10
11
12
13

14

15

16

17

18
19
20
21
22

23
24

25
26
27
28
29
30

System.Runtime.InteropServices.SafeHandle
Class

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 4.0.0.0
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.IDisposable

Summary

Represents a wrapper class for operating system handles. This class must be inherited.

Inherits From: System.Object
Library: Runtimelnfrastructure
Permissions
' 'for full trust for inheritors. This member

cannot be inherited by partially trusted
code.

System.Security.Permissions.
SecurityAction.InheritanceDemand

Description

The System.Runtime.InteropServices.SafeHandle class provides critical finalization
of handle resources, preventing handles from being reclaimed prematurely by garbage
collection and from being recycled by Windows to reference unintended unmanaged
objects.

The System.Runtime.InteropServices.SafeHandle class contains a finalizer that

VWO NOOULIPE WN -

[
w N

14

15
16
17
18
19
20
21
22
23
24

25

ensures that the handle is closed and is guaranteed to run, even during unexpected
System.AppDomain unloads when a host may not trust the consistency of the state of
the System.AppDomain.

This class is abstract because you cannot create a generic handle. To implement
System.Runtime.InteropServices.SafeHandle, you must create a derived class. To
create System.Runtime.InteropServices.SafeHandle derived classes, you must know
how to create and free an operating system handle. This process is different for different
handle types because some use CloseHandle, while others use more specific methods
such as UnmapViewOfFile or FindClose. For this reason, you must create a derived
class of System.Runtime. InteropServices.SafeHandle for each operating system
handle type; such as MySafeRegistryHandle, MySafeFileHandle, and
MySpecialSafeFileHandle.

How and When to Override

When you inherit from System.Runtime. InteropServices.SafeHandle, you must
override the following members:
System.Runtime.InteropServices.SafeHandle.IsInvalid and
System.Runtime.InteropServices.SafeHandle.ReleaseHandle.

You should also provide a default constructor that calls the base constructor with a value
that represent an invalid handle value, and a Boolean value indicating whether the
native handle will be owned by the System.Runtime.InteropServices.SafeHandle,
and consequently freed when that System.Runtime.InteropServices.SafeHandle has
been disposed.

11

12
13

14
15
16

17

18
19

SafeHandle(System.IntPtr, System.Boolean)
Constructor

Summary

Initializes a new instance of the System.Runtime.InteropServices.SafeHandle class
with the specified invalid handle value.

Parameters

invalidHandleValue

The value of an invalid handle (usually O or -1). Your implementation of
System.Runtime.InteropServices.SafeHandle. IsInvalid should
return true for this value.

ownsHandle

true to reliably let System.Runtime.InteropServices.SafeHandle
release the handle during the finalization phase; otherwise, false (not
recommended).

Description

If the ownsHandle parameter is false,
System.Runtime.InteropServices.SafeHandle.ReleaseHandle is never called; thus,
it is not recommended to use this parameter value as your code may leak resources.

Exceptions

System.TypelLoadException

The derived class resides in an assembly without unmanaged
code access permission.

Permissions

for full trust for inheritors. This member
cannot be inherited by partially trusted
code.

System.Security.Permissions.
SecurityAction.InheritanceDemand

10

SafeHandle.handle Field

Summary

Specifies the handle to be wrapped.

Description

Do not expose the handle publicly (that is, outside of the derived class).

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32

33

SafeHandle.Close() Method

Summary

Marks the handle for releasing and freeing resources.

Description

Calling the System.Runtime.InteropServices.SafeHandle.Close Or
System.Runtime.InteropServices.SafeHandle.Dispose method allows the resources
to be freed. This might not happen immediately if other threads are using the same safe
handle object, but will happen as soon as that is no longer the case. Although most
classes that use the System.Runtime.InteropServices.SafeHandle class do not need
to provide a finalizer, this is sometimes necessary (for example, to flush out file buffers
or to write some data back into memory). In this case, such classes can provide a
finalizer that is guaranteed to run before the
System.Runtime.InteropServices.SafeHandle critical finalizer runs.

