b wN

00 NO

10
11
12
13
14

15

16
17
18
19

20

21

22
23
24
25
26
27
28
29

30
31
32
33
34
35

36
37
38

System.Version Class

[ILAsm]
.class public sealed serializable Version extends System.Object implements

System.I1Cloneable, System.lComparable, System.lComparable™l<class
System.Version>, System.lEquatable 1<class System.Version>

[C#]
public sealed class Version: ICloneable, IComparable,
IComparable<Version>, lEquatable<Version>

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.ICloneable

e System.lComparable

e System.lComparable<System.Version>

e System.lEquatable<System.Version>
Summary

Represents the version number of an assembly.

Inherits From: System.Object
Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations.
No instance members are guaranteed to be thread safe.

Description

System.Version numbers for an assembly consist of two to four components: major,
minor, build, and revision. Components major and minor must be defined. Build and
revision components are optional. Component revision can be used if and only if build is
defined. All defined components must be a System. Int32 greater than or equal to zero.

[Note: By convention, the components are used as follows:

e Major: Assemblies with the same name but different major versions are not
interchangeable. This would be appropriate, for example, for a major rewrite of a
product where backwards compatibility cannot be assumed.

A WN PR

o

11

12

Minor: If the name and major number on two assemblies are the same, but the
minor number is different, this indicates significant enhancement with the intention
of backwards compatibility. This would be appropriate, for example, on a "point
release” of a product or a fully backward compatible new version of a product.

Assemblies with the same name, major, and minor version numbers but different
revisions are intended to be fully interchangeable. This would be appropriate, for
example, to fix a security hole in a previously released assembly.

A difference in build number is intended to represent a recompilation of the same
source. This would be appropriate, for example, because of processor, platform, or
compiler changes.

[uny

11

Version() Constructor

Summary

Constructs and initializes a new instance of the System.Version class.

Description

System.Version.Major and System.Version.Minor are set to zero.
System.Version.Build and System.Version.Revision are unspecified.

1 Version(System.Int32, System.Int32,
2 System.Int32, System.Int32) Constructor

8 Summary

9 Constructs and initializes a new instance of the System.Version class with the specified
10 major, minor, build, and revision numbers.

11 Parameters

major A System.Int32 specifying the major component.
minor A System.Int32 specifying the minor component.
build A System.Int32 specifying the build component.
revision A System.Int32 specifying the revision component.

12
13 Exceptions

major, minor, build, or revision is less than

System.ArgumentOutOfRangeException

zero.
14

15 Example

16 The following example sets the version to "6.1.2.4" and writes the result to the console.
17

18 [C#]

19

20 using System;

21

22 public class Vers {

23 public static void Main() {

O 0 NOOTULPWNE

=
o

Version vers = new Version(6, 1, 2, 4);
Console._WriteLine("Version is {0}, vers.ToString());

}
}

The output is

Version is 6.1.2.4

1 Version(System.Int32, System.Int32,
2 System.Int32) Constructor

8 Summary

9 Constructs and initializes a new instance of the System.Version class using the
10 specified major, minor, and build values.

11 Parameters

major A system.Int32 specifying the major component.
minor A System. Int32 specifying the minor component.
build A system.Int32 specifying the build component.

12

13 Exceptions

‘System.ArgumentOutOfRangeException ‘major, minor, or build is less than zero.

14
15 Example

16 The following example sets the version to "6.1.2" and writes the result to the console.
17

18 [C#]

19

20 using System;

21

22 public class Vers {

23 public static void Main() {

24

25 Version vers = new Version(6, 1, 2);

26 Console._WriteLine("Version is {0}", vers.ToString(Q);
27 }

U b WNE

}

The output is

Version is 6.1.2

11

12
13

14
15

16

17
18

19
20
21
22
23
24
25
26
27
28
29

Version(System.Int32, System.Int32)
Constructor

Summary

Constructs and initializes a new instance of the System.Version class using the
specified major and minor values.

Parameters
major A system.Int32 specifying the major component.
minor A System. Int32 specifying the minor component.

Exceptions

‘System.ArgumentOutOfRangeException ‘major or minor is less than zero.

Example

The following example sets the version to "6.1" and writes the result to the console.

[C#]

using System;

public class Vers {
public static void Main(Q) {

Version vers = new Version(6, 1);
Console._WriteLine("Version is {0}, vers.ToString(Q);

}
}

[N

w

The output is

Version is 6.1

[uny

Version(System.String) Constructor

6 Summary

7 Constructs and initializes a new instance of the System.Version class using the values
8 represented by the specified System.String.

