[y

NoubkhwN

[@Ne o]

11

12
13
14
15
16

17

18
19
20
21
22
23

24

25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

System.Collections.Generic.List<T> Class

[ILAsm]
.class public serializable List 1<T> extends System.Object implements

System.Collections.Generic.lList 1<!10>,
System.Collections.Generic.1Collection 1<!10>,
System.Collections.Generic. lEnumerable”1<10>, System.Collections.IList,
System.Collections.1Collection, System.Collections.lEnumerable

[C#]
public class List<T>: IList<T>, ICollection<T>, lEnumerable<T>, IList,
ICollection, IEnumerable

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:

System.Collections.I1Collection
System.Collections.lIEnumerable
System.Collections.lList<T>
System.Collections.Generic.lCollection<T>
System.Collections.Generic.lIEnumerable<T>
System.Collections.Generic.lList<T>

Summary

Implements the System.Collections.Generic.IList<T> interface. The size of a List is
dynamically increased as required. A List is not guaranteed to be sorted. It is the
programmer’s responsibility to sort the List prior to performing operations (such as
BinarySearch) that require a List to be sorted. Indexing operations are required to
perform in constant access time; that is, O(1).

Inherits From: System.Object
Library: BCL

Thread Safety: Static members of this type are thread-safe. Any instance members are
not guaranteed to be thread safe. A list can support multiple readers concurrently, as long
as the collection is not modified. Even so, enumerating through a collection is intrinsically
not a thread safe procedure. [Note: To guarantee thread safety during enumeration, you
can lock the collection during the entire enumeration. To allow the collection to be accessed
by multiple threads for reading and writing, you must implement your own synchronization.]

Description

Some methods, such as Contains, IndexOf, Last IndexOf, and Remove, use an equality
comparer for the list elements. The default equality comparer for type T is determined
as follows: If type T implements System. IEquatable<T> then the default equality
comparer is System.IEquatable; T>.Equals (T); otherwise the default equality
comparer is System.Object .Equals (Object).

Some methods, such as BinarySearch and Sort, use a comparer for the list elements.
Some overloads of these methods take an explicit comparer as argument, while others
use a default comparer. The default comparer for type T is determined as follows: If
type T implements System. IComparable<T> then the default comparer is

System. IComparable<Ts>.CompareTo (T); otherwise, if type T implements

System. IComparable then the default comparer is

System. IComparable.CompareTo (Object). If type T implements neither

System. IComparable<T> NOr System.IComparable then there is no default comparer; in
this case a comparer or comparison delegate must be given explicitly.

The capacity of a System.Collections.Generic.List<T> is the number of elements the
System.Collections.Generic.List<T> can hold. As elements are added to a
System.Collections.Generic.List<T>, the capacity is automatically increased as
required.. The capacity can be decreased by calling
System.Collections.Generic.List<T>.TrimToSize or by setting the
System.Collections.Generic.List<T>.Capacity property explicitly.

Indexes in this collection are zero-based.

System.Collections.Generic.List<T> accepts null as a valid value for reference
types and allows duplicate elements.

This type contains a member that is a nested type, called Enumerator. Although
Enumerator is a member of this type, Enumerator is not described here; instead, it is
described in its own entry, List<T>.Enumerator.

10
11
12
13

14

List<T>=() Constructor

Summary

Initializes a new list that is empty and has the default initial capacity.

Description

[Note: If the size of the collection can be estimated, you can specify the initial capacity
in a constructor overload that accepts a capacity parameter to eliminate the need to
perform a number of resizing operations while adding elements to the list.]

2 List<T>=(System.Collections.Generic.lEnumer
3 able<T>) Constructor

4

5

6

7

8

9 Summary

10 Initializes a new list with elements copied from the specified collection, ensuring that the
11 list has sufficient capacity to accommodate the number of elements copied.

12 Parameters

collection ‘The collection from which to copy the elements.

13
14 Description

15 [Note: If the size of the collection can be estimated, you can specify the initial capacity
16 in a constructor overload that accepts a capacity parameter to eliminate the need to
17 perform a number of resizing operations while adding elements to the list.]

18

19

20

21 The elements are copied onto the list in the same order in which they are read by the
22 System.Collections.Generic.IEnumerator<T= from collection.

23 Exceptions

‘System.ArgumentNuIIException collection is null.

24

25

List<T>=(System.Int32) Constructor

=

6 Summary

7 Initializes a new list that is empty and has the specified initial capacity.

8 Parameters

The maximum number of elements that the List can contain without
reallocating memory.

capacity

10 Exceptions

capacity is less than zero.

‘System.ArgumentOutOfRangeException

11

12

10

11
12
13
14
15
16
17
18
19
20

21

List<T>=.Add(T) Method

Summary

Adds an item to the end of the list.

Parameters

The item to add to the end of the list. (item can be null if T is a reference
type.)

item

Description

System.Collections.Generic.List<T> accepts null as a valid value for reference
types and allows duplicate elements.

If System.Collections.Generic.List<T>.Count already equals
System.Collections.Generic.List<T>.Capacity, the capacity of the list is increased.

If System.Collections.Generic.List<T>.Count is less than
System.Collections.Generic.List<T>.Capacity, this method is an O(1) operation. If
the capacity needs to be increased to accommodate the new element, this method
becomes an O(n) operation, where n is System.Collections.Generic.List<T>.Count.

