10
11
12

13

14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39

40
41

42

System.Collections.Generic.lComparer<-T=
Interface

[ILAsm]
.class public interface abstract IComparer<-T>

[C#1
public interface IComparer<in T>

Assembly Info:

¢ Name: mscorlib
e Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
e Version: 4.0.0.0
e Attributes:
0 CLSCompliantAttribute(true)
Summary

Defines a method that a type implements to compare two objects.

Library: BCL

Description

This interface is used with the System.Collections.Generic.List > 1<T>.Sort and
System.Collections.Generic.List 1<T>.BinarySearch methods. It provides a way to
customize the sort order of a collection. Classes that implement this interface include
the System.Collections.Generic.SortedDictionary ~2<T1,T2> and
System.Collections.Generic.SortedList “2<T1,T2> generic classes.

The default implementation of this interface is the
System.Collections.Generic.Comparer ™ 1<T> class. The System.StringComparer
class implements this interface for type System.String.

This interface supports ordering comparisons. That is, when the
System.Collections.Generic.Comparer 1<T>.Compare method returns O, it means
that two objects sort the same. Implementation of exact equality comparisons is
provided by the System.Collections.Generic.IEqualityComparer 1<T> generic
interface.

We recommend that you derive from the
System.Collections.Generic.Comparer ™ 1<T> class instead of implementing the
System.Collections.Generic.IComparer 1<T> interface, because the
System.Collections.Generic.Comparer 1<T> class provides an explicit interface

implementation of the
System.Collections.Generic.Comparer 1<T>.System#Collections#IComparer#Comp

are method and the System.Collections.Generic.Comparer 1<T>.Default property
that gets the default comparer for the object.



H~wWN

O

10

11
12

13
14

15

16

17
18
19
20

21

IComparer<-T=.Compare(T, T) Method

Summary

Compares two objects and returns a value indicating whether one is less than, equal to,
or greater than the other.

Parameters
X The first object to compare.
y The second object to compare.

Return Value

A signed integer that indicates the relative values of x and y, as shown in the following
table.

Less than zero X is less than y.
Zero X equals y.
Greater than zero X is greater than y.

Description

Implement this method to provide a customized sort order comparison for type T.

Comparing null with any reference type is allowed and does not generate an exception.
A null reference is considered to be less than any reference that is not null.

Behaviors



OooNOOULTL P WN -

For any objects A, B and C, the following are required to be true:
Compare(A,A) is required to return zero.
If Compare(A,B) returns zero then Compare(B,A) is required to return zero.

If Compare(A,B) is zero, then Compare(B,C) and Compare(A,C) must have the same
sign (negative, zero or positive).

If Compare(B,C) is zero, then Compare(A,B) and Compare(A,C) must have the same
sign (negative, zero or positive).

If Compare(A,B) returns zero and Compare(B,C) returns zero then Compare(A,C) is
required to return zero.

If Compare(A,B) returns a value other than zero then Compare(B,A) is required to
return a value of the opposite sign.

If Compare(A,B) returns a value x not equal to zero, and Compare(B,C) returns a value
y of the same sign as x, then Compare(A,C) is required to a value of the same sign as x
and y.

The exact behavior of this method is unspecified. The intent of this method is to provide
a mechanism that orders instances of a class in a manner that is consistent with the
mathematical definitions of the relational operators (<, >, and ==), without regard for
class-specific definitions of the operators.