Call the System.Runtime.InteropServices.SafeHandle.Close Or
System.Runtime.InteropServices.SafeHandle.Dispose method when you are
finished using the System.Runtime.InteropServices.SafeHandle object.

[Note: Always call System.Runtime.InteropServices.SafeHandle.Close Or
System.Runtime.InteropServices.SafeHandle.Dispose before you release your last
reference to the System.Runtime.InteropServices.SafeHandle object. Otherwise, the
resources it is using will not be freed until the garbage collector calls the
System.Runtime.InteropServices.SafeHandle object's
System.Runtime.InteropServices.SafeHandle.Finalize method.

]

Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.

System.Security.Permissions. | - . .
LinkDemand. Associated enumeration:

SecurityPermission

UnmanagedCode

System.Security.Permissions.SecurityPermissionFlag.

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

SafeHandle.DangerousAddRef(System.Boolea

n&) Method

Summary

Manually increments the reference counter on
System.Runtime.InteropServices.SafeHandle instances.

Parameters

success

true if the reference counter was successfully incremented; otherwise, false.

Description

The System.Runtime.InteropServices.SafeHandle.DangerousAddRef method

prevents the common language infrastructure from reclaiming memory used by a handle

(which occurs when the runtime calls the

System.Runtime.InteropServices.SafeHandle.ReleaseHandle method). You can use

this method to manually increment the reference count on a
System.Runtime.InteropServices.SafeHandle instance.

System.Runtime.InteropServices.SafeHandle.DangerousAddRef returns a Boolean
value using a ref parameter (success) that indicates whether the reference count was
incremented successfully. This allows your program logic to back out in case of failure.
You should set success to false before calling

System.Runtime.InteropServices.SafeHandle.DangerousAddRef. If success is true,

avoid resource leaks by matching the call to
System.Runtime.InteropServices.SafeHandle.DangerousAddRef with a

corresponding call to

System.Runtime.InteropServices.SafeHandle.DangerousRelease.

Permissions

System.Security.Permissions. for permission to call unmanaged code. Security action:

SecurityPermission

System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:

System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

B~ WN

10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

SafeHandle.DangerousGetHandle() Method

Summary

Returns the value of the System.Runtime.InteropServices.SafeHandle.handle field.

Return Value

An IntPtr representing the value of the
System.Runtime.InteropServices.SafeHandle.handle field. If the handle has been
marked invalid with
System.Runtime.InteropServices.SafeHandle.SetHandleAsInvalid, this method still
returns the original handle value, which can be a stale value.

Description

You can use this method to retrieve the actual handle value from an instance of the
System.Runtime.InteropServices.SafeHandle derived class. This method is needed
for backwards compatibility because some properties in the standard return IntpPtr
handle types. IntPtr handle types are platform-specific types used to represent a
pointer or a handle.

[Note: Using the System.Runtime.InteropServices.SafeHandle.DangerousGetHandle
method can pose security risks because, if the handle has been marked as invalid with
System.Runtime.InteropServices.SafeHandle.SetHandleAsInvalid,
System.Runtime.InteropServices.SafeHandle.DangerousGetHandle still returns the
original, potentially stale handle value. The returned handle can also be recycled at any
point. At best, this means the handle might suddenly stop working. At worst, if the
handle or the resource that the handle represents is exposed to untrusted code, this can
lead to a recycling security attack on the reused or returned handle. For example, an
untrusted caller can query data on the handle just returned and receive information for
an entirely unrelated resource. See the
System.Runtime.InteropServices.SafeHandle.DangerousAddRef and the
System.Runtime.InteropServices.SafeHandle.DangerousRelease methods for more
information about using the
System.Runtime.InteropServices.SafeHandle.DangerousGetHandle methodsafely.

1

Permissions

for permission to call unmanaged code. Security action:
. L System.Security.Permissions.SecurityAction.
System.Security.Permissions. y N . : b4
. .. LinkDemand. Associated enumeration:
SecurityPermission

System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

10

B~ WN

(o]

10

11
12
13
14
15
16

17

18

19

SafeHandle.DangerousRelease() Method

Summary

Manually decrements the reference counter on a
System.Runtime.InteropServices.SafeHandle instance.

