b wN

00 N

10
11
12
13
14

15

16
17

18

19

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

37

System.Collections.Generic.Queue<T> Class

Assembly Info:

Name: System
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 4.0.0.0
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.Collections.Generic.lIEnumerable<T>
e System.Collections.ICollection

Summary

Represents a first-in, first-out collection of objects.

Inherits From: System.Object
Library: BCL
Description

Queues are useful for storing messages in the order they were received for sequential
processing. Objects stored in a System.Collections.Generic.Queue 1<T> are inserted
at one end and removed from the other.

The capacity of a System.Collections.Generic.Queue 1<T> is the number of elements
the System.Collections.Generic.Queue 1<T> can hold. As elements are added to a
System.Collections.Generic.Queue ~1<T>, the capacity is automatically increased as
required by reallocating the internal array. The capacity can be decreased by calling
System.Collections.Generic.Queue 1<T>.TrimExcess.

System.Collections.Generic.Queue 1<T> accepts null as a valid value for reference
types and allows duplicate elements.

[uny

H~wWN

O

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24

Queue<T>=() Constructor

Summary

Initializes a new instance of the System.Collections.Generic.Queue 1<T> class that is
empty and has the default initial capacity.

Description

The capacity of a System.Collections.Generic.Queue 1<T> is the number of elements
that the System.Collections.Generic.Queue 1<T> can hold. As elements are added to
a System.Collections.Generic.Queue 1<T>, the capacity is automatically increased as
required by reallocating the internal array.

If the size of the collection can be estimated, specifying the initial capacity eliminates
the need to perform a number of resizing operations while adding elements to the

System.Collections.Generic.Queue 1<T>.

The capacity can be decreased by calling
System.Collections.Generic.Queue 1<T>.TrimExcess.

This constructor is an O(1) operation.

Noups

O 00

10

11
12
13

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

Queue<T>=(System.Collections.Generic.lEnum
erable<T>) Constructor

Summary

Initializes a new instance of the System.Collections.Generic.Queue 1<T> class that
contains elements copied from the specified collection and has sufficient capacity to
accommodate the number of elements copied.

Parameters

The collection whose elements are copied to the new
System.Collections.Generic.Queue 1<T>.

collection

Description

The capacity of a System.Collections.Generic.Queue 1<T> is the number of elements
that the System.Collections.Generic.Queue 1<T> can hold. As elements are added to
a System.Collections.Generic.Queue 1<T>, the capacity is automatically increased as
required by reallocating the internal array.

If the size of the collection can be estimated, specifying the initial capacity eliminates
the need to perform a number of resizing operations while adding elements to the

System.Collections.Generic.Queue 1<T>.

The capacity can be decreased by calling
System.Collections.Generic.Queue 1<T>.TrimExcess.

The elements are copied onto the System.Collections.Generic.Queue~1<T> in the
same order they are read by the System.Collections.Generic.IEnumerator ™ 1<T> Of
the collection.

This constructor is an O(n) operation, where n is the number of elements in collection.

Exceptions

‘System.ArgumentNuIIException collection is null.

B~ WN

(o]

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

26

27

28

Queue<T=(System.Int32) Constructor

Summary

Initializes a new instance of the System.Collections.Generic.Queue 1<T> class that is
empty and has the specified initial capacity.

Parameters

The initial number of elements that the
System.Collections.Generic.Queue 1<T> can contain.

capacity

Description

The capacity of a System.Collections.Generic.Queue 1<T> is the number of elements
that the System.Collections.Generic.Queue 1<T> can hold. As elements are added to
a System.Collections.Generic.Queue 1<T>, the capacity is automatically increased as
required by reallocating the internal array.

If the size of the collection can be estimated, specifying the initial capacity eliminates
the need to perform a number of resizing operations while adding elements to the

System.Collections.Generic.Queue 1<T>.

The capacity can be decreased by calling
System.Collections.Generic.Queue 1<T>.TrimExcess.

This constructor is an O(n) operation, where n is capacity.

Exceptions

‘System.ArgumentOutOfRangeException capacity is less than zero.