10

11

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

List<T>=.AddRange(System.Collections.Generli
c.lEnumerable<T>=) Method

Summary

Adds the elements of the specified collection to the end of the list.

Parameters

collection ‘The collection whose elements are added to the end of the list.

Description

System.Collections.Generic.List<T> accepts null as a valid value for reference
types and allows duplicate elements.

The order of the elements in the collection is preserved in the
System.Collections.Generic.List<Ts>.

If the new System.Collections.Generic.List<T>.Count (the current
System.Collections.Generic.List<T>.Count plus the size of the collection) will be
greater than System.Collections.Generic.List<T>.Capacity, the capacity of the list
is increased.

If the list can accommodate the new elements without increasing
System.Collections.Generic.List<T>.Capacity, this method is an O(n) operation,
where n is the number of elements to be added. If the capacity needs to be increased to
accommodate the new elements, this method becomes an O(n + m) operation, where n
is the number of elements to be added and m is
System.Collections.Generic.List<T>.Count.

Exceptions

‘System.ArgumentNuIIException collection is null.

10

11

12
13
14
15
16

17

List<T>=.AsReadOnly() Method

Summary

Returns a read-only wrapper to the current List.

Return Value

A read-only wrapper for the current List.

Description

To prevent any modifications to a list, expose it only through this wrapper.

A collection that is read-only is simply a collection with a wrapper that prevents
modifying the collection; therefore, if changes are made to the underlying collection, the
read-only collection reflects those changes.

10
11

12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

List<T>=.BinarySearch(T) Method

Summary

Searches the entire sorted list for an element using the default comparer, and returns
the zero-based index of the element.

Parameters

item ‘The element for which to search. (item can be null if T is a reference type.)

Return Value

The zero-based index of item in the sorted list, if item is found; otherwise, a negative
number, which is the bitwise complement of the index of the next element that is larger
than item or, if there is no larger element, the bitwise complement of
System.Collections.Generic.List<T>.Count.

Description

This method uses the default comparer for type T to determine the order of list
elements. If there is no default comparer, then the method throws
System.InvalidOperationException. The default comparer for a given element type T
is defined in the Description section of this (class List<T>) specification.

The list must already be sorted according to the comparer implementation; otherwise,
the result is incorrect.

Comparing null with any reference type is allowed and does not generate an exception
when using System. IComparable<T>. When sorting, null is considered to be less than
any other object.

If the list contains more than one element with the same value, the method returns only
one of the occurrences, and it might return any one of the occurrences, not necessarily
the first one.

If the list does not contain the specified value, the method returns a negative integer.

You can apply the bitwise complement operation (—) to this negative integer to get the
index of the first element that is larger than the search value. When inserting the value
into the list, this index should be used as the insertion point to maintain the sort order.

10

N -~

This method is an O(log n) operation, where n is the number of elements in the list.

Exceptions

The default comparer cannot find a

System.InvalidOperationException |System.IComparable<T> Or System.IComparable
implementation for type T.

11

10
11

12

13
14

15
16
17
18

19

20
21
22
23
24
25
26
27

List<T>=.BinarySearch(T,
System.Collections.Generic.lComparer<T=>)

Method

Summary

Searches the entire sorted list for an element using the specified comparer and returns
the zero-based index of the element.

Parameters

item The element for which to search. (item can be null if T is a reference type.)
The System.Collections.Generic.IComparer<T> implementation to use when
comparing elements.

comparer

-0r-

null to use the default comparer.

Return Value

The zero-based index of item in the sorted list, if item is found; otherwise, a negative
number, which is the bitwise complement of the index of the next element that is larger
than item or, if there is no larger element, the bitwise complement of
System.Collections.Generic.List<T>.Count.

Description

If the given comparer is non-null, it is used to determine the order of list elements. If
the given comparer is null, the default comparer for type T is used; if there is no
default comparer, then the method throws System.InvalidOperationException. The
default comparer for a given element type T is defined in the Description section of this
(class List<T>) specification.

The comparer customizes how the elements are compared. For example, if T is
System.String, YOU can use a System.Collections.CaseInsensitiveComparer

12

CoOoONOOTULLE WN

21

22

instance as the comparer to perform case-insensitive string searches.

The list must already be sorted according to the comparer implementation; otherwise,
the result is incorrect.

Comparing null with any reference type is allowed and does not generate an exception
when using System. IComparable<T>. When sorting, null is considered to be less than
any other object.

If the System.Collections.Generic.List<T> contains more than one element with the
same value, the method returns only one of the occurrences, and it might return any
one of the occurrences, not necessarily the first one.

If the list does not contain the specified value, the method returns a negative integer.

You can apply the bitwise complement operation (—~) to this negative integer to get the
index of the first element that is larger than the search value. When inserting the value
into the list, this index should be used as the insertion point to maintain the sort order.

This method is an O(log n) operation, where n is the number of elements in the list.
Exceptions
comparer is null, and the default comparer cannot

System.InvalidOperationException find a System. IComparable<T>
orSystem. IComparable implementation for type T.

