

 1

System.Collections.IEnumerator Interface 1

[ILAsm] 2
.class interface public abstract IEnumerator 3

[C#] 4
public interface IEnumerator 5

Assembly Info: 6

 Name: mscorlib 7
 Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 8
 Version: 2.0.x.x 9
 Attributes: 10

o CLSCompliantAttribute(true) 11

Summary 12

Implemented by classes that support a simple iteration over a collection. 13

Library: BCL 14

 15

Description 16

[Note: System.Collections.IEnumerator contains the 17
System.Collections.IEnumerator.MoveNext and 18
System.Collections.IEnumerator.Reset methods and the 19
System.Collections.IEnumerator.Current property. The consumer of an object 20
should call these methods or use this property when iterating over or reading the 21
elements of a collection. 22
 23
When an enumerator is instantiated or a call is made to 24
System.Collections.IEnumerator.Reset, the enumerator is positioned immediately 25
before the first element of the collection and a snapshot of the collection is taken. When 26
the enumerator is in this position, a call to 27
System.Collections.IEnumerator.MoveNext is necessary before reading 28
System.Collections.IEnumerator.Current from the collection. If changes are made 29
to the collection (such as adding, repositioning, or deleting elements) the snapshot can 30
get out of sync, causing the enumerator to throw a 31
System.InvalidOperationException if System.Collections.IEnumerator.MoveNext 32
or System.Collections.IEnumerator.Reset are invoked. Two enumerators 33
instantiated from the same collection at the same time can have different snapshots of 34
the collection. 35
 36
Enumerators are intended to be used only to read data in the collection. 37
 38
An enumerator does not have exclusive access to the collection for which it was 39
instantiated. 40
 41
] 42

 2

1

 3

 IEnumerator.MoveNext() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract bool MoveNext() 3

[C#] 4
bool MoveNext() 5

Summary 6

Advances the current instance to the next element of the collection. 7

Return Value 8

true if the current instance was successfully advanced to the next element; false if the 9
current instance has passed the end of the collection. 10

Description 11

[Note: When the current instance is constructed or after 12
System.Collections.IEnumerator.Reset is called, the current instance is positioned 13
immediately before the first element of the collection. Use 14
System.Collections.IEnumerator.MoveNext to position it over the first element of the 15
collection.] 16
 17
 18

Behaviors 19

A call to System.Collections.IEnumerator.MoveNext is required to position the 20
current instance over the next element in the collection and return true if the current 21
instance was not positioned beyond the last element of the collection when 22
System.Collections.IEnumerator.MoveNext was called. If the current instance is 23
already positioned immediately after the last element of the collection, a call to 24
System.Collections.IEnumerator.MoveNext is required to return false, and the 25
current instance is required to remain in the same position. If elements are added, 26
removed, or repositioned in the collection after the current instance was instantiated, it 27
is required that a call to System.Collections.IEnumerator.MoveNext throw 28
System.InvalidOperationException. 29

 30

Usage 31

Use the System.Collections.IEnumerator.MoveNext method to check if the current 32
instance is positioned immediately after the last element of the collection, and to 33
position it over the next element if it is not already past the last element of the 34
collection. This allows the use of a conditional loop to iterate over the entire collection. 35

 36

 4

Exceptions 1

Exception Condition

System.InvalidOperationException
The collection was modified after the current
instance was instantiated.

 2

3

 5

 IEnumerator.Reset() Method 1

[ILAsm] 2
.method public hidebysig virtual abstract void Reset() 3

[C#] 4
void Reset() 5

Summary 6

Positions the enumerator immediately before the first element in the collection. 7

Description 8

[Note: When the current instance is constructed or after 9
System.Collections.IEnumerator.Reset is called, the current instance is positioned 10
immediately before the first element of the collection, use 11
System.Collections.IEnumerator.MoveNext to position the current instance over the 12
first element of the collection.] 13
 14
 15

Behaviors 16

A call to System.Collections.IEnumerator.Reset is required to position the current 17
instance immediately before the first element of the collection. If elements are added, 18
removed, or repositioned in the collection after the current instance was instantiated, it 19
is required that a call to System.Collections.IEnumerator.Reset throw a 20
System.InvalidOperationException. 21

 22

How and When to Override 23

A call to System.Collections.IEnumerator.Reset can involve taking a new snapshot 24
of the collection or simply moving to the beginning of the collection. The preferred 25
implementation is to simply move the current instance to the beginning of the collection, 26
before the first element. This invalidates the current instance if the collection has been 27
modified since the current instance was constructed, which is consistent with 28
System.Collections.IEnumerator.MoveNext and 29
System.Collections.IEnumerator.Current. 30

 31

Usage 32

Use the System.Collections.IEnumerator.MoveNext method to check if the current 33
instance is positioned immediately past the last element of the collection, and to position 34
it over the next element if it is not already past the last element of the collection. 35

 6

 1

Exceptions 2

Exception Condition

System.InvalidOperationException
The collection was modified after the enumerator
was instantiated.

 3

4

 7

 IEnumerator.Current Property 1

[ILAsm] 2
.property object Current { public hidebysig virtual abstract specialname 3
object get_Current() } 4

[C#] 5
object Current { get; } 6

Summary 7

Gets the element in the collection over which the current instance is positioned. 8

Property Value 9

The element in the collection over which the current instance is positioned. 10

Description 11

[Note: When the current instance is constructed or after 12
System.Collections.IEnumerator.Reset is called, use 13
System.Collections.IEnumerator.MoveNext to position the current instance over the 14
first element of the collection.] 15
 16
 17

Behaviors 18

It is required that System.Collections.IEnumerator.Current return the element in 19
the collection over which the current instance is positioned unless it is positioned before 20
the first or after the last element of the collection. If the current instance is positioned 21
before the first element or after the last element of the collection, 22
System.Collections.IEnumerator.Current returns an unspecified value or throws an 23
unspecified exception. If elements were added, removed, or repositioned in the 24
collection after the current instance was instantiated, 25
System.Collections.IEnumerator.Current returns the value it would have returned 26
before the collection was modified. 27
 28
It is also required that System.Collections.IEnumerator.Current not change the 29
position of the current instance: consecutive calls to 30
System.Collections.IEnumerator.Current are required to return the same object 31
until either System.Collections.IEnumerator.MoveNext or 32
System.Collections.IEnumerator.Reset is called. 33
 34
This property is read-only. 35

Usage 36

 8

Use System.Collections.IEnumerator.Current to get the element in the collection 1
over which the current instance is positioned, provided that the current instance is not 2
positioned before the first element or after the last element of the collection. 3

 4

 5

