8.1.1 Boolean .. 29
8.1.2 State.. 30
8.1.3 Enumerated.. 31
8.1.4 Character.. 32
8.1.5 Ordinal.. 33
8.1.6 Date-and-Time ... 34
8.1.7 Integer .. 35
8.1.8 Rational .. 36
8.1.9 Scaled... 37
8.1.10 Real... 38
8.1.11 Complex ... 40
8.1.12 Void... 41
8.2 Subtypes and extended types ... 42
8.2.1 Range ... 43
8.2.2 Selecting .. 43
8.2.3 Excluding ... 44
8.2.4 Size ... 44
8.2.5 Explicit subtypes... 45
8.2.6 Extended .. 45
8.3 Generated datatypes... 46
8.3.1 Choice .. 47
8.3.2 Pointer .. 49
8.3.3 Procedure... 50
8.4 Aggregate Datatypes .. 53
8.4.1 Record .. 55
8.4.2 Class... 56
8.4.3 Set... 58
8.4.4 Bag.. 59
8.4.5 Sequence ... 60
8.4.6 Array ... 61
8.4.7 Table ... 64
8.5 Defined datatypes ... 66
8.6 Provisions .. 66
8.6.1 General parameters for provisions ... 67
8.6.2 Aggregate-specific features... 70
8.6.3 Aggregate-component-identifier uniqueness .. 70
8.6.4 Usage-specific features.. 71
9 Declarations... 72
9.1 Type declarations.. 72
9.1.1 Renaming declarations... 73
9.1.2 New datatype declarations... 73
9.1.3 New generator declarations... 73
9.2 Value declarations .. 73
9.3 Termination declarations ... 74
9.4 Normative datatype declarations .. 74
9.5 Lexical operations... 74
9.5.1 Import ... 74
9.5.2 Macro.. 75
10 Defined datatypes and generators .. 75
10.1 Defined datatypes ... 75
10.1.1 Natural number.. 76
10.1.2 Modulo.. 76
10.1.3 Bit.. 77

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved v

10.1.4 Bit string ...77
10.1.5 Character string ...77
10.1.6 Time interval...79
10.1.7 Octet..79
10.1.8 Octet string...79
10.1.9 Private ...80
10.1.10 Object identifier..80
10.2 Defined generators ..82
10.2.1 Stack ...82
10.2.2 Tree ...83
10.2.3 Optional ..83
11 Mappings ..84
11.1 Outward Mappings...85
11.2 Inward Mappings..86
11.3 Reverse Inward Mapping ..87
11.4 Support of Datatypes ..87
11.4.1 Support of equality ..87
11.4.2 Support of order...88
11.4.3 Support of bounds...88
11.4.4 Support of cardinality..88
11.4.5 Support for the exact or approximate property..88
11.4.6 Support for the numeric property ..88
11.4.7 Support for the mandatory components...88
Annex A (informative) Character-set standards...89
Annex B (informative) Recommendation for the placement of annotations...91
Annex C (informative) Implementation notions of datatypes ...93
Bibliography ..96

ISO/IEC 11404:2007(E)

vi © ISO/IEC 2007 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 11404 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This second edition cancels and replaces the first edition (ISO/IEC 11404:1996), which has been technically
revised.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved vii

0 Introduction

0.1 Introduction to the second edition

This second edition of ISO/IEC 11404 incorporates recent technologies and improvements since the first
edition (ISO/IEC 11404:1996). The following improvements have been incorporated into the second edition.

⎯ Title change to reflect actual usage. The use of ISO/IEC 11404 is no longer simply a tool for
communicating among programming languages (old title: Language-independent datatypes).
ISO/IEC 11404 is used for formal description of conceptual datatypes in binding (or binding-independent)
standards and used as formalization of metadata for data elements, data element concepts, and value
domains (see ISO/IEC 11179-3). The old title was potentially misleading because readers might believe
that ISO/IEC 11404 is only useful for programming languages. The new title, General-Purpose Datatypes
captures the essence of ISO/IEC 11404 and its use.

⎯ Incorporation of latest technologies. Provide enhancements to the use of ISO/IEC 11404 as a datatype
nomenclature reference for current programming languages, interface languages and data representation
languages, specifically Java, IDL, Express, and XML.

⎯ Support for semi-structured and unstructured data aggregates. Semi-structured data and unstructured
data includes aggregates where datatyping and navigation may be unknown or unspecified in advance.
For example, some systems permit “discovery” (or “introspection”) of data. In some cases, the datatype
may be unknown in advance (e.g. at compilation time), but may be discovered and processed at runtime
(e.g. via datatype libraries or metadata registries).

⎯ Support for data longevity, versioning, and migration. There is a need to support, from a datatyping
perspective, obsolete and reserved features, such as data elements and permissible values
(enumerations and states). Marking features as “obsolete” allows processing, compilation, and runtime
systems to “flag” or diagnose old (deprecated) features, while still maintaining compatibility, so that it is
possible to support transitions from past to present. Similarly, marking features as “reserved” allows
processing, compilation, and runtime systems to “flag” or diagnose potential incompatibilities with future
systems, so that it is possible to support transitions from present to future.

⎯ Extensibility of datatypes and value spaces. There is a need to support some kind of extensibility concept.
For example: (1) a GPD specification of an aggregate contains the elements A and B. (2) An application
creates an aggregate with the elements A, B, and C. (3) Are the application's “extensions” of the
aggregate acceptable/in conformity with the GPD specification in (1)? The answer to (3) is dependent
upon the intent and design of the specification in (1): in some cases extensions are permitted, in some
cases extensions are not permitted. The extensibility concept would allow the user of GPD datatypes to
describe the kind of extensions permitted. This feature is particularly important in (a) data conformance
and (b) application runtime environments that permit “discovery” or “introspection”. This feature is
available via the “provision()” capability.

Features that are not incorporated within GPD include the following:

⎯ Namespace capability. Given the larger number of declarations, a namespace capability is necessary.

⎯ Data representation. Although these features are a part of GPD annotations, there is no standardization of
data representation in these annotations. This step is an important link for data interoperability.

ISO/IEC 11404:2007(E)

viii © ISO/IEC 2007 – All rights reserved

0.2 Introduction to the first edition (ISO/IEC 11404:1996)

Many specifications of software services and applications libraries are, or are in the process of becoming,
International Standards. The interfaces to these libraries are often described by defining the form of reference,
e.g. the “procedure call”, to each of the separate functions or services in the library, as it must appear in a
user program written in some standard programming language (Fortran, COBOL, Pascal, etc.). Such an
interface specification is commonly referred to as the “<language> binding of <service>”, e.g. the “Fortran
binding of PHIGS” (ISO/IEC 9593-1:1990, Information processing systems — Computer graphics —
Programmer’s Hierarchical Interactive Graphics System (PHIGS) language bindings — Part 1: FORTRAN).

This approach leads directly to a situation in which the standardization of a new service library immediately
requires the standardization of the interface bindings to every standard programming language whose users
might reasonably be expected to use the service, and the standardization of a new programming language
immediately requires the standardization of the interface binding to every standard service package which
users of that language might reasonably be expected to use. To avoid this n-to-m binding problem,
ISO/IEC JTC 1, Information technology assigned to SC 22 the task of developing an International Standard for
language-independent procedure calling and a parallel International Standard for language-independent
datatypes, which could be used to describe the parameters to such procedures.

This International Standard provides the specification for the language-independent datatypes. It defines a set
of datatypes, independent of any particular programming language specification or implementation, that is rich
enough so that any common datatype in a standard programming language or service package can be
mapped to some datatype in the set.

The purpose of this International Standard is to facilitate commonality and interchange of datatype notions, at
the conceptual level, among different languages and language-related entities. Each datatype specified in this
International Standard has a certain basic set of properties sufficient to set it apart from the others and to
facilitate identification of the corresponding (or nearest corresponding) datatype to be found in other
standards. Hence, this International Standard provides a single common reference model for all standards
which use the concept datatype. It is expected that each programming language standard will define a
mapping from the datatypes supported by that programming language into the datatypes specified herein,
semantically identifying its datatypes with datatypes of the reference model, and thereby with corresponding
datatypes in other programming languages.

It is further expected that each programming language standard will define a mapping from those language-
independent (LI) datatypes which that language can reasonably support into datatypes which may be
specified in the programming language. At the same time, this International Standard will be used, among
other applications, to define a “language-independent binding” of the parameters to the procedure calls
constituting the principal elements of the standard interface to each of the standard services. The production
of such service bindings and language mappings leads, in cooperation with the parallel language-independent
procedure calling mechanism, to a situation in which no further “<language> binding of <service>” documents
need to be produced: Each service interface, by defining its parameters using LI datatypes, effectively defines
the binding of such parameters to any standard programming language; and each language, by its mapping
from the LI datatypes into the language datatypes, effectively defines the binding to that language of
parameters to any of the standard services.

INTERNATIONAL STANDARD ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 1

Information technology — General-Purpose Datatypes (GPD)

1 Scope

This International Standard specifies the nomenclature and shared semantics for a collection of datatypes
commonly occurring in programming languages and software interfaces, referred to as the General-Purpose
Datatypes (GPD). It specifies both primitive datatypes, in the sense of being defined ab initio without reference
to other datatypes, and non-primitive datatypes, in the sense of being wholly or partly defined in terms of other
datatypes. The specification of datatypes in this International Standard is “general-purpose” in the sense that
the datatypes specified are classes of datatype of which the actual datatypes used in programming languages
and other entities requiring the concept “datatype” are particular instances. These datatypes are general in
nature; thus, they serve a wide variety of information processing applications.

This International Standard expressly distinguishes three notions of datatype:

⎯ the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values
and properties;

⎯ the structural notion of a datatype, which characterizes the datatype as a conceptual organization of
specific component datatypes with specific functionalities; and

⎯ the implementation notion of a datatype, which characterizes the datatype by defining the rules for
representation of the datatype in a given environment.

This International Standard defines the abstract notions of many commonly used primitive and non-primitive
datatypes which possess the structural notion of atomicity. This International Standard does not define all
atomic datatypes; it defines only those which are common in programming languages and software interfaces.
This International Standard defines structural notions for the specification of other non-primitive datatypes,
and provides a means by which datatypes not defined herein can be defined structurally in terms of the GPDs
defined herein.

This International Standard defines a partial terminology for implementation notions of datatypes and provides
for the use of this terminology in the definition of datatypes. The primary purpose of this terminology is to
identify common implementation notions associated with datatypes and to distinguish them from conceptual
notions.

This International Standard specifies the required elements of mappings between the GPDs and the datatypes
of some other language. This International Standard does not specify the precise form of a mapping, but
rather the required information content of a mapping.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 8601, Data elements and interchange formats — Information interchange — Representation of dates
and times

ISO/IEC 8824 (all parts), Information technology — Abstract Syntax Notation One (ASN.1)

ISO/IEC 11404:2007(E)

2 © ISO/IEC 2007 – All rights reserved

ISO/IEC 10646, Information technology — Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC 14977, Information technology — Syntactic metalanguage — Extended BNF

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE These definitions might not coincide with accepted mathematical or programming language definitions of the
same terms.

3.1
actual parametric datatype
datatype appearing as a parametric datatype in a use of a datatype generator, in contrast to the formal-
parametric-types appearing in the definition of the datatype generator

3.2
actual parametric value
value appearing as a parametric value in a reference to a datatype family or datatype generator, in contrast to
the formal-parametric-values appearing in the corresponding definitions

3.3
aggregate datatype
generated datatype each of whose values is made up of values of the component datatypes, in the sense that
operations on all component values are meaningful

3.4
annotation
descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to
characterize some aspect of the representations, variables, or operations associated with values of the
datatype

3.5
approximate
property of a datatype indicating that there is not a 1-to-1 relationship between values of the conceptual
datatype and the values of a valid computational model of the datatype

3.6
bounded
property of a datatype, meaning both bounded above and bounded below

3.7
bounded above
property of a datatype indicating that there is a value U in the value space such that, for all values s in the
value space, Us ≤

3.8
bounded below
property of a datatype indicating that there is a value L in the value space such that, for all values s in the
value space, Ls ≥

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 3

3.9
characterizing operations
〈datatype〉1) collection of operations on, or yielding, values of the datatype that distinguish this datatype from
other datatypes with identical value spaces

3.10
characterizing operations
〈datatype generator〉 collection of operations on, or yielding, values of any datatype resulting from an
application of the datatype generator that distinguish this datatype generator from other datatype generators
and produce identical value spaces from identical parametric datatypes

3.11
component datatype
datatype which is a parametric datatype to a datatype generator

NOTE A component datatype is a datatype on which the datatype generator operates.

3.12
datatype
set of distinct values, characterized by properties of those values, and by operations on those values

3.13
datatype declaration
means provided by this International Standard for the definition of a datatype which is not itself defined by this
International Standard

3.14
datatype family
collection of datatypes which have equivalent characterizing operations and relationships, but value spaces
that differ in the number and identification of the individual values

3.15
datatype generator
generator
operation on datatypes, as objects distinct from their values, that generates new datatypes

3.16
defined datatype
datatype defined by a type-declaration

3.17
defined generator
datatype generator defined by a type-declaration

3.18
exact
property of a datatype indicating that every value of the conceptual datatype is distinct from all others in any
valid computational model of the datatype

3.19
formal-parametric-type
identifier, appearing in the definition of a datatype generator, for which a datatype will be substituted in any
reference to a (defined) datatype resulting from the generator

1) Angle brackets indicate the subject field to which the concept belongs, in accordance with ISO 10241.

ISO/IEC 11404:2007(E)

4 © ISO/IEC 2007 – All rights reserved

3.20
formal-parametric-value
identifier, appearing in the definition of a datatype family or datatype generator, for which a value will be
substituted in any reference to a (defined) datatype in the family or resulting from the generator

3.21
general-purpose datatype
GPD
datatype defined by this International Standard

3.22
GPD-generated datatype
GPD datatype
datatype defined by the means of datatype definition provided by this International Standard

NOTE Although “GPD datatype” expands to “general-purpose datatype datatype” and might appear redundant, it is to
be read as “general-purpose-datatype datatype”, where GPD is an adjective and datatype (standalone) is a noun.

3.23
generated datatype
datatype defined by the application of a datatype generator to one or more previously-defined datatypes

3.24
generated internal datatype
datatype defined by the application of a datatype generator defined in a particular programming language to
one or more previously-defined internal datatypes

3.25
generator declaration
means provided by this International Standard for the definition of a datatype generator which is not itself
defined by this International Standard

3.26
instruction
provision that conveys an action to be performed

[ISO/IEC Guide 2]

3.27
internal datatype
datatype whose syntax and semantics are defined by some other standard, specification, language, product,
service or other information processing entity

3.28
inward mapping
conceptual association between the internal datatypes of a language and the general-purpose datatypes
which assigns to each general-purpose datatype either a single semantically equivalent internal datatype or
no equivalent internal datatype

3.29
lower bound
value L such that, for all values s in the value space in a datatype which is bounded below, sL ≤

3.30
mandatory requirement
requirement of a normative document that must necessarily be fulfilled in order to comply with that document

NOTE 1 Adapted from the definition of “exclusive requirement” in ISO/IEC Guide 2.

NOTE 2 A “mandatory requirement” is also known as an “exclusive requirement”.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 5

3.31
mapping
〈datatypes〉 formal specification of the relationship between the internal datatypes that are notions of, and
specifiable in, a particular programming language and the general-purpose datatypes specified in this
International Standard

3.32
mapping
〈values〉 corresponding specification of the relationships between values of the internal datatypes and values
of the general-purpose datatypes

3.33
meta-identifier
name of a non-terminal symbol

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term for describing the syntax of
ISO/IEC 11404 program text.

3.34
non-terminal symbol
〈EBNF〉 syntactic part of the language being defined

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.35
normative datatype
collection of specifications for datatype properties that may be simultaneously satisfied by more than one
actual datatype

3.36
normative document
document that provides rules, guidelines or characteristics for activities or their results

[ISO/IEC Guide 2]

NOTE 1 The term “normative document” is a generic term that covers such documents as standards and technical
specifications.

NOTE 2 A “document” is to be understood as any medium with information recorded on or in it, such as a paper
document or program code.

3.37
optional requirement
requirement of a normative document that must be fulfilled in order to comply with a particular option permitted
by that document

[ISO/IEC Guide 2]

NOTE An optional requirement may be either (1) one of two or more alternative requirements; or (2) an additional
requirement that must be fulfilled only if applicable and that may otherwise be disregarded.

3.38
order
mathematical relationship among values

NOTE See 6.3.2.

ISO/IEC 11404:2007(E)

6 © ISO/IEC 2007 – All rights reserved

3.39
ordered
property of a datatype which is determined by the existence and specification of an order relationship on its
value space

3.40
outward mapping
conceptual association between the internal datatypes of a language and the general-purpose datatypes that
identifies each internal datatype with a single semantically equivalent general-purpose datatype

3.41
parametric datatype
datatype on which a datatype generator operates to produce a generated datatype

3.42
parametric value (1)
value which distinguishes one member of a datatype family from another

3.43
parametric value (2)
value which is a parameter of a datatype or datatype generator defined by a type-declaration

NOTE See 9.1.

3.44
primitive datatype
identifiable datatype that cannot be decomposed into other identifiable datatypes without loss of all semantics
associated with the datatype

3.45
primitive internal datatype
datatype in a particular programming language whose values, conceptually, are not constructed in any way
from values of other datatypes in the language

3.46
provision
expression of normative wording that takes the form of a statement, an instruction, a recommendation or a
requirement

NOTE 1 Adapted from ISO/IEC Guide 2.

NOTE 2 These types of provision are distinguished by the form of wording they employ; e.g. instructions are expressed
in the imperative mood, recommendations by the use of the auxiliary “should” and requirements by the use of the auxiliary
“shall”.

3.47
recommendation
provision that conveys advice or guidance

[ISO/IEC Guide 2]

3.48
regular value
element of a value space that is consistent with a datatype's properties and characterizing operations

3.49
representation
〈general-purpose datatype〉 mapping from the value space of the general-purpose datatype to the value space
of some internal datatype of a computer system, file system or communications environment

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 7

3.50
representation
〈value〉 sign(s) of that value in the representation of the datatype

NOTE In this context, the term “sign” is used in its terminological sense (i.e. a symbol) and not in its mathematical
sense (i.e. positive or negative).

3.51
requirement
provision that conveys criteria to be fulfilled

[ISO/IEC Guide 2]

3.52
sentence
〈EBNF〉 sequence of symbols that represents the start symbol

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.53
sentinel value
element of a value space that is not completely consistent with a datatype's properties and characterizing
operations

NOTE A numeric datatype, which includes characterizing operations such as Equal and InOrder, may include
sentinel values such as not-a-number, indeterminate, not-applicable, +infinity, -infinity and so on. These
characterizing operations are not defined for sentinel values.

3.54
sequence
〈EBNF〉 ordered list of zero or more items

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.55
start symbol
〈EBNF〉 non-terminal symbol that is defined by one or more syntax rules but does not occur in any other
syntax rule

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.56
statement
provision that conveys information

[ISO/IEC Guide 2]

3.57
subsequence
〈EBNF〉 sequence within a sequence

[ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

ISO/IEC 11404:2007(E)

8 © ISO/IEC 2007 – All rights reserved

3.58
subtype
datatype derived from another datatype by restricting the value space to a subset whilst maintaining all
characterizing operations

3.59
terminal symbol
〈EBNF〉 sequence of one or more characters forming an irreducible element of a language

[ISO/IEC 14977]

NOTE See note in 5.1 on the context of the specialized usage of this term.

3.60
upper bound
value U such that, for all values s in the value space in a datatype which is bounded above, Us ≤

3.61
value space
set of values for a given datatype

3.62
variable
computational object to which a value of a particular datatype is associated at any given time; and to which
different values of the same datatype may be associated at different times

4 Conformance

An information processing product, system, element or other entity may conform to this International Standard
either directly, by utilizing datatypes specified in this International Standard in a conforming manner (4.1), or
indirectly, by means of mappings between internal datatypes used by the entity and the datatypes specified in
this International Standard (4.2).

NOTE The general term information processing entity is used in this clause to include anything which processes
information and contains the concept of datatype. Information processing entities for which conformance to this
International Standard may be appropriate include other standards (e.g. standards for programming languages or
language-related facilities), specifications, data handling facilities and services, etc.

4.1 Direct conformance

An information processing entity which conforms directly to this International Standard shall:

1. specify which of the datatypes and datatype generators specified in Clause 8 and Clause 10 are provided
by the entity and which are not, and which, if any, of the declaration mechanisms in Clause 9 it provides;
and

2. define the value spaces of the general-purpose datatypes used by the entity to be identical to the value
spaces specified by this International Standard; and

3. use the notation prescribed by Clause 7 through Clause 10 of this International Standard to refer to those
datatypes and to no others; and

4. to the extent that the entity provides operations other than movement or transformation of values, define
operations on the general-purpose datatypes which can be derived from, or are otherwise consistent with,
the characterizing operations specified by this International Standard.

NOTE 1 This International Standard defines a syntax for the denotation of values of each datatype it defines, but, in
general, requirement 3 does not require conformance to that syntax. Conformance to the value-syntax for a datatype is

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 9

required only in those cases in which the value appears in a type-specifier, that is, only where the value is part of the
identification of a datatype.

NOTE 2 The requirements above prohibit the use of a type-specifier defined in this International Standard to designate
any other datatype. They make no other limitation on the definition of additional datatypes in a conforming entity, although
it is recommended that either the form in Clause 8 or the form in Clause 10 be used.

NOTE 3 Requirement 4 does not require all characterizing operations to be supported and permits additional
operations to be provided. The intention is to permit addition of semantic interpretation to the general-purpose datatypes
and generators, as long as it does not conflict with the interpretations given in this International Standard. A conflict arises
only when a given characterizing operation could not be implemented or would not be meaningful, given the entity-
provided operations on the datatype.

NOTE 4 Examples of entities which could conform directly are language definitions or interface specifications whose
datatypes, and the notation for them, are those defined herein. In addition, the verbatim support by a software tool or
application package of the datatype syntax and definition facilities herein should not be precluded.

4.2 Indirect conformance

An information processing entity which conforms indirectly to this International Standard shall:

1. provide mappings between its internal datatypes and the general-purpose datatypes conforming to the
specifications of Clause 11 of this International Standard; and

2. specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided, for which an
outward mapping is provided, and for which no mapping is provided.

NOTE 1 Standards for existing programming languages are expected to provide for indirect conformance rather than
direct conformance.

NOTE 2 Examples of entities which could conform indirectly are language definitions and implementations, information
exchange specifications and tools, software engineering tools and interface specifications, and many other entities which
have a concept of datatype and an existing notation for it.

4.3 Conformance of a mapping standard

In order to conform to this International Standard, a standard for a mapping shall include in its conformance
requirements the requirement to conform to this International Standard.

NOTE 1 It is envisaged that this International Standard will be accompanied by other standards specifying mappings
between the internal datatypes specified in language and language-related standards and the general-purpose datatypes.
Such mapping standards are required to comply with this International Standard.

NOTE 2 Such mapping standards may define “generic” mappings, in the sense that for a given internal datatype the
standard specifies a parameterized general-purpose datatype in which the parametric values are not derived from
parametric values of the internal datatype nor specified by the standard itself, but rather are required to be specified by a
“user” or “implementor” of the mapping standard. That is, instead of specifying a particular general-purpose datatype, the
mapping specifies a family of general-purpose datatypes and requires a further user or implementor to specify which
member of the family applies to a particular use of the mapping standard. This is always necessary when the internal
datatypes themselves are, in the intention of the language standard, either explicitly or implicitly parameterized. For
example, a programming language standard may define a datatype INTEGER with the provision that a conforming
processor will implement some range of Integer; hence the mapping standard may map the internal datatype INTEGER to
the general-purpose datatype:

integer range (min..max)

and require a conforming processor to provide values for “min” and “max”.

ISO/IEC 11404:2007(E)

10 © ISO/IEC 2007 – All rights reserved

4.4 GPD program conformance

A GDP conforming program 2) is a specification that uses datatypes and datatype values and their syntaxes
as specified in this International Standard. Such a specification may be self-contained: there is no requirement
for the existence of a GDP conformant implementation that can produce or operate on the specification. The
requirements of this International Standard to which the specification conforms shall be clearly identified,
either in the specification itself, or in documentation that is unambiguously identified in the specification.

NOTE A GDP conforming program is a special case of directly conforming entity.

5 Conventions used in this International Standard

5.1 Formal syntax

This International Standard defines a formal datatype specification language. The notation defined in
ISO/IEC 14977, Extended Backus-Naur Form (EBNF), is used in defining that language. Table 5-1
summarizes the ISO/IEC 14977 EBNF syntactic metalanguage.

NOTE The terms meta-identifier, non-terminal symbol, sentence, sequence, start symbol, subsequence, and terminal
symbol have special meaning in the context of EBNF notation (see Clause 3).

Table 5-1 — Summary of ISO/IEC 14977 EBNF Syntactic Metalanguage Notation

Representation ISO/IEC 10646 Character Names Metalanguage Symbol
' ' apostrophe first quote symbol
" " quotation mark second quote symbol
(* *) left parenthesis with asterisk,

asterisk with right parenthesis
start/end comment symbols

() left parenthesis, right parenthesis start/end group symbols
[] left square bracket, right square bracket start/end option symbols
{ } left curly bracket, right curly bracket start/end repeat symbols
? ? question mark special sequence symbol
 - hyphen-minus except symbol
 , comma concatenate symbol
 = equals sign defining symbol
 | vertical line definition separator symbol
 * asterisk repetition symbol
 ; semicolon terminator symbol

EXAMPLE 1 The following syntax rules illustrate repetition (asterisk and curly brackets) and option square brackets:

aa = "A" ;
bb = 3 * aa, "B" ;
cc = 3 * [aa], "C" ;
dd = {aa}, "D" ;
ee = aa, {aa}, "E" ;
ff = 3 * aa, 3 * [aa], "F" ;

Terminal strings defined by these rules are as follows:

aa: A
bb: AAAB

2) A GPD conforming program might be an 11404 GPD datatype definition or a data declaration based upon an 11404
GPD datatype.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 11

cc: C AC AAC AAAC
dd: D AD AAD AAAD AAAAD etc.
ee: AE AAE AAAE AAAAE AAAAAE etc.
ff: AAAF AAAAF AAAAAF AAAAAAF

EXAMPLE 2 The following syntax rules illustrate a definitions list (vertical line), an exception (hyphen-minus), and
comments (parentheses and asterisks):

letter = "A" | "B" | "C" | "D" | "E" | "F"
| "G" | "H" | "I" | "J" | "K" | "L" | "M"
| "N" | "O" | "P" | "Q" | "R" | "S" | "T"
| "U" | "V" | "W" | "X" | "Y" | "Z" ;
vowel = "A" | "E" | "I" | "O" | "U" ;
consonant = letter - vowel ; (* These examples are from ISO/IEC 14977 *)

Terminal strings defined by these rules are as follows:

letter: A B C D E F G H I J etc.
vowel: A E I O U
consonant: B C D F G H J K L M etc.

5.2 Text conventions

Within the text:

⎯ A reference to a terminal symbol syntactic object consists of the terminal symbol in fixed width courier,
e.g. type.

⎯ A reference to a non-terminal symbol syntactic object consists of the non-terminal-symbol in fixed width
italic courier, e.g. type-declaration.

⎯ Mathematical notation, properties, and characterizing operations are in bold, e.g., InOrder(x,y).

⎯ Non-italicized words which are identical or nearly identical in spelling to a non-terminal-symbol refer to the
conceptual object represented by the syntactic object. In particular, xxx-type refers to the syntactic
representation of an “xxx datatype” in all occurrences.

6 Fundamental notions

6.1 Datatype

A datatype is a set of distinct values, characterized by properties of those values and by operations on those
values. Characterizing operations are included in this International Standard solely in order to identify the
datatype. In this International Standard, characterizing operations are purely informative and have no
normative impact.

The term general-purpose datatype is used to mean a datatype defined by this International Standard. The
term general-purpose datatypes (plural) refers to some or all of the datatypes defined by this International
Standard. The term GPD datatype refers to datatypes generated or defined by means specified in this
International Standard.