9 Parameters

A System.String that represents 2 to 4 System.Int32 integers separated by
period characters ('."). Each component delineated by a period character will be
parsed to a System.Int32 with System.Int32.Parse(System.String). The
numbers will be processed in the following order: major, minor, build, revision.
If the revision or the revision and the build components are not represented by
version, their values will be undefined.

version
[Note: The formatting of version must be as follows, with optional components
shown in square brackets ('[' and']"): major.minor[.build[.revision]], where
each component returns a System.Int32 with System.Int32.Parse
(System.String).

10
11 Exceptions

version has fewer than 2 components or more
System.ArgumentException than 4 components (i.e. fewer than 1 or more
than 3 period characters).

System.ArgumentNullException version is a null reference.

major, minor, build, or revision is less than

System.ArgumentOutOfRangeException Jero

10

upbh w

(Yoo B N o))

10

12
13
14
15
16
17
18

19

20

At least one component of version does not
System.FormatException parse to a System.Int32 with
System.Int32.Parse (System.String).

Example

The following example sets the version to "6.1.2.4" and writes the result to the console.

[C#]

using System;

public class Vers {
public static void Main() {

Version vers = new Version("6.1.2.4");
Console._WriteLine("Version is {0}, vers.ToString());

}
}

The output is

Version is 6.1.2.4

11

10
11

12

13
14
15
16
17
18

19

20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41

[ILAsm]
-method public final hidebysig virtual object Clone()

[C#]
public object Clone()

Summary

Returns a new System.Object with values equal to the property values of the current
instance.

Return Value

A new System.Object whose values are equal to the property values of the current
instance.

Description

The System.Object returned by this method must be explicitly cast to a
System.Version before it can be used as one.

[Note: This method is implemented to support the System.ICloneable interface.]

Example

The following example clones the version number and writes the result to the console.
[C#]

using System;
class VersionCloneExample {
public static void Main() {
Version vers = new Version(''6.1.2.4");
Console.WriteLine("The string representation of the" +
" version is {0}.",
vers.ToString());
Version clone = (Version) vers.Clone();
Console._WriteLine("'The original version was' +
" successfully cloned.™);
Console.Write(''The string representation of the" +
" cloned version is {0}.",
clone.ToString(Q));

}
}

The output is
The string representation of the version is 6.1.2.4.

12

N ou bk, wNeR

The original version was successfully cloned.

The string representation of the cloned version is 6.1.2.4.

13

10

11
12
13
14

15

16

17

18
19
20
21
22

Version.CompareTo(System.Object) Method

Summary

Returns the sort order of the current instance compared to the specified System.0Object.

Parameters

version ‘The System.Object to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the sort
order of the current instance as compared to version. For non-zero return values, the
exact value returned by this method is unspecified. The following table defines the
return value:

A negative number Current instance < version.
Zero Current instance == version.
A positive number Current instance > version, or version is a null reference.

Description

[Note: The components of System.Version in decreasing order of importance are:
major, minor, build, and revision. An undefined component is assumed to be older than
any defined component.

This method is implemented to support the System. IComparable interface.

14

2 1
3 Exceptions

Exception Condition

System.ArgumentException |version is not a System.Version and is not a null reference

5 Example
6 [C#]

7 using System;
8 class VersionTest {

9 static string Test (Version vl, Version v2) {
10 int 1 = vli.CompareTo(v2);

11 if(i<0)

12 return "older than';

13 else if (i1 ==0)

14 return "the same as";

15 else

16 return "newer than";

17 }

18 public static void Main() {

19 Version versl = new Version("6.1.2.4");
20 Version vers2 = new Version(6, 1);

21 Version vers3 = new Version(6, 1, 3);
22 Console._Write('Version {0} is {1} ",

23 versl, Test(versl, vers2));
24 Console . WriteLine("'version {0}, vers2);
25 Console.Write("'Version {0} is {1} ",

26 versl, Test(versl, vers3));
27 Console._WriteLine('version {0}, vers3);
28 Console _Write('Version {0} is {1} ",

29 vers3, Test(vers3, vers3));
30 Console._WriteLine("version {0}, vers3);
31 Console.Write("'Version {0} is {1} ",

32 vers2, Test(vers2, versl));
33 Console _WriteLine('version {0}", versl);
34 }

35 }

36

37 The output is

38

39 Version 6.1.2_.4 is newer than version 6.1

40

41

42 Version 6.1.2.4 is older than version 6.1.3

43

44

45 Version 6.1.3 is the same as version 6.1.3

15

A2 WN K

Version 6.1

is older than version 6.1.2.4

16

H~wWN

O

10

11
12

13
14
15
16

17

18

19

20
21
22

Version.CompareTo(System.Version) Method

Summary

Returns the sort order of the current instance compared to the specified

System.Version.