Description

The System.Runtime.InteropServices.SafeHandle.DangerousRelease method is the
counterpart to System.Runtime.InteropServices.SafeHandle.DangerousAddRef. You

should always match a call to the

System.Runtime.InteropServices.SafeHandle.DangerousRelease method with a

previous successful call to

System.Runtime.InteropServices.SafeHandle.DangerousAddRef.

Permissions

System.Security.Permissions.
SecurityPermission

for permission to call unmanaged code. Security action:

System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:

System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode

11

1 SafeHandle.Dispose() Method

B~ WN

7 Summary

(o]

Releases all resources used by the System.Runtime.InteropServices.SafeHandle
class.

Yo)

10 Description

11 Calling the System.Runtime.InteropServices.SafeHandle.Close Or

12 System.Runtime.InteropServices.SafeHandle.Dispose method allows the resources
13 to be freed. This might not happen immediately if other threads are using the same

14 instance of the safe handle, but will happen as soon as that is no longer the case.

15 Although most classes using System.Runtime.InteropServices.SafeHandle do not
16 need to provide a finalizer, this is sometimes necessary (for example, to flush out file
17 buffers or to write some data back into memory). In this case, such classes can provide
18 a finalizer that is guaranteed to run before the

19 System.Runtime.InteropServices.SafeHandle critical finalizer runs.

20

21 Call the System.Runtime.InteropServices.SafeHandle.Close Or

22 System.Runtime.InteropServices.SafeHandle.Dispose method when you are

23 finished using the System.Runtime. InteropServices.SafeHandle object. The

24 System.Runtime.InteropServices.SafeHandle.Close method leaves the

25 System.Runtime.InteropServices.SafeHandle object in an unusable state.

26

27 [Note: Always call the System.Runtime.InteropServices.SafeHandle.Close Or

28 System.Runtime.InteropServices.SafeHandle.Dispose method before you release
29 your last reference to the System.Runtime.InteropServices.SafeHandle object.

30 Otherwise, the resources it is using will not be freed until the garbage collector calls the
31 System.Runtime.InteropServices.SafeHandle object's

32 System.Runtime.InteropServices.SafeHandle.Finalize method.

33

34 1

35 Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.

System.Security.Permissions.
SecurityPermission

12

UnmanagedCode

13

B~ WN

12
13

14
15
16

17

18

19

SafeHandle.Dispose(System.Boolean) Method

Summary

Releases the unmanaged resources used by the
System.Runtime.InteropServices.SafeHandle class specifying whether to perform a
normal dispose operation.

Parameters

disposing true for a normal dispose operation; false to finalize the handle.

Description

You should never explicitly call the
System.Runtime.InteropServices.SafeHandle.Dispose method with the disposing
parameter set to false.

Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

System.Security.Permissions.
SecurityPermission

14

1 SafeHandle.Finalize() Method

6 Summary

7 Frees all resources associated with the handle.

8 Description

9 The System.Runtime.InteropServices.SafeHandle.Finalize method is the
10 destructor for the System.Runtime.InteropServices.SafeHandle class. Application
11 code should not call this method directly.

12 Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

System.Security.Permissions.
SecurityPermission

13

14

15

1 SafeHandle.ReleaseHandle() Method

B~ WN

7 Summary

8 When overridden in a derived class, executes the code required to free the handle.

9 Return Value

10 true if the handle is released successfully; otherwise, in the event of a catastrophic
11 failure, false. In this case, it generates a ReleaseHandleFailed Managed Debugging
12 Assistant.

13 Description

14 The System.Runtime.InteropServices.SafeHandle.ReleaseHandle method is

15 guaranteed to be called only once and only if the handle is valid as defined by the

16 System.Runtime.InteropServices.SafeHandle.IsInvalid property. Implement this
17 method in your System.Runtime.InteropServices.SafeHandle derived classes to

18 execute any code that is required to free the handle. Because one of the functions of
19 System.Runtime.InteropServices.SafeHandle is to guarantee prevention of resource
20 leaks, the code in your implementation of

21 System.Runtime.InteropServices.SafeHandle.ReleaseHandle must never fail. The
22 garbage collector calls System.Runtime.InteropServices.SafeHandle.ReleaseHandle
23 after normal finalizers have been run for objects that were garbage collected at the

24 same time. The garbage collector guarantees the resources to invoke this method and
25 that the method will not be interrupted while it is in progress.