The term internal datatype is used to mean a datatype whose syntax and semantics are defined by some
other standard, language, product, service or other information processing entity.

NOTE The datatypes included in this standard are “common”, not in the sense that they are directly supported by,
i.e. “built-in” to, many languages, but in the sense that they are common and useful generic concepts among users of
datatypes, which include, but go well beyond, programming languages.

ISO/IEC 11404:2007(E)

12 © ISO/IEC 2007 – All rights reserved

6.2 Value space

A value space is the collection of values for a given datatype. The value space of a given datatype can be
defined in one of the following ways:

⎯ enumerated outright, or

⎯ defined axiomatically from fundamental notions, or

⎯ defined as the subset of those values from some already defined value space which have a given set of
properties, or

⎯ defined as a combination of arbitrary values from some already defined value spaces by a specified
construction procedure.

NOTE 1 This International Standard defines the concept “value space”, which is just a set of values. It extends that
notion to “datatype” by adding computational properties supported by characterizing operations. ISO/IEC 11179,
Information technology — Metadata registries (MDR), introduces the concept “value domain”. A “value domain” is a set of
<value, meaning> pairs, each pair consisting of a value and its conceptual interpretation. That is, ISO/IEC 11179 extends
the notion value space to “value domain” by adding its meaning for users and applications.

A distinct value may belong to the value space of more than one datatype, so long as it properly supports the
properties and characterizing operations of each of them (see 6.6).

A value space contains regular values (elements of a value space that are consistent with a datatype's
properties and characterizing operations). A datatype may also have sentinel values: elements that can be
said to 'belong' to the datatype but that may not be completely consistent with the properties and
characterizing operations of the datatype. For the purpose of this International Standard, sentinel values do
not belong to the value space of the datatype. If a datatype has sentinel values, then there shall always be a
form of the Equal operator to distinguish these sentinel values from regular values (see also 8.2.6).

NOTE 2 A numeric datatype, which includes characterizing operations such as Equal and InOrder, may include
sentinel values such as not-a-number, indeterminate, not-applicable, +infinity, -infinity, and so on. These
characterizing operations are not defined for sentinel values.

6.3 Datatype properties

The model of datatypes used in this International Standard is said to be an “abstract computational model”.
It is “computational” in the sense that it deals with the manipulation of information by computer systems and
makes distinctions in the typing of data units which are appropriate to that kind of manipulation. It is “abstract”
in the sense that it deals with the perceived properties of the data units themselves, rather than with the
properties of their representations in computer systems.

NOTE 1 It is important to differentiate between the values, relationships and operations for a datatype and the
representations of those values, relationships and operations in computer systems. This International Standard specifies
the characteristics of the conceptual datatypes, but it only provides a means for specification of characteristics of
representations of the datatypes.

NOTE 2 Some computational properties derive from the need for the data units to be representable in computers. Such
properties are deemed to be appropriate to the abstract computational model, as opposed to purely representational
properties, which derive from the nature of specific representations of the data units.

NOTE 3 It is not proper to describe the datatype model used herein as “mathematical”, because a truly mathematical
model has no notions of “access to data units” or “invocation of processing elements”, and these notions are important to
the definition of characterizing operations for datatypes and datatype generators.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 13

6.3.1 Equality

In every value space there is a notion of equality, for which the following rules hold:

⎯ for any two instances (a, b) of values from the value space, either a is equal to b, denoted ba = , or a is
not equal to b, denoted ba ≠ ;

⎯ there is no pair of instances (a, b) of values from the value space such that both ba = and ba ≠ ;

⎯ for every value a from the value space, aa = ;

⎯ for any two instances (a, b) of values from the value space, ba = if and only if ab = ;

⎯ for any three instances (a, b, c) of values from the value space, if ba = and cb = , then ca = .

On every datatype, the operation Equal is defined in terms of the equality property of the value space, by:

⎯ for any values a, b drawn from the value space, Equal(a,b) is true if ba = , and false otherwise.

6.3.2 Order

A value space is said to be ordered if there exists for the value space an order relation, denoted ≤, with the
following rules:

⎯ for every pair of values (a, b) from the value space, either ba ≤ or ab ≤ , or both;

⎯ for any two values (a, b) from the value space, if ba ≤ and ab ≤ , then ba = ;

⎯ for any three values (a, b, c) from the value space, if ba ≤ and cb ≤ , then ca ≤ .

For convenience, the notation ba < is used herein to denote the simultaneous relationships: ba ≤ and ba ≠ .

A datatype is said to be ordered if an order relation is defined on its value space. A corresponding
characterizing operation, called InOrder, is then defined by:

⎯ for any two values (a, b) from the value space, InOrder(a, b) is true if ba ≤ , and false otherwise.

NOTE There may be several possible orderings of a given value space. And there may be several different datatypes
which have a common value space, each using a different order relationship. The chosen order relationship is a
characteristic of an ordered datatype and may affect the definition of other operations on the datatype.

6.3.3 Bound

A datatype is said to be bounded above if it is ordered and there is a value U in the value space such that, for
all values s in the value space, Us ≤ . The value U is then said to be an upper bound of the value space.
Similarly, a datatype is said to be bounded below if it is ordered and there is a value L in the space such that,
for all values s in the value space, sL ≤ . The value L is then said to be a lower bound of the value space. A
datatype is said to be bounded if its value space has both an upper bound and a lower bound.

NOTE The upper bound of a value space, if it exists, must be unique under the equality relationship. For if 1U and
2U are both upper bounds of the value space, then 21 UU ≤ and 12 UU ≤ , and therefore 21 UU = , following the second

rule for the order relationship. And similarly the lower bound, if it exists, must also be unique.

On every datatype which is bounded below, the niladic operation Lowerbound is defined to yield that value
which is the lower bound of the value space, and, on every datatype which is bounded above the niladic
operation Upperbound is defined to yield that value which is the upper bound of the value space.

ISO/IEC 11404:2007(E)

14 © ISO/IEC 2007 – All rights reserved

6.3.4 Cardinality

A value space has the mathematical concept of cardinality: it may be finite, denumerably infinite (countable),
or non-denumerably infinite (uncountable). A datatype is said to have the cardinality of its value space. In the
computational model, there are three significant cases:

⎯ datatypes whose value spaces are finite,

⎯ datatypes whose value spaces are exact (see 6.3.5) and denumerably infinite,

⎯ datatypes whose value spaces are approximate (see 6.3.5), and therefore have a finite or denumerably
infinite computational model, although the conceptual value space may be non-denumerably infinite.

Every conceptually finite datatype is necessarily exact. No computational datatype is non-denumerably
infinite.

NOTE For a denumerably infinite value space, there always exist representation algorithms such that no two distinct
values have the same representation and the representation of any given value is of finite length. Conversely, in a non-
denumerably infinite value space there always exist values which do not have finite representations.

6.3.5 Exact and approximate

The computational model of a datatype may limit the degree to which values of the datatype can be
distinguished. If every value in the value space of the conceptual datatype is distinguishable in the
computational model from every other value in the value space, then the datatype is said to be exact.

Certain mathematical datatypes having values which do not have finite representations are said to be
approximate, in the following sense:

Let M be the mathematical datatype and C be the corresponding computational datatype, and let P be
the mapping from the value space of M to the value space of C . Then for every value 'v in C , there is
a corresponding value v in M and a real value h such that ')(vxP = for all x in M such that hxv <− .
That is, 'v is the approximation in C to all values in M which are “within distance h of value v ”.
Furthermore, for at least one value 'v in C , there is more than one value y in M such that ')(vyP = . And
thus C is not an exact model of M .

In this International Standard, all approximate datatypes have computational models which specify, via
parametric values, a degree of approximation, that is, they require a certain minimum set of values of the
mathematical datatype to be distinguishable in the computational datatype.

NOTE The computational model described above allows a mathematically dense datatype to be mapped to a
datatype with fixed-length representations and nonetheless evinces intuitively acceptable mathematical behavior. When
the real value h described above is constant over the value space, the computational model is characterized as having
“bounded absolute error” and the result is a scaled datatype (8.1.9). When h has the form vc ⋅ , where c is constant over
the value space, the computational model is characterized as having “bounded relative error”, which is the model used for
the Real (8.1.10) and Complex (8.1.11) datatypes.

6.3.6 Numeric

A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number
system). A datatype whose values do not have this property is said to be non-numeric.

NOTE The significance of the numeric property is that the representations of the values depend on some radix, but
can be algorithmically transformed from one radix to another.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 15

6.4 Primitive and non-primitive datatypes

In this International Standard, datatypes are categorized, for syntactic convenience, into:

⎯ primitive datatypes, which are defined axiomatically without reference to other datatypes, and

⎯ generated datatypes, which are specified, and partly defined, in terms of other datatypes.

In addition, this International Standard identifies structural and abstract notions of datatypes. The structural
notion of a datatype characterizes the datatype as either:

⎯ conceptually atomic, having values which are intrinsically indivisible, or

⎯ conceptually aggregate, having values which can be seen as an organization of specific component
datatypes with specific functionalities.

All primitive datatypes are conceptually atomic, and therefore have, and are defined in terms of, well-defined
abstract notions. Some generated datatypes are conceptually atomic but are dependent on specifications
which involve other datatypes. These too are defined in terms of their abstract notions. Many other datatypes
may represent objects which are conceptually atomic, but are themselves conceptually aggregates, being
organized collections of accessible component values. For aggregate datatypes, this International Standard
defines a set of basic structural notions (see 6.8) which can be recursively applied to produce the value space
of a given generated datatype. The only abstract semantics assigned to such a datatype by this International
Standard are those which characterize the aggregate value structure itself.

NOTE The abstract notion of a datatype is the semantics of the values of the datatype itself, as opposed to its
utilization to represent values of a particular information unit or a particular abstract object. The abstract and structural
notions provided by this International Standard are sufficient to define its role in the universe of discourse between two
languages, but not to define its role in the universe of discourse between two programs. For example, Array datatypes are
supported as such by both Fortran and Pascal, so that Array of Real has sufficient semantics for procedure calls between
the two languages. By comparison, both linear operators and lists of Cartesian points may be represented by Array of
Real, and Array of Real is insufficient to distinguish those meanings in the programs.

6.5 Datatype generator

A datatype generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype
generator operates on datatypes to generate a datatype, rather than on values to generate a value.
Specifically, a datatype generator is the combination of:

⎯ a collection of criteria for the number and characteristics of the datatypes to be operated upon,

⎯ a construction procedure which, given a collection of datatypes meeting those criteria, creates a new
value space from the value spaces of those datatypes, and

⎯ a collection of characterizing operations which attach to the resulting value space to complete the
definition of a new datatype.

The application of a datatype generator to a specific collection of datatypes meeting the criteria for the
datatype generator forms a generated datatype. The generated datatype is sometimes called the resulting
datatype, and the collection of datatypes to which the datatype generator was applied are called its parametric
datatypes.

6.6 Characterizing operations

The set of characterizing operations for a datatype comprises those operations on, or yielding values of, the
datatype that distinguish this datatype from other datatypes having value spaces which are identical except
possibly for substitution of symbols.

ISO/IEC 11404:2007(E)

16 © ISO/IEC 2007 – All rights reserved

The set of characterizing operations for a datatype generator comprises those operations on, or yielding
values of, any datatype resulting from an application of the datatype generator that distinguish this datatype
generator from other datatype generators which produce identical value spaces from identical parametric
datatypes.

NOTE 1 Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the
values are called. For example, the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) all have
four distinct values and all the names (symbols) are different. But one can claim that the first two support the
characterizing operation Add(), while the last does not:

threetwooneAdd =),(; and 3)2,1(=Add ; but greenyellowredAdd ≠),(

It is this characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype,
while the last is a different datatype.

NOTE 2 The characterizing operations for an aggregate datatype are compositions of characterizing operations for its
datatype generator with characterizing operations for its component datatypes. Such operations are, of course, only
sufficient to identify the datatype as a structure.

NOTE 3 The characterizing operations on a datatype may be:

⎯ niladic operations which yield values of the given datatype,

⎯ monadic operations which map a value of the given datatype into a value of the given datatype or into a value of
datatype Boolean,

⎯ dyadic operations which map a pair of values of the given datatype into a value of the given datatype or into a value of
datatype Boolean,

⎯ n-adic operations 3) which map ordered n-tuples of values, each of which is of a specified datatype, which may be the
given datatype or a parametric datatype, into values of the given datatype or a parametric datatype.

NOTE 4 In general, there is no unique collection of characterizing operations for a given datatype. This International
Standard specifies one collection of characterizing operations for each datatype (or datatype generator) which is sufficient
to distinguish the (resulting) datatype from all other datatypes with value spaces of the same cardinality. While some effort
has been made to minimize the collection of characterizing operations for each datatype, no assertion is made that any of
the specified collections is minimal.

NOTE 5 Equal is always a characterizing operation on datatypes with the equality property.

NOTE 6 InOrder is always a characterizing operation on ordered datatypes (see 6.3.2).

6.7 Datatype families

If there is a 1-to-1 symbol substitution which maps the entire value space of one datatype (the domain) into a
subset of the value space of another datatype (the range) in such a way that the value relationships and
characterizing operations of the domain datatype are preserved in the corresponding value relationships and
characterizing operations of the range datatype, and if there are no additional characterizing operations on the
range datatype, then the two datatypes are said to belong to the same family of datatypes. An individual
member of a family of datatypes is distinguished by the symbol set making up its value space. In this
International Standard, the symbol set for an individual member of a datatype family is specified by one or
more values, called the parametric values of the datatype family.

3) The term "n-adic" is a general term, which includes niladic, monadic, and dyadic.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 17

6.8 Aggregate datatypes

An aggregate datatype is a generated datatype, each of whose values is, in principle, made up of values of
the parametric datatypes. The parametric datatypes of an aggregate datatype or its generator are also called
component datatypes. An aggregate datatype generator generates a datatype by

⎯ applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space
of the aggregate datatype, and

⎯ providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an
aggregate value are accessible through characterizing operations.

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize
relationships among the component datatypes and relationships between each component and the aggregate
value. This subclause defines those properties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The
fundamental properties of arrays, for example, do not depend on the nature of the elements.) In principle, any
combination of the properties specified in this subclause defines a particular form of aggregate datatype,
although most are only meaningful for homogeneous aggregates (see 6.8.1) and there are implications of
some direct access methods (see 6.8.6).

6.8.1 Homogeneity

An aggregate datatype is homogeneous, if and only if all components must belong to a single datatype. If
different components may belong to different datatypes, the aggregate datatype is said to be heterogeneous.
The component datatype of a homogeneous aggregate is also called the element datatype.

NOTE 1 Homogeneous aggregates view all their elements as serving the same role or purpose. Heterogeneous
aggregates divide their elements into different roles.

NOTE 2 The aggregate datatype is homogeneous if its components all belong to the same datatype, even if the
element datatype is itself an heterogeneous aggregate datatype. Consider the datatype label_list defined by:

type label = choice (state(name, handle)) of ((name): characterstring, (handle): integer);
type label_list = sequence of (label);

Formally, a label_list value is a homogeneous series of label values. One could argue that it is really a series of
heterogeneous values, because every label value is of a choice datatype (see 8.3.1). The choice datatype generator is
clearly heterogeneous because it is capable of introducing variation in element type. But sequence (see 8.4.4) is
homogeneous because it itself introduces no variation in element type.

6.8.2 Size

The size of an aggregate-value is the number of component values it contains. The size of the aggregate
datatype is fixed, if and only if all values in its value space contain the same number of component values.
The size is variable, if different values of the aggregate datatype may have different numbers of component
values. Variability is the more general case; fixed-size is a constraint.

6.8.3 Uniqueness

An aggregate-value has the uniqueness property if and only if no value of the element datatype occurs more
than once in the aggregate-value. The aggregate datatype has the uniqueness property, if and only if all
values in its value space do.

ISO/IEC 11404:2007(E)

18 © ISO/IEC 2007 – All rights reserved

6.8.4 Aggregate-imposed identifier uniqueness

An aggregate-value has the identifier uniqueness property if and only if no identifier (e.g., label, index) of the
element datatype occurs more than once in the aggregate-value. The aggregate datatype has the identifier
uniqueness property, if and only if all values in its value space do.

6.8.5 Aggregate-imposed ordering

An aggregate datatype has the ordering property, if and only if there is a canonical first element of each non-
empty value in its value-space. This ordering is (externally) imposed by the aggregate value, as distinct from
the value-space of the element datatype itself being (internally) ordered (see 6.3.2). It is also distinct from the
value-space of the aggregate datatype being ordered.

EXAMPLE The type-generator sequence has the ordering property. The datatype characterstring is defined as
sequence of (character(repertoire)). The ordering property of sequence means that in every value of type
characterstring, there is a first character value. For example, the first element value of the characterstring value
"computation" is 'c'. This is different from the question of whether the element datatype character(repertoire) is
ordered: is 'a' < 'c'? It is also different from the question of whether the value space of datatype characterstring is
ordered by some collating-sequence, e.g. is "computation" < "Computer"?

6.8.6 Access method

The access method for an aggregate datatype is the property which determines how component values can
be extracted from a given aggregate-value.

An aggregate datatype has a direct access method, if and only if there is an aggregate-imposed mapping
between values of one or more “index” (or “key”) datatypes and the component values of each aggregate
value. Such a mapping is required to be single-valued, i.e. there is at most one element of each aggregate
value which corresponds to each (composite) value of the index datatype(s). The dimension of an aggregate
datatype is the number of index or key datatypes the aggregate has.

An aggregate datatype is said to be indexed, if and only if it has a direct access method, every index datatype
is ordered, and an element of the aggregate value is actually present and defined for every (composite) value
in the value space of the index datatype(s). Every indexed aggregate datatype has a fixed size, because of
the 1-to-1 mapping from the index value space. In addition, an indexed datatype has a “partial ordering” in
each dimension imposed by the order relationship on the index datatype for that dimension; in particular, an
aggregate datatype with a single ordered index datatype implicitly has the ordering imposed by sequential
indexing.

An aggregate datatype is said to be keyed, if and only if it has a direct access method, but either the index
datatypes or the mapping do not meet the requirements for indexed. That is, the index (or key) datatypes
need not be ordered, and a value of the aggregate datatype need not have elements corresponding to all of
the key values.

An aggregate datatype is said to have only indirect access methods if there is no aggregate-imposed index
mapping. Indirect access may be by position (if the aggregate datatype has ordering), by value of the element
(if the aggregate datatype has uniqueness), or by some implementation-dependent selection mechanism,
modeled as random selection.

NOTE 1 The access methods become characterizing operations on the aggregate types. It is preferable to define the
types by their intrinsic properties and to see these access properties be derivable characterizing operations.

NOTE 2 The sequence datatype generator (see 8.4.4) is said to have indirect access because the only way a given
element value (or an element value satisfying some given condition) can be found is to traverse the list in order until the
desired element is the “Head”. In general, therefore, one cannot access the desired element without first accessing all
(undesired) elements appearing earlier in the sequence. On the other hand, Array (see 8.4.5) has direct access because
the access operation for a given element is “find the element whose index is i” – the ith element can be accessed without
accessing any other element in the given Array. Of course, if the Array element which satisfies a condition not related to
the index value is wanted, access would be indirect.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 19

6.8.7 Recursive structure

A datatype is said to be recursive if a value of the datatype can contain (or refer to) another value of the
datatype. In this International Standard , a recursive capability is supported by the type-declaration facility
(see 9.1), and recursive datatypes can be described using type-declaration in combination with choice
datatypes (8.3.1) or pointer datatypes (8.3.2). Thus recursive structure is not considered to be a property of
aggregate datatypes per se.

EXAMPLE LISP has several “atomic” datatypes, collected under the generic datatype “atom”, and a “list” datatype
which is a sequence of elements each of which can be an atom or a list. This datatype can be described using the Tree
datatype generator defined in 10.2.2.

6.8.8 Structured and unstructured

Aggregate datatypes are:

⎯ conceptually structured, having both the component datatypes and the access method specified, or

⎯ conceptually semi-structured, having either the component datatypes or the access method specified, but
not both, or

⎯ conceptually unstructured, having neither the component datatype nor the access method specified.

6.8.9 Mandatory and optional components

The components of an aggregate datatype may not all be required to have a valid value of the datatype, i.e.,
the actual value space of the datatype may include values for which some of the component values are
unspecified.

When a component of the datatype is required to have a valid value in order for the aggregate value to be a
valid value of the datatype, the component is said to be a mandatory component.

When a component of the datatype is not required to have a valid value in order for the aggregate value to be
a valid value of the datatype, the component is said to be an optional component.

NOTE 1 This property applies to fields of records, members of classes, and elements of sequences, tables, and arrays.

NOTE 2 See examples in 6.9.

6.9 Provisions associated with datatypes

A provision is the fundamental unit of normative wording 4) in a normative document, such as a standard or
specification. A provision is an “expression of normative wording that takes the form of a statement, an
instruction, a recommendation or a requirement”. Auxiliary verbs such as “shall” (mandatory requirement),
“should” (recommendation), and “may” (optional requirement) are used in normative wording to express
provisions.

This International Standard contains many provisions. Some provisions apply to datatypes in general, e.g.,
a datatype consists of a value space, properties, and characterizing operations — a “statement” provision.
Some provisions apply to specific datatypes, e.g., a mapping to the GPD integer datatype shall be a
datatype that is numeric — a “requirement” provision. Declarations may contain provisions described via
annotations (outside the scope of this International Standard). Declarations may contain provisions associated
with datatype families, as described by the provision() type-attribute.

4) Provisions, in general, may be expressed in natural language text and/or specialized notation. For the GPD
"provision()", the provision is expressed as a set of name-value pairs.

ISO/IEC 11404:2007(E)

20 © ISO/IEC 2007 – All rights reserved

A normative datatype is a collection of specifications for datatype properties that may be simultaneously
satisfied by more than one actual datatype. A related concept concerns conformity to a normative datatype:
a datatype conforms to a normative datatype if it satisfies all of the properties specified by the normative
datatype, i.e., a normative datatype does not have a specific value space, but it may specify properties that
any conforming value space must have. Similarly, a normative datatype may specify operations that must be
supported by a conforming datatype, without that set of operations itself being sufficient to characterize any
one datatype.

EXAMPLE 1 The normative datatype Any can be satisfied by any GPD datatype, with any value space. The only
requirement is that Equal is defined on the value space.

EXAMPLE 2 The normative datatype address_label_standard is a record that contains 6 components.

// shorthand for "mandatory data element" provision
normative MDE = provision(obligation=require, target=type, scope=identifier, subset=defined),

// shorthand for "optional data element" provision
normative ODE = provision(obligation=permit, target=type, scope=identifier, subset=defined),

// shorthand for "extended data element" provision
normative XDE = provision(obligation=permit, target=type, scope=identifier, subset=undefined),

normative address_label_standard =
record XDE
(
 name MDE: characterstring,
 address MDE: characterstring,
 city MDE: characterstring,
 state_province MDE: characterstring,
 postal_code MDE: characterstring,
 country_code ODE: characterstring,
),

It is not possible to instantiate a normative datatype directly, but it is possible to instantiate an implementation (of the
normative datatype) that conforms to the normative datatype. The following are examples of datatypes (implementations)
that conform to the normative datatype address_label_standard. It is possible to instantiate the following datatypes.

// address_label_1 conforms because it has all the mandatory data elements
type address_label_1 =
record
(
 name: characterstring, // mandatory data element
 address: characterstring, // mandatory data element
 city: characterstring, // mandatory data element
 state_province: characterstring, // mandatory data element
 postal_code: characterstring, // mandatory data element
),

// address_label_2 conforms because it has all the mandatory data elements,
// and the optional data element (present in address label 2) conforms to
// the requirements in the normative datatype
type address_label_2 =
record
(
 name: characterstring,
 address: characterstring,
 city: characterstring,
 state_province: characterstring,
 postal_code: characterstring,
 country_code: characterstring, // optional data element
),

// address_label_3 conforms because it has the data elements
// of address_label_2 and the XDE permits the definition of
// additional data elements
type address_label_3 =
record
(
 name: characterstring,
 address: characterstring,
 city: characterstring,
 state_province: characterstring,

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 21

 postal_code: characterstring,
 country_code: characterstring,
 telephone_number: characterstring, // extended data element
),

The following are examples of datatypes that do not conform to the datatype.

// address_label_4 does not conform because it is missing
// mandatory data elements "state_province" and "postal_code"
type address_label_4 =
record
(
 name: characterstring,
 address: characterstring,
 city: characterstring,
),

// address_label_5 does not conform because its optional data element
// conflicts with the definition of the normative datatype
type address_label_5 =
record
(
 name: characterstring,
 address: characterstring,
 city: characterstring,
 state_province: characterstring,
 postal_code: characterstring,
 country_code: integer,
),

7 Elements of the Datatype Specification Language

This International Standard defines a datatype specification language, in order to formalize the identification
and declaration of datatypes conforming to this International Standard. The language is a subset of the
Interface Definition Notation defined in ISO/IEC 13886:1996, Information technology — Language-
Independent Procedure Calling (LIPC).5) This clause defines the basic syntactic objects used in that
language.

7.1 IDN character-set

The following productions define the character-set of the datatype specification language.

letter = "a" | "b" | "c" | "d" | "e" |
 "f" | "g" | "h" | "i" | "j" |
 "k" | "l" | "m" | "n" | "o" |
 "p" | "q" | "r" | "s" | "t" |
 "u" | "v" | "w" | "x" | "y" |
 "z" | "A" | "B" | "C" | "D" |
 "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" |
 "O" | "P" | "Q" | "R" | "S" |
 "T" | "U" | "V" | "W" | "X" |
 "Y" | "Z" ;
digit = "0" | "1" | "2" | "3" | "4" |
 "5" | "6" | "7" | "8" | "9" ;
special = "(" | (* left parenthesis *)
 ")" | (* right parenthesis *)
 "." | (* full stop *)
 "," | (* comma *)
 ":" | (* colon *)
 ";" | (* semicolon *)
 "=" | (* equals sign *)
 "/" | (* solidus *)
 "*" | (* asterisk *)

5) The IDN is only one feature of ISO/IEC 13886. The primary purpose of ISO/IEC 13886 is to specify a technique for
language-independent procedure calling.

ISO/IEC 11404:2007(E)

22 © ISO/IEC 2007 – All rights reserved

 "-" | (* hyphen-minus *)
 "{" | (* left curly bracket *)
 "}" | (* right curly bracket *)
 "[" | (* left square bracket *)
 "]" ; (* right square bracket *)
underscore = "_" ; (* low line *)
apostrophe = "'" ; (* apostrophe *)
quote = '"' ; (* quotation mark *)
escape = "!" ; (* exclamation point *)
space = " " (* space *)
non-quote-character = letter |
 digit |
 special |
 underscore |
 apostrophe |
 space ;
bound-character = non-quote-character |
 quote ;
added-character = ? not defined by this International Standard ? ;

These productions are nominal. Lexical productions are always subject to minor changes from implementation
to implementation, in order to handle the vagaries of available character-sets. The following rules, however,
always apply:

1. The bound-characters, and the escape character, are required in any implementation to be associated
with particular members of the implementation character set.

2. The character space is required to be bound to the “space” member of ISO/IEC 10646, but it only has
meaning within character-literals and string-literals.

3. A bound-character is required to be associated with the member having the corresponding symbol, if any,
in any implementation character-set derived from ISO/IEC 10646.

4. An added-character is any other member of the implementation character-set which is bound to the
member having the corresponding symbol in an ISO/IEC 10646 character-set. An added-character may
be referenced by name, by 8-digit short UCS identifier, or by 4-digit short UCS identifier, as specified by
ISO/IEC 10646. For example, "!QUOTATION MARK!", "!U00000022!", and "!U+0022!" are all equivalent:
a string literal that contains the one character, a quotation mark.

7.2 Whitespace

A sequence of one or more space characters, horizontal tabs, end of line characters, or newline characters
except within a character-literal or string-literal (see 7.3), shall be considered whitespace. Any use of this
International Standard may define any other characters or sequences of characters not in the above character
set to be whitespace as well, such as vertical tabulators, end of page indicators, etc.

A comment is either of:

⎯ Any sequence of characters beginning with the sequence /* (solidus, asterisk) and terminating with the
first occurrence thereafter of the sequence */ (asterisk solidus).

