10
11
12

13

14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32

System.Runtime.InteropServices.Marshal
Class

[ILAsm]
.class public abstract sealed Marshal extends System.Object

[C#1
public static class Marshal

Assembly Info:

¢ Name: mscorlib
e Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
e Version: 4.0.0.0
e Attributes:
0 CLSCompliantAttribute(true)
Summary

Provides a collection of methods for allocating unmanaged memory, copying unmanaged
memory blocks, and converting managed to unmanaged types, as well as other
miscellaneous methods used when interacting with unmanaged code.

Inherits From: System.Object

Library: Runtimelnfrastructure

Description

The static methods defined on the System.Runtime.InteropServices.Marshal class
are essential to working with unmanaged code. Most methods defined in this class are
typically used by developers who want to provide a bridge between the managed and
unmanaged programming models. For example, the
System.Runtime.InteropServices.Marshal.StringToHGlobalAnsi method copies
ANSI characters from a specified string (in the managed heap) to a buffer in the
unmanaged heap. It also allocates the target heap of the right size.

The Read and Write methods in the System.Runtime.InteropServices.Marshal class
support both aligned and unaligned access.

[e< BN

Marshal.SystemDefaultCharSize Field

Summary

Represents the default character size on the system; the default is 2 for Unicode
systems and 1 for ANSI or UTF-8 based systems. This field is read-only.

Marshal.SystemMaxDBCSCharSize Field

Summary

Represents the maximum size of a double byte character set (DBCS) size, in bytes, for
the current operating system. This field is read-only.

H~wWN

10
11

12
13

14

15
16
17
18

19

20

21

Marshal.AllocHGlobal (System.Int32) Method

Summary

Allocates the specified number of bytes from the unmanaged memory of the process.

Parameters

cb ‘The required number of bytes in memory.

Return Value

A pointer to the newly allocated memory. This memory must be released using the
System.Runtime.InteropServices.Marshal.FreeHGlobal method.

Description

System.Runtime.InteropServices.Marshal.AllocHGlobal is the memory allocation
method in the System.Runtime.InteropServices.Marshal class.

The allocated memory is not zero-filled.

Exceptions

‘System.OutOfMemoryException ‘There is insufficient memory to satisfy the request.

B~ WN

10
11

12
13

14

15
16
17
18

19

20

21

Marshal.AllocHGlobal(System.IntPtr) Method

Summary

Allocates the specified number of bytes from the unmanaged memory of the process.

Parameters

cb ‘The required number of bytes in memory.

Return Value

A pointer to the newly allocated memory. This memory must be released using the
System.Runtime.InteropServices.Marshal.FreeHGlobal method.

Description

System.Runtime.InteropServices.Marshal.AllocHGlobal is the allocation method in
the System.Runtime.InteropServices.Marshal class.

The allocated memory is not zero-filled.

Exceptions

‘System.OutOfMemoryException ‘There is insufficient memory to satisfy the request.

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.Byte[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed 8-bit unsigned integer array to an
unmanaged memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.
destination |The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed array to an
unmanaged C-style array.

Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

System.ArgumentNullException

source, startindex, destination, or length is
null.

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.Char[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed character array to an unmanaged
memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.
destination |The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed array to an
unmanaged C-style array.

Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

System.ArgumentNullException startlndex, destination, or length is null.

1 Marshal.Copy(System.Double[],
2 System.Int32, System.IntPtr, System.Int32)
3 Method

o by

O 0o

10 Summary

11 Copies data from a one-dimensional, managed double-precision floating-point number
12 array to an unmanaged memory pointer.

13 Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.

destination |The memory pointer to copy to.

length The number of array elements to copy.

14
15 Description

16 You can use this method to copy a subset of a one-dimensional managed array to an
17 unmanaged C-style array.

18 Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

source, startlndex, destination, or length is

System.ArgumentNullException null,

19

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.Intl16[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed 16-bit signed integer array to an
unmanaged memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.
destination |The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed array to an
unmanaged C-style array.

Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

System.ArgumentNullException

source, startindex, destination, or length is
null.

10

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.Int32[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed 32-bit signed integer array to an
unmanaged memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.
destination |The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed array to an
unmanaged C-style array.

Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

System.ArgumentNullException startindex or length is null.

11

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.Int64[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed 64-bit signed integer array to an
unmanaged memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.
destination |The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed array to an
unmanaged C-style array.

Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

System.ArgumentNullException

source, startindex, destination, or length is
null.

12

v bhw

00 N

10
11

12

13
14

15
16
17
18
19

20

21

22

Marshal.Copy(System.IntPtr, System.Bytel[],
System.Int32, System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed 8-bit unsigned integer

array.
Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startindex, or length is null.

13

v bhw

00 N

10

11

12
13

14
15
16
17
18

19

20

21

Marshal.Copy(System.IntPtr, System.Charl[],
System.Int32, System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed character array.

Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System_ArgumentNulIException source, destination, startindex, or length is null.

14

o by

O 0o

10

11
12

13

14
15

16
17
18
19
20

21

22

23

Marshal.Copy(System.IntPtr,
System.Double[], System.Int32,
System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed double-precision
floating-point number array.

Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startlndex, or length is null.

15

v bhw

00 N

10
11

12

13
14

15
16
17
18
19

20

21

22

Marshal.Copy(System.IntPtr, System.Intl6[],
System.Int32, System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed 16-bit signed integer

array.
Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startindex, or length is null.