Parameters

value ‘The System.Version to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the sort
order of the current instance as compared to version. For non-zero return values, the
exact value returned by this method is unspecified. The following table defines the

return value:

A negative number

Current instance < value.

Zero

Current instance == value.

A positive number

Current instance > value, or value is a null reference.

Description

[Note: The components of System.Version in decreasing order of importance are:
major, minor, build, and revision. An undefined component is assumed to be older than

any defined component.

17

NoOoupbhWwWNPE

1

[Note: This method is implemented to support the
System.IComparable<System.Version> interface.]

18

10
11

12
13
14
15
16

17

18
19
20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35

Version.Equals(System.Object) Method

Summary

Determines whether the current instance and the specified System.0Object represent the
same type and value.

Parameters

obj ‘The System.Object to compare to the current instance.

Return Value

A System.Boolean wWhere true indicates obj is the same type as the current instance
and has equal System.Version.Major, System.Version.Minor,
System.Version.Build, and System.Version.Revision properties as the current
instance. If obj is a null reference or is not an instance of System.Version, returns
false.

Description

[Note: This method overrides System.Object.Equals.]

Example
[C#]

using System;
class VersionEqualsExample {
static void testEquals(Version v1l, Version v2) {
Console._Write(It is {0} that version ",
vl.Equals(v2));
Console_WriteLine("{0} is equal to {1}.",
vl, v2);
}
public static void Main(Q) {
Version versl = new Version("6.1.2.4");
Version vers2 = new Version(6, 1);
testEquals(versl, versl);
testEquals(versl, vers2);

19

OCoONOOUL B WNPE

[any
o

=
[ERN

}
}

The output is

It is True that version 6.1.2.4 is equal to 6.1.2.4.

It is False that version 6.1.2.4 is equal to 6.1.

20

10
11

12
13
14

15

16
17
18
19

20

Version.Equals(System.Version) Method

Summary

Determines whether the current instance and the specified System.Version represent
the same value.

Parameters

obj ‘The System.Version to compare to the current instance.

Return Value

A System.Boolean where true indicates obj has equal System.Version.Major,
System.Version.Minor, System.Version.Build, and System.Version.Revision
properties as the current instance. If obj is a null reference, returns false.

Description

[Note: This method is implemented to support the
System.IEquatable<System.Versions interface.]

21

10

11
12
13
14
15

16

Version.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for the current instance.

Description

The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

22

10

11
12

13
14
15

16

17
18
19
20

21

Version.op_ Equality(System.Version,
System.Version) Method

Summary

Determines whether two instances of System.Version are equal.

Parameters

vl

An instance of the System.Version class.

v2

An instance of the System.Version class.

Return Value

A System.Boolean where true indicates vl and v2 have equal System.Version.Major,
System.Version.Minor, System.Version.Build, and System.Version.Revision
properties, or both vl and v2 are null; otherwise false.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

23

11

12
13

14
15

16

17
18
19
20

21

22

23

Version.op_ GreaterThan(System.Version,
System.Version) Method

Summary

Determines whether the first instance of System.Version is greater than the second
instance of System.Version.

Parameters

vl

An instance of the System.Version class.

V2

An instance of the System.Version class.

Return Value

A System.Boolean where true indicates v1 is greater than v2; otherwise false. If v1 is
null, false is returned.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

Exceptions

‘System.ArgumentNuIIException

v2 is a null reference.

24

10
11

12

13
14

15
16

17

18
19
20
21

22

23

24

Version.op_ GreaterThanOrEqual(System.Vers
ion, System.Version) Method

Summary

Determines whether the first instance of System.Version is greater than or equal to the
second instance of System.Version.

Parameters
vl An instance of the System.Version class.
v2 An instance of the System.Version class.