⎯ Any sequence of characters beginning with the sequence // (solidus, solidus) and terminating with the
occurrence thereafter of end-of-line character sequence.

Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this International Standard, any annotation (see 7.4)
is considered whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without effect on the
interpretation of the syntactic construction. Whitespace shall not appear within lexical objects.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 23

Any two consecutive keywords or identifiers, or a keyword preceded or followed by an identifier, shall be
separated by whitespace.

7.3 Lexical objects

The lexical objects are all terminal symbols except those defined in 7.1, and the objects identifier, digit-string,
character-literal, string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a
generated datatype, or a value of some datatype.

identifier = initial-letter-like, { pseudo-letter-like } ;
initial-letter-like = letter-like |
 special-like ;
letter-like = letter |
 ISO/IEC-10176-extended-letter ;
pseudo-letter-like = letter-like |
 digit-like |
 underscore ;
digit-like = digit |
 ISO/IEC-10176-extended-digit ;
special-like = underscore |
 ISO/IEC-10176-extended-special ;

NOTE ISO/IEC 10176 describes the notion of classes of letter-like characters (outside of ISO/IEC 646 letters A
through Z), digit-like characters (outside of ISO/IEC 646 digits 0 through 9), and special characters that are all used in
identifiers.

Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can
be determined by the following rules:

1. An identifier X declared by a type-declaration or value-declaration shall not be declared in any
other declaration.

2. The identifier X in a component of, say, a type-specifier (Y) refers to that component of Y which Y
declares X to identify, if any, or whatever X refers to in the type-specifier which immediately contains Y,
if any, or else the datatype or value which X is declared to identify by a declaration.

7.3.2 Digit-string

A digit-string is a terminal-symbol consisting entirely of digits. It is used to designate a value of some
datatype, with the interpretation specified by that datatype definition.

digit-string = digit-like, { digit-like } ;
digit-like = digit |
 ISO/IEC-10176-extended-digit ;

7.3.3 Character-literal and string-literal

A character-literal is a terminal-symbol delimited by apostrophe characters. It is used to designate a
value of a character datatype, as specified in 8.1.4.

character-literal = apostrophe, any-character, apostrophe ;
any-character = bound-character |
 added-character |
 escape-character ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " ", identifier } ;

ISO/IEC 11404:2007(E)

24 © ISO/IEC 2007 – All rights reserved

A string-literal is a terminal-symbol delimited by quote characters. It is used to designate values of time
datatypes (8.1.6), bitstring datatypes (10.1.4), and characterstring datatypes (10.1.5), with the interpretation
specified for each of those datatypes.

string-literal = quote, { string-character }, quote ;
string-character = non-quote-character |
 added-character |
 escape-character ;

Every character appearing in a character-literal or string-literal shall be a part of the literal, even when that
character would otherwise be whitespace.

7.3.4 Keywords

The term keyword refers to any terminal symbol which also satisfies the production for identifier, i.e. is not
composed of special characters. The keywords appearing below are reserved, in the sense that none of them
shall be interpreted as an identifier. All other keywords appearing in this International Standard shall be
interpreted as predefined identifiers for the datatype or type-generator to which this International Standard
defines them to refer.

reserved-keywords = "array" |
 "choice" |
 "default" |
 "excluding" |
 "from" |
 "in" |
 "inout" |
 "new" |
 "of" |
 "out" |
 "plus" |
 "pointer" |
 "procedure" |
 "raises" |
 "record" |
 "returns" |
 "selecting" |
 "size" |
 "subtype" |
 "table" |
 "termination" |
 "to" |
 "type" |
 "value" ;

NOTE All of the above keywords are reserved because they introduce (or are part of) syntax which cannot validly
follow an identifier for a datatype or type-generator. Most datatype identifiers defined in Clause 8 are syntactically
equivalent to a type-reference (see 8.5), except for their appearance in Clause 8.

7.4 Annotations

An annotation, or extension, is a syntactic object defined by a standard or information processing entity which
uses this International Standard. All annotations shall have the form:

annotation = "[", annotation-label, ":",
 annotation-text, "]" ;
annotation-label = objectidentifiercomponent-list ;
annotation-text = ? not defined by this International Standard ? ;

The annotation-label shall identify the standard or information processing entity which defines the meaning
of the annotation-text. The entity identified by the annotation-label shall also define the allowable syntactic
placement of a given type of annotation and the syntactic object(s), if any, to which the annotation applies.
The objectidentifiercomponent-list shall have the structure and meaning prescribed by clause 10.1.10.

NOTE Of the several forms of objectidentifiercomponent-value specified in 10.1.10, the nameform is the most
convenient for labeling annotations. Following ISO/IEC 8824, every value of the objectidentifier datatype must have

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 25

as its first component one of iso, itu-t, or joint-iso-itu-t, but an implementation or use is permitted to specify an
identifier which represents a sequence of component values beginning with one of the above, as:

value rpc : objectidentifier = { iso(1) standard(0) 11578 }

and that identifier may then be used as the first (or only) component of an annotation-label, as in:

[rpc: discriminant = n]

(This example is fictitious. ISO/IEC 11578 does not define any annotations.)

Non-standard annotations, defined by vendors or user organizations, for example, can acquire such labels through one of
the { iso member-body <nation> ... } or { iso identified-organization <organization> ... } paths, using
the appropriate national or international registration authority.

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of
datatype generators may require the syntactic designation of specific values of a datatype. For this reason,
this International Standard provides a notation for values of every datatype that is defined herein or can be
defined using the features provided by Clause 10, except for datatypes for which designation of specific
values is not appropriate.

A value-expression designates a value of a datatype.

Syntax:

value-expression = independent-value |
 dependent-value |
 formal-parametric-value ;

An independent-value is a syntactic construction which resolves to a fixed value of some general-purpose
datatype. A dependent-value is a syntactic construction which refers to the value possessed by another
component of the same datatype. A formal-parametric-value refers to the value of a formal-type-
parameter in a type-declaration, as provided in 9.1.

7.5.1 Independent values

An independent-value designates a specific fixed value of a datatype.

Syntax:

independent-value = explicit-value |
 value-reference ;
explicit-value = boolean-literal |
 state-literal |
 enumerated-literal |
 character-literal |
 ordinal-literal |
 time-literal |
 integer-literal |
 rational-literal |
 scaled-literal |
 real-literal |
 complex-literal |
 void-literal |
 extended-literal |
 pointer-literal |
 procedure-reference |
 string-literal |
 bitstring-literal |
 objectidentifier-value |
 choice-value |
 record-value |
 class-value |
 set-value |
 sequence-value |

ISO/IEC 11404:2007(E)

26 © ISO/IEC 2007 – All rights reserved

 bag-value |
 array-value |
 table-value ;
value-reference = value-identifier ;
procedure-reference = procedure-identifier ;

An explicit-value uses an explicit syntax for values of the datatype, as defined in Clause 8 and Clause 10.
A value-reference designates the value associated with the value-identifier by a value-declaration,
as provided in 9.2. A procedure-reference designates the value of a procedure datatype associated with a
procedure-identifier, as described in 8.3.3.

NOTE 1 Two syntactically different explicit-values may designate the same value, such as rational-literals
3/4 and 6/8, or set of (integer) values (1,3,4) and (4,3,1).

NOTE 2 The same explicit-value syntax may designate values of two different datatypes, as 19940101 can be an
integer value, or an ordinal value. In general, the syntax requires that the intended datatype of a value-expression can
be determined from context when the value-expression is encountered.

NOTE 3 The IDN productions for value-reference and procedure-reference appearing in Annex D are more
general. The above productions are sufficient for the purposes of this International Standard.

7.5.2 Dependent values

When a parameterized datatype appears within a procedure parameter (see 8.3.3) or a record datatype (see
8.4.1), it is possible to specify that the parametric value is always identical to the value of another parameter
to the procedure or another component within the record. Such a value is referred to as a dependent-value.

Syntax:

dependent-value = primary-dependency, { "." component-reference } ;
primary-dependency = field-identifier |
 parameter-name ;
component-reference = field-identifier |
 "*" ;

A type-specifier x is said to involve a dependent-value if x contains the dependent-value and no
component of x contains the dependent-value. Thus, exactly one type-specifier involves a given
dependent-value. A type-specifier which involves a dependent-value is said to be a data-dependent
type. Every data-dependent type shall be the datatype of a component of some generated datatype.

The primary-dependency shall be the identifier of a (different) component of a procedure or record datatype
which (also) contains the data-dependent type. The component so identified will be referred to in the following
as the primary component; the generated datatype of which it is a component will be referred to as the subject
datatype. That is, the subject datatype shall have an immediate component to which the primary-
dependency refers, and a different immediate component which, at some level, contains the data-dependent
type.

When the subject datatype is a procedure datatype, the primary-dependency shall be a parameter-name
and shall identify a parameter of the subject datatype. If the direction of the parameter (component) which
contains the data-dependent type is in or inout, then the direction of the parameter designated by the
primary-dependency shall also be in or inout. If the parameter which contains the data-dependent type is the
return-parameter or has direction out, then the primary-dependency may designate any parameter in the
parameter-list. If the parameter which contains the data-dependent type is a termination parameter, then
the primary-dependency shall designate another parameter in the same termination-parameter-list.

When the subject datatype is a record datatype, the primary-dependency shall be a field-identifier and
shall identify a field of the subject datatype.

When the dependent-value contains no component-references, it refers to the value of the primary
component. Otherwise, the primary component shall be considered the "0th component-reference", and the
following rules shall apply:

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 27

1. If the nth component-reference is the last component-reference of the dependent-value, the
dependent-value shall refer to the value to which the nth component-reference refers.

2. If the nth component-reference is not the last component-reference, then the datatype of the nth
component-reference shall be a record datatype or a pointer datatype.

3. If the nth component-reference is not the last component-reference, and the datatype of the nth
component-reference is a record datatype, then the (n+1)th component-reference shall be a field-
identifier which identifies a field of that record datatype; and the (n+1)th component-reference shall
refer to the value of that field of the value referred to by the nth component-reference.

4. If the nth component-reference is not the last component-reference, and the datatype of the nth
component-reference is a pointer datatype, then the (n+1)th component-reference shall be "*"; and
the (n+1)th component-reference shall refer to the value resulting from Dereference applied to the value
referred to by the nth component-reference.

NOTE 1 The datatype which involves a dependent-value must be a component of some generated datatype, but that
generated datatype may itself be a component of another generated datatype, and so on. The subject datatype may be
several levels up this hierarchy.

NOTE 2 The primary component, and thus the subject datatype, cannot be ambiguous, even when the primary-
dependency identifier appears more than once in such a hierarchy, according to the scope rules specified in 7.3.1.

NOTE 3 In the same wise, an identifier which may be either a value-identifier or a dependent-value can be
resolved by application of the same scope rules. If the identifier X is found to have a “declaration” anywhere within the
outermost type-specifier which contains the reference to X, then that declaration is used. If no such declaration is
found, then a declaration of X in a “global” context, e.g. as a value-identifier, applies.

7.6 GPD program text

A program-text designates a collection of GPD statements.

Syntax:

program-text = { program-statement, "," };
program-statement = type-specifier |
 declaration |
 normative-datatype-declaration ;

8 Datatypes

This clause defines the collection of general-purpose datatypes. A general-purpose datatype is either:

⎯ a datatype defined in this clause, or

⎯ a datatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

⎯ explicit specification of primitive datatypes, which have universal well-defined abstract notions, each
independent of any other datatype.

⎯ implicit specification of generated datatypes, which are syntactically and in some ways semantically
dependent on other datatypes used in their specification. Generated datatypes are specified implicitly by
means of explicit specification of datatype generators, which themselves embody independent abstract
notions.

⎯ specification of the means of datatype declaration, which permits the association of additional identifiers
and refinements to primitive and generated datatypes and to datatype generators.

ISO/IEC 11404:2007(E)

28 © ISO/IEC 2007 – All rights reserved

⎯ specification of the means of defining subtypes of the datatypes defined by any of the foregoing methods.

A reference to a general-purpose datatype is a type-specifier, with the following syntax:

type-specifier = primitive-type |
 subtype |
 generated-type |
 type-reference |
 formal-parametric-type ;

A type-specifier shall not be a formal-parametric-type, except in some cases in type-declarations,
as provided by clause 9.1.3.

This clause also provides syntax for the identification of values of general-purpose datatypes and their
generated datatypes. Notations for values of datatypes are required in the syntactic designations for subtypes
and for some primitive datatypes.

NOTE 1 For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other
general-purpose datatypes. The use of a general-purpose datatype defined in this clause always refers to the datatype so
defined.

NOTE 2 The names used in this International Standard to identify the datatypes are derived in many cases from
common programming language usage, but nevertheless do not necessarily correspond to the names of equivalent
datatypes in actual languages. The same applies to the names and symbols for the operations associated with the
datatypes, and to the syntax for values of the datatypes.

8.1 Primitive datatypes

A datatype whose value space is defined either axiomatically or by enumeration is said to be a primitive
datatype. All primitive general-purpose datatypes shall be defined by this International Standard.

Syntax:

primitive-type = boolean-type |
 state-type |
 enumerated-type |
 character-type |
 ordinal-type |
 time-type |
 integer-type |
 rational-type |
 scaled-type |
 real-type |
 complex-type |
 void-type ;

Each primitive datatype, or datatype family, is defined by a separate subclause. The title of each such
subclause gives the informal name for the datatype, and the datatype is defined by a single occurrence of the
following template:

Description: prose description of the conceptual datatype.

Syntax: the syntactic productions for the type-specifier for the datatype.

Parametric values: identification of any parametric values which are necessary for the complete
identification of a distinct member of a datatype family.

Values: enumerated or axiomatic definition of the value space.

Value-syntax: the syntactic productions for denotation of a value of the datatype, and the identification of
the value denoted.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain
datatype generators: numeric or non-numeric, approximate or exact, unordered or ordered and, if
ordered, bounded or unbounded.

Operations: definitions of characterizing operations.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 29

The definition of an operation herein has one of the forms:

operation-name (parameters) : result-datatype = formal-definition

or

operation-name (parameters) : result-datatype is prose-definition

In either case, parameters may be empty, or be a list, separated by commas, of one or more formal
parameters of the operation in the form:

parameter-name : parameter-datatype

or

parameter-name1 , parameter-name2 : parameter-datatype

The operation-name is an identifier unique only within the datatype being defined. The parameter-names are
formal identifiers appearing in the formal-definition or prose-definition. Each is understood to
represent an arbitrary value of the datatype designated by parameter-datatype, and all occurrences of the
formal identifier represent the same value in any application of the operation. The result-datatype indicates
the datatype of the value resulting from an application of the operation. A formal-definition defines the
operation in terms of other operations and constants. A prose-definition defines the operation in
somewhat formalized natural language. When there are constraints on the parameter values, they are
expressed by a phrase beginning “where” immediately before the = or is.

In some operation definitions, characterizing operations of a previously defined datatype are referenced with
the form: datatype.operation(parameters), where datatype is the type-specifier for the referenced
datatype and operation is the name of a characterizing operation defined for that datatype.

8.1.1 Boolean

Description: boolean is the mathematical datatype associated with two-valued logic.

Syntax:

boolean-type = "boolean" ;

Parametric Values: none.

Values: true, false, such that true ≠ false.

Value-syntax:

boolean-literal = "true" |
 "false" ;

Properties: unordered, exact, non-numeric.

Operations: Equal, Not, And, Or.

Equal(x, y: boolean): boolean is defined by tabulation:

x y Equal(x,y)
false false true
false true false
true false false
true true true

ISO/IEC 11404:2007(E)

30 © ISO/IEC 2007 – All rights reserved

Not(x: boolean): boolean is defined by tabulation:

x Not(x)
false true
true false

Or(x, y: boolean): boolean is defined by tabulation:

x y Or(x,y)
false false false
false true true
true false true
true true true

And(x, y: boolean): boolean = Not(Or(Not(x), Not(y)))

NOTE Either And or Or is sufficient to characterize the boolean datatype, and given one, the other can be defined in
terms of it. They are both defined here because both of them are used in the definitions of operations on other datatypes.

8.1.2 State

Description: state is a family of datatypes, each of which comprises a finite number of distinguished but
unordered values.

Syntax:

state-type = "state", "(", state-value, ")" ;
state-value = state-value-list |
 value-space-source ;
state-value-list = state-literal, { ",", state-literal } ;
state-literal = identifier ;
value-space-source = "import", list-source-reference ;
list-source-reference = identifier |
 '"', URI-text, '"' ;
URI-text = '"', URI defined by IETF RFC2396, '"' ;

Parametric Values: Each state-literal identifier shall be distinct from all other state-literal
identifiers of the same state-type.

Values: When the state-value-list form of state-values is used, the value space of a state datatype is the set
comprising exactly the named values in the state-value-list, each of which is designated by a unique
state-literal. When the value-space-source form is used, the value set shall be exactly the set of
code values specified in the document identified by the list-source value. When the list-source is a URI-
value, it shall denote a valid value of the URI datatype. When the list-source is an objectidentifier-
value, it shall denote a valid value of the objectidentifier datatype, as defined in 10.1.10. In either
case, the list-source value shall identify a document that explicitly defines a set of code values and their
denotations.

Value-syntax:

state-literal = identifier ;

A state-literal denotes that value of the state datatype which has the same identifier.

Properties: unordered, exact, non-numeric.

Operations: Equal.

Equal(x, y: state(state-value-list)): boolean is true if x and y designate the same value in the state-
value-list, and false otherwise.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 31

NOTE Other uses of the IDN syntax make stronger requirements on the uniqueness of state-literal identifiers.

EXAMPLE The declaration:

type switch = new state (on, off);

defines a state datatype comprising two distinguished but unordered values, which supports the
characterizing operation:

Invert(x: switch): switch is if =x off then on, else off.

8.1.3 Enumerated

Description: enumerated is a family of datatypes, each of which comprises a finite number of distinguished
values having an intrinsic order.

Syntax:

enumerated-type = "enumerated", "(", enumerated-value, ")" ;
enumerated-value = enumerated-value-list |
 URI-to-value-space ;
enumerated-value-list = enumerated-literal, { ",", enumerated-literal } ;
enumerated-literal = identifier ;
URI-to-value-space = (* URI defined by RFC 2396 *) ;

Parametric Values: Each enumerated-literal identifier shall be distinct from all other enumerated-literal
identifiers of the same enumerated-type.

Values: The value space of an enumerated datatype is the set comprising exactly the named values in the
enumerated-value-list, each of which is designated by a unique enumerated-literal. The order of
these values is given by the sequence of their occurrence in the enumerated-value-list, which shall be
referred to as the naming sequence of the enumerated datatype.

Value-syntax:

enumerated-literal = identifier ;

An enumerated-literal denotes that value of the enumerated datatype which has the same
identifier.

Properties: ordered, exact, non-numeric, bounded.

Operations: Equal, InOrder, Successor

Equal(x, y: enumerated(enumerated-value-list)): boolean is true if x and y designate the same value in the
enumerated-value-list, and false otherwise.

InOrder(x, y: enumerated(enumerated-value-list)): boolean, denoted yx ≤ , is true if yx = or if x precedes y
in the naming sequence, else false.

Successor(x: enumerated(enumerated-value-list)): enumerated(enumerated-value-list) is

if for all y: enumerated(enumerated-value-list), yx ≤ implies yx = , then undefined;

else the value y: enumerated(enumerated-value-list), such that yx < and for all xz ≠ , zx ≤ implies
zy ≤ .

NOTE 1 Other uses of the IDN syntax make stronger requirements on the uniqueness of enumerated-literal
identifiers.

ISO/IEC 11404:2007(E)

32 © ISO/IEC 2007 – All rights reserved

NOTE 2 The ordering on enumerated types imposed by programming languages is a convenience that allows
programs to reference all the values via for-loops and enables the compiler to use integer encodings to simplify
implementation. Properly, the enumerated type should be chosen over the state type only when the ordering has semantic
value. However, it may be necessary to declare the datatype of an object to be an enumerated GPD when the purpose is
to ensure the correct interpretation of an integer-based implementation.

EXAMPLE Enumerated types (short, medium, tall) and (light, medium, heavy) are distinct types of the family
“enumerated”, even though they have exactly the same number of elements, and the same characterizing operations:
Equal and InOrder. Enumerated types (short, medium, tall) and (short, moderate, medium, tall) are distinct types. It is outside
the scope of this International Standard whether or not the value medium is the same in both enumerated types.

8.1.4 Character

Description: character is a family of datatypes whose value spaces are character-sets.

Syntax:

character-type = "character",
 ["(", repertoire-list, ")"] ;
repertoire-list = repertoire-identifier,
 { ",", repertoire-identifier } ;
repertoire-identifier = value-expression ;

Parametric Values: The value-expression for a repertoire-identifier shall designate a value of the
objectidentifier datatype (see 10.1.10), and that value shall refer to a character-set. A repertoire-
identifier shall not be a formal-parametric-value, except in some cases in declarations (see 9.1).
All repertoire-identifiers in a given repertoire-list shall designate subsets of the same
reference character-set. When repertoire-list is not specified, it shall have a default value. The
means for specification of the default is outside the scope of this International Standard.

Values: The value space of a character datatype comprises exactly the members of the character-sets
identified by the repertoire-list. In cases where the character-sets identified by the individual
repertoire-identifiers have members in common, the value space of the character datatype is the
(set) union of the character-sets (without duplication).

Value-syntax:

character-literal = "’", any-character, "’" ;
any-character = bound-character |
 added-character |
 escape-character ;
bound-character = non-quote-character |
 quote ;
non-quote-character = letter |
 digit |
 special |
 underscore |
 apostrophe |
 space ;
added-character = ? not defined by this International Standard ? ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " ", identifier } ;

Every character-literal denotes a single member of the character-set identified by repertoire-list.
A bound-character denotes that member which is associated with the symbol for the bound-character
per 7.1. An added-character denotes that member which is associated with the symbol for the added-
character by the implementation, as provided in 7.1. An escape-character denotes that member
whose “character name” in the (reference) character-set identified by repertoire-list is the same as
character-name.

Properties: unordered, exact, non-numeric.

Operations: Equal.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 33

Equal(x, y: character(repertoire-list)): boolean is true if x and y designate the same member of the
character-set given by repertoire-list, and false otherwise.

NOTE 1 The Character datatypes are distinct from the State datatypes in that the values of the datatype are defined by
other standards rather than by this International Standard or by the application. This distinction is semantically
unimportant, but it is of great significance in any use of these standards.

NOTE 2 The standardization of repertoire-identifier values will be necessary for any use of this International Standard
and will of necessity extend to character sets which are defined by other than international standards. Such
standardization is beyond the scope of this International Standard. A partial list of the international standards defining such
character-sets is included, for informative purposes only, in Annex A.

NOTE 3 While an order relationship is important in many applications of character datatypes, there is no standard
order for any of the International Standard character sets, and many applications require the order relationship to conform
to rules which are particular to the application itself or its language environment. There will also be applications in which
the order is unimportant. Since no standard order of character-sets can be defined by this International Standard,
character datatypes are said to be “unordered”, meaning, in this case, that the order relationship is an application-defined
addition to the semantics of the datatype.

NOTE 4 The terms character-set, member, symbol and character-name are those of ISO/IEC 10646, but there should
be analogous notions in any character set referenceable by a repertoire-identifier.

NOTE 5 The value space of a Character datatype is the character set, not the character codes, as those terms are
defined by ISO/IEC 10646. The encoding of a character set is a representation issue and therefore out of the scope of this
International Standard. Many uses of this International Standard , however, may require the association to codes implied
by the repertoire-identifier.

NOTE 6 An occurrence of three consecutive APOSTROPHE characters (''') is a valid character-literal denoting
the APOSTROPHE character.

EXAMPLE character({ iso standard 8859 part 1 }) denotes a character datatype whose values are the
members of the character-set specified by ISO/IEC 8859-1 (Latin alphabet No. 1). It is possible to give this datatype a
convenient name, by means of a type-declaration (see 9.1), e.g.:

type Latin1 = character({ iso standard 8859 part 1 });

or by means of a value-declaration (see 9.2):

value latin : objectidentifier = { iso(1) standard(0) 8859 part(1) };

Now, the COLON mark (:) is a member of the ISO/IEC 8859-1 character set and therefore a value of datatype Latin1, or
equivalently, of datatype character(latin). Thus, ':' and '!colon!', among others, are valid character-literals
denoting that value.

8.1.5 Ordinal

Description: ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers
(datatype integer). ordinal is the infinite enumerated datatype.

Syntax:

ordinal-type = "ordinal" ;

Parametric Values: none.

Values: the mathematical ordinal numbers: “first”, “second”, “third”, etc., (a denumerably infinite list).

Value-syntax:

ordinal-literal = number ;
number = digit-string ;

ISO/IEC 11404:2007(E)

34 © ISO/IEC 2007 – All rights reserved

An ordinal-literal denotes that ordinal value which corresponds to the cardinal number identified by
the digit-string, interpreted as a decimal number. An ordinal-literal shall not be zero.

Properties: ordered, exact, non-numeric, unbounded above, bounded below.

Operations: Equal, InOrder, Successor

Equal(x, y: ordinal): boolean is true if x and y designate the same ordinal number, and false otherwise.

InOrder(x, y: ordinal): boolean, denoted yx ≤ , is true if yx = or if x precedes y in the ordinal numbers,
else false.

Successor(x: ordinal): ordinal is the value y: ordinal, that yx < and for all xz ≠ , zx ≤ implies zy ≤ .

8.1.6 Date-and-Time

Description: time is a family of datatypes whose values are points in time to various common resolutions:
year, month, day, hour, minute, second, and fractions thereof.

Syntax:

time-type = "time", "(", time-unit,
 [",", radix, ",", factor], ")" ;
time-unit = "year" |
 "month" |
 "day" |
 "hour" |
 "minute" |
 "second" |
 formal-parametric-value ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: time-unit shall be a value of the datatype state(year, month, day, hour, minute,
second), designating the unit to which the point in time is resolved. If radix and factor are omitted, the
resolution is to one of the specified time-unit. If present, radix shall have an integer value greater than
1, and factor shall have an integer value. When radix and factor are present, the resolution is to one
radix(-factor) of the specified time-unit. time-unit, and radix and factor if present, shall not be
formal-parametric-values except in some occurrences in declarations (see 9.1).

Values: The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in
time with the resolution (time-unit, radix, factor).

Value-syntax:

time-literal = string-literal ;

A time-literal denotes a date-and-time value. The characterstring value represented by the string-
literal shall conform to ISO 8601. The time-literal denotes the date-and-time value specified by the
characterstring as interpreted under ISO 8601.

Properties: ordered, exact, non-numeric, unbounded.

Operations: Equal, InOrder, Difference, Round, Extend.

Equal(x, y: time(time-unit, radix, factor)): boolean is true if x and y designate the same point in time to the
resolution (time-unit, radix, factor), and false otherwise.

InOrder(x, y: time(time-unit, radix, factor)): boolean is true if the point in time designated by y does not
precede that designated by x ; else false.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 35

Difference(x, y: time(time-unit, radix, factor)): timeinterval(time-unit, radix, factor) is:

if InOrder(x, y), then the number of time-units of the specified resolution elapsing between the time x
and the time y ; else, let z be the number of time-units elapsing between the time y and the time x ,
then Negate(z).

Extend.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res2)
specified by (unit2, radix2, factor2) is more precise than the resolution (res1) specified by (unit1, radix1,
factor1), is that value of time(unit2, radix2, factor2) which designates the first instant of time occurring within
the span of time(unit2, radix2, factor2) identified by the instant x.

Round.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res2)
specified by (unit2, radix2, factor2) is less precise than the resolution (res1) specified by (unit1, radix1,
factor1), is the largest value y of time(unit2, radix2, factor2) such that InOrder(Extend.res2tores1(y), x).

NOTE The operations yielding specific time-unit elements from a time(unit, radix, factor) value, e.g. Year, Month,
DayofYear, Dayof-Month, TimeofDay, Hour, Minute, Second, can be derived from Round, Extend, and Difference.

EXAMPLE time(second, 10, 0) designates a date-and-time datatype whose values are points in time with
accuracy to the second.

"19910401T120000" specifies the value of that datatype which is exactly noon on April 1, 1991, universal time.