16

v bhw

00 N

10
11

12

13
14

15
16
17
18
19

20

21

22

Marshal.Copy(System.IntPtr, System.Int32[],
System.Int32, System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed 32-bit signed integer

array.
Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startindex, or length is null.

17

v bhw

00 N

10
11

12

13
14

15
16
17
18
19

20

21

22

Marshal.Copy(System.IntPtr, System.Int64[],
System.Int32, System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed 64-bit signed integer

array.
Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startindex, or length is null.

18

o by

O 0o

10

11

12

13
14

15
16
17
18
19

20

21

22

Marshal.Copy(System.IntPtr,
System.IntPtr[], System.Int32,
System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed System.IntPtr array.

Parameters
source The memory pointer to copy from.

destination The array to copy to.

startindex The zero-based index into the array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Therefore, the unmanaged data
that corresponds to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling the System.Runtime.InteropServices.Marshal.Copy method.

Exceptions

‘System.ArgumentNuIIException source, destination, startindex, or length is null.

19

o by

O 0o

10

11
12

13

14
15

16
17
18
19
20

21

22

23

Marshal.Copy(System.IntPtr,
System.Single[], System.Int32,
System.Int32) Method

Summary

Copies data from an unmanaged memory pointer to a managed single-precision
floating-point number array.

Parameters
source The memory pointer to copy from.

destination |The array to copy to.

startindex The zero-based index in the source array where copying should start.

length The number of array elements to copy.

Description

Unmanaged, C-style arrays do not contain bounds information, which prevents the
startindex and length parameters from being validated. Thus, the unmanaged data
corresponding to the source parameter populates the managed array regardless of its
usefulness. You must initialize the managed array with the appropriate size before
calling this method.

Exceptions

‘System.ArgumentNuIIException source, destination, startlndex, or length is null.

20

v bhw

00 N

10
11

12

13
14

15
16

17

18

19

Marshal.Copy(System.IntPtr[], System.Int32,
System.IntPtr, System.Int32) Method

Summary

Copies data from a one-dimensional, managed System.IntPtr array to an unmanaged
memory pointer.

Parameters

source The one-dimensional array to copy from.

startindex The zero-based index into the array where copying should start.
destination The memory pointer to copy to.

length The number of array elements to copy.

Description

You can use this method to copy a subset of a one-dimensional managed
System. IntPtr array to an unmanaged C-style array.

Exceptions

‘System.ArgumentNuIIException

source, destination, startindex, or length is null.

21

1 Marshal.Copy(System.Single[],
2 System.Int32, System.IntPtr, System.Int32)
3 Method

o by

O 0o

10 Summary

11 Copies data from a one-dimensional, managed single-precision floating-point number
12 array to an unmanaged memory pointer.

13 Parameters

source The one-dimensional array to copy from.

startindex The zero-based index in the source array where copying should start.

destination |The memory pointer to copy to.

length The number of array elements to copy.

14
15 Description

16 You can use this method to copy a subset of a one-dimensional managed array to an
17 unmanaged C-style array.

18 Exceptions

System.ArgumentOutOfRangeException startindex and length are not valid.

source, startlndex, destination, or length is

System.ArgumentNullException null,

19

22

23

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

Marshal.

DestroyStructure(System. IntPtr,

System.Type) Method

Summary

Frees all substructures that the specified unmanaged memory block points to.

Parameters

ptr A pointer to an unmanaged block of memory.

Type of a formatted class. This provides the layout information necessary to
structuretype .

delete the buffer in the ptr parameter.

Description

You can use this method to free reference-type fields, such as strings, of an unmanaged
structure. Unlike its fields, a structure can be a value type or a reference type. Value-
type structures that contain value-type fields (all blittable) have no references whose
memory must be freed. The
System.Runtime.InteropServices.Marshal.StructureToPtr method uses this
method to prevent memory leaks when reusing memory occupied by a structure.

System.Runtime.InteropServices.Marshal.DestroyStructure calls a platform-
specific function, which, in turn, frees an allocated string.

In addition to

System.Runtime.InteropServices.Marshal.DestroyStructure, the

System.Runtime.InteropServices.Marshal class provides the
System.Runtime.InteropServices.Marshal.FreeHGlobal memory deallocation

method.

Exceptions

‘System.ArgumentException

structureType has an automatic layout. Use sequential or

24

explicit instead.

25

~ [e) N0y} B~ WN

(o]

10
11

12
13
14
15
16
17
18
19
20

21

Marshal.FreeHGlobal(System.IntPtr) Method

Summary

Frees memory previously allocated from the unmanaged memory of the process.

Parameters

The handle returned by the original matching call to
System.Runtime.InteropServices.Marshal. AllocHGlobal.

hglobal

Description

You can use System.Runtime.InteropServices.Marshal.FreeHGlobal to free any
memory from the global heap allocated by
System.Runtime.InteropServices.Marshal.AllocHGlobal or
System.Runtime.InteropServices.Marshal.ReAllocHGlobal. If the hglobal parameter
is System.IntPtr.Zero the method does nothing.

In addition to System.Runtime.InteropServices.Marshal.FreeHGlobal, the

System.Runtime.InteropServices.Marshal class provides another memory-
deallocation method: System.Runtime.InteropServices.Marshal.DestroyStructure.