13

11

12
13

14

15
16

17
18
19

20

List<T>=.BinarySearch(System.Int32,
Int32, T,
Collections.Generic.IComparer<T>)

System.
System.

Method

Summary

Searches a range of elements in the sorted list for an element using the specified
comparer and returns the zero-based index of the element.

Parameters

index The zero-based starting index of the range to search.

count The length of the range to search.

item The element for which to search. (item can be null if T is a reference type.)
The System.Collections.Generic.IComparer<T> implementation to use when
comparing elements.

comparer
Or
null to use the default comparer.

Return Value

The zero-based index of item in the sorted list, if item is found; otherwise, a negative
number, which is the bitwise complement of the index of the next element that is larger
than item or, if there is no larger element, the bitwise complement of index + count.

Description

14

OooNOOULTL P WN -

29

30

If the given comparer is non-null, it is used to determine the order of list elements. If
the given comparer is null, the default comparer for type T is used; if there is no
default comparer, then the method throws System. InvalidOperationException. The
default comparer for a given element type T is defined in the Description section of this
(class List<T>) specification.

The comparer customizes how the elements are compared. For example, if T is
System.String, You can use a System.Collections.CaseInsensitiveComparer
instance as the comparer to perform case-insensitive string searches.

The list must already be sorted according to the comparer implementation; otherwise,
the result is incorrect.

Comparing null with any reference type is allowed and does not generate an exception
when using System. IComparable<T>. When sorting, null is considered to be less than
any other object.

If the System.Collections.Generic.List<T> contains more than one element with the
same value, the method returns only one of the occurrences, and it might return any
one of the occurrences, not necessarily the first one.

If the list does not contain the specified value, the method returns a negative integer.

You can apply the bitwise complement operation (~) to this negative integer to get the
index of the first element that is larger than the search value. When inserting the value
into the list, this index should be used as the insertion point to maintain the sort order.

This method is an O(log n) operation, where n is the number of elements in the range.

Exceptions

Exception Condition

. index + count is greater than
System.ArgumentException

System.Collections.Generic.List<T>.Count.

index is less than zero.
System.ArgumentOutOfRangeException |-Or-

count is less than zero.

comparer is null, and the default comparer

. . . cannot find a System. IComparable<T>
System.InvalidOperationException

T.

15

orSystem. IComparable implementation for type

10
11
12
13
14
15
16
17
18

19

List<T>.Clear() Method

Summary

Removes all elements from the list.

Description

System.Collections.Generic.ICollection<T>.Count gets set to zero, and references
to other objects from elements of the collection are also released. The capacity remains
unchanged.

[Note: To reset the capacity, call System.Collections.Generic.List<T>.TrimToSize
or set the System.Collections.Generic.List<T>.Capacity property directly.

1

16

10

11

12

13
14
15
16
17
18

19

List<T>.Contains(T) Method

Summary

Determines whether the list contains a specific value.

Parameters

'The object to locate in the current collection. (item can be null if Tis a
reference type.)

item

Return Value

true, if item is found in the list; otherwise, false.

Description

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

17

10

11
12

13

14

15
16
17
18
19

20

21

22

List<T>=.ConvertAll(System.Converter<T,U>)
Method

Summary

Converts the current List (of type T) to a List of type U.

Parameters

A converter delegate that converts each element from one type to another
type.

converter

Return Value

A List of the target type containing the converted elements from the current List.

Description

The converter is a delegate that converts an object to the target type. The elements of
the current List are individually passed to the converter delegate, and the converted
elements are saved in the new List.

The current List remains unchanged.

Exceptions

‘System.ArgumentNuIIException converter is null.

18

1 List<T=.CopyTo(T[]) Method

v b

6 Summary

~

Copies the entire list to an array.

8 Parameters

A one-dimensional, zero-based array that is the destination of the elements
copied from the list.

array

9
10 Description

11 The elements are copied onto the array (using System.Array.Copy) in the same order
12 in which the enumerator iterates through the list.

13 Exceptions

array is multidimensional.

Or
array does not have zero-based indexing.

Or

System.ArgumentException The number of elements in the list is greater than the
number of elements that the destination array can

contain.
Or

Type T is not assignable to the element type of the
destination array.

19

System.ArgumentNullException |array is null.

20

10

11
12

13

List<T=.CopyTo(T[], System.Int32) Method

Summary

Copies the elements of the list to an array, starting at a particular index.

Parameters

A one-dimensional, zero-based array that is the destination of the elements
copied from the list.

array

arraylndex The zero-based index in array at which copying begins.

Description

The elements are copied onto the array (using System.Array.Copy) in the same order
in which the enumerator iterates through the list.

Exceptions

array is multidimensional.

or
array does not have zero-based indexing.

or‘
System.ArgumentException

The sum of arraylndex and number of
elements in the list is greater than the length
of the destination array.

Or

Type T is not assignable to the element type of

21

the destination array.

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException [arraylndex is less than zero.

22

11

12
13

14
15

16

List<T>=.CopyTo(System.Int32, T[],
INnt32, System.Int32) Method

System

Summary

Copies a range of elements of the list to an array, starting at a particular index in the
target array.

Parameters

index The zero-based index in the source list at which copying begins.

array A ope-dimensiongl, zero-based array that is the destination of the elements
copied from the list.

arraylndex The zero-based index in array at which copying begins.

count The number of elements to copy.