8.1.7 Integer

Description: integer is the mathematical datatype comprising the exact integral values.

Syntax:

integer-type = "integer" ;

Parametric Values: none.

Values: Mathematically, the infinite ring produced from the additive identity (0) and the multiplicative identity (1)
by requiring 10 ≤ and yxAdd ≠)1,(for any xy ≤ . That is: ..., -2, -1, 0, 1, 2, ... (a denumerably infinite list).

Value-syntax:

integer-literal = signed-number ;
signed-number = ["-"], number ;
number = digit-string ;

An integer-literal denotes an integer value. If the negative-sign ("-") is not present, the value denoted is
that of the digit-string interpreted as a decimal number. If the negative-sign is present, the value denoted
is the negative of that value.

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, InOrder, NonNegative, Negate, Add, Multiply.

Equal(x, y: integer): boolean is true if x and y designate the same integer value, and false otherwise.

Add(x, y: integer): integer is the mathematical additive operation.

Multiply(x, y: integer): integer is the mathematical multiplicative operation.

Negate(x: integer): integer is the value y: integer such that 0),(=yxAdd .

ISO/IEC 11404:2007(E)

36 © ISO/IEC 2007 – All rights reserved

NonNegative(x: integer): boolean is

true if 0=x or x can be developed by one or more iterations of adding 1 to 0,

 i.e. if))))0,1(,1(,1(,1(…… AddAddAddAddx = ;

else false.

InOrder(x, y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:

Quotient(x, y: integer): integer, where y<0 , is the upperbound of the set of all integers z such that
Multiply(y,z) x≤ .

Remainder(x, y: integer): integer, where x≤0 and y<0 , = Add(x, Negate(Multiply(y, Quotient(x,y))));

8.1.8 Rational

Description: Rational is the mathematical datatype comprising the “rational numbers”.

Syntax:

rational-type = "rational" ;

Parametric Values: none.

Values: Mathematically, the infinite field produced by closing the Integer ring under multiplicative-inverse.

Value-syntax:

rational-literal = signed-number, ["/", number] ;

Signed-number and number shall denote the corresponding integer values. number shall not designate
the value 0. The rational value denoted by the form signed-number is:

 Promote(signed-number),

and the rational value denoted by the form signed-number/number is:

 Multiply(Promote(signed-number), Reciprocal(Promote(number))).

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, NonNegative, InOrder, Promote, Add, Negate, Multiply, Reciprocal.

Equal(x, y: rational): boolean is true if x and y designate the same rational number, and false otherwise.

NonNegative(k: rational): boolean is defined by:

For every rational value k , there is a non-negative integer n , such that Multiply(n,k) is an integral
value, and:

 NonNegative(k) = integer.NonNegative(Multiply(n,k)).

InOrder(x, y: rational): boolean = NonNegative(Add(x, Negate(y)))

Promote(x: integer): rational is the embedding isomorphism between the integers and the integral rational
values.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 37

Add(x, y: rational): rational is the mathematical additive operation.

Negate(x: rational): rational is the value y: rational such that 0),(=yxAdd .

Multiply(x, y: rational): rational is the mathematical multiplicative operation.

Reciprocal(x: rational): rational, where 0≠x , is the value y: rational such that 1),(=yxMultiply .

8.1.9 Scaled

Description: Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each
individual datatype having a fixed denominator, but the scaled datatypes possess the concept of
approximate value.

Syntax:

scaled-type = "scaled", "(", radix, ",", factor, ")" ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value.
radix and factor shall not be formal-parametric-values except in some occurrences in declarations
(see 9.1).

Values: The value space of a scaled datatype is that set of values of the rational datatype which are
expressible as a value of datatype Integer divided by radix raised to the power factor.

Value-syntax:

scaled-literal = integer-literal, ["*", scale-factor] ;
scale-factor = number, "^", signed-number ;

A scaled-literal denotes a value of a scaled datatype. The integer-literal is interpreted as a
decimal integer value, and the scale-factor, if present, is interpreted as number raised to the power
signed-number, where number and signed-number are expressed as decimal integers. Number should
be the same as the radix of the datatype. If the scale-factor is not present, the value is that denoted
by integer-literal. If the scale-factor is present, the value denoted is the rational value
Multiply(integer-literal, scale-factor).

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, InOrder, Negate, Add, Round, Multiply, Divide

Equal(x, y: scaled(r,f)): boolean is true if x and y designate the same rational number, and false
otherwise.

InOrder(x, y: scaled (r,f)): boolean = rational.InOrder(x,y)

Negate(x: scaled (r,f)): scaled (r,f) = rational.Negate(x)

Add(x, y: scaled (r,f)): scaled (r,f) = rational.Add(x,y)

Round(x: rational): scaled(r,f) is the value y: scaled(r,f) such that rational.InOrder(y, x) and for all z:
scaled(r,f), rational.InOrder(z,x) implies rational.InOrder(z,y).

Multiply(x, y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x,y))

Divide(x, y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x, Reciprocal(y)))

ISO/IEC 11404:2007(E)

38 © ISO/IEC 2007 – All rights reserved

EXAMPLE 1 A datatype representing monetary values exact to two decimal places can be defined by:

type currency = new scaled(10, 2);

where the keyword new is used because currency does not support the Multiply and Divide operations characterizing
scaled(10,2).

EXAMPLE 2 The value 39.50 (or 39,50), i.e. thirty-nine and fifty one-hundredths, is represented by: 2103950 −× ,
while the value 10.00 (or 10,00) may be represented by: 10 .

NOTE 1 The case 0=factor , i.e. scaled(r, 0) for any r, has the same value-space as Integer, and is isomorphic to
Integer under all operations except Divide, which is not defined on Integer in this International Standard, but could be
defined consistent with the Divide operation for scaled(r, 0). It is recommended that the datatype scaled(r, 0) not be
used explicitly.

NOTE 2 Any reasonable rounding algorithm is equally acceptable. What is required is that any rational value v which
is not a value of the scaled datatype is mapped into one of the two scaled values)(frn −⋅ and)()1(frn −⋅+ , such that in

the Rational value space,)()()1(ff rnvrn −− ⋅+<<⋅ .

NOTE 3 The proper definition of scaled arithmetic is complicated by the fact that scaled datatypes with the same radix
can be combined arbitrarily in an arithmetic expression and the arithmetic is effectively Rational until a final result must be
produced. At this point, rounding to the proper scale for the result operand occurs. Consequently, the given definition of
arithmetic, for operands with a common scale factor, should not be considered a specification for arithmetic on the scaled
datatype.

NOTE 4 The values in any scaled value space are taken from the value space of the Rational datatype, and for that
reason Scaled may appear to be a “subtype” of both Rational and Real (see 8.2). But scaled datatypes do not “inherit” the
Rational or Real Multiply and Reciprocal operations. Therefore scaled datatypes are not proper subtypes of datatype Real
or Rational. The concept of Round, and special Multiply and Divide operations, characterize the scaled datatypes. Unlike
Rational, Real and Complex, however, Scaled is not a mathematical group under this definition of Multiply, although the
results are intuitively acceptable.

NOTE 5 The value space of a scaled datatype contains the multiplicative identity (1) if and only if 0≥factor .

NOTE 6 Every scaled datatype is exact, because every value in its value space can be distinguished in the
computational model. (The value space can be mapped 1-to-1 onto the integers.) It is only the operations on scaled
datatypes which are approximate.

NOTE 7 Scaled-literals are interpreted as decimal values regardless of the radix of the scaled datatype to which they
belong. It was not found necessary for this International Standard to provide for representation of values in other radices,
particularly since representation of values in radices greater than 10 introduces additional syntactic complexity.

8.1.10 Real

Description: real is a family of datatypes which are computational approximations to the mathematical
datatype comprising the “real numbers”. Specifically, each real datatype designates a collection of
mathematical real values which are expressed to some finite precision and must be distinguishable to at
least that precision.

Syntax:

real-type = "real", ["(", radix, ",", factor, ")"] ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value
greater than 0. radix and factor shall not be formal-parametric-values except in some occurrences in
declarations (see 9.1). When radix and factor are not specified, they shall have default values. The
means for specification of these defaults is outside the scope of this International Standard.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 39

Values: The value space of the mathematical real type comprises all values which are the limits of convergent
sequences of rational numbers. The value space of a computational real datatype shall be a subset of the
mathematical real type, characterized by two parametric values, radix and factor, which, taken
together, describe the precision to which values of the datatype are distinguishable, in the following
sense:

Let ℜ denote the mathematical real value space and for v in ℜ , let v denote the absolute value of v .
Let V denote the value space of datatype real(radix, factor), and let)(factorradix −=ε . Then V shall
be a subset of ℜ with the following properties:

 – 0 is in V ;

 – for each r in ℜ such that ε≥r , there exists at least one 'r in V such that ε⋅≤− rrr ' ;

 – for each r in ℜ such that ε<r , there exists at least one 'r in V such that 2' ε≤− rr .

Value-syntax:

real-literal = integer-literal, ["*", scale-factor] ;
scale-factor = number, "^", signed-number ;

A real-literal denotes a value of a real datatype. The integer-literal is interpreted as a decimal
integer value, and the scale-factor, if present, is interpreted as number raised to the power signed-
number, where number and signed-number are expressed as decimal integers. If the scale-factor is
not present, the value is that denoted by integer-literal. If the scale-factor is present, the value
denoted is the rational value Multiply(integer-literal, scale-factor).

Properties: ordered, approximate, numeric, unbounded.

Operations: Equal, InOrder, Promote, Negate, Add, Multiply, Reciprocal.

In the following operation definitions, let M designate an approximation function which maps each r in
ℜ into a corresponding 'r in V with the properties given above and the further requirement that for each
v in V , vvM =)(.

Equal(x, y: real(radix, factor)): boolean is true if x and y designate the same value, and false otherwise.

InOrder(x, y: real(radix, factor)): boolean is true if yx ≤ , where ≤ designates the order relationship on ℜ ,
and false otherwise.

Promote(x: rational): real(radix, factor) =)(xM .

Add(x, y: real(radix, factor)): real(radix, factor) =)(yxM + , where + designates the additive operation on the
mathematical reals.

Multiply(x, y: real(radix, factor)): real(radix, factor) =)(yxM ⋅ , where • designates the multiplicative operation
on the mathematical reals.

Negate(x: real(radix, factor)): real(radix, factor) =)(xM − , where x− is the real additive inverse of x .

Reciprocal(x: real(radix, factor)): real(radix, factor), where 0≠x ,)'(xM= where 'x is the real multiplicative
inverse of x .

NOTE 1 The general-purpose datatype real is not the abstract mathematical real datatype, nor is it an abstraction of
floating-point implementations. It is a computational model of the mathematical reals which is similar to the “scientific
number” model used in many sciences. Details of the relationship of a real datatype to floating-point implementations may
be specified by the use of annotations (see 7.4). For languages whose semantics in some way assumes a floating-point

ISO/IEC 11404:2007(E)

40 © ISO/IEC 2007 – All rights reserved

representation, the use of such annotations in the datatype mappings may be necessary. On the other hand, for some
applications, the representation of a real datatype may be something other than floating-point, which the application would
specify by different annotations.

NOTE 2 Detailed requirements for the approximation function, its relationship to the characterizing operations, and the
implementation of the characterizing operations in languages are provided by ISO/IEC 10967-1, Information technology —
Language independent arithmetic — Part 1: Integer and floating point arithmetic.6) IEC 60559:1989, Binary floating-point
arithmetic for microprocessor systems, specifies the requirements for floating-point implementations thereof.

EXAMPLES

real(10, 7) denotes a real datatype with values which are accurate to 7 significant decimal figures.

real(2, 48) denotes a real datatype whose values have at least 48 bits of precision.

1 * 10 ^ 9 denotes the value 1 000 000 000, i.e. 10 raised to the ninth power.

15 * 10 ^ -4 denotes the value 0,0015, i.e. fifteen ten-thousandths.

3 * 2 ^ -1 denotes the value 1.5, i.e. 3/2.

8.1.11 Complex

Description: complex is a family of datatypes, each of which is a computational approximation to the
mathematical datatype comprising the “complex numbers”. Specifically, each complex datatype
designates a collection of mathematical complex values which are known to certain applications to some
finite precision and must be distinguishable to at least that precision in those applications.

Syntax:

complex-type = "complex", ["(", radix, ",", factor, ")"] ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value
greater than 0. radix and factor shall not be formal-parametric-values except in some occurrences
in declarations (see 9.1). When radix and factor are not specified, they shall have default values. The
means for specification of these defaults is outside the scope of this International Standard.

Values: The value space of the mathematical complex type is the field which is the solution space of all
polynomial equations having real coefficients. The value space of a computational complex datatype shall
be a subset of the mathematical complex type, characterized by two parametric values, radix and
factor, which, taken together, describe the precision to which values of the datatype are distinguishable,
in the following sense:

Let C denote the mathematical complex value space and for v in C , let v denote the absolute value
of v . Let V denote the value space of datatype complex(radix, factor), and let)(factorradix −=ε .
Then V shall be a subset of C with the following properties:

 – 0 is in V ;

 – for each v in C such that ε≥v , there exists at least one 'v in V such that ε⋅≤− vvv ' ;

 – for each v in C such that ε<v , there exists at least one 'v in V such that 2' ε≤− vv .

6) The ISO/IEC 10967 series provides a common model of arithmetic in programming and database languages.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 41

Value-syntax:

complex-literal = "(", real-part, ",", imaginary-part, ")" ;
real-part = real-literal ;
imaginary-part = real-literal ;

A complex-literal denotes a value of a complex datatype. The real-part and the imaginary-part
are interpreted as real values, and the complex value denoted is:))((iartimaginaryprealpartM ⋅+ , where
+ is the additive operation on the mathematical complex numbers and • is the multiplicative operation on
the mathematical complex numbers, and i is the “principal square root” of 1− (one of the two solutions to

012 =+x).

Properties: approximate, numeric, unordered.

Operations: Equal, Promote, Negate, Add, Multiply, Reciprocal, SquareRoot.

In the following operation definitions, let M designate an approximation function which maps each v
in C into a corresponding 'v in V with the properties given above and the further requirement that for
each v in V , vvM =)(.

Equal(x, y: complex(radix, factor)): boolean is true if x and y designate the same value, and false
otherwise.

Promote(x: real(radix, factor)): complex(radix, factor) =)(xM , considering x as a mathematical real value.

Add(x, y: complex(radix, factor)): complex(radix, factor) =)(yxM + , where + designates the additive
operation on the mathematical complex numbers.

Multiply(x, y: complex(radix, factor)): complex(radix, factor) =)(yxM ⋅ , where • designates the multiplicative
operation on the mathematical complex numbers.

Negate(x: complex(radix, factor)): complex(radix, factor) =)(xM − , where x− is the complex additive inverse
of x .

Reciprocal(x: complex(radix, factor)): complex(radix, factor), where 0≠x ,)'(xM= where 'x is the complex
multiplicative inverse of x .

SquareRoot(x: complex(radix, factor)): complex(radix, factor) =)(yM , where y is one of the two
mathematical complex values such that xyy =⋅ . Every complex number can be uniquely represented in
the form iba ⋅+ , where i is the “principal square root” of 1− , in which a is designated the real part and
b is designated the imaginary part. The y value used is that in which the real part of y is positive, if
any, else that in which the real part of y is zero and the imaginary part is non-negative.

NOTE Detailed requirements for the approximation function, its relationship to the characterizing operations, and the
implementation of the characterizing operations in languages are to be provided by Parts of ISO/IEC 10967, Information
technology — Language independent arithmetic.

8.1.12 Void

Description: void is the datatype representing an object whose presence is syntactically or semantically
required, but carries no information in a given instance.

Syntax:

void-type = "void" ;

Parametric Values: none.

ISO/IEC 11404:2007(E)

42 © ISO/IEC 2007 – All rights reserved

Values: Conceptually, the value space of the void datatype is empty, but a single nominal value is necessary
to perform the “presence required” function.

Value-syntax:

void-literal = "nil" ;

“nil” is the syntactic representation of an occurrence of void as a value.

Properties: none.

Operations: Equal.

Equal(x, y: void) = true;

NOTE 1 The void datatype is used as the implicit type of the result parameter of a procedure datatype (8.3.3) which
returns no value, or as an alternative of a choice datatype (8.3.1) when that alternative has no content.

NOTE 2 The void datatype is represented in some languages as a record datatype (see 8.4.1) which has no fields. In
this International Standard, the void datatype is not a record datatype, because it has none of the properties or operations
of a record datatype.

NOTE 3 Like the motivation for the void datatype itself, Equal is required in order to support the comparison of
aggregate values containing void and it must yield true.

NOTE 4 The “empty set” is not a value of datatype void, but rather a value of the appropriate set datatype (see 8.4.2).

8.2 Subtypes and extended types

A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the
value space to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes
are created by a kind of datatype generator which is unusual in that its only function is to define the
relationship between the value spaces of the base datatype and the subtype.

Syntax:

subtype = range-subtype |
 selecting-subtype |
 excluding-subtype |
 size-subtype |
 explicit-subtype |
 extended-type ;

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the
informal name for the subtype generator, and the subtype generator is defined by a single occurrence of the
following template:

Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including
identification of all parametric values which are necessary for the complete identification of a distinct
subtype.

Components: constraints on the base datatype and parametric values.

Values: formal definition of resulting value space.

Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly
the presence and values of the bounds. This entry therefore defines only the effects of the subtype
generator on the bounds.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 43

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a
characterizing operation in the subtype may not be identical to the domain in the base datatype. Those values
from the value space of the subtype which, under the operation on the base datatype, produce result values
which lie outside the value space of the subtype, are deleted from the domain of the operation in the subtype.

8.2.1 Range

Description: range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on
the value space.

Syntax:

range-subtype = base, "range", "(", select-range, ")" ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

Components: Base shall designate an ordered datatype. When lowerbound and upperbound are value-
expressions, they shall have values of the base datatype such that InOrder(lowerbound, upperbound).
When lowerbound is "*", it indicates that no lower bound is being specified, and when upperbound is
"*", it indicates that no upper bound is being specified. lowerbound and upperbound shall not be
formal-parametric-values, except in some occurrences in declarations (see 9.1).

Values: all values v from the base datatype such that lowerbound ≤ v, if lowerbound is specified, and v ≤
upperbound, if upper-bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the select-
range specifies the corresponding bounds.

8.2.2 Selecting

Description: selecting creates a subtype of any exact datatype by enumerating the values in the subtype
value-space.

Syntax:

selecting-subtype = base, "selecting", "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

Components: base shall designate an exact datatype. When the select-items are value-expressions, they
shall have values of the base datatype, and each value shall be distinct from all others in the select-
list. A select-item shall not be a select-range unless the base datatype is ordered. When
lowerbound and upperbound are value-expressions, they shall have values of the base datatype such
that InOrder(lowerbound, upperbound). When lowerbound is "*", it indicates that no lower bound is being
specified, and when upperbound is "*", it indicates that no upper bound is being specified. No value-
expression occurring in the select-list shall be a formal-parametric-value, except in some
occurrences in declarations (see 9.1).

Values: The values specified by the select-list designate those values from the value-space of the base
datatype which comprise the value-space of the selecting subtype. A select-item which is a value-
expression specifies the single value designated by that value-expression. A select-item which is a

ISO/IEC 11404:2007(E)

44 © ISO/IEC 2007 – All rights reserved

select-range specifies all values v of the base datatype such that lowerbound ≤ v, if lowerbound is
specified, and v ≤ upperbound, if upperbound is specified.

Properties: The subtype is bounded (above, below, both) (1) if the base datatype is so bounded, or (2) if no
select-range appears in the select-list, or (3) if all select-ranges in the select-list specify the
corresponding bounds.

8.2.3 Excluding

Description: excluding creates a subtype of any exact datatype by enumerating the values which are to be
excluded in constructing the subtype value-space.

Syntax:

excluding-subtype = base, "excluding", "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

Components: base shall designate an exact datatype. A select-item shall not be a select-range unless
the base datatype is ordered. When lowerbound and upperbound are value-expressions, they shall
have values of the base datatype such that InOrder(lowerbound, upperbound). When lowerbound is "*", it
indicates that no lower bound is being specified, and when upperbound is "*", it indicates that no upper
bound is being specified. No value-expression occurring in the select-list shall be a formal-
parametric-value, except in some occurrences in declarations (see 9.1).

Values: The value space of the excluding subtype comprises all values of the base datatype except for those
specified by the select-list. A select-item which is a value-expression specifies the single value
designated by that value-expression. A select-item which is a select-range specifies all values v of
the base datatype such that lowerbound ≤ v, if a lower bound is specified, and v ≤ upperbound, if an upper
bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if some
select-range appears in the select-list and does not specify the corresponding bound.

8.2.4 Size

Description: size creates a subtype of any sequence, set, bag, or table datatype by specifying bounds on
the number of elements any value of the base datatype may contain.

Syntax:

size-subtype = base, "size", "(", minimum-size,
 ["..", maximum-size], ")" ;
minimum-size = value-expression ;
maximum-size = value-expression |
 "*" ;
base = type-specifier ;

Components: base shall designate a generated datatype resulting from the sequence, set, bag, or table
generator, or from a new datatype generator whose value space is constructed by such a generator (see
9.1.3). minimum-size shall have an integer value greater than or equal to zero, and maximum-size, if it is
a value-expression, shall have an integer value such that minimum-size ≤ maximum-size. If maximum-
size is omitted, the maximum size is taken to be equal to the minimum-size, and if maximum-size is
"*", the maximum size is taken to be unlimited. minimum-size and maximum-size shall not be formal-
parametric-values, except in some occurrences in declarations (see 9.1).

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 45

Values: The value space of the subtype consists of all values of the base datatype which contain at least
minimum-size values and at most maximum-size values of the element datatype.

Subtypes: Any size subtype of the same base datatype, such that base-minimum-size ≤ subtype-minimum-
size, and subtype-maximum-size ≤ base-maximum-size.

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum size is (explicitly
or implicitly) equal to the minimum size.

8.2.5 Explicit subtypes

Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the
construction procedure for the subset value space in terms of general-purpose datatypes or datatype
generators.

Syntax:

explicit-subtype = base, "subtype", "(", subtype-definition, ")" ;
base = type-specifier ;
subtype-definition = type-specifier ;

Components: base may designate any datatype. The subtype-definition shall designate a datatype whose
value space is (isomorphic to) a subset of the value space of the base datatype.

Values: The subtype value space is identical to the value space of the datatype designated by the subtype-
definition.

Properties: exactly those of the subtype-definition datatype.

NOTE 1 When the base datatype is generated by a datatype generator, the ways in which a subset value space can be
constructed are complex and dependent on the nature of the base datatype itself. Clause 8.3 specifies the subtyping
possibilities associated with each datatype generator.

NOTE 2 It is redundant, but syntactically acceptable, for the subtype-definition to be an occurrence of a subtype-
generator, e.g.

integer subtype (integer selecting(0..5))

8.2.6 Extended

Description: Extended creates a datatype whose value-space contains the value-space of the base datatype
as a proper subset.

Syntax:

extended-type = base, ["plus", "sentinel"],
 "(", extended-value-list, ")" ;
extended-value-list = extended-value, { ",", extended-value } ;
extended-value = extended-literal |
 formal-parametric-value ;
extended-literal = identifier ;
base = type-specifier ;

Components: base may designate any datatype. An extended-value shall be an extended-literal, except
in some occurrences in declarations (see 9.1). Each extended-literal shall be distinct from all value-
literals and value-identifiers, if any, of the base datatype and distinct from all others in the
extended-value-list.

Values: The value space of the extended datatype comprises all values in the value-space of the base
datatype plus those additional values specified in the extended-value-list. If sentinel is included in
the type specification, the additional values are sentinel values in the value space.

ISO/IEC 11404:2007(E)

46 © ISO/IEC 2007 – All rights reserved

NOTE 1 The value space of a datatype is the set of values specified in the definition of the datatype. Sentinel values
are values that can occur wherever values of the value space can occur; they can be distinguished by Equal from values
in the value space. Sentinel values must be specified explicitly even for a datatype that is defined axiomatically. For
example, it follows that {short, medium, tall} and {short, medium, tall, sentinels = Unknown, Unspecified} are two
distinct datatypes with the same value space.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the
additional values are upper or lower bounds.

The definition of an extended datatype shall include specification of the characterizing operations on the base
datatype as applied to, or yielding, the added values in the extended-value-list. In particular, when the
base datatype is ordered, the behavior of the InOrder operation on the added values shall be specified.

NOTE 2 extended produces a subtype relationship in which the base datatype is the subtype and the extended
datatype has the larger value space.

NOTE 3 Other uses of the IDN syntax make stronger requirements on the uniqueness of extended-literal identifiers.

8.3 Generated datatypes

A generated datatype is a datatype resulting from an application of a datatype generator. A datatype
generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype generator
operates on datatypes to generate a datatype, rather than on values to generate a value. The datatypes on
which a datatype generator operates are said to be its parametric or component datatypes. The generated
datatype is semantically dependent on the parametric datatypes, but has its own characterizing operations. An
important characteristic of all datatype generators is that the generator can be applied to many different
parametric datatypes. The Pointer and Procedure generators generate datatypes whose values are atomic,
while Choice and the generators of aggregate datatypes generate datatypes whose values admit of
decomposition. A generated-type designates a generated datatype.

Syntax:

generated-type = pointer-type |
 procedure-type |
 choice-type |
 aggregate-type |
 import-type ;

This International Standard defines common datatype generators by which an application of this International
Standard may define generated datatypes. (An application may also define “new” generators, as provided in
clause 9.1.3.) Each datatype generator is defined by a separate subclause. The title of each such subclause
gives the informal name for the datatype generator, and the datatype generator is defined by a single
occurrence of the following template:

Description: prose description of the datatypes resulting from the generator.

Syntax: the syntactic production for a generated datatype resulting from the datatype generator,
including identification of all parametric datatypes which are necessary for the complete identification of
a distinct datatype.

Components: number of and constraints on the parametric datatypes and parametric values used by
the generator.

Values: formal definition of resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype
of certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and
if ordered, bounded or unbounded.

Subtypes: generators, subtype-generators and parametric values which produce subset value spaces.

Operations: characterizing operations for the resulting datatype which associate to the datatype
generator. The definitions of operations have the form described in 8.1.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 47

NOTE Unlike subtype generators, datatype generators yield resulting datatypes whose value spaces are entirely
distinct from those of the component datatypes of the datatype generator.

8.3.1 Choice

Description: Choice generates a datatype called a choice datatype, each of whose values is a single value
from any of a set of alternative datatypes. The alternative datatypes of a choice datatype are logically
distinguished by their correspondence to values of another datatype, called the tag datatype.

Syntax:

choice-type = "choice", "(", [field-identifier ":"],
 tag-type, ["=" discriminant], ")"
 "of", "(" alternative-list ")" ;
field-identifier = identifier ;
tag-type = type-specifier ;
discriminant = value-expression ;
alternative-list = alternative, { ",", alternative },
 [",", default-alternative] ;
alternative = tag-value-list, [field-identifier],
 ":", alternative-type ;
default-alternative = "default", ":", alternative-type ;
alternative-type = type-specifier ;
tag-value-list = "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;

Components: Each alternative-type in the alternative-list may be any datatype. The tag-type shall
be an exact datatype. The tag-value-list of each alternative shall specify values in the value space of
the (tag) datatype designated by tag-type. A select-item shall not be a select-range unless the tag
datatype is ordered. When lowerbound and upperbound are value-expressions, they shall have values
of the tag datatype such that InOrder(lowerbound, upperbound). When lowerbound is "*", it indicates that
no lowerbound is being specified, and when upperbound is "*", it indicates that no upperbound is being
specified. No value-expression in the select-list shall be a parametric value, except in some
occurrences in declarations (see 9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of
alternative datatypes in the alternative-list, such that each value of the tag datatype associates with
exactly one alternative datatype. The tag-value-list of an alternative specifies those values of the tag
datatype which are associated with the alternative datatype designated by the alternative-type in the
alternative. A select-item which is a value-expression specifies the single value of the tag datatype
designated by that value-expression. A select-item which is a select-range specifies all values v of
the tag datatype such that lowerbound ≤ v, if lowerbound is specified, and v ≤ upperbound, if upperbound
is specified. The default-alternative, if present, specifies that all values of the tag datatype which do
not appear in any other alternative are associated with the alternative datatype designated by its
alternative-type.