26

Noups

O 00

10

11

12

13
14

15

16

17

18
19

20
21
22
23
24
25
26
27
28
29

30

31

Marshal.GetDelegateForFunctionPointer(Syst
IntPtr, System.Type) Method

em.

Summary

Converts an unmanaged function pointer to a delegate.

Parameters

ptr

The unmanaged function pointer to be converted.

The type of the delegate to be returned.

Return Value

A delegate instance that can be cast to the appropriate delegate type.

Description

One can use the

System.Runtime.InteropServices.Marshal.GetDelegateForFunctionPointer and
System.Runtime.InteropServices.Marshal.GetFunctionPointerForDelegate

methods to marshal delegates in both directions. With
System.Runtime.InteropServices.Marshal.GetDelegateForFunctionPointer, ptris

imported as a System.IntPtr. A System.IntPtr can be obtained for a managed

delegate by calling

System.Runtime.InteropServices.Marshal.GetFunctionPointerForDelegate and

passed as a parameter; it can then be called from inside the unmanaged method. Note

that the parameter marshaler can also marshal function pointers to delegates.

The System.Runtime.InteropServices.Marshal.GetDelegateForFunctionPointer

method has the following restrictions:

Generics are not supported in interop scenarios.

You cannot pass an invalid function pointer to this method.

27

e You can use this method only for pure unmanaged function pointers.

e You cannot use this method with function pointers obtained through C++ or from the
System.RuntimeMethodHandle.GetFunctionPointer method.

e You cannot use this method to create a delegate from a function pointer to another
managed delegate.

Exceptions

System.ArgumentException The t parameter is not a delegate or is generic.

The ptr parameter is null.
System.ArgumentNullException -or-

The t parameter is null.

28

2 Marshal.GetFunctionPointerForDelegate(Syst
3 em.Delegate) Method

9 Summary

10 Converts a delegate into a function pointer that is callable from unmanaged code.

11 Parameters

‘d ‘The delegate to be passed to unmanaged code.

12
13 Return Value

14 A value that can be passed to unmanaged code, which, in turn, can use it to call the
15 underlying managed delegate.

16 Description

17 The delegate d is converted to a function pointer that can be passed to unmanaged code
18 using the __ stdcall calling convention.

19

20 You must manually keep the delegate from being collected by the garbage collector from
21 managed code. The garbage collector does not track reference to unmanaged code.

22

23 [Note: Generics are not supported in interop scenarios.

24

25 1

26 Exceptions

System.ArgumentException The d parameter is a generic type.

System.ArgumentNullException The d parameter is null.

29

30

B~ WN

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

Marshal.GetLastWin32Error() Method

Summary

Returns the error code returned by the last unmanaged function that was called using
platform invoke that has the
System.Runtime.InteropServices.Dl1lImportAttribute.SetLastError flag set.

Return Value

The last error code set by a call to the platform-specific error function.

Description

System.Runtime.InteropServices.Marshal.GetLastWin32Error exposes platform-
specific error codes. This method exists because it is not safe to make a direct platform
invoke call to GetLastError to obtain this information. If you want to access this error
code, you must call System.Runtime.InteropServices.Marshal.GetLastWin32Error
instead of writing your own platform invoke definition for GetLastError and calling it.

You can use this method to obtain error codes only if you apply the
System.Runtime.InteropServices.DllImportAttribute to the method signature and
set the System.Runtime.InteropServices.DllImportAttribute.SetLastError field to
true.

[Note: The name of this method reflects the platform-specificity of the original

implementation, and is preserved for compatibility. On other platforms this method may
be used to get the last platform-specific error.

1

31

10

11
12

13
14

15

16
17
18
19
20
21

22

Marshal.OffsetOf(System.Type,
System.String) Method

Summary

Returns the field offset of the unmanaged form of the managed class.

Parameters

A value type or formatted reference type that specifies the managed class. You
t must apply the System.Runtime.InteropServices. StructLayoutAttribute
to the class.

fieldName |The field within the t parameter.

Return Value

The offset, in bytes, for the fieldName parameter within the specified class that is
declared by platform invoke.

Description

System.Runtime.InteropServices.Marshal.OffsetOf provides the offset in terms of
the unmanaged structure layout, which does not necessarily correspond to the offset of
the managed structure layout. Marshaling the structure can transform the layout and
alter the offset. The t parameter can be a value type or a formatted reference type (with
either a sequential or explicit layout). You can obtain the size of the entire layout by
using the System.Runtime.InteropServices.Marshal.SizeOf method.

Exceptions

System.ArgumentException The class cannot be exported as a structure.

System.ArgumentNullException The t parameter is null.

32

33

11

12
13

14
15

16

17
18
19
20
21

22

Marshal.PtrToStringAnsi(System. IntPtr)
Method

Summary

Copies all characters up to the first null character from an unmanaged ANSI string to a
managed System.String, and widens each ANSI character to Unicode.

Parameters

‘ptr ‘The address of the first character of the unmanaged string.

Return Value

A managed string that holds a copy of the unmanaged ANSI string. If ptr is null, the
method returns a null string.

Description

System.Runtime.InteropServices.Marshal.PtrToStringAnsi is useful for custom
marshaling or when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. This method provides the opposite functionality of the
System.Runtime.InteropServices.Marshal.StringToHGlobalAnsi method.

34

11

12
13

14
15

16

17
18
19
20
21

22

23

24

Marshal.PtrToStringAnsi(System. IntPtr,
System.Int32) Method

Summary

Allocates a managed System.String, copies a specified number of characters from an
unmanaged ANSI string into it, and widens each ANSI character to Unicode.