Description

The elements are copied onto the array (using System.Array.Copy) in the same order
in which the enumerator iterates through the list.

Exceptions

System.ArgumentException

array is multidimensional.
or

index is equal to or greater than the
System.Collections.Generic.List<T>.Count
of the source list.

23

System.ArgumentNullException

System.ArgumentOutOfRangeException

or

arraylndex is equal to or greater than the
length of array.

or

The number of elements from indexto the end
of the source list is greater than the available
space from arraylndex to the end of the
destination array.

-0r-

Type T is not assignable to the element type of
the destination array.

array is null.

index is less than zero.

—or-

array does not have zero-based indexing.
—or-

arraylndex is less than zero.

Or

count is less than zero.

24

(o]

10

11
12

13
14

15

16
17
18

19

20

21

List<T>.Exists(System.Predicate<T>)
Method

Summary

Determines whether the List contains elements that match the conditions defined by the
specified predicate.

Parameters

‘match ‘The predicate delegate that specifies the elements to search for.

Return Value

true if the List contains one or more elements that match the conditions defined by the
specified predicate; otherwise, false.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate, and processing is stopped when a match is found.

Exceptions

‘System.ArgumentNuIIException match is null.

25

wN

v b

10
11

12
13

14

15
16
17
18

19

20

21

List<T>=.Find(System.Predicate<T>=) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the first occurrence within the entire List.

Parameters

‘match ‘The predicate delegate that specifies the element to search for.

Return Value

The first element that matches the conditions defined by the specified predicate, if
found; otherwise, the default value for type T.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate, moving forward in the List, starting with the first
element and ending with the last element. Processing is stopped when a match is found.

Exceptions

‘System.ArgumentNuIIException match is null.

26

10

11
12

13
14

15

16
17
18
19

20

21

22

List<T=.FindAll(System.Predicate<T>)
Method

Summary

Retrieves all the elements that match the conditions defined by the specified predicate.

Parameters

‘match ‘The predicate delegate that specifies the elements to search for.

Return Value

A List containing all the elements that match the conditions defined by the specified
predicate, if found; otherwise, an empty List.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the Predicate delegate, and the elements that match the conditions are saved
in the returned List.

Exceptions

‘System.ArgumentNuIIException match is null.

27

11

12
13

14
15

16

17
18
19
20
21

22

23

24

List<T>=.FindIndex(System.Predicate<T>)
Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the first occurrence within the List.

Parameters

‘match ‘The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched forward starting at the first element and ending at the last element.
The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

‘System.ArgumentNuIIException match is null.

28

10
11

12

13
14

15
16

17

18
19
20
21
22

23

List<T>=.FindIndex(System.Int32,
System.Predicate<T>) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the first occurrence within the range of elements in
the List that extends from the specified index to the last element.

Parameters

index

The zero-based starting index of the search.

match

The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched forward starting at index and ending at the last element.

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

System.ArgumentNullException match is null.

System.ArgumentOutOfRangeException

index is less than O or greater than or equal to
System.Collections.Generic.List<T>.Count.

29

30

10
11

12

13
14

15
16

17

18
19
20
21
22

23

List<T>=.FindIndex(System.Int32,
System.Int32, System.Predicate<T>) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the first occurrence within the range of elements in
the List that starts at the specified index and contains the specified number of elements.

Parameters
index The zero-based starting index of the search.
count The number of elements to search.
match The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched forward starting at index and ending after count elements.
The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

‘System.ArgumentNuIIException ‘match is null.

31

index is less than 0.
Or
. count is less than 0.
System.ArgumentOutOfRangeException

Or

index + count is greater than
System.Collections.Generic.List<T>.Count.

32

(o]

10

11
12

13
14

15

16
17
18
19

20

21

22

List<T>=.FindLast(System.Predicate<T=>)
Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the last occurrence within the entire List.

Parameters

‘match ‘The predicate delegate that specifies the element to search for.

Return Value

The last element that matches the conditions defined by the specified predicate, if
found; otherwise, the default value for type T.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate, moving backward in the List, starting with the last
element and ending with the first element. Processing is stopped when a match is found.

Exceptions

‘System.ArgumentNuIIException match is null.

33

10
11

12

13
14

15
16

17

18
19
20
21
22
23

24

25

26

List<T>=.FindLastlndex(System.Predicate<T>
) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the last occurrence within the List.

Parameters

‘match ‘The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the last occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched backward starting at the last element and ending at the first
element.

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

‘System.ArgumentNuIIException match is null.

34

10
11

12

13
14

15
16

17

18
19
20
21
22

23

List<T>=.FindLastIndex(System.Int32,
System.Predicate<T>) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the last occurrence within the range of elements in
the List that extends from the specified index to the first element.

Parameters

index

The zero-based starting index of the backward search.

match

The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the last occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched backward starting at index and ending at the first element.

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

System.ArgumentNullException match is null.

System.ArgumentOutOfRangeException

index is less than O or greater than or equal to
System.Collections.Generic.List<T>.Count.