No value of the tag datatype shall appear in the tag-value-list of more than one alternative.

The occurrence of a field-identifier before the tag-type or in an alternative has no meaning in the
resulting choice-type. Its purpose is to facilitate mappings to programming languages.

The discriminant, if present, shall designate a value of the tag datatype. It identifies the tag value, or
the source of the tag value, to be used in a particular occurrence of the choice datatype.

Values: all values having the conceptual form (tag-value, alternative-value), where tag-value is a value of
the tag datatype which occurs (explicitly or implicitly) in some alternative in the alternative-list and is
uniquely mapped to an alternative datatype thereby, and alternative-value is any value of that alternative
datatype.

ISO/IEC 11404:2007(E)

48 © ISO/IEC 2007 – All rights reserved

Value-syntax:

choice-value = "(", tag-value, ":", alternative-value, ")" ;
tag-value = independent-value ;
alternative-value = independent-value ;

A choice-value denotes a value of a choice datatype. The tag-value of a choice-value shall be a value
of the tag datatype of the choice datatype, and the alternative-value shall designate a value of the
corresponding alternative datatype. The value denoted shall be that value having the conceptual form
(tag-value, alternative-value).

Properties: unordered, exact if and only if all alternative datatypes are exact, non-numeric.

Subtypes: any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of
the base datatype, and the alternative datatype corresponding to each value of the tag datatype in the
subtype is the same as, or a subtype of, the alternative datatype corresponding to that value in the base
datatype.

Operations: Equal, Tag, Cast, Discriminant.

Discriminant(x: choice (tag-type) of (alternative-list)): tag-type is the tag-value of the value x

Tag.type(x: type, s: tag-type): choice (tag-type) of (alternative-list), where type is that alternative datatype in
alternative-list which corresponds to the value s, is that value of the choice datatype which has tag-value
s and alternative-value x .

Cast.type(x: choice (tag-type) of (alternative-list)): type, where type is an alternative datatype in alternative-
list, is:

if the tag value of x selects an alternative whose alternative-type is type, then that value of type
which is the (alternative) value of x , else undefined.

Equal(x, y: choice (tag-type) of (alternative-list)): boolean is:

if Discriminant(x) and Discriminant(y) select the same alternative, then

type.Equal(Cast.type(x), Cast.type(y)),

where type is the alternative datatype of the selected alternative and type.Equal is the Equal
operation on the datatype type,

else false.

NOTE 1 The choice datatype generator is referred to in some programming languages as a “(discriminated) union”
datatype, and in others as a datatype with “variants”. The generator defined here represents the Pascal/Ada “variant-
record” concept, but it allows the C-language “union”, and similar discriminated union concepts, to be supported by a slight
subterfuge. E.g. the C datatype:

union
{
 float a1;
 int a2;
 char* a3;
};

may be represented by:

choice (state(a1, a2, a3)) of
(
 (a1): real,
 (a2): integer,
 (a3): characterstring
)

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 49

NOTE 2 The actual value space of the tag datatype from which tag-values may be drawn is actually a subtype of the
value space of the designated tag datatype, namely that subtype consisting exactly of the values which are mapped into
alternative datatypes by the alternative-list. The set of tag values appearing explicitly or implicitly in the alternative-list is
not required to cover the value space of the tag datatype.

NOTE 3 The subtypes of a choice datatype are typically choice datatypes with a smaller list of alternatives, and in the
simplest case, the list is reduced to a single datatype.

NOTE 4 The operation Discriminant is a conceptual operation which reflects the ability to determine which alternative
of a choice-type is selected in a given value. When a choice-value is moved between two contexts, as between a program
and a data repository, representation of the chosen alternative is required, and most implementations explicitly incorporate
the tag-value.

NOTE 5 Another useful model of choice is choice (field-list), where exactly one field is present in any given value, and
the means of discrimination is not specified. In this model, the operation:

IsField.field(x: choice (field-list)): boolean = true if the designated field is present in the value x , otherwise false;

replaces Discriminant, with corresponding changes to the other characterizing operations. It is recognized that this model
is mathematically more elegant (the Or-graph to match the And-graph of the fields in Record), but in practice, either IsField
is not provided (which makes all operations user-defined) or IsField is implemented by tag-value (which makes IsField
equivalent to Discriminant).

EXAMPLES See 10.2.2 and 10.2.3.

8.3.2 Pointer

Description: pointer generates a datatype, called a pointer datatype, each of whose values constitutes a
means of reference to values of another datatype, designated the element datatype. The values of a
pointer datatype are atomic.

Syntax:

pointer-type = "pointer", "to", "(", element-type, ")" ;
element-type = type-specifier ;

Components: Any single datatype, designated the element-type.

Values: The value space is that of an unspecified state datatype, each of whose values, save one, is
associated with a value of the element datatype. The single value null may belong to the value space but
it is never associated with any value of the element datatype.

Value-syntax:

pointer-literal = "null" ;

"null" denotes the null value. There is no denotation for any other value of a pointer datatype.

Properties: unordered, exact, non-numeric.

Subtypes: any pointer datatype for which the element datatype is a subtype of the element datatype of the
base pointer datatype.

Operations: Equal, Dereference.

Equal(x, y: pointer(element)): boolean is true if the values x and y are identical values of the unspecified
state datatype, else false;

Dereference(x: pointer(element)): element, where nullx ≠ , is the value of the element datatype associated
with the value x .

ISO/IEC 11404:2007(E)

50 © ISO/IEC 2007 – All rights reserved

NOTE 1 A pointer datatype defines an association from the “unspecified state datatype” into the element datatype.
There may be many values of the pointer datatype which are associated with the same value of the element datatype; and
there may be members of the element datatype which are not associated with any value of the pointer datatype. The
notion that there may be values of the “unspecified state datatype” to which no element value is associated, however, is
an artifact of implementations – conceptually, except for null, those values of the (universal) “unspecified state datatype”
which are not associated with values of the element datatype are not in the value space of the pointer datatype.

NOTE 2 Two pointer values are equal only if they are identical; it does not suffice that they are associated with the
same value of the element datatype. The operation which compares the associated values is

Equal.element(Dereference(x), Dereference(y)),

where Equal.element is the Equal operation on the element datatype.

NOTE 3 The computational model of the pointer datatype often allows the association to vary over time. E.g., if x is a
value of datatype pointer to (integer), then x may be associated with the value 0 at one time and with the value 1 at
another. This implies that such pointer datatypes also support an operation, called assignment, which associates a (new)
value of datatype e to a value of datatype pointer(e), thus changing the value returned by the Dereference operation on
the value of datatype pointer to e. This assignment operation was not found to be necessary to characterize the pointer
datatype, and listing it as a characterizing operation would imply that support of the pointer datatype requires it, which is
not the intention.

NOTE 4 The term lvalue appears in some language standards, meaning “a value which refers to a storage object or
area”. Since the storage object is a means of association, an lvalue is therefore a value of some pointer datatype.
Similarly, the implementation notion machine-address, to the extent that it can be manipulated by a programming
language, is often a value of some pointer datatype.

NOTE 5 The hardware implementation of the “means of reference to” a value of the element-type is usually a memory
cell or cells which contain a value of the element-type. The memory cell has an “address”, which is the “value of the
unspecified state datatype”. The memory cell physically maintains the association between the address (pointer-value)
and the element-value which is stored in the cell. The Dereference operation is conceptually applied to the “address”, but
is implemented by a “fetch” from the memory cell. Thus in the computational model used here, the “address” and the
“memory cell” are not distinguished: a pointer-value is both the cell and its address, because the cell can only be
manipulated through its address. The cell, which is the pointer-value, is distinguished from its contents, which is the
element-value.

NOTE 6 The notion “variable of datatype T” appears in programming languages and is usually implemented as a cell
which contains a value of type T. Language standards often distinguish between the “address of the variable” and the
“value of the variable” and the “name of the variable”, and one might conclude that the “variable” is the cell itself. But all
operations on such a “variable” actually operate on either the “address of the variable” — the value of general-purpose
datatype “pointer to (T)” — or the “value of the variable” — the value of general-purpose datatype T. And thus those are
the only objects which are needed in the datatype model. This notion is further elaborated in ISO/IEC 13886, which relates
pointer-values to the “boxes” (or “cells”) which are elements of the state of a running program.

8.3.3 Procedure

Description: procedure generates a datatype, called a procedure datatype, each of whose values is an
operation on values of other datatypes, designated the parameter datatypes. That is, a procedure
datatype comprises the set of all operations on values of a particular collection of datatypes. All values of
a procedure datatype are conceptually atomic.

Syntax:

procedure-type = "procedure", "(", [parameter-list], ")",
 ["returns", "(", return-parameter, ")",],
 ["raises", "(", termination-list, ")"] ;
parameter-list = parameter-declaration,
 { ",", parameter-declaration } ;
parameter-declaration = direction parameter ;
direction = "in" |
 "out" |
 "inout" ;
parameter = [parameter-name, ":"], parameter-type ;
parameter-type = type-specifier ;
parameter-name = identifier ;

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 51

return-parameter = [parameter-name, ":"], parameter-type ;
termination-list = termination-reference,
 { ",", termination-reference } ;
termination-reference = termination-identifier ;

Components: A parameter-type may designate any datatype. The parameter-names of parameters in the
parameter-list shall be distinct from each other and from the parameter-name of the return-
parameter, if any. The termination-references in the termination-list, if any, shall be distinct.

Values: Conceptually, a value of a procedure datatype is a function which maps an input space to a result
space. A parameter in the parameter-list is said to be an input parameter if its parameter-
declaration contains the direction "in" or "inout". The input space is the cross-product of the value
spaces of the datatypes designated by the parameter-types of all the input parameters. A parameter is
said to be a result parameter if it is the return-parameter or it appears in the parameter-list and its
parameter-declaration contains the direction "out" or "inout". The normal result space is the cross-
product of the value spaces of the datatypes designated by the parameter-types of all the result
parameters, if any, and otherwise the value space of the void datatype. When there is no termination-
list, the result space of the procedure datatype is the normal result space, and every value p of the
procedure datatype is a function of the mathematical form:

mpn RRRRIIIp ××××→××× …… 2121:

where kI is the value space of the parameter datatype of the k th input parameter, kR is the value space
of the parameter datatype of the k th result parameter, and pR is the value space of the return-
parameter.

When a termination-list is present, each termination-reference shall be associated, by some
termination-declaration (see 9.3), with an alternative result space which is the cross-product of the
value spaces of the datatypes designated by the parameter-types of the parameters in the
termination-parameter-list. Let jA be the alternative result space of the j th termination. Then:

mjjjj EEEA ×××= …21 ,

where kjE is the value space of the parameter datatype of the k th parameter in the termination-
parameter-list of the j th termination. The normal result space then becomes the alternative result
space associated with normal termination (0A), modeled as having termination-identifier
"*normal". Consider the termination-references, and "*normal", to represent values of an
unspecified state datatype ST. Then the result space of the procedure datatype is:

)||||(210 NT AAAAS …× ,

where 0A is the normal result space and kA is the alternative result space of the k th termination; and
every value of the procedure datatype is a function of the form:

)||||(: 21021 NTn AAAASIIIp …… ×→××× .

Any of the input space, the normal result space and the alternative result space corresponding to a given
termination-identifier may be empty. An empty space can be modeled mathematically by
substituting for the empty space the value space of the datatype void (see 8.1.12).

The value space of a procedure datatype conceptually comprises all operations which conform to the
above model, i.e. those which operate on a collection of values whose datatypes correspond to the input
parameter datatypes and yield a collection of values whose datatypes correspond to the parameter
datatypes of the normal result space or the appropriate alternative result space. The term corresponding
in this regard means that to each parameter datatype in the respective product space the “collection of
values” shall associate exactly one value of that datatype. When the input space is empty, the value
space of the procedure datatype comprises all niladic operations yielding values in the result space.

ISO/IEC 11404:2007(E)

52 © ISO/IEC 2007 – All rights reserved

When the result space is empty, the mathematical value space contains only one value, but the value
space of the computational procedure datatype may contain many distinct values which differ in their
effects on the “real world”, i.e. physical operations outside of the information space.

Value-syntax:

procedure-declaration = "procedure", procedure-identifier, "(",
 [parameter-list], ")",
 ["returns", "(", return-parameter, ")"],
 ["raises", "(", termination-list, ")"] ;
procedure-identifier = identifier ;

A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the
procedure datatype whose type-specifier is identical to the procedure-declaration after deletion of
the procedure-identifier. The means of association of the procedure-identifier with a particular
value of the procedure datatype is outside the scope of this International Standard.

Properties: unordered, exact, non-numeric.

Subtypes: For two procedure datatypes P and Q:

⎯ P is said to be formally compatible with Q if their parameter-lists are of the same length, the direction of
each parameter in the parameter-list of P is the same as the corresponding parameter in the
parameter-list of Q, both have a return-parameter or neither does, and the termination-lists of P
and Q, if present, contain the same termination-references.

⎯ If P is formally compatible with Q, and for every result parameter of Q, the parameter datatype of the
corresponding parameter of P is a (not necessarily proper) subtype of the parameter datatype of the
parameter of Q, then P is said to be a result-subtype of Q. If the return parameter datatype and all of the
parameter datatypes in the parameter-list of P and Q are identical (none are proper subtypes), then each
is a result-subtype of the other.

⎯ If P is formally compatible with Q, and for every input parameter of Q , the parameter datatype of the
corresponding parameter of P is a (not necessarily proper) subtype of the parameter datatype of the
parameter of Q, then Q is said to be an input-subtype of P. If all of the input parameter datatypes in the
parameter-lists of P and Q are identical (none are proper subtypes), then each is an input-subtype of the
other.

Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a
result-subtype of that procedure datatype.

Operations: Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals
operators for each individual procedure datatype. Each procedure datatype has its own Invoke operator
whose first parameter is a value of the procedure datatype, and whose remaining input parameters, if
any, have the datatypes in the input space of that procedure datatype, and whose result-list has the
datatypes of the result space of the procedure datatype.

Invoke(x: procedure(parameter-list), v1: I1, ..., vn: In): record (r1: R1, ..., rm: Rm)) is that value in the result space
which is produced by the procedure x operating on the value of the input space which corresponds to
values (v1, ..., vn).

Equal(x, y: procedure(parameter-list)): boolean is:

true if for each collection of values (v1: I1, ..., vn: In), corresponding to a value in the input space of x
and y, either:

neither x nor y is defined on (v1, ..., vn), or

Invoke(x, v1, ..., vn) = Invoke(y, v1, ..., vn);

and false otherwise.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 53

NOTE 1 The definition of Invoke above is simplistic and ignores the concept of alternative terminations, the
implications of procedure and pointer datatypes appearing in the parameter-list, etc. The true definition of Invoke is
beyond the scope of this International Standard and forms a principal part of ISO/IEC 13886.

NOTE 2 Considered as a function, a given value of a procedure datatype may not be defined on the entire input space,
that is, it may not yield a value for every possible input. In describing a specific value of the procedure datatype it is
necessary to specify limitations on the input domain on which the procedure value is defined (“procedure value” means
conceptual functionality, and not a specific body). In the general case, these limitations are on combinations of values
which go beyond specifying proper subtypes of the individual parameter datatypes. Such limitations are therefore not
considered to affect the admissibility of a given procedure as a value of the procedure datatype.

NOTE 3 The subtyping of procedure datatypes may be counterintuitive. Assume the declarations:

type P = procedure (in a: integer range (0..100), out b: typeX);
type Q = procedure (in a: integer range (0..100), out b: typeY);
type R = procedure (in a: integer, out b: typeX);

If typeX is a subtype of typeY then P is a subtype of Q, as one might expect. But integer range (0..100) is a subtype of
integer, which makes R a subtype of P, and not the reverse! In general, the collection of procedures which can accept an
arbitrary input from the larger input datatype (integer) is a subset of the collection of procedures which can accept an input
from the more restricted input datatype (integer range (0..100)). If a procedure is required to be of type P, then it is
presumed to be applicable to values in integer range (0..100). If a procedure of type R is actually used, it can indeed
be safely applied to any value in integer range (0..100), because integer range (0..100) is a subtype of the domain
of the procedures in R. But the converse is not true. If a procedure is required to be of type R, then it is presumed to be
applicable to an arbitrary integer value, for example, -1, and therefore a procedure of type P, which is not necessarily
defined at -1, cannot be used.

NOTE 4 In describing individual values of a procedure datatype, it is common in programming languages to specify
parameter-names, in addition to parameter datatypes, for the parameters. These identifiers provide a means of
distinguishing the functionality of the individual parameter values. But while this functionality is important in distinguishing
one value of a procedure datatype from another, it has no meaning at all for the procedure datatype itself. For example,
Subtract(in a:real, in b:real, out diff: real) and Multiply(in a:real, in b:real, out prod: real) are
both values of the procedure datatype procedure(in real, in real, out real), but the functionality of the parameters
a and b in the two procedure values is unrelated.

NOTE 5 In describing procedures in programming languages, it is common to distinguish parameters as input, output,
and input/output, to import information from common interchange areas, and to distinguish returning a single result value
from returning values through the parameters and/or the interchange areas. These distinctions are supported by the
syntax, but conceptually, a procedure operates on an set of input values to produce a set of output values. The syntactic
distinctions relate to the methods of moving values between program elements, which are out-side the scope of this
International Standard. This syntax is used in other international standards which define such mechanisms. It is used here
to facilitate the mapping to programming language constructs. ISO/IEC 13886 explains the model of procedures.

NOTE 6 As may be apparent from the definition of Invoke above, there is a natural isomorphism between the normal
result space of a procedure datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an
isomorphism between the general form of the result space and the value space of a choice datatype (see 8.3.1) in which
the tag datatype is the unspecified state datatype and each alternative, including "*normal", has the form:

termination-name: alternative-result-space (record-type)

8.4 Aggregate Datatypes

An aggregate datatype is a generated datatype each of whose values is, in principle, made up of values of the
component datatypes. An aggregate datatype generator generates a datatype by

⎯ applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space
of the aggregate datatype, and

⎯ providing a set of characterizing operations specific to the generator.

Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes
of the components. Unlike other generated datatypes, it is characteristic of aggregate datatypes that the
component values of an aggregate value are accessible through characterizing operations.

ISO/IEC 11404:2007(E)

54 © ISO/IEC 2007 – All rights reserved

This clause describes commonly encountered aggregate datatype generators, attaching to them only the
semantics which derive from the construction procedure.

Syntax:

aggregate-type = record-type |
 class-type |
 set-type |
 sequence-type |
 bag-type |
 array-type |
 table-type ;

The definition template for an aggregate datatype is that used for all datatype generators (see 8.3), with an
addition of the Properties paragraph to describe which of the aggregate properties described in clause 6.8 are
possessed by that generator.

NOTE 1 In general, an aggregate-value contains more than one component value. This does not, however, preclude
degenerate cases where the “aggregate” value has only one component, or even none at all.

NOTE 2 Many characterizing operations on aggregate datatypes are “constructors”, which construct a value of the
aggregate datatype from a collection of values of the component datatypes, or “selectors”, which select a value of a
component datatype from a value of the aggregate datatype. Since composition is inherent in the concept of aggregate,
the existence of construction and selection operations is not in itself characterizing. However, the nature of such
operations, together with other operations on the aggregate as a whole, is characterizing.

NOTE 3 In principle, from each aggregate it is possible to extract a single component, using selection operations of
some form. But some languages may specify that particular (logical) aggregates must be treated as atomic values, and
hence not provide such operations for them. For example, a character string may be regarded as an atomic value or as an
aggregate of Character components. This international standard models characterstring (10.1.5) as an aggregate, in order
to support languages whose fundamental datatype is (single) Character. But Basic, for example, sees the characterstring
as the primitive type, and defines operations on it which yield other characterstring values, wherein 1-character strings are
not even a special case. This difference in viewpoint does not prevent a meaningful mapping between the characterstring
datatype and Basic strings.

NOTE 4 Some characterizations of aggregate datatypes are essentially implementations, whereas others convey
essential semantics of the datatype. For example, an object which is conceptually a tree may be defined by either:

type tree = record
(
 label: character_string ({ iso standard 8859 1 }),
 branches: set of (tree)
),

or:

type tree = record
(
 label: character_string ({ iso standard 8859 1 }),
 son: pointer to (tree),
 sibling: pointer to (tree)
),

The first is a proper conceptual definition, while the second is clearly the definition of a particular implementation of a tree.
Which of these datatype definitions is appropriate to a given usage, however, depends on the purpose to which this
International Standard is being employed in that usage.

NOTE 5 There is no “generic” aggregate datatype. There is no “generic” construction algorithm, and the “generic” form
of aggregate has no characterizing operations on the aggregate values. Every aggregate is, in a purely mathematical
sense, at least a bag (see 8.4.3). And thus the ability to “select one” from any aggregate value is a mathematical
requirement given by the axiom of choice. The ability to perform any particular operation on each element of an aggregate
is sometimes cited as characterizing. But in this International Standard, this capability is modeled as a composition of
more primitive functions, viz.:

Applytoall(A: aggregate-type, P: procedure-type) is:
if not IsEmpty(A) begin

e := Select(A);
Invoke (P, e);
Applytoall (Delete(A, e), P);

end;

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 55

and the particular Select operations available, as well as the need for IsEmpty and Delete, are characterizing.

8.4.1 Record

Description: record generates a datatype, called a record datatype, whose values are heterogeneous
aggregations of values of component datatypes, each aggregation having one value for each component
datatype, keyed by a fixed field-identifier.

Syntax:

record-type = "record", { provision-statement }, (* see 8.6 *)
 "(" field-list ")" ;
field-list = field { "," field } ;
field = field-identifier ":" field-type ;
field-identifier = identifier ;
field-type = type-specifier ;

Components: A list of fields, each of which associates a field-identifier with a single field datatype,
designated by the field-type, which may be any datatype. All field-identifiers of fields in the
field-list shall be distinct.

Values: all collections of named values, one per field in the field-list, such that the datatype of each value
is the field datatype of the field to which it corresponds.

Value-syntax:

record-value = field-value-list |
 value-list ;
field-value-list = "(", field-value, { ",", field-value }, ")" ;
field-value = field-identifier, ":", independent-value ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

A record-value denotes a value of a record datatype. When the record-value is a field-value-
list, each field-identifier in the field-list of the record datatype to which the record-value
belongs shall occur exactly once in the field-value-list, each field-identifier in the record-
value shall be one of the field-identifiers in the field-list of the record-type, and the
corresponding independent-value shall designate a value of the corresponding field datatype. When the
record-value is a value-list, the number of independent-values in the value-list shall be equal to
the number of fields in the field-list of the record datatype to which the value belongs, each
independent-value shall be associated with the field in the corresponding position, and each
independent-value shall designate a value of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all component datatypes are exact.

Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness, access is keyed by field-
identifier, one dimensional.

Subtypes: any record datatype with exactly the same field-identifiers as the base datatype, such that the field
datatype of each field of the subtype is the same as, or is a subtype of, the corresponding field datatype
of the base datatype.

Operations: Equal, FieldSelect, FieldReplace.

Equal(x, y: record (field-list)): boolean is true if for every field-identifier f of the record datatype,

field-type.Equal(FieldSelect.f(x), FieldSelect.f(y)), else false

(where field-type.Equal is the equality relationship on the field datatype corresponding to f).

ISO/IEC 11404:2007(E)

56 © ISO/IEC 2007 – All rights reserved

There is one FieldSelect and one FieldReplace operation for each field in the record datatype, of the
forms:

FieldSelect.field-identifier(x: record (field-list)): field-type is the value of the field of record x whose field-
identifier is field-identifier.

FieldReplace.field-identifier(x: record (field-list), y: field-type): record (field-list) is that value z : record(field-list)
such that FieldSelect.field-identifier(z) = y , and for all other fields f in record(field-list), FieldSelect.f(x) =
FieldSelect.f(z)

i.e. FieldReplace yields the record value in which the value of the designated field of x has been replaced
by y .

NOTE 1 The sequence of fields in a record datatype is not semantically significant in the definition of the record
datatype generator. An implementation of a record datatype may define a representation convention which is an ordering
of physically distinct fields, but that is a pragmatic consideration and not a part of the conceptual notion of the datatype.
Indeed, the optimal representation for certain record values might be a bit string, and then FieldReplace would be an
encoding operation and FieldSelect would be a decoding operation. Note that in a record-value which is a value-list,
however, the physical sequence of fields is significant: it is the convention used to associate the component values in the
value-list with the fields of the record value.

NOTE 2 A record datatype can be modeled as a heterogeneous aggregate of fixed size which is accessed by key,
where the key datatype is a state datatype whose values are the field identifiers. But in a value of a record datatype,
totality of the mapping is required: no field (keyed value) can be missing.

NOTE 3 A record datatype with a subset of the fields of a base record datatype (a “sub-record” or “projection” of the
record datatype) is not a subtype of the base record datatype: none of the values in the sub-record value space appears in
the base value-space. And there are, in general, a great many different “embeddings” which map the sub-record datatype
into the base datatype, each of which supplies different values for the missing fields. Supplying void values for the
missing fields is only possible if the datatypes of those fields are of the form

choice (tag-type) of (..., v: void)

NOTE 4 “Subtypes” of a “record” datatype which have additional fields is an object-oriented notion which goes beyond
the scope of this International Standard.

8.4.2 Class

Description: class generates a datatype, called a class datatype, whose values are heterogeneous
aggregations of values of component datatypes, each aggregation having one value for each component
datatype, keyed by a fixed field-identifier. Components of a class may include procedure definitions.
The override type qualifier specifies that the labeled class attribute definition that follows replaces the
prior class attribute definition with the same label.

Syntax:

class-type = "class", { provision-statement }, (* see 8.6 *)
 "(", attribute-list, ")" ;
attribute-list = attribute, { ",", attribute } ;
attribute = [override-qualifier], attribute-identifier, ":",
 attribute-type ;
override-qualifier = "override" ;
attribute-identifier = identifier ;
attribute-type = type-specifier ;

Components: A list of attributes, each of which associates an attribute-identifier with a single
attribute datatype, designated by the attribute-type, which may be any datatype. All attribute-
identifiers of attributes in the attribute-list shall be distinct. The keyword override shall not
appear unless the class is being defined as an explicit subtype (see 8.2.5). The attribute-identifier
following the keyword override shall be the identifier for an attribute of the base datatype for the explicit
subtype. The attribute-type following the keyword override shall designate a subtype of the attribute-
type that was declared for that attribute of the base datatype.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 57

Values: The value space is that of an unspecified state datatype, each of whose values denotes a single
object that supports the interface represented by the class. The values of a class datatype are atomic.

Value-syntax: None. In general, values of a class datatype have no external representation.

Properties: non-numeric, unordered.

Subtypes: any class datatype whose attributes include one attribute corresponding to each attribute of the
base datatype, such that:

⎯ the attribute-identifier for the subtype attribute is identical to the attribute-identifier for the attribute of the
base datatype, and

⎯ the attribute datatype of the attribute of the subtype is the same as, or is a subtype of, the attribute
datatype of the attribute of the base datatype.

Operations: Equal, AttributeSelect, AttributeReplace.

Equal(x, y: class (attribute-list)): boolean If there exists an Equal procedure for the class, then is Equal(x,y).
Otherwise if there are no procedure definitions then is true if for every attribute-identifier f of the class
datatype, attribute-type.Equal(AttributeSelect.f(x), AttributeSelect.f(y)), else false (where attribute-
type.Equal is the equality relationship on the attribute datatype corresponding to f). Otherwise is
indeterminate.

There is one AttributeSelect and one AttributeReplace operation for each attribute in the class datatype
that is not an attribute procedure, of the form:

AttributeSelect.attribute-identifier(x: class (attribute-list)): attribute-type is the value of the attribute of class x
whose attribute-identifier is attribute-identifier.

AttributeReplace.attribute-identifier(x: class (attribute-list), y: attribute-type): class (attribute-list) is that value z:
class(attribute-list) such that AttributeSelect.attribute-identifier(z) = y , and for all other attributes f in
class(attribute-list), AttributeSelect.f(x) = AttributeSelect.f(z), i.e. AttributeReplace yields the class value in
which the value of the designated attribute of x has been replaced by y .