Return Value

A System.Boolean wWhere true indicates v1 is greater than or equal to v2; otherwise
false. If vl is null, false is returned.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

Exceptions

‘System.ArgumentNuIIException v2 is a null reference.

25

10

11
12

13
14
15

16

17
18
19
20

21

Version.op

Inequality(System.Version,

System.Version) Method

Summary

Determines whether two instances of System.Version are not equal.

Parameters

vl

An instance of the System.Version class.

v2

An instance of the System.Version class.

Return Value

A System.Boolean Where true indicates vl and v2 have at least one unequal property;
otherwise false. If vl and v2 are both null, returns false; if one is null but not the

other, returns true.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

26

11

12
13

14
15

16

17
18
19
20

21

22

23

Version.op LessThan(System.Version,
System.Version) Method

Summary

Determines whether the first instance of System.vVersion is less than the second
instance of System.Version.

Parameters

vl

An instance of the System.Version class.

V2

An instance of the System.Version class.

Return Value

A System.Boolean where true indicates v1 is less than v2; otherwise false. If v2 is
null, false is returned.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

Exceptions

‘System.ArgumentNuIIException

vl is a null reference.

27

10
11

12

13
14

15
16

17

18
19
20
21

22

23

24

Version.op_ LessThanOrEqual(System.Version
, System.Version) Method

Summary

Determines whether the first instance of System.Version is less than or equal to the
second instance of System.Version.

Parameters
vl An instance of the System.Version class.
v2 An instance of the System.Version class.

Return Value

A System.Boolean where true indicates v1 is less than or equal to v2; otherwise false.
If v2 is null, false is returned.

Description

The parts of the version number are compared independently starting with the
System.Version.Major property and then the System.Version.Minor,
System.Version.Build, and System.Version.Revision properties, in order. This
method returns as soon as one of the properties is determined not to be equal.

Exceptions

‘System.ArgumentNuIIException vl is a null reference.

28

10
11

12

13
14
15
16
17
18

19

20

21
22
23
24
25
26
27
28
29
30

31
32

33

Version.Build Property

Summary

Gets the value of the build component of the current instance.

Property Value

A System.Int32 specifying the build component, or -1 if the build component is
undefined.

Description

This property is read-only.

[Note: If the version number is 6.1.2.4, the build component is 2. If the version number
is 6.1, the build component is -1, which is considered to be undefined.]

Example
[c#]

using System;
class VersionBuildExample {
public static void Main() {
Version vers = new Version(''6.1.2.4");
Console_Write("'The build component of ');
Console._WriteLine(*'version vers = {0}.", vers.Build);
}
}

The output is

The build component of version vers = 2.

29

10

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25
26
27

28

29
30

31

32

Version.Major Property

Summary

Gets the value of the major component of the current instance.

Property Value

A system.Int32 specifying the major component.

Description
This property is read-only.
example

If the version number is 6.1, the major version is 6.

Example
[C#]

using System;
class VersionMajorExample {
public static void Main(Q) {
Version vers = new Version('6.1.2.4");
Console_Write(""The major component '");
Console._WriteLine(*'of version vers = {0}.",
vers.Major);

}
}

The output is

The major component of version vers = 6.

30

10

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25
26
27

28

29
30

31

Version.Minor Property

Summary

Gets the value of the minor component of the current instance.

Property Value

A System.Int32 specifying the minor component.

Description
This property is read-only.
example

If the version number is 6.1, the minor component is 1.

Example
[C#]

using System;
class VersionMinorExample {
public static void Main(Q) {
Version vers = new Version('6.1.2.4");
Console._Write(""The minor component '");
Console._WriteLine(*'of version vers = {0}.",
vers.Minor);

}
}

The output is

The minor component of version vers = 1.

31

10
11

12

13

14

15
16

17

18

19

20
21
22
23
24
25
26
27
28
29
30

31
32

33

34

Version.Revision Property

Summary

Gets the value of the revision component of the current instance.

Property Value

A system.Int32 specifying the revision component, or -1 if the revision component is
undefined.

Description
This property is read-only.
example

If the version number is 6.1.2.4, the revision component is 4. If the version number is
6.1, the revision component is considered to be undefined.

Example
[C#1

using System;
class VersionRevisionExample {
public static void Main() {
Version vers = new Version('6.1.2.4");
Console_Write(""The revision component of ');
Console_WriteLine("'version vers = {0}.",
vers.Revision);
}
}

The output is

The revision component of version vers = 4.

32