35

36

10
11
12

13

14
15

16
17

18

19
20
21
22
23

24

List<T>=.FindLastlndex(System.Int32,
System.Int32, System.Predicate<T>) Method

Summary

Searches for an element that matches the conditions defined by the specified predicate,
and returns the zero-based index of the last occurrence within the range of elements in
the List that starts at the specified index and contains the specified number of elements
going backwards.

Parameters
index The zero-based starting index of the search.
count The number of elements to search.
match The predicate delegate that specifies the element to search for.

Return Value

The zero-based index of the last occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The List is searched backward starting at index and ending after count elements.
The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate.

Exceptions

‘System.ArgumentNuIIException ‘match is null.

37

index is less than zero, or greater than or equal

to

System.Collections.Generic.List<T>.Count.

—or-
System.ArgumentOutOfRangeException

count is less than O.

or

count is greater than index + 1.

38

10

11
12
13
14

15

16

17

List<T>=.ForEach(System.Action<T>) Method

Summary

Performs the specified action on each element of the List.

Parameters

action ‘The action delegate to perform on each element of the List.

Description

The action is a delegate that performs an action on the object passed to it. The elements
of the current List are individually passed to the action delegate, sequentially, in index
order, and on the same thread as that used to call ForEach. Execution stops if the
action throws an exception.

Exceptions

‘System.ArgumentNuIIException action is null.

39

B~ WN

10

11

12
13

14

15

List<T>.GetEnumerator() Method

Summary

Returns an enumerator, in index order, that can be used to iterate over the list.
Return Value

An enumerator for the list.
Usage

For a detailed description regarding the use of an enumerator, see
System.Collections.Generic.IEnumerator<Ts>.

40

10

11
12

13

14

15
16
17
18
19
20

21

List<T>.GetRange(System.Int32,
System.Int32) Method

Summary

Creates a shallow copy of a range of elements in the current List.

Parameters

index

The zero-based index at which the range starts.

count

The number of elements in the range.

Return Value

A shallow copy of the given range of elements in the list.

Description

A shallow copy of a collection, or a subset of that collection, copies only the elements of
the collection, whether they are reference types or value types, but it does not copy the
objects that the references refer to. The references in the new collection point to the

same objects as do the references in the original collection. (In contrast, a deep copy of
a collection copies the elements and everything directly or indirectly referenced by those

elements.)

Exceptions

System.ArgumentException

index + count is greater than
System.Collections.Generic.List<T>.Count.

System.ArgumentOutOfRangeException

index is less than O.

-0r-

41

count is less than 0.

42

10
11

12
13

14

15
16
17
18
19
20
21
22
23

24

List<T>=.IndexOf(T) Method

Summary

Searches for the specified object and returns the zero-based index of the first
occurrence within the entire list.

Parameters

'The T to locate in the current list. (The value can be null if T is a reference
type.)

value

Return Value

The zero-based index of the first occurrence of item within the List, if found; otherwise,
-1.

Description

The list is searched forward starting at the first element and ending at the last element.

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method performs a linear search; therefore, the average number of comparisons is

proportional to System.Collections.Generic.List<T>.Count. That is, this method is
an O(n) operation, where n is System.Collections.Generic.List<T>.Count.

43

[e< BN

10

11
12

13
14

15

16
17
18
19
20
21
22
23

24

25

List<T>=.IndexOf(T, System.Int32) Method

Summary

Searches for the specified object and returns the zero-based index of the first
occurrence within the range of elements in the list that extends from the specified index
to the last element.

Parameters

value

The T to locate in the current list. (The value can be null if T is a reference
type.)

index

The zero-based starting index of the search.

Return Value

The zero-based index of the first occurrence of item within the range of elements in the
list, if found; otherwise, -1.

Description

The list is searched forward starting at index and ending at the last element.

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is the number of elements from index to the
end of the list.

Exceptions

System.ArgumentOutOfRangeException

index is less than zero or greater than
System.Collections.Generic.List<T>.Count.

44

45

12
13

14
15

16

17
18
19
20
21
22
23
24

25

List<T>=.IndexOf(T, System.Int32,
System.Int32) Method

Summary

Searches for the specified object and returns the zero-based index of the first
occurrence within the range of elements in the list that starts at the specified index and
contains the specified number of elements.

Parameters

value The T to locate in the current list. (The value can be null if T is a reference
type.)

index The zero-based starting index of the search.

count The number of elements to search.

Return Value

The zero-based index of the first occurrence of item within the specified range of
elements in the list, if found; otherwise, -1.

Description

The list is searched forward starting at index and ending at index + count - 1, and
searching at most count terms.

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is count.

Exceptions

46

index is less than 0.
Or
. count is less than 0.
System.ArgumentOutOfRangeException

Or

index + count is greater than
System.Collections.Generic.List<T>.Count.

47

10

11
12
13
14
15
16
17
18

19

20

21

List<T=>=.Ilnsert(System.Int32, T) Method

Summary

Inserts an item to the List at the specified position.

Parameters

index

The zero-based index at which item is to be inserted.

item

The item to insert. (item can be null if T is a reference type.)

Description

System.Collections.Generic.List<T> accepts null as a valid value for reference
types and allows duplicate elements.

If System.Collections.Generic.List<T>.Count already equals
System.Collections.Generic.List<T>.Capacity, the capacity of the List is increased.