There is one AttributeFunctionInvoke and one AttributeFunctionOverride operation for each attribute in the
class datatype that is an attribute procedure, of the forms:

AttributeFunctionInvoke.attribute-identifier(x: class (attribute-list)): attribute-type(parameter-list) is the value of
the attribute procedure of class x whose attribute-identifier is attribute-identifier.

AttributeFunctionOverride.attribute-identifier(x: class (attribute-list), y: attribute-type): class (attribute-list) is
that function z: class(attribute-list) such that AttributeFunctionInvoke.attribute-identifier(z) is y , and for all
other attributes f in class(attribute-list), AttributeFunctionInvoke.f(x) = AttributeFunctionInvoke.f(z)

i.e. AttributeFunctionOverride yields the class datatype in which the function of the designated attribute
of x has been replaced by y .

NOTE 1 Class models the object-oriented programming language concept with the same name.

NOTE 2 The characterization of class that distinguishes it from Pointer to Record, which is the typical implementation
of Class, is the characterization of the allowable subtypes. A subtype of a Class datatype models the object-oriented
notion of “subtype” or “subclass”. A subtype of a Class datatype can have additional attributes; a subtype of a Record
cannot.

NOTE 3 An operation is represented by an attribute whose attribute-type is a procedure datatype. Invoking an
operation associated with a value of a class datatype can be derived from the characterizing operations as:
Invoke(AttributeSelect(...)).

ISO/IEC 11404:2007(E)

58 © ISO/IEC 2007 – All rights reserved

8.4.3 Set

Description: set generates a datatype, called a set datatype, whose value-space is the set of all subsets of
the value space of the element datatype, with operations appropriate to the mathematical set.

Syntax:

set-type = "set", { provision-statement }, (* see 8.6 *)
 "of", "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate an exact datatype, called the element datatype.

Values: every set of distinct values from the value space of the element datatype, including the set of no
values, called the empty-set. A value of a set datatype can be modeled as a mathematical function whose
domain is the value space of the element datatype and whose range is the value space of the boolean
datatype (true, false), i.e., if s is a value of datatype set of (E), then s: E→B, where B is the set of Boolean
values true and false, and for any value e in the value space of E, s(e) = true means e “is a member of”
the set-value s, and s(e) = false means e “is not a member of” the set-value s. The value-space of the set
datatype then comprises all functions s which are distinct (different at some value e of the element
datatype).

Value-syntax:

set-value = empty-value |
 value-list ;
empty-value = "(", ")" ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A set-
value denotes a value of a set datatype, namely the set containing exactly the distinct values of the
element datatype which appear in the value-list, or equivalently the function s which yields true at
every value in the value-list and false at all other values in the element value space.

Properties: non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, uniqueness, no ordering, access indirect (by value).

Subtypes:

a) any set datatype in which the element datatype of the subtype is the same as, or a subtype of, the
element datatype of the base set datatype; or

b) any datatype derived from a base set datatype conforming to (a) by use of the Size subtype-generator
(see 8.2.4).

Operations: IsIn, Subset, Equal, Difference, Union, Intersection, Empty, Setof, Select

IsIn(x: element-type, y: set of (element-type)): boolean = y(x), i.e. true if the value x is a member of the set
y , else false;

Subset(x, y: set of (element-type)): boolean is true if for every value v of the element datatype,
Or(Not(IsIn(v,x)), IsIn(v,y)) = true, else false; i.e. true if and only if every member of x is a member of y ;

Equal(x, y: set of (element-type)): boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element
datatype such that And(IsIn(v, x), Not(IsIn(v,y)));

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 59

Union(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element
datatype such that Or(IsIn(v,x), IsIn(v,y));

Intersection(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the
element datatype such that And(IsIn(v,x), IsIn(v,y));

Empty(): set of (element-type) is the function s such that for all values v of the element datatype, =)(vs
false; i.e. the set which consists of no values of the element datatype;

Setof(y: element-type): set of (element-type) is the function s such that =)(ys true and for all values yv ≠ ,
=)(vs false; i.e. the set consisting of the single value y ;

Select(x: set of (element-type)): element-type, where Not(Equal(x, Empty())), is some one value from the value
space of element datatype which appears in the set x .

NOTE Set is modeled as having only the (undefined) Select operation derived from the axiom of choice. In another
sense, the access method for an element of a set value is “find the element (if any) with value v”, which actually uses the
characterizing “IsIn” operation, and the uniqueness property.

8.4.4 Bag

Description: bag generates a datatype, called a bag datatype, whose values are collections of instances of
values from the element datatype. Multiple instances of the same value may occur in a given collection;
and the ordering of the value instances is not significant.

Syntax:

bag-type = "bag", { provision-statement }, (* see 8.6 *)
 "of", "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate an exact datatype, called the element datatype.

Values: all finite collections of instances of values from the element datatype, including the empty collection. A
value of a bag datatype can be modeled as a mathematical function whose domain is the value space of
the element datatype and whose range is the non-negative integers, i.e., if b is a value of datatype bag of
(E), then b: E→Z, where Z is the set of integers, and for any value e in the value space of E, b(e) = 0
means e “does not occur in” the bag-value b, and b(e) = n, where n is a positive integer, means e “occurs
n times in” the bag-value b. The value-space of the bag datatype then comprises all functions b which are
distinct.

Value-syntax:

bag-value = empty-value |
 value-list ;
empty-value = "(", ")" ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A bag-
value denotes a value of a bag datatype, namely that function which at each value e of the element
datatype yields the number of occurrences of e in the value-list.

Properties: non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect.

Subtypes:

a) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the
element datatype of the base bag datatype; or

ISO/IEC 11404:2007(E)

60 © ISO/IEC 2007 – All rights reserved

b) any datatype derived from a base bag datatype conforming to (a) by use of the Size subtype-generator
(see 8.2.4).

Operations: IsEmpty, Equal, Empty, Serialize, Select, Delete, Insert

IsEmpty(x: bag of (element-type)): boolean is true if for all e in the element value space, 0)(=ex , else
false;

Equal(x, y: bag of (element-type)): boolean is true if for all e in the element value space,)()(eyex = , else
false;

Empty(): bag of (element-type) is that function x such that for all e in the element value space, 0)(=ex ;

Serialize(x: bag of (element-type)): sequence of (element-type) is:

if IsEmpty(x), then (),

else any sequence value s such that for each e in the element value space, e occurs exactly)(ex
times in s ;

Select(x: bag of (element-type)): element-type = Sequence.Head(Serialize(x));

Delete(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-
type) such that:

for all ye ≠ ,)()(exez = , and

if 0)(>yx then 1)()(−= yxyz and if 0)(=yx then 0)(=yz ;

i.e. the collection formed by deleting one instance of the value y , if any, from the collection e ;

Insert(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-
type) such that:

 for all ye ≠ ,)()(exez = , and 1)()(+= yxyz ;

i.e. the collection formed by adding one instance of the value y to the collection x ;

8.4.5 Sequence

Description: Sequence generates a datatype, called a sequence datatype, whose values are ordered
sequences of values from the element datatype. The ordering is imposed on the values and not intrinsic
in the underlying datatype; the same value may occur more than once in a given sequence.

Syntax:

sequence-type = "sequence", { provision-statement }, (* see 8.6 *)
 "of", "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate any datatype, called the element datatype.

Values: all finite sequences of values from the element datatype, including the empty sequence.

Value-syntax:

sequence-value = empty-value |
 value-list ;
empty-value = "(", ")" ;

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 61

value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A
sequence-value denotes a value of a sequence datatype, namely the sequence containing exactly the
values in the value-list, in the order of their occurrence in the value-list.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, variable size, no uniqueness, imposed ordering, access indirect (by
position).

Subtypes:

a) any sequence datatype in which the element datatype of the subtype is the same as, or a subtype of,
the element datatype of the base sequence datatype; or

b) any datatype derived from a base sequence datatype conforming to (a) by use of the Size subtype-
generator (see 8.2.4).

Operations: IsEmpty, Head, Tail, Equal, Empty, Append.

IsEmpty(x: sequence of (element-type)): boolean is true if the sequence x contains no values, else false;

Head(x: sequence of (element-type)): element-type, where Not(IsEmpty(x)), is the first value in the
sequence x ;

Tail(x: sequence of (element-type)): sequence of (element-type) is the sequence of values formed by deleting
the first value, if any, from the sequence x ;

Equal(x, y: sequence of (element-type)): boolean is:

if IsEmpty(x), then IsEmpty(y);

else if)()(yHeadxHead = , then Equal(Tail(x), Tail(y));

else, false;

Empty(): sequence of (element-type) is the sequence containing no values;

Append(x: sequence of (element-type), y: element-type): sequence of (element-type) is

the sequence formed by adding the single value y to the end of the sequence x .

NOTE 1 sequence differs from bag in that the ordering of the values is significant and therefore the operations Head,
Tail, and Append, which depend on position, are provided instead of Select, Delete and Insert, which depend on value.

NOTE 2 The extended operation Concatenate(x, y: sequence of (E)): sequence of (E) is:

if IsEmpty(y) then x ; else Concatenate(Append(x, Head(y)), Tail(y));

NOTE 3 The notion sequential file, meaning “a sequence of values of a given datatype, usually stored on some
external medium”, is an implementation of datatype sequence.

8.4.6 Array

Description: array generates a datatype, called an array datatype, whose values are associations between
the product space of one or more finite datatypes, designated the index datatypes, and the value space

ISO/IEC 11404:2007(E)

62 © ISO/IEC 2007 – All rights reserved

of the element datatype, such that every value in the product space of the index datatypes associates to
exactly one value of the element datatype.

Syntax:

array-type = "array", { provision-statement }, (* see 8.6 *)
 "(", index-type-list, ")", { provision-statement },
 "of",
 "(", element-type, ")" ;
index-type-list = index-type, { ",", index-type } ;
index-type = type-specifier |
 index-lowerbound, "..", index-upperbound ;
index-lowerbound = value-expression ;
index-upperbound = value-expression ;
element-type = type-specifier ;

Components: The element-type shall designate any datatype, called the element datatype. Each index-
type shall designate an ordered and finite exact datatype, called an index datatype. When the index-
type has the form:

index-lowerbound .. index-upperbound

the implied index datatype is:

integer range(index-lowerbound .. index-upperbound),

and index-lowerbound and index-upperbound shall have integer values, such that index-
lowerbound ≤ index-upperbound.

The value-expressions for index-lowerbound and index-upperbound may be dependent-values
when the array datatype appears as a parameter-type, or in a component of a parameter-type, of a
procedure datatype, or in a component of a record datatype. Neither index-lowerbound nor index-
upperbound shall be dependent-values in any other case. Neither index-lowerbound nor index-
upperbound shall be formal-parametric-values, except in certain cases in declarations (see 9.1).

Values: all functions from the cross-product of the value spaces of the index datatypes appearing in the
index-type-list, designated the index product space, into the value space of the element datatype,
such that each value in the index product space associates to exactly one value of the element datatype.

Value-syntax:

array-value = value-list ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

An array-value denotes a value of an array datatype. The number of independent-values in the
value-list shall be equal to the cardinality of the index product space, and each independent-value
shall designate a value of the element datatype. To define the associations, the index product space is
first ordered lexically, with the last-occurring index datatype varying most rapidly, then the second-last,
etc., with the first-occurring index datatype varying least rapidly. The first independent-value in the array-
value associates to the first value in the product space thus ordered, the second to the second, etc. The
array-value denotes that value of the array datatype which makes exactly those associations.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access is indexed,
dimensionality is equal to the number of index-types in the index-type-list.

Subtypes: any array datatype having the same index datatypes as the base datatype and an element datatype
which is a subtype of the base element datatype.

Operations: Select, Equal, Replace.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 63

Select(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn): element-type is that value of the
element datatype which x associates with the value (y1, ..., yn) in the index product space;

Equal(x, y: array (index1, ..., indexn) of (element-type)): boolean is true if for every value (v1, ..., vn) in the index
product space, Select(x, v1, ..., vn) = Select(y, v1, ..., vn), else false;

Replace(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn, z: element-type): array (index1, ...,
indexn) of (element-type) is that value w of the array datatype such that w: (y1, ..., yn) z→ , and for all values
p of the index product space except (y1, ..., yn), w:)(pxp→ ; i.e. Replace yields the function which

associates z with the value (y1, ..., yn) and is otherwise identical to x .

NOTE 1 The general array datatype is “multidimensional”, where the number of dimensions and the index datatypes
themselves are part of the conceptual datatype. The index space is an unordered product space, although it is necessarily
ordered in each “dimension”, that is, within each index datatype. This model was chosen in lieu of the “array of array”
model, in which an array has a single ordered index datatype, in the belief that it facilitates the mappings to programming
languages. Note that:

type arrayA = array (1..m, 1..n) of (integer);

defines arrayA to be a 2-dimensional datatype, whereas

type arrayB = array (1..m) of (array (1..n) of (integer));

defines arrayB to be a 1-dimensional (with element datatype array (1..n) of (integer), rather than
integer). This allows languages in which A[i][j] is distinguished from A[i, j] to maintain the distinction in
mappings to the general-purpose datatypes. Similarly, languages which disallow the A[i][j] construct can
properly state the limitation in the mapping or treat it as the same as A[i, j], as appropriate.

NOTE 2 The array of a single dimension is simply the case in which the number of index datatypes is 1 and the index
product space is the value space of that datatype. The order of the index datatype then determines the association to the
independent-values in a corresponding array-value.

NOTE 3 Support for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and
possibly others) with equivalent semantics.

NOTE 4 It is not required that the specific index values be preserved in any mapping of an array datatype, but rather
that each index datatype be mapped 1-to-1 onto a corresponding index datatype and the corresponding indexing functions
be preserved.

NOTE 5 Since the values of an array datatype are functions, the array datatype is conceptually a special case of the
procedure datatype (see 8.3.3). In most programming languages, however, arrays are conceptually aggregates, not
procedures, and have such constraints as to ensure that the function can be represented by a sequence of values of the
element datatype, where the size of the sequence is fixed and equal to the cardinality of the index product space.

NOTE 6 In order to define an interchangeable representation of the Array as a sequence of element values, it is first
necessary to define the function which maps the index product space to the ordinal datatype. There are various possible
such functions. The one used in interpreting the array-value construct is as follows:

Let A be a value of datatype array(index1, ..., indexn) of (element-type). For each index datatype indexi,
let lowerboundi and upperboundi be the lower and upper bounds on its value space. Define the operation Mapi to
map the index datatype indexi into a range of integer by:

Mapi(x: indexi): integer is

Mapi(lowerboundi) = 0; and

Mapi(Successori(x)) = Mapi(x) + 1, for all upperboundx ≠ .

And define the constant: sizei = Mapi(upperboundi) - Mapi(lowerboundi) + 1. Then

Ord(x1: index1, ..., xn: indexn): ordinal

ISO/IEC 11404:2007(E)

64 © ISO/IEC 2007 – All rights reserved

is the ordinal value corresponding to the integer value:

)()(1
1

1
1

∏∑
=

+
=

•+
n

j
ji

n

i
i sizexMap

where the non-existent sizen+1 is taken to be 1. And the Ord(x1, ..., xn)th position in the sequence representation is
occupied by A(x1, ..., xn).

EXAMPLE The Fortran standard (ISO/IEC 1539-1:2004, Information technology — Programming languages —
Fortran — Part 1: Base language) specifies that multidimensional arrays are stored with the left-most varying most rapidly.
Thus in the following declaration:

CHARACTER*1 SCREEN (80, 24)

which declares the variable “screen” to have the general-purpose datatype:

array (1..80, 1..24) of character (unspecified)

The Fortran subscript operation:

S = SCREEN (COLUMN, ROW)

is equivalent to the characterizing operation:

 Select (screen, column, row)

while

SCREEN(COLUMN, ROW) = S

is equivalent to the characterizing operation:

 Replace(screen, column, row, S)

8.4.7 Table

Description: table generates a datatype, called a table datatype, whose values are collections of values in
the product space of one or more field datatypes, such that each value in the product space represents
an association among the values of its fields. Although the field datatypes may be infinite, any given value
of a table datatype contains a finite number of associations.

Syntax:

table-type = "table", { provision-statement }, (* see 8.6 *)
 "(", field-list, ")" ;
field-list = field, { ",", field } ;
field = field-identifier, ":", field-type ;
field-identifier = identifier ;
field-type = type-specifier ;

Components: A list of fields, each of which associates a field-identifier with a single field datatype,
designated by the field-type, which may be any datatype. All field-identifiers of fields in the
field-list shall be distinct.

Values: The value space of table (field-list) is isomorphic to the value space of bag of (record(field-
list)), that is, all finite collections of associations represented by values from the cross-product of the
value spaces of all the field datatypes in the field-list.

Value-syntax:

table-value = empty-value |
 "(", table-entry, { ",", table-entry, }, ")" ;
table-entry = field-value-list |
 value-list ;

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 65

field-value-list = "(", field-value, { ",", field-value }, ")" ;
field-value = field-identifier, ":", independent-value ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

A table-value denotes a value of a table datatype, namely the collection comprising exactly the
associations designated by the table-entrys appearing in the table-value. A table-entry denotes a
value in the product space of the field datatypes in the field-list of the table-type. When the table-
entry is a field-value-list, each field-identifier in the field-list of the table datatype to
which the table-value belongs shall occur exactly once in the field-value-list, each field-
identifier in the table-entry shall be one of the field-identifiers in the field-list of the
table-type, and the corresponding independent-value shall designate a value of the corresponding
field datatype. When the table-entry is a value-list, the number of independent-values in the
value-list shall be equal to the number of fields in the field-list of the table datatype to which the
value belongs, each independent-value shall be associated with the field in the corresponding position,
and each independent-value shall designate a value of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all field datatypes are exact.

Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is two.

Subtypes:

a) any table datatype which has exactly the same field-identifiers in the field-list, and the field datatype of
each field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the base
datatype; or

b) any table datatype derived from a base table datatype conforming to (a) by use of the Size subtype-
generator (see 8.2.4).

Operations: MaptoBag, MaptoTable, Serialize, IsEmpty, Equal, Empty, Delete, Insert, Select, Fetch.

MaptoBag(x: table(field-list)): bag of (record(field-list)) is the isomorphism which maps the table to a bag of
records.

MaptoTable(x: bag of (record(field-list))): table(field-list) is the inverse of the MaptoBag isomorphism.

Serialize(x: table(field-list)): sequence of (record(field-list)) = Bag.Serialize(MaptoBag(x));

IsEmpty(x: table(field-list)): boolean = Bag.IsEmpty(MaptoBag(x));

Equal(x, y: table(field-list)): boolean = Bag.Equal(MaptoBag(x), MaptoBag(y));

Empty(): table(field-list) = ();

Delete(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Delete(MaptoBag(x), y));

Insert(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Insert(MaptoBag(x), y));

Select(x: table (field-list), criterion: procedure(in row: record(field-list)): boolean): table(field-list) =
MaptoTable(z), where z is the bag value whose elements are exactly those record values r in
MaptoBag(x) for which criterion(r) = true.

Fetch(x: table(field-list)): record(field-list), where Not(IsEmpty(x)), = Sequence.Head(Serialize(x));

NOTE 1 Table would be a defined-generator (as in 10.2), but the type (generator) declaration syntax (see 9.1) does not
permit the parametric element list to be a variable length list of field-specifiers.

ISO/IEC 11404:2007(E)

66 © ISO/IEC 2007 – All rights reserved

NOTE 2 This definition of Table is aligned with the notion of Table specified by ISO 9075, Information technology —
Database languages — SQL. In SQL, the “select procedure” may take as input rows from more than one table, but this is
a generalization of the characterizing operation Select, rather than an extension to the Table datatype concept.

NOTE 3 In general, access to a Table is indirect, via Fetch or MaptoBag. Access to a Table is sometimes said to be
“keyed” because the common utilization of this data structure represents “relationships” in which some field or fields are
designated “keys” on which the values of all other fields are said to be “dependent”, thus creating a mapping between the
product space of the key value spaces and the value spaces of the other fields. (In database terminology, such a
relationship is said to be of the “third normal form”.) The specification of this mapping, when present, is a complex part of
the SQL language standard and goes beyond the scope of this International Standard.

8.5 Defined datatypes

A defined datatype is a datatype defined by a type-declaration (see 9.1). It is denoted syntactically by a type-
reference, with the following syntax:

type-reference = type-identifier,
 ["(", actual-type-parameter-list, ")"] ;
type-identifier = identifier ;
actual-type-parameter-list = actual-type-parameter,
 { ",", actual-type-parameter } ;
actual-type-parameter = value-expression |
 type-specifier ;

The type-identifier shall be the type-identifier of some type-declaration and shall refer to the
datatype or datatype generator there-by defined. The actual-type-parameters, if any, shall correspond in
number and in type to the formal-type-parameters of the type-declaration. That is, each actual-type-
parameter corresponds to the formal-type-parameter in the corresponding position in the formal-type-
parameter-list. If the formal-parameter-type is a type-specifier, then the actual-type-parameter
shall be a value-expression designating a value of the datatype specified by the formal-parameter-type.
If the formal-parameter-type is “type”, then the actual-type-parameter shall be a type-specifier and
shall have the properties required of that parametric datatype in the generator-declaration.

The type-declaration identifies the type-identifier in the type-reference with a single datatype, a
family of datatypes, or a datatype generator. If the type-identifier designates a single datatype, then the
type-reference refers to that datatype. If the type-identifier designates a datatype family, then the
type-reference refers to that member of the family whose value space is identified by the type-definition
after substitution of each actual-type-parameter value for all occurrences of the corresponding formal-
parametric-value. If the type-identifier designates a datatype generator, then the type-reference
designates the datatype resulting from application of the datatype generator to the actual parametric
datatypes, that is, the datatype whose value space is identified by the type-definition after substitution of
each actual-type-parameter datatype for all occurrences of the corresponding formal-parametric-type.
In all cases, the defined datatype has the values, properties and characterizing operations defined, explicitly
or implicitly, by the type-declaration.

When a type-reference occurs in a type-declaration, the requirements for its actual-type-parameters
are as specified by clause 9.1. In any other occurrence of a type-reference, no actual-type-parameter
shall be a formal-parametric-value or a formal-parametric-type.

8.6 Provisions

Provisions may be attached to a datatype or aggregate keyword.

Syntax:

provision-statement = "provision", "(", actual-parameter-list, ")" ;
actual-parameter-list = actual-parameter, { ",", actual-parameter } ;
actual-parameter = identifier, "=", identifier ;

The following features may be included in a parameter list. The obligation parameter shall be included. The
obligation parameter should be the first element of the list to improve reading clarity.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 67

NOTE Typically, obligation, target, and scope are required as parameters.

A normative datatype includes a characterizing operation IsConforming(NDT,DT) that determines if a datatype
DT conforms to the provisions of NDT.

8.6.1 General parameters for provisions

This subclause describes the general parameters for provisions.

EXAMPLE 1 The following provision specifies that for all aggregates (and subcomponents, recursively) their data
elements are optional:

normative all_data_elements_optional =
 provision(obligation=permit, target=type, scope=recursiveidentifier, subset=defined),
normative R1 =
record all_data_elements_optional
(
 // ...
),

EXAMPLE 2 The following provisions combine Example 1 above with the additional provision that the datatype may be
extended with additional data elements:

normative extended_data_elements_permitted =
 provision(obligation=permit, target=type, scope=recursiveidentifier, subset=undefined),
normative R2 =
record all_data_elements_optional extended_data_elements_permitted
(
 // ...
),

EXAMPLE 3 The following provision specifies that the datatype for data element B has a smallest of array size 17:

// SPM: smallest permitted maximum
normative SPM(limit) =
 provision(obligation=require, target=type, scope=size, value=range(limit..*)),

normative R =
record
(
 a: type_a,
 b: array (0..maxsize) SPM(17) of integer,
)

8.6.1.1 Obligation

Description: Describes the kind of obligation for the provision.

Syntax:

obligation-kind = "obligation", "=", obligation-kind-value ;
obligation-kind-value = "require" |
 "recommend" |
 "permit" |
 "permitnot" |
 "recommendnot" |
 "requirenot" |
 "unspecified" |
 "default" ;

The values have the following meaning:

⎯ require: the provision is a mandatory requirement, i.e., “shall” (the implementation is required to
satisfy ...)

⎯ recommend: the provision is a recommendation, i.e., “should” (the implementation is recommended to
satisfy ,,,)

ISO/IEC 11404:2007(E)

68 © ISO/IEC 2007 – All rights reserved

⎯ permit: the provision is an optional 7) requirement, i.e., “may” (the implementation is permitted to
satisfy ...)

⎯ permitnot: the provision is an optional requirement in the negative, i.e., “may not” (the implementation is
permitted not to satisfy ...)

⎯ recommendnot: the provision is a recommendation, i.e., “should not” (the implementation is recommended
not to satisfy ...)

⎯ requirenot: the provision is a mandatory requirement, i.e., “shall not” (the implementation is required not
to satisfy ...)

⎯ unspecified: there is no further specification of the provision

⎯ default: the default value

8.6.1.2 Target

Description: Describes the target of the provision, i.e., what is intended to satisfy the provision.

Syntax:

target-kind = "target", "=", target-kind-value ;
target-kind-value = "value" |
 "valuespace" |
 "properties" |
 "charops" |
 "type" |
 "runtimetype" |
 "access" |
 "runtimeaccess" ;

The values have the following meaning:

⎯ value: the provision is associated with the instantiation of a datatype 8)

⎯ valuespace: the provision is associated with the value space of datatype

⎯ properties: the provision is associated with the properties of datatype

⎯ charops: the provision is associated with the characterizing operations of datatype

⎯ type: the provision is associated with a datatype

⎯ runtimetype: the provision is associated with the datatype at execution time

⎯ access: the provision is associated with the access methods of a datatype

⎯ runtimeaccess: the provision is associated with the access methods of a datatype at execution time

NOTE Except for value, runtimetype, and runtimeaccess, all others concern provisions of datatypes.

7) The “optional” feature described here concerns the requirements for accessing components, while the “optional”
feature of 10.2.4 concerns the support of the nil sentinel value within a datatype.

8) Supplying target=value means that the provisions apply to the value itself, in contrast to the properties (properties)
or characterizing operations (charops).

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 69

8.6.1.3 Scope

Description: Describes the scope of the provision, i.e., what is affected by the provision.

Syntax:

scope-kind = "scope", "=", scope-kind-value ;
scope-kind-value = "identifier" |
 "allidentifier" |
 "recursiveidentifier" |
 "size" |
 "allsize" |
 "recursivesize" ;

The values have the following meaning:

⎯ identifier: the provision is associated with a single identifier

⎯ allidentifier: the provision is associated with all identifiers in an aggregate type

⎯ recursiveidentifier: the provision is associated with the all identifiers in all aggregate types,
recursively

⎯ size: the provision is associated with a single sizing parameter

⎯ allsize: the provision is associated with all sizing parameters in an aggregate type

⎯ recursivesize: the provision is associated with the sizing parameters in all aggregate types, recursively

8.6.1.4 Subset

Description: Describes the subset scope of the provision, i.e., a pattern that describes the subset.

Syntax:

subset-kind = "subset", "=", subset-kind-value ;
subset-kind-value = "defined" |
 "undefined" |
 "*" |
 "(", select-list, ")" |
 value-expression ;

The values have the following meaning:

⎯ defined: chooses those elements that are defined, e.g., for identifiers, if the identifier is defined; for
values, if the value is defined

⎯ undefined: chooses those elements that are undefined, e.g., neither the identifier nor the value is defined

⎯ *: chooses all elements

⎯ select-list: a selecting expression that limits the selection

⎯ value-expression: a value expression that describes a pattern for the selection

8.6.1.5 Value

Description: Describes the subset scope of the provision, i.e., a pattern that describes the subset.

ISO/IEC 11404:2007(E)

70 © ISO/IEC 2007 – All rights reserved

Syntax:

value-spec = "value", "=", value-spec-value ;
value-spec-value = "nil" |
 select-range |
 "(", select-list, ")" |
 value-expression ;

The values have the following meaning:

⎯ nil: the value nil

⎯ select-range: a range of values

⎯ select-list: a selecting expression that limits the range

⎯ value-expression: a value expression that specifies the value

8.6.2 Aggregate-specific features

This subclause describes features that are specific to aggregate values, datatypes, and normative datatypes.