Parameters
ptr The address of the first character of the unmanaged string.
len The byte count of the input string to copy.

Return Value

A managed string that holds a copy of the native ANSI string if the value of the ptr
parameter is not null; otherwise, this method returns null.

Description

System.Runtime.InteropServices.Marshal.PtrToStringaAnsi is useful for custom
marshaling or when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. This method provides the opposite functionality of the
System.Runtime.InteropServices.Marshal.StringToHGlobalAnsi method.

Exceptions

‘System.ArgumentException len is less than zero.

35

11

12
13

14
15

16

17
18
19
20
21
22
23
24
25
26
27

28

Marshal.PtrToStringAuto(System. IntPtr)
Method

Summary

Allocates a managed System.String and copies all characters up to the first null
character from a string stored in unmanaged memory into it.

Parameters

For Unicode platforms, the address of the first Unicode character.-or- For ANSI
plaforms, the address of the first ANSI character.

ptr

Return Value

A managed string that holds a copy of the unmanaged string if the value of the ptr
parameter is not null; otherwise, this method returns null.

Description

If the current platform is Unicode, each ANSI character is widened to a Unicode
character and this method calls
System.Runtime.InteropServices.Marshal.PtrToStringUni. Otherwise, this method
calls System.Runtime.InteropServices.Marshal.PtrToStringAnsi.

System.Runtime.InteropServices.Marshal.PtrToStringauto is useful for custom
marshaling or when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. System.Runtime.InteropServices.Marshal.PtrToStringAuto provides
the opposite functionality of the
System.Runtime.InteropServices.Marshal.StringToHGlobalAuto method.

36

11

12
13

14
15

16

17
18
19
20
21
22
23
24
25
26
27

28

Marshal.PtrToStringAuto(System. IntPtr,
System.Int32) Method

Summary

Allocates a managed System.String and copies the specified number of characters from
a string stored in unmanaged memory into it.

Parameters

ir For Unicode platforms, the address of the first Unicode character.-or- For ANSI
P plaforms, the address of the first ANSI character.
len The number of characters to copy.

Return Value

A managed string that holds a copy of the native string if the value of the ptr parameter
is not null; otherwise, this method returns null.

Description

On Unicode platforms, this method calls
System.Runtime.InteropServices.Marshal.PtrToStringUni; on ANSI platforms, it
calls System.Runtime.InteropServices.Marshal.PtrToStringAnsi. NO
transformations are done before these methods are called.

System.Runtime.InteropServices.Marshal.PtrToStringAuto is useful for custom
marshaling or when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. System.Runtime.InteropServices.Marshal.PtrToStringAuto provides
the opposite functionality of
System.Runtime.InteropServices.Marshal.StringToHGlobalAuto.

Exceptions

37

System.ArgumentException

len is less than zero.

38

11

12
13

14
15

16

17
18
19
20
21

22

Marshal.PtrToStringUni(System.IntPtr)
Method

Summary

Allocates a managed System.String and copies all characters up to the first null
character from an unmanaged Unicode string into it.

Parameters

‘ptr ‘The address of the first character of the unmanaged string.

Return Value

A managed string that holds a copy of the unmanaged string if the value of the ptr
parameter is not null; otherwise, this method returns null.

Description

System.Runtime.InteropServices.Marshal.PtrToStringUni is useful for custom
marshaling or for use when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. This method provides the opposite functionality of the
System.Runtime.InteropServices.Marshal.StringToHGlobalUni method.

39

11

12
13

14
15

16

17
18
19
20
21

22

Marshal.PtrToStringUni(System. IntPtr,
System.Int32) Method

Summary

Allocates a managed System.String and copies a specified number of characters from
an unmanaged Unicode string into it.

Parameters

ptr

The address of the first character of the unmanaged string.

len

The number of Unicode characters to copy.

Return Value

A managed string that holds a copy of the unmanaged string if the value of the ptr
parameter is not null; otherwise, this method returns null.

Description

System.Runtime.InteropServices.Marshal.PtrToStringUni is useful for custom
marshaling or when mixing managed and unmanaged code. Because this method
creates a copy of the unmanaged string's contents, you must free the original string as
appropriate. This method provides the opposite functionality of the
System.Runtime.InteropServices.Marshal.StringToHGlobalUni method.

40

10

11
12

13
14
15

16

17

18

Marshal.PtrToStructure(System.IntPtr,
System.Object) Method

Summary

Marshals data from an unmanaged block of memory to a managed object.

Parameters

ptr A pointer to an unmanaged block of memory.

The object to which the data is to be copied. This must be an instance of a
structure

formatted class.

Description

System.Runtime.InteropServices.Marshal.PtrToStructure is often necessary in
interop scenarios when structure parameters are represented as an System.IntPtr
value. You cannot use this overload method with value types.

Exceptions

Structure layout is not sequential or explicit.

System.ArgumentException -or-

Structure is a boxed value type.

41

11

12
13

14

15

16
17
18
19

20

Marshal.PtrToStructure(System.IntPtr,
System.Type) Method

Summary

Marshals data from an unmanaged block of memory to a newly allocated managed
object of the specified type.

Parameters

ptr A pointer to an unmanaged block of memory.

The type of object to be created. This object must represent a formatted

structureType
class or a structure.

Return Value

A managed object containing the data pointed to by the ptr parameter.

