B~ WN

10
11
12

13

14
15

16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

System.Func<+TResult> Delegate

[ILAsm]
-class public sealed System.Func” 1<+TResult> extends

System._MulticastDelegate

[C#]
public delegate TResult Func<out TResult>();

Assembly Info:

¢ Name: mscorlib
e Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
e Version: 4.0.0.0
e Attributes:
0 CLSCompliantAttribute(true)
Summary

Encapsulates a method that has no parameters and returns a value of the type specified
by the TResult parameter.

Inherits From: System.MulticastDelegate

Library: BCL

Returns

The return value of the method that this delegate encapsulates.
Description

You can use this delegate to represent a method that can be passed as a parameter
without explicitly declaring a custom delegate. The encapsulated method must
correspond to the method signature that is defined by this delegate. This means that the
encapsulated method must have no parameters and must return a value.

[Note: To reference a method that has no parameters and returns void, use the
System.Action delegate instead.

1

When you use the System.Func~1<TResult> delegate, you do not have to explicitly
define a delegate that encapsulates a parameterless method.

You can use the System.Func~1<TResult> delegate with anonymous methods in C#.
(For an introduction to anonymous methods, see the C# standard.)

If you have an expensive computation that you want to execute only if the result is
actually needed, you can assign the expensive function to a System.Func~1<T>



delegate. The execution of the function can then be delayed until a property that
accesses the value is used in an expression.