8.6.2.1 Aggregate-component ordering

Description: Specifies that the components of record or class type are ordered, unordered, or unspecified.

Syntax:

aggregate-order = "aggregateorder", "=", aggregate-order-value ;
aggregate-order-value = "ordered" |
 "notordered" |
 "unspecified" |
 "default" ;

The values have the following meaning:

⎯ ordered: the aggregate's components are ordered

⎯ notordered: the aggregate's component's ordering is indeterminate

⎯ unspecified: it is not specified whether the aggregate's components are ordered or unordered

⎯ default: the ordering is the default value

8.6.3 Aggregate-component-identifier uniqueness

Description: Specifies that the components of record or class type whose identifiers are unique or not (see
6.8.4).

Syntax:

aggregate-uniqueness = "aggregateuniqueness", "=", aggregate-uniqueness-value ;
aggregate-uniqueness-value =
 "unique" |
 "notunique" |
 "unspecified" |
 "default" ;

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 71

The values have the following meaning:

⎯ unique: the aggregate's components' identifiers are unique

⎯ notunique: the aggregate's components' identifiers may be non-unique

⎯ unspecified: it is not specified whether the aggregate's components' identifiers are unique or not

⎯ default: the uniqueness is the default value

8.6.4 Usage-specific features

This subclause describes features that are specific to the use of values, datatypes, and normative datatypes.

EXAMPLE The following provision specifies that a diagnostic message occurs every time R is instantiated.

normative obsolete =
 provision(obligation=require, target=type,
 scope=identifier, trigger=oninstantiation, action=diagnostic)

normative R =
record obsolete
(
 // ...
)

8.6.4.1 Usage triggers

Description: Specifies usage triggers for the provisions features.

Syntax:

usage-trigger = "onuse", "=", usage-trigger-value ;
usage-trigger-value = "ondeclaration" |
 "oninstantiation" |
 "onaccess" ;
The values have the following meaning:

⎯ ondeclaration: the action is triggered on a declaration that uses this provision

⎯ oninstantiation: the action is triggered on instantiation of a value

⎯ onaccess: the action is triggered on the use of a value

8.6.4.2 Usage actions

Description: Specifies the action to take if a provision is triggered.

Syntax:

action-trigger = "action", "=", action-trigger-value ;
action-trigger-value = "diagnostic" |
 "none" ;
The values have the following meaning:

⎯ diagnostic: an implementation-defined diagnostic message occurs

⎯ none: no action is taken

ISO/IEC 11404:2007(E)

72 © ISO/IEC 2007 – All rights reserved

9 Declarations

This International Standard specifies an indefinite number of generated datatypes, implicitly, as recursive
applications of the datatype generators to the primitive datatypes. This clause defines declaration
mechanisms by which new datatypes and generators can be derived from the datatypes and generators of
Clause 8, named and constrained. It also specifies a declaration mechanism for naming values and a
mechanism for declaring alternative terminations of procedure datatypes (see 8.3.3).

Syntax:

declaration = type-declaration |
 value-declaration |
 procedure-declaration |
 termination-declaration ;

NOTE This clause provides the mechanisms by which the facilities of this International Standard can be extended to
meet the needs of a particular application. These mechanisms are intended to facilitate mappings by allowing for definition
of datatypes and subtypes appropriate to a particular language, and to facilitate definition of application services by
allowing the definition of more abstract datatypes.

9.1 Type declarations

A type-declaration defines a new type-identifier to refer to a datatype or a datatype generator. A datatype
declaration may be used to accomplish any of the following:

⎯ to rename an existing datatype or to name an existing datatype which has a complex syntax, or

⎯ as the syntactic component of the definition of a new datatype, or

⎯ as the syntactic component of the definition of a new datatype generator.

Syntax:

type-declaration = "type", type-identifier,
 ["(" formal-type-parameter-list, ")"],
 "=", ["new"], type-definition |
 normative-datatype-declaration ;
type-identifier = identifier ;
formal-type-parameter-list = formal-type-parameter,
 { ",", formal-type-parameter } ;
formal-type-parameter = formal-parameter-name, ":", formal-parameter-type ;
formal-parameter-name = identifier ;
formal-parameter-type = type-specifier |
 "type" ;
type-definition = type-specifier ;
formal-parametric-value = formal-parameter-name ;
formal-parametric-type = formal-parameter-name ;

Every formal-parameter-name appearing in the formal-type-parameter-list shall appear at least
once in the type-definition. Each formal-parameter-name whose formal-parameter-type is a
type-specifier shall appear as a formal-parametric-value and each formal-parameter-name
whose formal-parameter-type is type shall appear as a formal-parametric-type. Except for such
occurrences, no value-expression appearing in the type-definition shall be a formal-parametric-
value and no type-specifier appearing in the type-definition shall be a formal-parametric-type.

The type-identifier declared in a type-declaration may be referenced in a subsequent use of a
type-reference (see 8.5). The formal-type-parameter-list declares the number and required
nature of the actual-type-parameters which must appear in a type-reference which references this
type-identifier. A type-reference which references this type-identifier may appear in an
alternative-type of a choice-type or in the element-type of a pointer-type in the type-
definition of this or any preceding type-declaration. In any other case, the type-declaration for
the type-identifier shall appear before the first reference to it in a type-reference.

No type-identifier shall be declared more than once in a given context.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 73

What the type-identifier is actually declared to refer to depends on whether the keyword new is
present and whether the formal-parameter-type type is present.

9.1.1 Renaming declarations

A type-declaration which does not contain the keyword new declares the type-identifier to be a
synonym for the type-definition. A type-reference referencing the type-identifier refers to the
general-purpose datatype identified by the type-definition, after substitution of the actual datatype
parameters for the corresponding formal datatype parameters.

9.1.2 New datatype declarations

A type-declaration that contains the keyword new and does not contain the formal-parameter-type type
is said to be a datatype declaration. It defines the value-space of a new general-purpose datatype, which is
distinct from any other general-purpose datatype. If the formal-type-parameter-list is not present, then
the type-identifier is declared to identify a single general-purpose datatype. If the formal-type-
parameter-list is present, then the type-identifier is declared to identify a family of datatypes
parameterized by the formal-type-parameters.

The type-definition defines the value space of the new datatype (family) — there is a 1-to-1
correspondence between values of the new datatype and values of the datatype described by the type-
definition. The characterizing operations, and any other property of the new datatype which cannot be
deduced from the value space, shall be provided along with the type-declaration to complete the definition
of the new datatype (family). The characterizing operations may be taken from those of the datatype (family)
described by the type-definition directly, or defined by some algorithmic means using those operations.

NOTE The purpose of the new declaration is to allow both syntactic and semantic distinction between datatypes with
identical value spaces. It is not required that the characterizing operations on the new datatype be different from those of
the type-definition. A semantic distinction based on application concerns too complex to appear in the basic
characterizing operations is possible. For example, acceleration and velocity may have identical computational value
spaces and operations (datatype real) but quite different physical meanings.

9.1.3 New generator declarations

A type-declaration which contains the keyword new and at least one formal-type-parameter whose
formal-parameter-type is type is said to be a generator declaration. A generator declaration declares the
type-identifier to be a new datatype generator parameterized by the formal-type-parameters, and the
associated value space construction algorithm to be that specified by the type-definition. The
characterizing operations, and other properties of the datatypes resulting from the generator which cannot be
deduced from the value space, shall be provided along with the generator declaration to complete the
definition of the new datatype generator.

The formal-type-parameters whose formal-parameter-type is type are said to be parametric datatypes.
A generator declaration shall be accompanied by a statement of the constraints on the parametric datatypes
and on the values of the other formal-type-parameters, if any.

9.2 Value declarations

A value-declaration declares an identifier to refer to a specific value of a specific datatype.

Syntax:
value-declaration = "value", value-identifier, ":", type-specifier,
 "=", independent-value ;
value-identifier = identifier ;

The value-declaration declares the identifier value-identifier to denote that value of the datatype
designated by the type-specifier which is denoted by the given independent-value (see 7.5.1). The

ISO/IEC 11404:2007(E)

74 © ISO/IEC 2007 – All rights reserved

independent-value shall (be interpreted to) designate a value of the designated general-purpose datatype,
as specified by Clause 8 or Clause 10.

No independent-value appearing in a value-declaration shall be a formal-parametric-value and no
type-specifier appearing in a value-declaration shall be a formal-parametric-type.

9.3 Termination declarations

A termination-declaration declares a termination-identifier to refer to an alternate termination
common to multiple procedures or procedure datatypes (see 8.3.3) and declares the collection of procedure
parameters returned by that termination.

Syntax:
termination-declaration = "termination", termination-identifier,
 ["(", termination-parameter-list, ")"] ;
termination-identifier = identifier ;
termination-parameter-list = parameter, { ",", parameter } ;
parameter = [parameter-name, ":"], parameter-type ;
parameter-type = type-specifier ;
parameter-name = identifier ;

The parameter-names of the parameters in a termination-parameter-list shall be distinct. No
termination-identifier shall be declared more than once, nor shall it be the same as any type-
identifier.

The termination-declaration is a purely syntactic object. All semantics are derived from the use of the
termination-identifier as a termination-reference in a procedure or procedure datatype (see 8.3.3).

9.4 Normative datatype declarations

A normative datatype declaration defines a new type-identifier to refer to a family of datatypes.9)

Syntax:
normative-datatype-declaration =
 "normative", identifier,
 ["(" formal-type-parameter-list, ")"],
 "=", type-definition ;

9.5 Lexical operations

This section describes declarations that relate to construction of a program-text from other program-texts.
A defined datatype is a datatype defined by a type-declaration (see 9.1). It is denoted syntactically by a type-
reference, with the following syntax:

9.5.1 Import

Description: Import retrieves the contents of a type definition.

Syntax:
import-type = "import", source-value,
 { "including", "(", select-list, ")" |
 "excluding", "(", select-list, ")" } ;
source-value = URI |
 identifier ;
tag-type = type-specifier ;
discriminant = value-expression ;
select-list = select-item, { ",", select-item } ;
select-item = identifier ;
URI = (* described by RFC 2396 *)

9) See 6.9.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 75

Components: The source value identifies a resource that contains a program-text. Each declaration in that
program-text is included in the current program-text as if it appeared verbatim in the current program-text.
Exceptions: If the including keyword is used, then only those elements are included in the source. If the
excluding keyword is used, then all other elements are included in the source.

NOTE 1 The import datatype generator is referred to in some programming languages as #include operator:

record
(
 import "http://headers.org/my-public-api-definition/record.txt",
)

NOTE 2 The import datatype generator might be used to perform basic inheritance and subclassing:

class
(
 import superclass,
 override method1: procedure // ...,
)

9.5.2 Macro

Description: Macro transforms string parameter value to declaration text. The macro capability permits the
definition of textual replacements within 11404 program text, but does not declare new datatypes.

Syntax:

macro-definition = "macro", identifier, "(", parameter-list, ")" ,
 "{", text, "}";

EXAMPLE A parameter is used to insert declaration text:

type X(extra) = record
(
 name: characterstring,
 address: characterstring,
 city: characterstring,
 eval(extra)
}

Y: X("country: characterstring, postalcode: characterstring")

In this example, the datatype of Y includes the three elements in the definition of X (name, address, city) and two
additional elements specified as parameters (country, postalcode).

10 Defined datatypes and generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived
from the datatypes and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9.
They are included in this International Standard in order to standardize their designations and definitions for
interchange purposes.

10.1 Defined datatypes

This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as
primitive datatypes by some common programming languages, but can be derived from the datatypes and
generators defined in Clause 8.

The template for definition of such a datatype is:

Description: prose description of the datatype.

Declaration: a type-declaration for the datatype.

ISO/IEC 11404:2007(E)

76 © ISO/IEC 2007 – All rights reserved

Parametric values: when the defined datatype is a family of datatypes, identification of and constraints
on the parametric values of the family.

Values: formal definition of the value space.

Value-syntax: when there is a special notation for values of this datatype, the requisite syntactic
productions, and identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of
certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

Operations: characterizing operations for the datatype.

The notation for values of a defined datatype may be of two kinds:

1. If the datatype is declared to have a specific value syntax, then that value syntax is a valid notation for
values of the datatype, and has the interpretation given in this clause.

2. If the datatype is not declared to have a specific value syntax, then the syntax for explicit-values of the
datatype identified by the type-definition is a valid notation for values of the defined datatype.

10.1.1 Natural number

Description: naturalnumber is the datatype of the cardinal or natural numbers.

Declaration:

type naturalnumber = integer range (0..*)

Parametric Values: none.

Values: the non-negative subset of the value-space of datatype Integer.

Properties: ordered, exact, numeric, unbounded above, bounded below.

Operations: all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.2 Modulo

Description: modulo is a family of datatypes derived from Integer by replacing the operations with arithmetic
operations using the modulus characteristic.

Declaration:

type modulo (modulus: integer) = new integer range(0..modulus-1) excluding(modulus)

Parametric Values: modulus is an integer value, such that 1 ≤ modulus, designated the modulus of the Modulo

datatype.

Values: all Integer values v such that 0 ≤ v and v < modulus.

Properties: ordered, exact, numeric, bounded.

Operations: Equal, InOrder from Integer; Add, Multiply, Negate.

Add(x, y: modulo (modulus)): modulo(modulus) = Integer.Remainder(integer.Add(x,y), modulus)

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 77

Negate(x: modulo (modulus)): modulo (modulus) is the (unique) value y in the value space of
modulo(modulus) such that 0),(=yxAdd .

Multiply(x, y: modulo (modulus)): modulo(modulus) = Integer.Remainder(integer.Multiply(x,y), modulus)

10.1.3 Bit

Description: bit is the datatype representing the finite field of two symbols designated 0, the additive identity,
and 1, the multiplicative identity.

Declaration:

type bit = modulo(2)

Parametric Values: none.

Values: 0, 1

Properties: ordered, exact, numeric, bounded.

Operations: (Equal, InOrder, Add, Multiply) from Modulo.

10.1.4 Bit string

Description: bitstring is the datatype of variable-length strings of binary digits.

Declaration:

type bitstring = new sequence of (bit)

Parametric Values: none.

Values: Each value of datatype bitstring is a finite sequence of values of datatype bit. The value-space
comprises all such values.

Value-syntax:

bitstring-literal = quote, { bit-literal }, quote ;
bit-literal = "0" |
 "1" ;

The bitstring-literal denotes that value in which the first value in the sequence is that denoted by
the leftmost bit-literal, the second value in the sequence is that denoted by the next bit-literal,
etc. If there are no bit-literals in the bitstring-literal, then the value denoted is the sequence of
length zero.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE 1 bitstring is assumed to be a sequence, rather than an array, in that the values may be of different lengths.

NOTE 2 The description and properties of bitstring are identical to those of sequence of (bit). bitstring is said
to be new in order to facilitate mappings. Entities may need to attach special properties to the bitstring datatype.

10.1.5 Character string

Description: characterstring is a family of datatypes which represent strings of symbols from standard
character-sets.

ISO/IEC 11404:2007(E)

78 © ISO/IEC 2007 – All rights reserved

Declaration:

type characterstring (repertoire: objectidentifier) = new sequence of (character (repertoire))

Parametric Values: repertoire is a “repertoire-identifier” (see 8.1.4).

Values: Each value of a characterstring datatype is a finite sequence of members of the character-set
identified by repertoire. The value-space comprises the collection of all such values.

Value syntax:

string-literal = quote, { string-character }, quote ;
string-character = non-quote-character |
 added-character |
 escape-character ;
non-quote-character = letter |
 digit |
 special |
 underscore |
 apostrophe |
 space ;
added-character = ? not defined by this International Standard ? ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " ", identifier } ;

Each string-character in the string-literal denotes a single member of the character-set identified
by repertoire, as provided in 8.1.4. The string-literal denotes that value of the characterstring
datatype in which the first value in the sequence is that denoted by the leftmost string-character, the
second value in the sequence is that denoted by the next string-character, etc. If there are no
string-characters in the string-literal, then the value denoted is the sequence of length zero.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE 1 There is no general international standard for collating sequences, although certain international character-set
standards require specific collating sequences. Applications which need the order relationship on characterstring, and
which share a character-set for which there is no standard collating sequence, need to create a defined datatype or a
repertoire-identifier which refers to the character-set and the agreed-upon collating sequence.

NOTE 2 Characterstring is defined to be a sequence, rather than an array, to permit values to be of different lengths.

NOTE 3 The description and properties of the characterstring(r) datatype are identical to those of sequence of
(character(r)). Characterstring datatypes are said to be “new” in order to facilitate mappings. Entities may need to
attach special properties to character string datatypes.

NOTE 4 Many languages distinguish as separate datatypes objects represented by character strings with specific
syntactic requirements. For example, LISP has dynamic evaluation of “s-expressions”; Prolog has a similar construct;
COBOL represents currency as a “numeric edited string”; and several languages have an “identifier” datatype whose
values are treated as user-defined objects to which properties will be attached. In a multi-language environment, such
objects can probably be manipulated only as datatype characterstring, except in the language in which the special
properties were intended to be interpreted. Thus, such datatypes should be declared as general-purpose datatypes
“derived from characterstring”, e.g.:

type identifier = new characterstring(repertoire) size(1..maxidsize)

or:

type editcharacter = character({iso standard 646}) selecting (’0’..’9’, ’.’, ’,’, ’+’, ’-’, ’$’,
’#’, ’*’),
type numericedited = new sequence of (editcharacter),

In each case, the keyword new should be used to indicate the presence of unusual characterizing operations, formation
rules and interpretations (see 9.1.2).

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 79

10.1.6 Time interval

Description: timeinterval is a family of datatypes representing elapsed time in seconds or fractions of a
second (as opposed to Date-and-time, which represents a point in time, see 8.1.6). It is a generated
datatype derived from a scaled datatype by limiting the operations.

Declaration:

type timeinterval(unit: timeunit, radix: integer, factor: integer) = new scaled (radix, factor),
type timeunit = state(year, month, day, hour, minute, second),

Parametric Values: radix is a positive integer value, and factor is an integer value.

Values: all values which are integral multiples of one radix(-factor) unit of the specified timeunit.

Properties: ordered, exact, numeric, unbounded.

Operations: (Equal, Add, Negate) from Scaled; ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes. Then:

ScalarMultiply(x: scaled(r,f), y: timeinterval(u,r,f)): timeinterval(u,r,f) = scaled.Multiply(x,y)

EXAMPLE timeinterval(second, 10, 3) is the datatype of elapsed time in milliseconds.

10.1.7 Octet

Description: octet is the datatype of 8-bit codes, as used for character-sets and private encodings.

Declaration:

type octet = new integer range (0..255)

Parametric Values: none.

Values: Each value of datatype octet is a code, represented by a non-negative integer value in the range
[0, 255].

Properties: ordered, bounded, exact, non-numeric, finite.

Operations: (Equal, InOrder) from Integer.

NOTE 1 octet is a common datatype in communications protocols.

NOTE 2 It is common to define “characterizing operations” that convert an octet value to a bitstring value or an
array of bit value, but there is no agreement on which bit of the octet is first in the bit string, or equivalently, how the
array indices map to the bits.

10.1.8 Octet string

Description: octetstring is the datatype of variable-length encodings using 8-bit codes.

Declaration:

type octetstring = sequence of (octet)

Parametric Values: none.

Values: Each value of the octetstring datatype is a finite sequence of codes represented by octet values.
The value-space comprises the collection of all such values, including the empty sequence.

ISO/IEC 11404:2007(E)

80 © ISO/IEC 2007 – All rights reserved

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE Among other uses, an octetstring value is the representation of a characterstring value, and is used
when the characterstring is to be manipulated as codes. In particular, octetstring should be preferred when the
values may contain codes which are not associated with characters in the repertoire.

10.1.9 Private

Description: A private datatype represents an application-defined value-space and operation set which are
intentionally concealed from certain processing entities.

Declaration:

type private(length: naturalnumber) = new array (1..length) of (bit)

Parametric Values: Length shall have a positive integer value.

Values: application-defined.

Properties: unordered, exact, non-numeric.

Operations: none.

NOTE 1 There is no denotation for a value of a private datatype.

NOTE 2 The purpose of the private datatype is to provide a means by which:

a) an object of a non-standard datatype, having a complex internal structure, can be passed between two parties which
understand the type through a standard-conforming service without the service having to interpret the internal structure, or

b) values of a datatype which is meaningless to all parties but one, such as “handles”, can be provided to an end-user for
later use by the knowledgeable service, for example, as part of a package interface.

In either case, the length and ordering of the bits must be properly maintained by all intermediaries. In the former case, the
private datatype may be encoded by the provider (or his marshalling agent) and decoded by the recipient (or his
marshalling agent). In the latter case the private datatype will be encoded and decoded only by the knowledgeable
agent, and all others, including end-users, will handle it as a bit-array.

10.1.10 Object identifier

Description: objectidentifier is the datatype of “object identifiers”, i.e. values which uniquely identify
objects in a (Open Systems Interconnection) communications protocol, using the formal structure defined by
Abstract Syntax Notation One (ISO/IEC 8824).

Declaration:

type objectidentifier = new sequence of (objectidentifiercomponent) size(1..*),
type objectidentifiercomponent = new integer range(0..*),

Parametric Values: none.

Values: The value space of datatype objectidentifiercomponent is isomorphic to the cardinal numbers
(10.1.1), but the meaning of each value is determined by its position in an objectidentifier value.

The value-space of datatype objectidentifier comprises all non-empty finite sequences of
objectidentifiercomponent values. The meaning of each objectidentifiercomponent value within
the objectidentifier value is determined by the sequence of values preceding it, as provided by
ISO/IEC 8824. The sequence constituting a single value of datatype objectidentifier uniquely identifies an
object.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 81

Value syntax:

objectidentifier-value = ASN-object-identifier |
 collection-identifier ;
ASN-object-identifier = "{", objectidentifiercomponent-list, "}" ;
objectidentifiercomponent-list = objectidentifiercomponent-value,
 { objectidentifiercomponent-value } ;
objectidentifiercomponent-value = nameform |
 numberform |
 nameandnumberform ;
nameform = identifier ;
numberform = number ;
nameandnumberform = identifier, "(", numberform, ")" ;
collection-identifier = registry-name, registry-index ;
registry-name = "ISO/IEC_10646" |
 "ISO/IEC_2375" |
 "ISO/IEC_7350" |
 "ISO/IEC_10036" ;
registry-index = number ;

An objectidentifier-value denotes a value of datatype objectidentifier. An
objectidentifiercomponent-value denotes a value of datatype objectidentifiercomponent.
A value-identifier appearing in the numberform shall refer to a non-negative integer value. In all
cases, the value denoted by an ASN-object-identifier is that prescribed by ISO/IEC 8824.

A collection-identifier denotes a value of datatype objectidentifier which refers to a registered
character-set.

The keyword ISO_10646 refers to the collections defined in Annex A of ISO/IEC 10646:2003 and the
collection designated is that collection whose “collection-number” is the value of registry-index.
The form of the object identifier value is:

 { iso(1) standard(0) 10646 registry-index }

A collection-identifier beginning with the keyword ISO_2375 designates the collection registered under the
provisions of ISO/IEC 2375 whose registration-number is the value of registry-index. The form of the
object identifier value is:

 { iso(1) standard(0) 2375 registry-index }

A collection-identifier beginning with the keyword ISO_7350 designates the collection registered under the
provisions of ISO/IEC 7350 whose registration-number is the value of registry-index. The form of the
object identifier value is:

 { iso(1) standard(0) 7350 registry-index }

A collection-identifier beginning with the keyword ISO_10036 designates the collection registered under
the provisions of ISO/IEC 10036 whose registration-number is the value of registry-index. The form of
the object identifier value is:

 { iso(1) standard(0) 10036 registry-index }

Properties: unordered, exact, non-numeric.

Operations on objectidentifiercomponent: Equal from Integer;

Operations on objectidentifier: Append from Sequence; Equal, Length, Detach, Last.

Length(x: objectidentifier): integer is the number of objectidentifiercomponent values in the sequence x ;

Detach(x: objectidentifier): objectidentifier, where Length(x) > 1, is the objectidentifier formed by removing
the last objectidentifiercomponent value from the sequence x ;

ISO/IEC 11404:2007(E)

82 © ISO/IEC 2007 – All rights reserved

Last(x: objectidentifier): objectidentifiercomponent is the objectidentifiercomponent value which is the last
element of the sequence x ;

Equal(x, y: objectidentifier): boolean =

if Not(Length(x) = Length(y)) then false,

else if Not(objectidentifiercomponent.Equal(Last(x), Last(y))) then false,

else if 1)(=xLength then true,

else Equal(Detach(x), Detach(y));

NOTE 1 IsEmpty, Head, and Tail from Sequence are not meaningful on datatype objectidentifier. Therefore, Length
and Equal are defined here, although they could be derived by using the Sequence operations.

NOTE 2 objectidentifier is treated as a primitive type by many applications, but the mechanism of definition of its
value space, and the use of that mechanism by some applications, such as Directory Services for OSI, requires the values
to be lists of an accessible element datatype (objectidentifiercomponent).

10.2 Defined generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can
be derived from the datatypes and generators appearing in Clause 8.

The template for definition of such a datatype generator is:

Description: prose description of the datatype generator.

Declaration: a type-declaration for the datatype generator.

Components: number of, and constraints on, the parametric datatypes and parametric values used by the
generation procedure.

Values: formal definition of the resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of
certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

When the generator generates an aggregate datatype, the aggregate properties described in clause 6.8 are
also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator.
The definitions of operations have the form described in 8.1.

10.2.1 Stack

Description: Stack is a generator derived from Sequence by replacing the characterizing operation Append
with the characterizing operation Push. That is, the insertion operation (Push) puts the values on the
beginning of the sequence rather than the end of the sequence (Append).

Declaration:

type stack (element: type) = new sequence of (element)

Components: element shall be any datatype.

Values: all finite sequences of values from the element datatype.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 83

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by
position).

Operations: (IsEmpty, Equal, Empty) from Sequence; Top, Pop, Push.

Top(x: stack (element)): element = sequence.Head(x).

Pop(x: stack (element)): stack (element) = sequence.Tail(x).

Push(x: stack (element), y: element): stack (element) is the sequence formed by adding the single value y to
the beginning of the sequence x .

10.2.2 Tree

Description: Tree is a generator which generates recursive list structures.

Declaration:

type tree (leaf: type) = new sequence of (choice(state(atom, list)) of (
 (atom): leaf,
 (list): tree(leaf)))

Components: leaf shall be any datatype.

Values: all finite recursive sequences in which every value is either a value of the leaf datatype, or a (sub-)tree
itself. Ultimately, every “terminal” value is of the leaf datatype.

Properties: unordered, non-numeric, exact if and only if the leaf type is exact, denumerable.

Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by
position).

Operations: (IsEmpty, Equal, Empty, Head, Tail) from Sequence; Join.

To facilitate definition of the operations, the datatype tree_member is introduced, with the declaration:

type tree_member(leaf: type) = choice(state(atom, list)) of ((atom): leaf, (list): tree(leaf))

tree_member(leaf) is then the element datatype of the sequence datatype underlying the tree datatype.

Join(x: tree(leaf), y: tree_member(leaf)): tree(leaf) is the sequence whose Head (first member) is the
value y , and whose Tail is all members of the sequence x .

NOTE Tree is an aggregate datatype which is formally an aggregate (sequence) of tree_members. Conceptually,
tree is an aggregate datatype whose values are aggregates of leaf values. In either case, it is proper to consider Tree a
homogeneous aggregate.

10.2.3 Optional

Description: Optional is a generator which effectively adds the "nil" value to the value space of a base
datatype.

Declaration:

type optional(base: type) = new choice (boolean) of ((true): base, (false): void)

Components: base shall designate any datatype.

ISO/IEC 11404:2007(E)

84 © ISO/IEC 2007 – All rights reserved

Values: all values v of the base datatype plus the “nil value” of void. This type is isomorphic to the set of pairs:

{ (true, v) | v in base } union { (false, nil) }

which is the modeled value space of the choice-type.

Properties: all properties of the base datatype, except for the value “nil”.

Operations: IsPresent (= Discriminant from Choice); all operations on the base datatype, modified as indicated
below.