Description

System.Runtime.InteropServices.Marshal.PtrToStructure is often necessary in
interop scenarios invoke when structure parameters are represented as an

System. IntPtr value. You can pass a value type to this overload method. In this case,
the returned object is a boxed instance.

Exceptions

The structureType parameter layout is not sequential or
explicit.

System.ArgumentException —or-

The structureType parameter is a generic type.

42

System.ArgumentNullException [structureType is null.

43

10

11

12

13
14
15
16
17
18
19

20

Marshal.ReadByte(System.IntPtr) Method

Summary

Reads a single byte from unmanaged memory.

Parameters

‘ptr ‘The address in unmanaged memory from which to read.

Return Value

The byte read from unmanaged memory.

Description

System.Runtime.InteropServices.Marshal.ReadByte has an implied offset of 0. This
method enables direct interaction with an unmanaged C-style byte array, eliminating the
expense of copying an entire unmanaged array (using
System.Runtime.InteropServices.Marshal.Copy) to a separate managed array before
reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

or
System.AccessViolationException ptr is null.
or

ptr is invalid.

44

45

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.ReadByte(System.IntPtr,
INnt32) Method

System.

Summary

Reads a single byte at a given offset (or index) from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory from which to read.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The byte read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadByte enables direct interaction with
an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

46

N

U phw

[o BN

10

11

12
13

14

15

16
17
18
19
20
21

22

Marshal.ReadByte(System.Object,
System.Int32) Method

Summary

Reads a single byte at a given offset (or index) from unmanaged memory.

Parameters

ptr The base address in unmanaged memory of the source object.

ofs An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The byte read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadByte enables direct interaction with
an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept

47

'System.Runtime.InteropServices.ArrayWithOffset
parameters.

48

B~ WN

10
11

12

13

14
15
16
17
18
19
20

21

Marshal.ReadIntl6(System.IntPtr) Method

Summary

Reads a 16-bit signed integer from unmanaged memory.

Parameters

‘ptr ‘The address in unmanaged memory from which to read.

Return Value

The 16-bit signed integer read from unmanaged memory.

Description

System.Runtime.InteropServices.Marshal.ReadInt16 has an implied offset of O. This
method enables direct interaction with an unmanaged C-style Int16 array, eliminating
the expense of copying an entire unmanaged array (using
System.Runtime.InteropServices.Marshal.Copy) to a separate managed array before
reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException
ptr is null.

-0r-

49

ptr is invalid.

50

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.ReadIlntl6(System.IntPtr,
INnt32) Method

System.

Summary

Reads a 16-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory from which to read.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 16-bit signed integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadInt16 enables direct interaction with
an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

51

N

U phw

[o BN

10

11

12
13

14

15

16
17
18
19
20
21

22

Marshal.ReadIlntl6(System.Object,
System.Int32) Method

Summary

Reads a 16-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr The base address in unmanaged memory of the source object.

ofs An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 16-bit signed integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadInt16 enables direct interaction with
an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept

52

'System.Runtime.InteropServices.ArrayWithOffset
parameters.

53

B~ WN

10
11

12

13

14
15
16
17
18
19
20

21

Marshal.ReadInt32(System.IntPtr) Method

Summary

Reads a 32-bit signed integer from unmanaged memory.

Parameters

‘ptr ‘The address in unmanaged memory from which to read.

Return Value

The 32-bit signed integer read from unmanaged memory.

Description

System.Runtime.InteropServices.Marshal.ReadInt32 has an implied offset of 0. This
method enables direct interaction with an unmanaged C-style Int32 array, eliminating
the expense of copying an entire unmanaged array (using
System.Runtime.InteropServices.Marshal.Copy) to a separate managed array before
reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException
ptr is null.

-0r-

54

ptr is invalid.

55

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.ReadInt32(System.IntPtr,
INnt32) Method

System.

Summary

Reads a 32-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory from which to read.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 32-bit signed integer read from unmanaged memory.

Description

System.Runtime.InteropServices.Marshal.ReadInt32 enables direct interaction with
an unmanaged 32-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

56

N

U phw

[o BN

10

11

12
13

14

15

16
17
18
19
20
21

22

Marshal.ReadInt32(System.Object,
System.Int32) Method

Summary

Reads a 32-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr The base address in unmanaged memory of the source object.

ofs An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 32-bit signed integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadInt32 enables direct interaction with
an unmanaged 32-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept

57

'System.Runtime.InteropServices.ArrayWithOffset
parameters.

58

B~ WN

10
11

12

13

14
15
16
17
18
19
20

21

Marshal.ReadInt64(System.IntPtr) Method

Summary

Reads a 64-bit signed integer from unmanaged memory.

Parameters

‘ptr ‘The address in unmanaged memory from which to read.

Return Value

The 64-bit signed integer read from unmanaged memory.

Description

System.Runtime.InteropServices.Marshal.ReadInt64 has an implied offset of O. This
method enables direct interaction with an unmanaged C-style Int64 array, eliminating
the expense of copying an entire unmanaged array (using
System.Runtime.InteropServices.Marshal.Copy) to a separate managed array before
reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException
ptr is null.

-0r-

59

ptr is invalid.

60

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.ReadIlnt64(System.IntPtr,
INnt32) Method

System.