26

27 Additionally, for simple cleanup (for example, calling the Win32 APl CloseHandle on a
28 file handle) you can check the return value for the single platform invoke call. For

29 complex cleanup, you may have a lot of program logic and many method calls, some of
30 which might fail. You must ensure that your program logic has fallback code for each of
31 those cases.

32 Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

System.Security.Permissions.
SecurityPermission

16

17

10

11
12

13
14

15

16

17

SafeHandle.SetHandle(System.IntPtr)
Method

Summary

Sets the handle to the specified pre-existing handle.

Parameters

handle ‘The pre-existing handle to use.

Description

Use the System.Runtime.InteropServices.SafeHandle.SetHandle method only if you
need to support a pre-existing handle.

Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

System.Security.Permissions.
SecurityPermission

18

B~ WN

10
11
12
13
14
15
16
17
18

19

20

21

SafeHandle.SetHandleAsInvalid() Method

Summary

Marks a handle as no longer used.

Description

Call the System.Runtime.InteropServices.SafeHandle.SetHandleAsInvalid method

only when you know that your handle no longer references a resource. Doing so does
not change the value of the System.Runtime.InteropServices.SafeHandle.handle
field; it only marks the handle as closed. The handle might then contain a potentially

stale value. The effect of this call

As with the System.Runtime.InteropServices.SafeHandle.SetHandle method, use

is that no attempt is made to free the resources.

System.Runtime.InteropServices.SafeHandle.SetHandleAsInvalid only if you need

to support a pre-existing handle.

Permissions

System.Security.Permissions.
SecurityPermission

for permission to call unmanaged code. Security action:

System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:

System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode

19

10

11
12
13
14
15
16
17

18
19

20
21
22
23

24

25

26

SafeHandle.IsClosed Property

Summary

Gets a value indicating whether the handle is closed.

Property Value

true if the handle is closed; otherwise, false.

Description

The System.Runtime.InteropServices.SafeHandle.IsClosed method returns a value
indicating whether the System.Runtime.InteropServices.SafeHandle object's handle
is no longer associated with a native resource. This differs from the definition of the
System.Runtime.InteropServices.SafeHandle.IsInvalid property, which computes
whether a given handle is always considered invalid. The
System.Runtime.InteropServices.SafeHandle.IsClosed method returns a true value
in the following cases:

e The System.Runtime.InteropServices.SafeHandle.SetHandleAsInvalid method
was called.

e The System.Runtime.InteropServices.SafeHandle.Dispose method or
System.Runtime.InteropServices.SafeHandle.Close method was called and there
are no references to the System.Runtime.InteropServices.SafeHandle object on
other threads.

Permissions

for permission to call unmanaged code. Security action:
System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode

System.Security.Permissions.
SecurityPermission

20

[e BN

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28

SafeHandle.lIslInvalid Property

Summary

When overridden in a derived class, gets a value indicating whether the handle value is

invalid.

Property Value

true if the handle value is invalid; otherwise, false.

Description

Derived classes must implement the
System.Runtime.InteropServices.SafeHandle.IsInvalid property so that the
common language infrastructure can determine whether critical finalization is required.

Derived classes must provide an implementation that suits the general type of handle
they support (0 or -1 is invalid). These classes can then be further derived for specific

safe handle types.

Unlike the System.Runtime.InteropServices.SafeHandle.IsClosed property, which

reports whether the System.Runtime.InteropServices.SafeHandle object has finished

using the underlying handle, the

System.Runtime.InteropServices.SafeHandle.IsInvalid property calculates
whether the given handle value is always considered invalid. Therefore, the

System.Runtime.InteropServices.SafeHandle.IsInvalid property always returns

the same value for any one handle value.

Permissions

System.Security.Permissions.
SecurityPermission

for permission to call unmanaged code. Security action:

System.Security.Permissions.SecurityAction.
LinkDemand. Associated enumeration:

System.Security.Permissions.SecurityPermissionFlag.

UnmanagedCode

21