=

10
11
12
13
14
15
16
17
18
19

20

Queue<T=.Clear() Method

Summary

Removes all objects from the System.Collections.Generic.Queue 1<T>.

Description

System.Collections.Generic.Queue 1<T>.Count is set to zero, and references to
other objects from elements of the collection are also released.

The capacity remains unchanged. To reset the capacity of the
System.Collections.Generic.Queue 1<T>, call
System.Collections.Generic.Queue 1<T>.TrimExcess. Trimming an empty
System.Collections.Generic.Queue 1<T> sets the capacity of the
System.Collections.Generic.Queue 1<T> to the default capacity.

This method is an O(n) operation, where n is
System.Collections.Generic.Queue 1<T>.Count.

10

11
12

13

14
15
16
17
18
19

20

Queue<T=.Contains(T) Method

Summary

Determines whether an element is in the System.Collections.Generic.Queue 1<T>.

Parameters

The object to locate in the System.Collections.Generic.Queue 1<T>. The
value can be null for reference types.

item

Return Value

true if item is found in the System.Collections.Generic.Queue 1<T>; otherwise,
false.

Description

This method determines equality using the default equality comparer
System.Collections.Generic.EqualityComparer ™ 1<T>.Default for T, the type of
values in the queue.

This method performs a linear search; therefore, this method is an O(n) operation,
where n is System.Collections.Generic.Queue 1<T>.Count.

11

12
13

14
15
16
17
18

19

Queue<T=.CopyTo(T[], System.Int32)
Method

Summary

Copies the System.Collections.Generic.Queue 1<T> elements to an existing one-
dimensional System.Array, starting at the specified array index.

Parameters

The one-dimensional System.Array that is the destination of the elements
array copied from System.Collections.Generic.Queue 1<T>. The System.Array
must have zero-based indexing.

arraylndex The zero-based index in array at which copying begins.

Description

The elements are copied to the System.Array in the same order in which the
enumerator iterates through the System.Collections.Generic.Queue 1<T>.

This method is an O(n) operation, where n is
System.Collections.Generic.Queue 1<T>.Count.

Exceptions

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException arraylndex is less than zero.

The number of elements in the source
System.Collections.Generic.Queue 1<T> iS
greater than the available space from

System.ArgumentException

arraylndex to the end of the destination array.

10
11

12

13
14
15
16
17
18
19
20

21

22

23

Queue<T>=.Dequeue() Method

Summary

Removes and returns the object at the beginning of the
System.Collections.Generic.Queue 1<T>.

Return Value

The object that is removed from the beginning of the
System.Collections.Generic.Queue 1<T>.

Description

This method is similar to the System.Collections.Generic.Queue1<T>.Peek method,
but System.Collections.Generic.Queue 1<T>.Peek does not modify the
System.Collections.Generic.Queue 1<T>.

If type T is a reference type, null can be added to the
System.Collections.Generic.Queue 1<T> as a value.

This method is an O(1) operation.

Exceptions

The System.Collections.Generic.Queue 1<T> is
empty.

System.InvalidOperationException

10

=

v b

~

10

11
12
13
14
15
16
17
18
19

20

Queue<T>=.Enqueue(T) Method

Summary

Adds an object to the end of the System.Collections.Generic.Queue 1<T>.

Parameters

item
can be null for reference types.

The object to add to the System.Collections.Generic.Queue 1<T>. The value

Description

If System.Collections.Generic.Queue ™ 1<T>.Count already equals the capacity, the

capacity of the System.Collections.Generic.Queue 1<T> is increased by automatically

reallocating the internal array, and the existing elements are copied to the new array
before the new element is added.

If System.Collections.Generic.Queue ™ 1<T>.Count is less than the capacity of the
internal array, this method is an O(1) operation. If the internal array needs to be

reallocated to accommodate the new element, this method becomes an O(n) operation,

where n is System.Collections.Generic.Queue 1<T>.Count.

11

ubswN =

N o

11

12
13

14

15

16
17

18
19
20
21
22
23

24

Queue<T>=.GetEnumerator() Method

Summary

Returns an enumerator that iterates through the
System.Collections.Generic.Queue 1<T>.