Summary

Reads a 64-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory from which to read.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 64-bit signed integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadInt64 enables direct interaction with
an unmanaged 64-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

61

N

U phw

[o BN

10

11

12
13

14

15

16
17
18
19
20
21

22

Marshal.ReadIlnt64(System.Object,
System.Int32) Method

Summary

Reads a 64-bit signed integer at a given offset from unmanaged memory.

Parameters

ptr The base address in unmanaged memory of the source object.

ofs An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The 64-bit signed integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadInt64 enables direct interaction with
an unmanaged 64-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept

62

'System.Runtime.InteropServices.ArrayWithOffset
parameters.

63

B~ WN

10
11

12
13

14

15
16
17
18
19
20
21

22

Marshal.ReadIntPtr(System.IntPtr) Method

Summary

Reads a processor native-sized integer from unmanaged memory.

Parameters

‘ptr ‘The address in unmanaged memory from which to read.

Return Value

The integer read from unmanaged memory. A 32 bit integer is returned on 32 bit
machines and a 64 bit integer is returned on 64 bit machines.

Description

System.Runtime.InteropServices.Marshal.ReadIntPtr has an implied offset of O.
This method enables direct interaction with an unmanaged C-style IntPtr array,
eliminating the expense of copying an entire unmanaged array (using
System.Runtime.InteropServices.Marshal.Copy) to a separate managed array before
reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

Or

System.AccessViolationException
ptr is null.

Or

64

ptr is invalid.

65

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.ReadIntPtr(System.IntPtr,
INnt32) Method

System.

Summary

Reads a processor native sized integer at a given offset from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory from which to read.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadIntPtr enables direct interaction
with an unmanaged C-style IntPtr array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

66

10

11
12

13

14

15
16
17
18
19
20

21

Marshal.ReadIntPtr(System.Object,
INnt32) Method

System.

Summary

Reads a processor native sized integer from unmanaged memory.

Parameters

ptr

The base address in unmanaged memory of the source object.

ofs

An additional byte offset, which is added to the ptr parameter before reading.

Return Value

The integer read from unmanaged memory at the given offset.

Description

System.Runtime.InteropServices.Marshal.ReadIntPtr enables direct interaction
with an unmanaged C-style IntPtr array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before reading its element values.

Reading from unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

ptr is an

System.ArgumentException System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

67

parameters.

68

11

12
13

14
15

16

17
18
19

20

21

22

Marshal.ReAllocHGlobal(System. IntPtr,
System.IntPtr) Method

Summary

Resizes a block of memory previously allocated with
System.Runtime.InteropServices.Marshal.AllocHGlobal.

Parameters

A pointer to memory allocated with
System.Runtime.InteropServices.Marshal. AllocHGlobal.

pv

cb The new size of the allocated block.

Return Value

A pointer to the reallocated memory. This memory must be released using
System.Runtime.InteropServices.Marshal.FreeHGlobal.

Description

System.Runtime.InteropServices.Marshal.ReAllocHGlobal is the memory allocation
APl method in the System.Runtime.InteropServices.Marshal class. The returned
pointer can differ from the original.

Exceptions

‘System.OutOfMemoryException ‘There is insufficient memory to satisfy the request.

69

10

11

12

13
14
15
16
17
18
19
20
21
22

23

24

25

Marshal.SizeOf(System.Object) Method

Summary

Returns the unmanaged size of an object in bytes.

Parameters

structure ‘The object whose size is to be returned.

Return Value

The size of the specified object in unmanaged code.

Description

This method accepts an instance of a structure, which can be a reference type or a
boxed value type. The layout must be sequential or explicit.

The size returned is the size of the unmanaged object. The unmanaged and managed
sizes of an object can differ. For character types, the size is affected by the
System.Runtime.InteropServices.CharSet value applied to that class.

You can use the System.Runtime.InteropServices.Marshal.SizeOf method to
determine how much unmanaged memory to allocate using the
System.Runtime.InteropServices.Marshal.AllocHGlobal method.

Exceptions

‘System.ArgumentNuIIException ‘The structure parameter is null.

70

10
11

12

13

14
15
16
17
18
19

20

21

22

Marshal.SizeOf(System.Type) Method

Summary

Returns the size of an unmanaged type in bytes.

Parameters

‘t ‘The type whose size is to be returned.

Return Value

The size of the specified type in unmanaged code.

Description

You can use this method when you do not have a structure. The layout must be
sequential or explicit.

The size returned is the size of the unmanaged type. The unmanaged and managed
sizes of an object can differ. For character types, the size is affected by the
System.Runtime. InteropServices.CharSet value applied to that class.

Exceptions

System.ArgumentException The t parameter is a generic type.

System.ArgumentNullException The t parameter is null.

71

=

v bhw

11

12
13

14

15

16
17
18
19
20
21
22

23

24

25

Marshal.StringToHGlobalAnsi(System.String)
Method

Summary

Copies the contents of a managed System.String into unmanaged memory, converting
into ANSI format as it copies.

Parameters

S ‘A managed string to be copied.

Return Value

The address, in unmanaged memory, to where s was copied, or O if s is null.

Description

System.Runtime.InteropServices.Marshal.StringToHGlobalAnsi is useful for
custom marshaling or when mixing managed and unmanaged code. Because this
method allocates the unmanaged memory required for a string, always free the memory
by calling System.Runtime.InteropServices.Marshal.FreeHGlobal.
System.Runtime.InteropServices.Marshal.StringToHGlobalAnsi provides the
opposite functionality of
System.Runtime.InteropServices.Marshal.PtrToStringAnsi.