IsPresent(x: optional(base)): boolean = Discriminant(x);

All unary operations of the form: Unary-op(x: base): result-type are defined on optional(base) by:

Unary-op(x: optional(base)): result-type is if IsPresent(x) then Unary-op(Cast.base(x)), else undefined.

All binary operations of the form: Binary-op(x, y: base): result-type are defined on optional(base) by:

Binary-op(x, y: optional(base)): result-type is: if And(IsPresent(x), IsPresent(y)), then Binary-op(Cast.base(x),
Cast.base(y)), else undefined.

Other operations are defined similarly.

NOTE An optional datatype is the proper type of an object, such as a parameter to a procedure or a field of a record,
which in some instances may have no value.

EXAMPLE 1 A record-type containing optional (sometimes not present or “undefined”) values can be declared:

record
(
 required_name: characterstring,
 optional_value: optional(integer)
),

EXAMPLE 2 A procedure parameter which may only sometimes be provided can be declared:

procedure search
(
 in t: T,
 in tableT: sequence of (T),
 in index: optional(procedure(in i: integer, in j: integer): integer)
): boolean

The parameter index, which is an indexing function for tableT, need not always be provided. That is, it may have value
"nil".

11 Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a
programming or specification language and the general-purpose datatypes.

The internal datatypes of a language are considered to include the information type and structure notions
which can be expressed in that language, particularly those which describe the nature of objects manipulated
by the language primitives. Like the general-purpose datatypes, the datatype notions of a language can be
divided into primitive datatypes and datatype generators. The primitive datatypes of a language are those
object types which are considered in the language semantics to be primitive, that is, not to be generated from
other internal datatypes. The datatype generators of a language are those language constructs which can be
used to produce new datatypes, objects with new datatypes, more elaborate information structures or static
inter-object relationships.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 85

This International Standard defines a neutral language for the formal identification of precise semantic
datatype notions – the general-purpose datatypes. The notion of a mapping between the internal datatypes of
a language and the general-purpose datatypes is the conceptual identification of semantically equivalent
notions in the two languages. There are then two kinds of mappings between the internal datatypes of a
language and the general-purpose datatypes:

⎯ a mapping from the internal datatypes of the language into the general-purpose datatypes, referred to as
an outward mapping, and

⎯ a mapping from the general-purpose datatypes to the internal datatypes of the language, referred to as an
inward mapping.

This International Standard does not specify the precise form of a mapping, because many details of the form
of a mapping are language-dependent. This clause specifies requirements for the information content of
inward and outward mappings and conditions for the acceptability of such mappings.

NOTE 1 Mapping, in this sense, does not apply to program modules or service specifications directly, because they
manipulate specific object- types, which have specific datatypes expressed in a specific language or languages. The
datatypes of a program module or service specification can therefore be described in the general-purpose datatypes
language directly, or inferred from the inward and outward mappings of the language in which the module or specification
is written.

NOTE 2 The companion notion of conversion of values from an internal representation to a neutral representation
associated with general-purpose datatypes is not a part of this International Standard, but may be a part of standards
which refer to this International Standard.

11.1 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and
relationships in the language which together uniquely represent that internal datatype and associate the
internal datatype with a corresponding general-purpose datatype expressed in the formal language defined by
Clause 7 through Clause 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs
and relationships in the language which together uniquely represent that internal datatype generator and
associate the internal datatype generator with a corresponding general-purpose datatype generator expressed
in the formal language defined in this International Standard.

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to
constitute the outward mapping of the language and shall have the following properties:

(1) to each primitive or generated internal datatype, the mapping shall associate a single corresponding
general-purpose datatype; and

(2) for each internal datatype, the mapping shall specify the relationship between each allowed value of the
internal datatype and the equivalent value of the corresponding general-purpose datatype; and

(3) for each value of each general-purpose datatype appearing in the mapping, the mapping shall specify
whether any value of any internal datatype is mapped onto it, and if so, which values of the internal
datatypes are mapped onto it.

NOTE 1 There is no requirement for a primitive internal datatype to be mapped to a primitive general-purpose
datatype. This International Standard provides a variety of conceptual mechanisms for creating GPD-generated datatypes
from primitive or previously-created datatypes, which are, inter alia, intended to facilitate mappings.

NOTE 2 An internal datatype constructed by application of an internal datatype generator to a collection of internal
parametric datatypes will be implicitly mapped to the general-purpose datatype generated by application of the mapped
datatype generator to the mapped parametric datatypes. In this way, property (1) above may be satisfied for internal
generated datatypes.

ISO/IEC 11404:2007(E)

86 © ISO/IEC 2007 – All rights reserved

NOTE 3 The conceptual mapping to general-purpose datatypes may not be either 1-to-1 or onto. A mapping must
document the anomalies in the identification of internal datatypes with general-purpose datatypes, specifically those
values which are distinct in the language, but not distinct in the general-purpose datatype, and those values of the
general-purpose datatype which are not accessible in the language.

NOTE 4 Among other uses, an outward mapping may be used to identify an internal datatype with a particular general-
purpose datatype in order to require operation or representation definitions specified for general-purpose datatypes by
another standard to be properly applied to the internal datatype.

NOTE 5 An outward mapping may be used to ensure that interfaces between two program units using a common
programming language are properly provided by a third-party service which is ignorant of the language involved.

11.2 Inward Mappings

An inward mapping for a primitive general-purpose datatype, or a single generated general-purpose datatype,
shall associate the general-purpose datatype with a single internal datatype, defined by the syntactic and
semantic constructs and relationships in the language which together uniquely represent that internal
datatype. Such a mapping shall specify limitations on the parametric values of any general-purpose datatype
family which exclude members of that family from the mapping. Different members of a single general-
purpose datatype family may be mapped onto dissimilar internal datatypes.

An inward mapping for a general-purpose datatype generator shall associate the general-purpose datatype
generator with an internal datatype generator, defined by the syntactic and semantic constructs and
relationships in the language which together uniquely represent that internal datatype generator. Such a
mapping shall specify limitations on the parametric datatypes of any general-purpose datatype generator
which exclude corresponding classes of generated datatypes from the mapping. The same general-purpose
datatype generator with different parametric datatypes may be mapped onto dissimilar internal datatype
generators.

An inward mapping for a general-purpose datatype shall associate the general-purpose datatype with an
internal datatype on which it is possible to implement all of the characterizing operations specified for that
general-purpose datatype.

The collection of inward mappings for the general-purpose datatypes and datatype generators onto the
internal datatypes and datatype generators of a language shall be said to constitute the inward mapping of the
language and shall have the following properties:

⎯ for each general-purpose datatype (primitive or generated), the mapping shall specify whether the
general-purpose datatype is supported by the language (as specified in 11.4), and if so, identify a single
corresponding internal datatype; and

⎯ for each general-purpose datatype which is supported, the mapping shall specify the relationship between
each allowed value of the general-purpose datatype and the equivalent value of the corresponding
internal datatype; and

⎯ for each value of an internal datatype, the mapping shall specify whether that value is the image (under
the mapping) of any value of any general-purpose datatype, and if so, which values of which general-
purpose datatypes are mapped onto it.

NOTE 1 A general-purpose generated datatype which is not specifically mapped by a primitive datatype mapping, and
whose parametric datatypes are admissible under the constraints on the datatype generator mapping, will be implicitly
mapped onto an internal datatype constructed by application of the mapped internal datatype generator to the mapped
internal parametric datatypes.

NOTE 2 When a general-purpose datatype, primitive or generated, is mapped onto a language datatype, whether
explicitly or implicitly by mapping the generators, the associated internal datatype should support the semantics of the
general-purpose datatype. The proof of this support is the ability to perform the characterizing operations on the internal
datatype. It is not necessary for the language to support the characterizing operations directly (by operator or built-in
function or anything the like), but it is necessary for the characterizing operations to be conceptually supported by the
internal datatype. Either it should be possible to write procedures in the language which perform the characterizing
operations on objects of the associated internal datatype, or the language standard should require this support in the
further mappings of its internal datatypes, whether into representations or into programming languages.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 87

NOTE 3 The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document
the anomalies in the association of internal datatypes with general-purpose datatypes, specifically those values which are
distinct in the general-purpose datatype, but not distinct in the language, and those values of the internal datatype which
are not accessible through interfaces using general-purpose datatypes.

NOTE 4 An inward mapping to a programming language may be used to ensure that an interface between two
program units specified in terms of general-purpose datatypes can be properly used by programs written in that language,
with language-specific, but not application-specific, software tools providing conversions of information units.

11.3 Reverse Inward Mapping

An inward mapping from a general-purpose datatype into the internal datatypes of a language defines a
particular set of values of internal datatypes to be the image of the general-purpose datatype in the language.
The reverse inward mapping for a general-purpose datatype maps those values of the internal datatypes
which constitute its image to the corresponding values of that general-purpose datatype using the correspondence
which is established by the inward mapping. For the reverse inward mapping to be unambiguous, the inward
mapping of each general-purpose datatype must be 1-to-1. This is formalized as follows:

⎯ if a is a value of the general-purpose datatype and the inward mapping maps a to a value a’ of some
internal datatype, then the inward mapping shall not map any value b of the same general-purpose
datatype into a’, unless b = a; and

⎯ if a is a value of a general-purpose datatype and the inward mapping maps a to a value a’ of some
internal datatype, then the reverse inward mapping maps a’ to a; and

⎯ if c is a value of a general-purpose datatype which is excepted from the domain of the inward mapping,
i.e. maps to no value of the corresponding internal datatype, then there is no value c’ of any internal
datatype such that the reverse inward mapping maps c’ to c.

The reverse inward mapping for a language is the collection of the reverse inward mappings for the general-
purpose Datatypes.

NOTE 1 When an interface between two program units is specified in terms of general-purpose datatypes, it is possible
for the interface to be utilized by program units written in different languages and supported by a service which is ignorant
of the languages involved. The inward mapping for each language is used by the programmer for that program unit to
select appropriate internal datatypes and values to represent the information which is used in the interface. Information is
then sent by one program unit, using the reverse inward mapping for its language to map the internal values to the
intended values of the general-purpose datatypes, and received by the other program unit, using the inward mapping to
map the general-purpose datatype values passed into suitable internal values. The actual transmission of the information
may involve three software tools: one to perform the conversion between the sender form and the interchange form,
automating the reverse inward mapping, one to transmit the interchange form based on general-purpose datatypes, and
one to perform the conversion between the interchange form and the receiving internal form, automating the inward
mapping. None of these intermediate tools depends on the particular interface being used. Thus, it is possible to
implement an arbitrary interface using general-purpose datatypes, in any programming language which supports those
datatypes without interface-specific tools.

NOTE 2 The reverse inward mapping for a language does not have useful formal properties. The same internal value
can be mapped to several different values, as long as the different values belong to different general-purpose datatypes. It
is the per-datatype reverse inward mapping which is useful.

11.4 Support of Datatypes

An information processing entity is said to support a general-purpose datatype if its mapping of that datatype
into some internal datatype (see 11.2) preserves the properties of that datatype (see 6.3) as defined in this
subclause.

NOTE For aggregate datatypes, preservation of the “aggregate properties” defined in 6.8 is not required.

11.4.1 Support of equality

For a mapping to preserve the equality property, any two instances a, b of values of the internal datatype shall
be considered equal if and only if the corresponding values a’, b’ of the general-purpose datatype are equal.

ISO/IEC 11404:2007(E)

88 © ISO/IEC 2007 – All rights reserved

11.4.2 Support of order

For a mapping to preserve the order property, the order relationship defined on the internal datatype shall be
consistent with the order relationship defined on the general-purpose datatype. That is, for any two instances
a, b of values of the internal datatype, a ≤ b shall be true if and only if, for the corresponding values a', b' of the
general-purpose datatype, a' ≤ b'.

11.4.3 Support of bounds

For a mapping to preserve the bounds, the internal datatype shall be bounded above if and only if the general-
purpose datatype is bounded above, and the internal datatype shall be bounded below if and only if the
general-purpose datatype is bounded below.

NOTE It follows that the values of the bounds must correspond.

11.4.4 Support of cardinality

For a mapping to preserve the cardinality of a finite datatype, the internal datatype shall have exactly the
same number of values as the general-purpose datatype. For a mapping to preserve the cardinality of an
exact, denumerably infinite datatype, there shall be exactly one internal value for every value of the general-
purpose datatype and there shall be no a priori limitation on the values which can be represented. For a
mapping to preserve the cardinality of an approximate datatype, it suffices that it preserve the approximate
property, as provided in 6.3.5.

NOTE 1 There may be accidental limitations on the values of exact, denumerably infinite datatypes which can be
represented, such as the total amount of storage available to a particular user, or the physical size of the machine. Such a
limitation is not an intentional limitation on the datatype as implemented by a particular information processing entity, and
is thus not considered to affect support.

NOTE 2 An entity which a priori limits integer values to those which can be represented in 32 bits or characterstrings to
a length of 256 characters, however, is not considered to support the mathematically infinite Integer and CharacterString
datatypes. Rather such an entity supports describable subtypes of those datatypes (see 8.2).

11.4.5 Support for the exact or approximate property

To preserve the exact property, the mapping between values of the general-purpose datatype and values of
the internal datatype shall be 1-to-1.

For an inward mapping to preserve the approximate property, every value which is distinguishable in the
general-purpose datatype must be distinguishable in the internal datatype.

NOTE The internal datatype may have more values than the general-purpose datatype, i.e. a finer degree of
approximation.

For an outward mapping to preserve the approximate property, every value which is distinguishable in the
internal datatype must be distinguishable in the general-purpose datatype.

11.4.6 Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a
requirement on representations of the values of the datatype, which is outside the scope of this International
Standard.

11.4.7 Support for the mandatory components

Mandatory components are required to be supported (see 6.8.9).

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 89

Annex A
(informative)

Character-set standards

The following is a partial list of International Standards which define character-sets. Character sets defined by
such standards are suitable for reference by a “repertoire-identifier” in the Character and CharacterString
datatypes. Character sets for bibliographic information interchange and character sets used for physical media
(such as punched cards and magnetic tape) are not included in this list.

These standards define character-sets, in the sense of repertoires of characters. Most of them also define
“character codes” — integer values used to represent the character values for certain computational
purposes. Whether “character(repertoire)” is interpreted as requiring the characters to be represented by the
codes defined by the repertoire is outside the scope of this International Standard.

None of these standards defines a collating sequence or order relationship on the character-sets. The
definition of such an order relationship requires additional standards or application agreements. Order
relationships commonly supported by programming languages are based on the integer ordering of the code
values used in a particular implementation of the language. Such orderings have no semantics with respect to
the character-set itself and are outside the scope of this International Standard.

ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information interchange

ISO 2047:1975 Information processing — Graphical representations for the control characters of the
7-bit coded character set

ISO 9036:1987 Information processing — Arabic 7-bit coded character set for information
interchange

ISO/IEC 2022:1994 Information technology — Character code structure and extension techniques

ISO/IEC 6937:2001 Information technology — Coded graphic character set for text communication —
Latin alphabet

ISO/IEC 4873:1991 Information technology — ISO 8-bit code for information interchange — Structure
and rules for implementation

ISO/IEC 8859-1:1998 Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

ISO/IEC 8859-2:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 2:
Latin alphabet No. 2

ISO/IEC 8859-3:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 3:
Latin alphabet No. 3

ISO/IEC 8859-4:1998 Information technology — 8-bit single-byte coded graphic character sets — Part 4:
Latin alphabet No. 4

ISO/IEC 8859-5:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 5:
Latin/Cyrillic alphabet

ISO/IEC 8859-6:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 6:
Latin/Arabic alphabet

ISO/IEC 11404:2007(E)

90 © ISO/IEC 2007 – All rights reserved

ISO/IEC 8859-7:2003 Information technology — 8-bit single-byte coded graphic character sets — Part 7:
Latin/Greek alphabet

ISO/IEC 8859-8:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 8:
Latin/Hebrew alphabet

ISO/IEC 8859-9:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 9:
Latin alphabet No. 5

ISO/IEC 8859-10:1998 Information technology — 8-bit single-byte coded graphic character sets — Part 10:
Latin alphabet No. 6

ISO/IEC 8859-11:2001 Information technology — 8-bit single-byte coded graphic character sets — Part 11:
Latin/Thai alphabet

ISO/IEC 8859-13:1998 Information technology — 8-bit single-byte coded graphic character sets — Part 13:
Latin alphabet No. 7

ISO/IEC 8859-14:1998 Information technology — 8-bit single-byte coded graphic character sets — Part 14:
Latin alphabet No. 8 (Celtic)

ISO/IEC 8859-15:1999 Information technology — 8-bit single-byte coded graphic character sets — Part 15:
Latin alphabet No. 9

ISO/IEC 8859-16:2001 Information technology — 8-bit single-byte coded graphic character sets — Part 16:
Latin alphabet No. 10

ISO/IEC 10367:1991 Information technology — Standardized coded graphic character sets for use in
8-bit codes

ISO/IEC 10646:2003 Information technology — Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC 6429:1992 Information technology — Control functions for coded character sets

ISO/IEC 10538:1991 Information technology — Control functions for text communication

ISO/IEC TR 15285:1998 Information technology — An operational model for characters and glyphs

ISO 6093:1985 Information processing — Representation of numerical values in character strings
for information interchange

(defines character sets and syntax for numeric strings)

ISO/IEC 8824-1 Information technology — Open Systems Interconnection — Abstract Syntax
Notation One (ASN.1): Specification of basic notation

(defines interchange character sets both directly and by reference to sets registered
under ISO 2375)

The following are International Standards for character-set registration. Character sets registered under the
provisions of these standards are suitable for reference by a “repertoire-identifier” in the Character and
CharacterString datatypes.

ISO/IEC 2375:2003 Information technology — Procedure for the registration of escape sequences and
coded character sets

ISO/IEC 7350:1991 Information technology — Registration of repertoires of graphic characters from
ISO 10367

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 91

Annex B
(informative)

Recommendation for the placement of annotations

An annotation (see 7.4) is a descriptive information unit attached to a type-specifier, or a component datatype,
or a procedure (value), to characterize some aspect of the representations, variables, or operations
associated with values of the datatype, or the component or procedure, in some particular context. Common
conventions for the placement of annotations, however, makes it easier for the reader to determine the object
to which an annotation is intended to apply and the context in which it is intended to apply. This annex
contains guidelines for placement of annotations in the syntax and corresponding distinctions in the scope of
application of the annotations, as required by clause 7.4.

Use of the recommended placement conventions improves the compatibility of usages and implementations of
the general-purpose datatypes, to the extent that they involve such annotations. Use of additional or substitute
conventions by other standards and implementations is consistent with this International Standard.

B.1 Type-attributes

A type-attribute is an annotation attached to a type-specifier, and in particular to the type-specifier of a type-
definition, which characterizes some aspect of the values or variables of the datatype specified, or the
operations on those values or variables, in some particular context. Type-attributes may include, among
others:

⎯ limitations on, or identification of parameters describing, the value-space of the datatype as implemented,
or as used in a particular context,

⎯ constraints on, or specifications for, representation of the values of the datatype,

⎯ constraints on, or specifications for, the operations which may be performed on values of the datatype,

⎯ identification of procedures or parameters to be used for conversion of values of the datatype for a
particular interchange or external medium.

Type-attributes should immediately follow the type-specifier for the datatype to which they are intended to
apply. In particular, an annotation which applies to the element-type of an aggregate-type should appear
inside the parentheses, while an annotation which applies to the aggregate-type should appear outside the
parentheses.

B.2 Component-attributes

A component-attribute is an annotation attached to a component of a generated-type which characterizes
some aspect of the operations on, or representations of, values in that component of the particular generated
datatype (i.e. values used in that role, as distinct from general limitations on values of the datatype of the
component) in some particular context. Component-attributes may include, among others:

⎯ any of the attribute notions given in B.1, but restricted to the component,

⎯ specification of the ordering, representation or alignment of the component in an aggregate structure,

⎯ limitations on access to the component.

ISO/IEC 11404:2007(E)

92 © ISO/IEC 2007 – All rights reserved

Component-attributes should immediately precede the component type-specifier for the component to which
they are intended to apply. That is, in a record-type, they should precede the field-type; in a choice-type, they
should precede the alternative-type; and in a homogeneous aggregate-type, they should precede the element-
type.

B.3 Procedure-attributes

A procedure-attribute is an annotation attached to a procedure-declaration which characterizes some aspect
of the invocation or use of the named procedure, in some particular context. Procedure-attributes may include,
among others:

⎯ specification of the location of its instantiations,

⎯ specification of the procedure interface.

Procedure-attributes should precede the keyword “procedure” or follow the entire type-specifier. In addition,
procedure-attributes should be distinguishable from type- or component-attributes by their text.

B.4 Argument-attributes

An argument-attribute is an annotation attached to an argument to a procedure-declaration or procedure-type
which characterizes some aspect of the operations on, or representations of, values passed through that
argument of the particular procedure or procedure datatype (as distinct from general limitations on the
datatype which is the argument-type) in some particular context. Argument-attributes may include, among
others:

⎯ any of the attribute notions given in B.1, but restricted to the use of the datatype in this argument,

⎯ specification of the means of passing the argument.

Argument-attributes should immediately precede the argument or return-argument which they are intended to
describe (in a procedure-type, a procedure-declaration, or a termination-declaration).

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 93

Annex C
(informative)

Implementation notions of datatypes

This annex defines a collection of datatype notions excluded from this International Standard, because they
were deemed to be notions of implementation or representation of datatypes, rather than conceptual notions.

The values of the datatypes defined by this International Standard are abstract objects conforming to a set of
given rules. Each computer system has its own internal datatypes, whose value spaces are (typically fixed-
length) sequences of n distinguished symbols (most commonly, the two symbols "0" and "1"), and whose
characterizing operations are the instructions built into the computer system. A representation of a general-
purpose datatype is a mapping from the value space of the general-purpose datatype to a computer system
value space.

In addition to values of datatypes, a computer system has the notion of variable – an object to which a value
of some datatype or datatypes is dynamically associated. (In a certain sense, a variable is an implementation
of a value of a pointer datatype (8.3.2).) The characterizing operations defined by this International Standard
are abstract computational notions of functions applicable to the values of datatypes, used to identify the
semantics of the datatypes. In a computer system, the operations on representations of those values and
variables containing those representations are actually executed.

The characteristics of representations, variables, and the execution of operations are beyond the scope of this
International Standard. Nonetheless, because these characteristics are inextricably mixed with the datatype
notions in many programming languages, and because these characteristics are important to many
applications of this International Standard, this International Standard provides for their inclusion in type-
specifiers and in datatype- and procedure-declarations via annotations (see 7.4). An annotation is a
descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to
characterize some aspect of the representations, variables, or operations associated with values of the
datatype, or the component or procedure, in some particular context.

This annex identifies notions for which such annotations may be appropriate and even necessary for certain
language mappings. This International Standard does not specify the syntax or semantics of any specific
annotations to describe implementation notions. The development of standards for such annotations may be
appropriate, but is outside the scope of this International Standard.

C.1 StorageSize

StorageSize is a type-attribute specifying the number (and type) of storage units required or allotted to
represent values of the datatype. It may also specify whether the number of storage units is constant over all
values of (this instance of) the datatype, or varies according to the requirements of the particular value to be
represented.

StorageSize may apply to any datatype, except procedure datatypes.

NOTE If there is a limitation on the maximum size of representable values, it implies that there is a limitation on the
value space of this datatype, which may be better documented by appropriate subtype specifications (see 8.2).

C.2 Mode

Mode is a type-attribute which specifies the radix of representation of a numeric datatype, the representation
of the digits, the representation of the decimal-point, if any, and the sign representation and placement
conventions. Such notions as “two’s complement binary”, “packed decimal with trailing sign” and the numeric

ISO/IEC 11404:2007(E)

94 © ISO/IEC 2007 – All rights reserved

representation formats of ISO 6093, Information processing — Representation of numerical values in
character strings for information interchange, are examples of “modes”.

Mode applies only to numeric datatypes, principally Integer and Scaled.

C.3 Floating-Point

Floating-point is a type-attribute which specifies that a numeric datatype has a floating-point representation
and the characteristics of that representation.

Following ISO/IEC 10967-1, a floating-point representation of the value v has the form:

v = S • M • RE

where

R is the radix of the representation;

E is the exponent; and

S is the sign, i.e. either S = 1 or S = -1;

M is the mantissa, either zero or a value of the datatype

scaled(radix, precision) range(radix-precision, 1) excluding(1).

This representation can be characterized by five parameters:

radix and precision, from above;

emin and emax, with the requirement: emin ≤ E ≤ emax; and

denorm, with the requirement that denorm = false implies d = R-1 and denorm = true implies d = R-precision.

Floating-point applies only to numeric datatypes, principally Real and Complex.

C.4 Fixed-Point

Fixed-point is a type-attribute which specifies that a numeric datatype has a fixed-point representation and the
characteristics of that representation.

A fixed-point representation has the form:

v = S × M × R-P

where

R is the radix of the representation;

S is the sign, i.e. either S = 1 or S = -1;

M is the mantissa, a value of the datatype Integer;

P is the precision.

This representation can be characterized by the radix and precision parameters.

Fixed-point applies only to numeric datatypes, principally Scaled.

ISO/IEC 11404:2007(E)

© ISO/IEC 2007 – All rights reserved 95

C.5 Tag

Tag is a type-attribute which specifies whether and how the tag-value of a value of a choice datatype is
represented.

Tag applies only to choice datatypes or their generators.

C.6 Discriminant

Discriminant specifies the source of the discriminant value of a Choice datatype.

Discriminant applies only to choice datatypes or their generators.

C.7 StorageSequence

StorageSequence attributes describe the order of presentation of the component values of a value of an
aggregate datatype, such as Set or Record, whose ordering is not implied by the type properties. Their values
and meaning depend on the aggregate datatype involved.

StorageSequence attributes apply only to aggregate datatypes or to their generators.

C.8 Packed

Packed and “unpacked” or “aligned” are type-attributes which characterize the juxtaposition of all components
of a value of an aggregate datatype. They distinguish between the optimization of space and the optimization
of access-time.

Packed attributes apply only to aggregate datatypes or to their generators.

C.9 Alignment

Alignment is a component-attribute that characterizes the forced alignment of the representations of values of
a given component datatype on storage-unit boundaries. It implies that “padding” to achieve the necessary
alignment may be inserted in the representation of the aggregate datatype which contains the annotated
component.

C.10 Form

Form is a type-attribute which specifies that one datatype has the same representation as another. In
particular, form permits an implementation to specify that a primitive general-purpose datatype has a visible
information structure, or that a particular generated datatype has a primitive implementation.

Form may apply to any datatype.

ISO/IEC 11404:2007(E)

96 © ISO/IEC 2007 – All rights reserved

Bibliography

[1] ISO/IEC Guide 2, Standardization and related activities — General vocabulary

[2] ISO/IEC 646, Information technology — ISO 7-bit coded character set for information interchange

[3] ISO/IEC 1539-1, Information technology — Programming languages — Fortran — Part 1: Base
language

[4] ISO/IEC 2375, Information technology — Procedure for registration of escape sequences and coded
character sets

[5] ISO/IEC 7350, Information technology — Registration of repertoires of graphic characters from
ISO/IEC 10367

[6] ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

[7] ISO/IEC 9075 (all parts), Information technology — Database languages — SQL

[8] ISO/IEC 9593-1, Information processing systems — Computer graphics — Programmer's Hierarchical
Interactive Graphics System (PHIGS) language bindings — Part 1: FORTRAN

[9] ISO/IEC 10036, Information technology — Font information interchange — Procedures for registration
of font-related identifiers

[10] ISO/IEC TR 10176, Information technology — Guidelines for the preparation of programming language
standards

[11] ISO/IEC 10967-1, Information technology — Language independent arithmetic — Part 1: Integer and
floating point arithmetic

[12] ISO/IEC 11179 (all parts), Information technology — Metadata registries (MDR)

[13] ISO/IEC 11578, Information technology — Open Systems Interconnection — Remote Procedure Call
(RPC)

[14] ISO/IEC 13886, Information technology — Language-Independent Procedure Calling (LIPC)

[15] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems

ISO/IEC 11404:2007(E)

ICS 35.060
Price based on 96 pages

© ISO/IEC 2007 – All rights reserved