Return Value

An System.Collections.Generic.Queue 1<T>.Enumerator for the
System.Collections.Generic.Queue 1<T>.

Description

Usage

For a detailed description regarding the use of an enumerator, see
System.Collections.Generic.IEnumerator<Ts>.

Default implementations of collections in System.Collections.Generic are not
synchronized.

This method is an O(1) operation.

12

10

11

12
13
14
15
16
17
18
19

20

21

22

Queue<T=>.Peek() Method

Summary

Returns the object at the beginning of the System.Collections.Generic.Queue 1<T>
without removing it.

Return Value

The object at the beginning of the System.Collections.Generic.Queue 1<T>.

Description

This method is similar to the System.Collections.Generic.Queue 1<T>.Dequeue
method, but System.Collections.Generic.Queue 1<T>.Peek does not modify the
System.Collections.Generic.Queue 1<T>.

If type T is a reference type, null can be added to the
System.Collections.Generic.Queue 1<T> as a value.

This method is an O(1) operation.

Exceptions

The System.Collections.Generic.Queue 1<T> is

System.InvalidOperationException empty.

13

NO ups

O 00

10

11

12

13
14

15

16

17
18

19
20
21
22
23
24

25

Queue<T=.System.Collections.Generic.l[Enum
erable<T>=.GetEnumerator() Method

Summary

Returns an enumerator that iterates through a collection.

Return Value

An System.Collections.Generic.IEnumerator 1<T> that can be used to iterate
through the collection.

Description
Usage

For a detailed description regarding the use of an enumerator, see
System.Collections.Generic.IEnumerator<Ts.

Default implementations of collections in System.Collections.Generic are not
synchronized.

This method is an O(1) operation.

Noups

O 00

10

11
12

13

14
15

16
17
18
19
20
21
22
23
24

25

Queue<T=>.System.Collections.ICollection.Cop
yTo(System.Array, System.Int32) Method

Summary

Copies the elements of the System.Collections.ICollection to an System.Array,
starting at a particular System.Array index.

Parameters

The one-dimensional System.Array that is the destination of the elements
array copied from System.Collections.ICollection. The System.Array must have
zero-based indexing.

index The zero-based index in array at which copying begins.

Description

[Note: If the type of the source System.Collections.ICollection cannot be cast
automatically to the type of the destination array, the non-generic implementations of
System.Collections.ICollection.CopyTo throw System.InvalidCastException,
whereas the generic implementations throw System.ArgumentException.

]

This method is an O(n) operation, where n is
System.Collections.Generic.Queue 1<T>.Count.

Exceptions

‘System.ArgumentNuIIException array is null.

15

System.ArgumentOutOfRangeException [index is less than zero.

System.ArgumentException

array is multidimensional.

Or

array does not have zero-based indexing.

Or

The number of elements in the source
System.Collections.ICollection iS greater
than the available space from index to the end
of the destination array.

or

The type of the source
System.Collections.ICollection cannot be

cast automatically to the type of the
destination array.

16

NO ups

O 00

10

11

12

13
14

15

16

17
18

19
20
21
22
23
24

25

Queue<T=.System.Collections.lIEnumerable.G
etEnumerator() Method

Summary

Returns an enumerator that iterates through a collection.

Return Value

An System.Collections.IEnumerator that can be used to iterate through the
collection.

Description
Usage

For a detailed description regarding the use of an enumerator, see
System.Collections.Generic.IEnumerator<Ts.

Default implementations of collections in System.Collections.Generic are not
synchronized.

This method is an O(1) operation.

11

12
13
14
15
16
17

18

Queue<T=.ToArray() Method

Summary

Copies the System.Collections.Generic.Queue ™ 1<T> elements to a new array.

Return Value

A new array containing elements copied from the
System.Collections.Generic.Queue 1<T>.

Description

The System.Collections.Generic.Queue ~1<T> is not modified. The order of the
elements in the new array is the same as the order of the elements from the beginning
of the System.Collections.Generic.Queue ™ 1<T> to its end.

This method is an O(n) operation, where n is
System.Collections.Generic.Queue 1<T>.Count.