If index is equal to System.Collections.Generic.List<T>.Count, item is added to the

end of list.

Exceptions

System.ArgumentOutOfRangeException

index is less than 0.
or

index is greater than
System.Collections.Generic.List<T>.Count.

48

10

11

12
13

14
15
16
17
18
19
20
21
22
23

24

List<T>.InsertRange(System.Int32,
System.Collections.Generic.l[Enumerable<T=>)
Method

Summary

Inserts the elements of a collection in the List at the specified position.

Parameters
index The zero-based index at which the new elements should be inserted.

The collection whose elements should be inserted into the list. (collection itself
collection |cannot be null, but the collection can contain elements that are null, if type T
is a reference type.)

Description

System.Collections.Generic.List<T> accepts null as a valid value for reference
types and allows duplicate elements.

If the new value of System.Collections.Generic.List<T>.Count will be greater than
System.Collections.Generic.List<T>.Capacity, the capacity of the List is increased.

If index is equal to System.Collections.Generic.List<T>.Count, the collection is
added to the end of list.

The order of the elements in the collection is preserved in the list.

Exceptions

‘System.ArgumentNuIIException collection is null.

49

index is less than zero,

Or
System.ArgumentOutOfRangeException

index is greater than
System.Collections.Generic.List<T>.Count.

50

10
11

12
13

14

15
16
17
18
19
20
21
22
23

24

List<T>.LastlndexOf(T) Method

Summary

Searches for the specified object and returns the zero-based index of the last occurrence

within the entire list.

Parameters

value
type.)

'The T to locate in the current list. (The value can be null if T is a reference

Return Value

The zero-based index of the last occurrence of item within the entire list, if found;
otherwise, -1.

Description

The list is searched backward starting at the last element and ending at the first
element.

This method uses the default equality comparer for type T to determine equality of list

elements. The default equality comparer for element type T is defined in the Description

section of this (class List<T>) specification.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

51

O

11

12
13

14
15

16

17
18
19
20
21
22
23
24

25

List<T>.LastlndexOf(T, System.Int32)
Method

Summary

Searches for the specified object and returns the zero-based index of the last occurrence
within the range of elements in the list that extends from the specified index to the last
element.

Parameters

value The T to locate in the current list. (The value can be null if T is a reference
type.)
index The zero-based starting index of the search.

Return Value

The zero-based index of the last occurrence of item within the range of elements in the
list, if found; otherwise, -1.

Description

The list is searched backward starting at index and ending at the first element.

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is the number of elements from the
beginning of the list to index.

Exceptions

index is less than zero or greater than or equal
to

‘System.ArgumentOutOfRangeException

52

System.Collections.Generic.List<T>.Count.

53

10
11

12

13
14

15
16

17

18
19
20
21
22
23
24

25

List<T>=.LastlndexOf(T, System.Int32,
System.Int32) Method

Summary

Searches for the specified object and returns the zero-based index of the last occurrence
within the range of elements in the list that starts at the specified index and contains
the specified number of elements.

Parameters

value The T to locate in the current list. (The value can be null if T is a reference
type.)

index The zero-based starting index of the search.

count The number of elements to search.

Return Value

The zero-based index of the last occurrence of item within the range of elements in the
list that contains count number of elements and ends at index, if found; otherwise, -1.

Description

The list is searched backward starting at index and ending after count elements.

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is count.

Exceptions

54

index is less than zero, or greater than or equal

to

System.Collections.Generic.List<T>.Count.

—or-
System.ArgumentOutOfRangeException

count is less than O.

or

count is greater than index + 1.

55

10

11

12

13
14
15
16
17
18

19

List<T>=.Remove(T) Method

Summary

Removes the first occurrence of the specified object from the list.

Parameters

item ‘The object to be removed from the list.

Return Value

true if item is successfully removed; otherwise, false.

Description

This method uses the default equality comparer for type T to determine equality of list
elements. The default equality comparer for element type T is defined in the Description
section of this (class List<T>) specification.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

56

11

12
13

14

15

16
17
18
19
20
21
22

23

24

25

List<T>=.RemoveAll(System.Predicate<T>)
Method

Summary

Removes the all the elements that match the conditions defined by the specified

predicate.
Parameters

‘match ‘The predicate delegate that specifies the elements to remove.

Return Value

The number of elements removed from the List.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate, and the elements that match the conditions are
removed from the List.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

Exceptions

‘System.ArgumentNuIIException match is null.

57

10

11
12
13
14
15

16

17

18

List<T>=.RemoveAt(System.Int32) Method

Summary

Removes the item at the specified index of the list.

Parameters

index ‘The zero-based index of the item to remove.

Description

The item is removed and all the elements following it in the List have their indexes
reduced by 1.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

Exceptions

index is less than O.

or
System.ArgumentOutOfRangeException

index is equal to or greater than
System.Collections.Generic.List<T>.Count.

58

=

10
11

12
13

14

15

16

List<T>=.RemoveRange(System.Int32,
System.Int32) Method

Summary

Removes a range of elements from the list.

Parameters

index

The zero-based starting index of the range of elements to remove.

count

The number of elements to remove.

Description

The items are removed and all the elements following them in the List have their
indexes reduced by count.