Exceptions

System.OutOfMemoryException There is insufficient memory available.

The s parameter exceeds the maximum length

System.ArgumentOutOfRangeException allowed by the operating system.

72

11

12
13

14

15

16
17
18
19
20
21

22

23

24

Marshal.StringToHGlobalAuto(System.String)
Method

Summary

Copies the contents of a managed System.String into unmanaged memory, converting
into ANSI format if required.

Parameters

S ‘A managed string to be copied.

Return Value

The address, in unmanaged memory, to where the string was copied, or O if sis null.

Description

System.Runtime.InteropServices.Marshal.StringToHGlobalAuto is useful for
custom marshaling or for use when mixing managed and unmanaged code. Because this
method allocates the unmanaged memory required for a string, always free the memory
by calling System.Runtime.InteropServices.Marshal.FreeHGlobal. This method
provides the opposite functionality of
System.Runtime.InteropServices.Marshal.PtrToStringAuto.

Exceptions

‘System.OutOfMemoryException ‘There is insufficient memory available.

73

10

11
12

13

14

15
16
17
18
19
20

21

22

23

Marshal.StringToHGlobalUni(System.String)
Method

Summary

Copies the contents of a managed System.String into unmanaged memory.

Parameters

s ‘A managed string to be copied.

Return Value

The address, in unmanaged memory, to where the s was copied, or 0 if s is null.

Description

System.Runtime.InteropServices.Marshal.StringToHGlobalUni is useful for custom
marshaling or for use when mixing managed and unmanaged code. Because this method
allocates the unmanaged memory required for a string, always free the memory by
calling System.Runtime.InteropServices.Marshal.FreeHGlobal. This method
provides the opposite functionality of
System.Runtime.InteropServices.Marshal.PtrToStringUni.

Exceptions

The method could not allocate enough native
heap memory.

System.OutOfMemoryException

The s parameter exceeds the maximum length

System.ArgumentOutOfRangeException allowed by the operating system.

74

U pbhw

00 N

10

11

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Marshal.StructureToPtr(System.Object,
System.IntPtr, System.Boolean) Method

Summary

Marshals data from a managed object to an unmanaged block of memory.

Parameters

structure

A managed object holding the data to be marshaled. This object must be an
instance of a formatted class.

ptr

A pointer to an unmanaged block of memory, which must be allocated before
this method is called.

fDeleteOld

true to have the System.Runtime.InteropServices.Marshal.
DestroyStructure method called on the ptr parameter before this method
executes. Note that passing false can lead to a memory leak.

Description

System.Runtime.InteropServices.Marshal.StructureToPtr copies the contents of
structure to the pre-allocated block of memory that the ptr parameter points to. If the
fDeleteOld parameter is true, the pre-allocated buffer is deleted with the appropriate
deletion method on the embedded pointer, but the buffer must contain valid data. This
method cleans up every reference field specified in the mirrored managed class.

Suppose that ptr points to an unmanaged block of memory. The layout of this block is
described by a corresponding managed class, which is specified by structure.
System.Runtime.InteropServices.Marshal.StructureToPtr marshals field values
from a structure to a pointer. Suppose the ptr block includes a reference field pointing to
a string buffer that currently holds "abc", and the corresponding field on the managed
side is a string that holds "vwxyz". If you do not specify otherwise,
System.Runtime.InteropServices.Marshal.StructureToPtr allocates a new
unmanaged buffer to hold "vwxyz", and hooks it up to the ptr block. This action casts
the old buffer "abc" adrift without freeing it (its memory is not released back to the
unmanaged heap). The result is an orphan buffer that represents a memory leak in your

75

CoOoONOOTULLE WN

[
o

11

12

code. If you set the fDeleteOld parameter to true,
System.Runtime.InteropServices.Marshal.StructureToPtr frees the buffer that
holds "abc" before allocating a new buffer for "vwxyz".

[Note: To pin an existing structure, instead of copying it, use the

System.Runtime.InteropServices.GCHandle type to create a pinned handle for the
structure.

]

Exceptions

‘System.ArgumentException ‘The structure parameter is a generic type.

76

NO ups

O 00

10

11

12

13
14

15

16

17
18
19

20

Marshal.UnsafeAddrOfPinnedArrayElement(S
ystem.Array, System.Int32) Method

Summary

Gets the address of the element at the specified index inside the specified array.

Parameters
arr The array that contains the desired element.
index The index in the arr parameter of the desired element.

Return Value

The address of index inside arr.

Description

The array must be pinned using a System.Runtime.InteropServices.GCHandle before
it is passed to this method. For maximum performance, this method does not validate
the array passed to it; this can result in unexpected behavior.

10

11
12

13
14
15
16

17

18

19

Marshal . WriteByte(System.IntPtr,
System.Byte) Method

Summary

Writes a single byte value to unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteByte enables direct interaction with
an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0r-

ptr is invalid.

78

10

11
12

13
14
15
16

17

18

19

Marshal. WriteByte(System. IntPtr,
System.Int32, System.Byte) Method

Summary

Writes a single byte value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory to write to.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteByte enables direct interaction with
an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

79

N

U phw

[o BN

10

11

12
13

14
15
16
17

18

Marshal. WriteByte(System.ODbject,
System.Int32, System.Byte) Method

Summary

Writes a single byte value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteByte enables direct interaction with
an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset
object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset
parameters.