18

[uny

[e< BN

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Queue<T=.TrimExcess() Method

Summary

Sets the capacity to the actual number of elements in the
System.Collections.Generic.Queue 1<T>, if that number is less than 90 percent of
current capacity.

Description

This method can be used to minimize a collection's memory overhead if no new
elements will be added to the collection. The cost of reallocating and copying a large
System.Collections.Generic.Queue 1<T> can be considerable, however, so the
System.Collections.Generic.Queue 1<T>.TrimExcess method does nothing if the list
is at more than 90 percent of capacity. This avoids incurring a large reallocation cost for
a relatively small gain.

This method is an O(n) operation, where n is
System.Collections.Generic.Queue 1<T>.Count.

To reset a System.Collections.Generic.Queue 1<T> to its initial state, call the
System.Collections.Generic.Queue 1<T>.Clear method before calling
System.Collections.Generic.Queue 1<T>.TrimExcess method. Trimming an empty
System.Collections.Generic.Queue 1<T> Sets the capacity of the
System.Collections.Generic.Queue 1<T> to the default capacity.

19

[uny

[e< BN

10

11

12
13
14
15
16
17
18
19
20
21
22
23

24

Queue<T=.Count Property

Summary

Gets the number of elements contained in the
System.Collections.Generic.Queue 1<T>.

Property Value

The number of elements contained in the System.Collections.Generic.Queue 1<T>.

Description

The capacity of a System.Collections.Generic.Queue 1<T> is the number of elements
that the System.Collections.Generic.Queue 1<T> can store.
System.Collections.Generic.Queue 1<T>.Count is the number of elements that are
actually in the System.Collections.Generic.Queue ™ 1<T>.

The capacity is always greater than or equal to
System.Collections.Generic.Queue 1<T>.Count. If
System.Collections.Generic.Queue 1<T>.Count exceeds the capacity while adding
elements, the capacity is increased by automatically reallocating the internal array
before copying the old elements and adding the new elements.

Retrieving the value of this property is an O(1) operation.

20

11

12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28

29

Queue<T=.System.Collections.ICollection.IsS
ynchronized Property

Summary

Gets a value indicating whether access to the System.Collections.ICollection is
synchronized (thread safe).

Property Value

true if access to the System.Collections.ICollection is synchronized (thread safe);
otherwise, false. In the default implementation of
System.Collections.Generic.Queue~1<T>, this property always returns false.

Description

Default implementations of collections in System.Collections.Generic are not
synchronized.

Enumerating through a collection is intrinsically not a thread-safe procedure. To
guarantee thread safety during enumeration, you can lock the collection during the
entire enumeration. To allow the collection to be accessed by multiple threads for
reading and writing, you must implement your own synchronization.

System.Collections.ICollection.SyncRoot returns an object, which can be used to
synchronize access to the System.Collections.ICollection. Synchronization is
effective only if all threads lock this object before accessing the collection.

Retrieving the value of this property is an O(1) operation.

21

11

12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

35

[ILAsm]
-property instance object System.Collections.ICollection.SyncRoot

[C#]
object System.Collections. ICollection.SyncRoot { get; }

Summary

Gets an object that can be used to synchronize access to the
System.Collections.ICollection.

Property Value

An object that can be used to synchronize access to the
System.Collections.ICollection. In the default implementation of
System.Collections.Generic.Queue ™ 1<T>, this property always returns the current
instance.

Description

Default implementations of collections in System.Collections.Generic are not
synchronized.

Enumerating through a collection is intrinsically not a thread-safe procedure. To
guarantee thread safety during enumeration, you can lock the collection during the
entire enumeration. To allow the collection to be accessed by multiple threads for
reading and writing, you must implement your own synchronization.

System.Collections.ICollection.SyncRoot returns an object, which can be used to
synchronize access to the System.Collections.ICollection. Synchronization is

effective only if all threads lock this object before accessing the collection. The following

code shows the use of the System.Collections.ICollection.SyncRoot property for
C#.

ICollection ic =...;
lock (ic.SyncRoot) {

// Access the collection.
3

Retrieving the value of this property is an O(1) operation.

22