Exceptions

System.ArgumentException

index + count is greater than
System.Collections.Generic.List<T>.Count.

index is less than zero.

System.ArgumentOutOfRangeException |-0r-

count is less than zero.

59

10
11
12
13

14

List<T>.Reverse() Method

Summary

Reverses the order of the elements in the list.

Description

This method uses System.Array.Reverse (System.Array) to reverse the order of the
elements.

This method is an O(n) operation, where n is
System.Collections.Generic.List<T>.Count.

60

10
11

12
13
14

15

16

17

List<T>.Reverse(System.Int32,
System.Int32) Method

Summary

Reverses the order of the elements in the specified element range of the list.

Parameters

index

The zero-based starting index of the range of elements to reverse.

count

The number of elements to reverse.

Description

This method reverses the order of the elements in the specified element range

This method is an O(n) operation, where n is count.

Exceptions

System.ArgumentException

index + count is greater than
System.Collections.Generic.List<T>.Count.

index is less than zero.

System.ArgumentOutOfRangeException |-0r-

count is less than zero.

61

10
11
12
13
14
15

16

17

18

List<T>=.Sort() Method

Summary

Sorts the elements in the list using the default comparer.

Description

This method uses the default comparer for type T to determine the order of list
elements. If there is no default comparer, then the method throws

System. InvalidOperationException. The default comparer for a given element type T

is defined in the Description section of this (class List<T>) specification.

At worst, this operation is O(n?), where n is the number of elements to sort. On average

it's O(n log n).

Exceptions

The default comparer cannot find a

System.InvalidOperationException |[System. IComparable<T> Or System.IComparable

implementation for type T.

62

10

11

12
13

14
15
16
17
18
19
20
21

22

23

List<T>=.Sort(System.Collections.Generic.ICo

mparer<T>) Method

Summary

Sorts the elements in the list using the specified comparer.

Parameters

comparing elements.

comparer
or

The System.Collections.Generic.IComparer<T> implementation to use when

null to use the default comparer.

Description

If the given comparer is non-null, it is used to determine the order of list elements. If
the given comparer is null, the default comparer for type T is used; if there is no
default comparer, then the method throws System.InvalidOperationException. The
default comparer for a given element type T is defined in the Description section of this

(class List<T>) specification.

At worst, this operation is O(n?), where n is the number of elements to sort. On average

it's O(n log n).

Exceptions

comparer is null, and the default comparer cannot

System.InvalidOperationException [find a System. IComparable<T> Or

System. IComparable implementation for type T.

63

64

10

11

12
13

14
15
16
17
18
19
20
21

22

List<T>=.Sort(System.Int32, System.Int32,
System.Collections.Generic.lIComparer<T>)
Method

Summary

Sorts the elements in the list using the specified comparer.

Parameters

index The zero-based starting index of the range of elements to sort.

count The number of elements to sort.
The System.Collections.Generic.IComparer<T> implementation to use when
comparing elements.

comparer
or
null to use the default comparer.

Description

If the given comparer is non-null, it is used to determine the order of list elements. If
the given comparer is null, the default comparer for type T is used; if there is no
default comparer, then the method throws System.InvalidOperationException. The
default comparer for a given element type T is defined in the Description section of this
(class List<T>) specification.

At worst, this operation is O(n?), where n is the number of elements to sort. On average
it's O(n log n).

Exceptions

65

System.ArgumentException

System.ArgumentOutOfRangeException

System.InvalidOperationException

index + count is greater than
System.Collections.Generic.List<T>.Count.

index is less than zero.
or
count is less than zero.

comparer is null, and the default comparer
cannot find a System. IComparable<T> Or
System.IComparable implementation for type
T.

66

10

11
12

13
14

15

16

17

List<T>=.Sort(System.Comparison<T>)
Method

Summary

Sorts the elements in the list using the specified comparison.

Parameters

comparison ‘The comparison to use when comparing elements.

Description

At worst, this operation is O(n?), where n is the number of elements to sort. On average
it's O(n log n).

Exceptions

‘System.ArgumentNuIIException comparison is null.

67

2 List<T>=.System.Collections.Generic.l[Enumera
3 ble<T>=.GetEnumerator() Method

4

5

6

7

5 [Eumerator<ts iEnunerable<Ts cetenuneratorg.
9

10 Summary

11 This method is implemented to support the
12 System.Collections.Generic.IEnumerable<Ts> interface.
13

w N

Noups

O 00

10

11
12

13

List<T>=.System.Collections.ICollection.CopyT

o(System.Array, System.Int32) Method

Summary

This method is implemented to support the System.Collections.ICollection
interface.

69

w N

Noups

O 00

10

11
12

13

List<T>=.System.Collections.IEnumerable.Get
Enumerator() Method

Summary

This method is implemented to support the System.Collections.IEnumerable
interface.

70

10

11

List<T>=.System.Collections.lList. Add(System.
Object) Method

Summary

This method is implemented to support the System.Collections.IList interface.

71

10

11

List<T>=.System.Collections.lList.Contains(Sy
stem.Object) Method

Summary

This method is implemented to support the System.Collections.IList interface.

72

10

11

List<T>=.System.Collections.lList.IndexOf(Sys
tem.Object) Method

Summary

This method is implemented to support the System.Collections.IList interface.