80

81

10

11
12

13
14
15
16
17
18

19

Marshal. Writelntl6(System.IntPtr,
System.Char) Method

Summary

Writes a character as a 16-bit integer value to unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteIntlé enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0or-

ptr is invalid.

82

83

10

11
12

13
14
15
16
17
18

19

Marshal. Writelntl6(System.IntPtr,
System.Intl6) Method

Summary

Writes a 16-bit integer value to unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteIntlé enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0or-

ptr is invalid.

84

85

10

11
12

13
14
15
16
17
18

19

20

21

Marshal.Writelntl6(System.IntPtr,
System.Int32, System.Char) Method

Summary

Writes a 16-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in the native heap to write to.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt1é enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

86

10

11
12

13
14
15
16
17
18

19

20

21

Marshal.Writelntl6(System.IntPtr,
System.Int32, System.Intl1l6) Method

Summary

Writes a 16-bit signed integer value into unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory to write to.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt1é enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

87

10

11
12

13
14
15
16
17
18

19

Marshal. Writelntl6(System.ODbject,
System.Int32, System.Char) Method

Summary

Writes a 16-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal .WriteInt16 enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset
object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

88

parameters.

89

N

U phw

[o BN

10

11

12
13

14
15
16
17
18
19

20

Marshal. Writelntl6(System.ODbject,
System.Int32, System.Intl1l6) Method

Summary

Writes a 16-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt1é enables direct interaction
with an unmanaged 16-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

ptr is an

System.ArgumentException System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

90

parameters.

91

10

11
12

13
14
15
16
17
18

19

Marshal. Writelnt32(System. IntPtr,
System.Int32) Method

Summary

Writes a 32-bit signed integer value to unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt32 enables direct interaction
with an unmanaged 32-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0or-

ptr is invalid.

92

93

10

11
12

13
14
15
16
17
18

19

20

21

Marshal . WriteInt32(System. IntPtr,
System.Int32, System.Int32) Method

Summary

Writes a 32-bit signed integer value into unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory to write to.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt32 enables direct interaction
with an unmanaged 32-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

94

N

U phw

[o BN

10

11

12
13

14
15
16
17
18
19

20

Marshal. Writelnt32(System.ODbject,
System.Int32, System.Int32) Method

Summary

Writes a 32-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInt32 enables direct interaction
with an unmanaged 32-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

ptr is an

System.ArgumentException System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

95

parameters.

96

10

11
12

13
14
15
16
17
18

19

Marshal. Writelnt64(System. IntPtr,
System.Int64) Method

Summary

Writes a 64-bit signed integer value to unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInté64 enables direct interaction
with an unmanaged 64-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0or-

ptr is invalid.

97

98

10

11
12

13
14
15
16
17
18

19

20

21

Marshal. Writelnt64(System. IntPtr,
System.Int32, System.Int64) Method

Summary

Writes a 64-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory to write.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInté64 enables direct interaction
with an unmanaged 64-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

99

N

U phw

[o BN

10

11

12
13

14
15
16
17
18
19

20

Marshal. Writelnt64(System.ODbject,
System.Int32, System.Int64) Method

Summary

Writes a 64-bit signed integer value to unmanaged memory at a specified offset.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteInté64 enables direct interaction
with an unmanaged 64-bit signed array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

ptr is an

System.ArgumentException System.Runtime.InteropServices.ArrayWithOffset

object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

100

parameters.

101

10

11
12

13
14
15
16
17
18

19

Marshal. WritelntPtr(System. IntPtr,
System.IntPtr) Method

Summary

Writes a processor native sized integer value into unmanaged memory.

Parameters

ptr

The address in unmanaged memory to write to.

val

The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteIntPtr enables direct interaction
with an unmanaged C-style IntPtr array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

ptr is not a recognized format.

-0r-

System.AccessViolationException ptr is null.

-0or-

ptr is invalid.

102

103

11

12
13

14
15
16
17
18
19
20
21
22

23

24

25

Marshal . WritelntPtr(System. IntPtr,
System.Int32, System.IntPtr) Method

Summary

Writes a processor native-sized integer value to unmanaged memory at a specified

offset.

Parameters

ptr The base address in unmanaged memory to write to.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

This method writes a 32 bit integer on 32 bit systems, and a 64 bit integer on 64 bit

systems.

System.Runtime.InteropServices.Marshal.WriteIntPtr enables direct interaction
with an unmanaged C-style IntPtr array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

104

10

11
12

13
14
15
16
17
18

19

Marshal.WritelntPtr(System.Object,
System.Int32, System.IntPtr) Method

Summary

Writes a processor native sized integer value to unmanaged memory.

Parameters

ptr The base address in unmanaged memory of the target object.
ofs An additional byte offset, which is added to the ptr parameter before writing.
val The value to write.

Description

System.Runtime.InteropServices.Marshal.WriteIntPtr enables direct interaction
with an unmanaged C-style byte array, eliminating the expense of copying an entire
unmanaged array (using System.Runtime.InteropServices.Marshal.Copy) to a
separate managed array before setting its element values.

Writing to unaligned memory locations is supported.

Exceptions

System.AccessViolationException

Base address (ptr) plus offset byte (ofs) produces a
null or invalid address.

System.ArgumentException

ptr is an
System.Runtime.InteropServices.ArrayWithOffset
object. This method does not accept
System.Runtime.InteropServices.ArrayWithOffset

105

parameters.

106