73

10

11

List<T>.System.Collections.lList.Insert(Syste
m.Int32, System.Object) Method

Summary

This method is implemented to support the System.Collections.IList interface.

74

10

11

List<T>=.System.Collections.lList.Remove(Sys
tem.Object) Method

Summary

This method is implemented to support the System.Collections.IList interface.

75

10

11

List<T>=.System.Collections.lList.RemoveAt(S
ystem.Int32) Method

Summary

This method is implemented to support the System.Collections.IList interface.

76

1 List<T>=.ToArray() Method

6 Summary

7 Copies the elements in the list to a new array.
8 Return Value
9 The new array containing a copy of the list's elements.

10 Description

11 This an O(n) operation, where n is System.Collections.Generic.List<T>.Count.

12

77

10
11
12
13
14
15
16

17

List<T>=.TrimExcess() Method

Summary

Suggests that the capacity be reduced to the actual number of elements in the list.

Description

This method can be used to suggest a collection's memory overhead be minimized, e.g.,
if no new elements are expected to be added to the collection.

[Note: To reset a list to its initial state, call the

System.Collections.Generic.List.Clear method before calling
System.Collections.Generic.List.TrimExcess.]

78

10
11
12
13
14

15

List<T=.TrimToSize() Method

Summary

Sets the capacity to the actual number of elements in the list.

Description

This method can be used to minimize a list's memory overhead if no new elements are
expected to be added to the list.

To reset a List to its initial state, call the System.Collections.Generic.List<T>.Clear

method before calling System.Collections.Generic.List<T>.TrimToSize. Trimming
an empty list sets the capacity of the list to the default capacity.

79

11

12
13

14
15

16

17
18
19
20

21

22

23

List<T>=.TrueForAll(System.Predicate<T>)
Method

Summary

Determines whether every element in the List matches the conditions defined by the
specified predicate.

Parameters

‘match ’The predicate delegate that specifies the check against the elements.

Return Value

true, if every element in the List matches the conditions defined by the specified
predicate; otherwise, false.

Description

The predicate is a delegate that returns true if the object passed to it matches the
conditions defined in the delegate. The elements of the current List are individually
passed to the predicate delegate. The elements are processed sequentially and on the
same thread.

Exceptions

‘System.ArgumentNuIIException match is null.

80

=

List<T>=.Capacity Property

b WwN

N o

8 Summary

9 Gets or sets the number of elements the current instance can contain.

10 Property Value

11 A System.Int32 containing the number of elements the current instance can contain.

12 Description

13 This property is read/write.

14

15 System.Collections.Generic.List<T>.Capacity is the number of elements that the
16 list is capable of storing without needing to be extended.

17 System.Collections.Generic.List<T>.Count is the number of elements that are

18 actually in the list.

19

20 System.Collections.Generic.List<T>.Capacity is always greater than or equal to
21 System.Collections.Generic.List<T>.Count. When

22 System.Collections.Generic.List<T>.Count exceeds

23 System.Collections.Generic.List<T>.Capacity while adding elements, the capacity
24 is increased.

25

26 The capacity can be decreased by calling

27 System.Collections.Generic.List<T>.TrimToSize or by setting the

28 System.Collections.Generic.List<T>.Capacity property explicitly.

29 Exceptions

Attempt to set the capacity to a value less than
System.Collections.Generic.List<T>.Count.

System.ArgumentOutOfRangeException

30

31

81

10

11

12

13

List<T>=.Count Property

Summary

Gets the number of elements contained in the current instance.

Property Value

The number of elements in the current instance.

Description

This property is read-only.

82

ubswN =

N o

10

11
12

13

14

15

16

List<T>.ltem Property

Summary

Gets or sets the element at the specified index of the current instance.

Parameters

index ‘The zero-based index of the element in the current instance to get or set.

Property Value

The element at the specified index of the current instance.

Exceptions

System.ArgumentOutOfRangeException

index < 0.

-0or-

index >=
System.Collections.Generics.List<T>.Count
of the current instance.

83

N

oy

10
11
12
13
14
15
16

17

List<T>=.System.Collections.Generic.ICollectio
N<T>.IsReadOnly Property

Summary

This read-only property is implemented to support the
System.Collections.Generic.ICollection<T> interface.

[Note: For more information, see
System.Collections.Generic.ICollection<T>.IsReadOnly.

1

84

2 List<T>=.System.Collections.ICollection.IsSyn
3 chronized Property

9 Summary

10 This read-only property is implemented to support the
11 System.Collections.ICollection interface.
12

85

2 List<T>=.System.Collections.ICollection.SyncR
3 0ot Property

9 Summary

10 This read-only property is implemented to support the
11 System.Collections.ICollection interface.
12

86

N

v bW

List<T>=.System.Collections.IList.IsFixedSize
Property

Summary

This read-only property is implemented to support the System.Collections.IList
interface.

87

N

v bW

List<T>=.System.Collections.IList.IsReadOnly
Property

Summary

This read-only property is implemented to support the System.Collections.IList
interface.

88

1 List<T>=.System.Collections.lList.ltem
Property

N

Noupbhw

0 00

10 Summary

11 This read-only property is implemented to support the System.Collections.IList
12 interface.
13

89

