b wN

N o

10
11
12
13

14

15
16

17

18

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

System.Collections.Stack Class

[ILAsm]
.class public serializable beforefieldinit Stack extends System.Object

implements System.Collections. ICollection, System.Collections. IEnumerable,
System.1Cloneable

[C#]
public class Stack: ICloneable, System.Collections.ICollection

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 4.0.0.0
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.Collections.I1Collection
e System.ICloneable

Summary

Represents a simple last-in-first-out (LIFO) non-generic collection of objects.

Inherits From: System.Object

Library: BCL

Description

For the generic version of this collection, see
System.Collections.Generic.Stack ™ 1<T>.

System.Collections.Stack is implemented as a circular buffer.

The capacity of a System.Collections.Stack is the number of elements the
System.Collections.Stack can hold. As elements are added to a
System.Collections.Stack, the capacity is automatically increased as required through
reallocation.

If System.Collections.Stack.Count is less than the capacity of the stack,
System.Collections.Stack.Push is an O(1) operation. If the capacity needs to be
increased to accommodate the new element, System.Collections.Stack.Push
becomes an O(n) operation, where n is System.Collections.Stack.Count.
System.Collections.Stack.Pop is an O(1) operation.



System.Collections.Stack accepts null as a valid value and allows duplicate
elements.



O

10

11

12

Stack() Constructor

Summary

Initializes a new instance of the System.Collections.Stack class that is empty and has
the default initial capacity.

Description

This constructor is an O(1) operation.



[any

v bW

10
11

12

13
14

15
16
17
18
19

20

21

22

Stack(System.Collections.ICollection)
Constructor

Summary

Initializes a new instance of the System.Collections.Stack class that contains
elements copied from the specified collection and has the same initial capacity as the
number of elements copied.

Parameters

col ‘The System.Collections.ICollection to copy elements from.

Description

The elements are copied onto the System.Collections.Stack in the same order they
are read by the System.Collections.IEnumerator of the
System.Collections.ICollection.

This constructor is an O(n) operation, where n is the number of elements in col.

Exceptions

‘System.ArgumentNuIIException col is null.




B~ WN

(o]

10

11
12

13
14
15
16
17

18

19

20

Stack(System.Int32) Constructor

Summary

Initializes a new instance of the System.Collections.Stack class that is empty and has

the specified initial capacity or the default initial capacity, whichever is greater.

Parameters

initialCapacit .
P y contain.

The initial number of elements that the System.Collections.Stack can

Description

If the size of the collection can be estimated, specifying the initial capacity eliminates
the need to perform a number of resizing operations while adding elements to the

System.Collections.Stack.

This constructor is an O(n) operation, where n is initialCapacity.

Exceptions

‘System.ArgumentOutOfRangeException

initialCapacity is less than zero.




=

10
11
12
13

14
15

16
17

18

Stack.Clear() Method

Summary

Removes all objects from the System.Collections.Stack.

Description

System.Collections.Stack.Count is set to zero, and references to other objects from
elements of the collection are also released.

This method is an O(n) operation, where n is System.Collections.Stack.Count.

[Note: This method may be an O(n) operation, where n is
System.Collections.Stack.Count

]



H~wWN

10

11

12
13
14
15
16
17
18
19
20

21

Stack.Clone() Method

Summary

Creates a shallow copy of the System.Collections.Stack.

Return Value

A shallow copy of the System.Collections.Stack.

Description

A shallow copy of a collection copies only the elements of the collection, whether they
are reference types or value types, but it does not copy the objects that the references
refer to. The references in the new collection point to the same objects that the
references in the original collection point to.

In contrast, a deep copy of a collection copies the elements and everything directly or
indirectly referenced by the elements.

This method is an O(n) operation, where n is System.Collections.Stack.Count.



H~wWN

10
11

12

13

14
15
16
17
18
19
20

21

Stack.Contains(System.Object) Method

Summary

Determines whether an element is in the System.Collections.Stack.

Parameters

The System.Object to locate in the System.Collections.Stack. The value can
be null.

obj

Return Value

true, if obj is found in the System.Collections.Stack; otherwise, false.

Description

This method determines equality by calling System.Object.Equals.

This method performs a linear search; therefore, this method is an O(n) operation,
where n is System.Collections.Stack.Count.

This method uses the collection’s objects’ System.Object.Equals and
System. IComparable.CompareTo methods on obj to determine whether item exists.



11

12
13

14
15
16
17
18

19

Stack.CopyTo(System.Array, System.Int32)
Method

Summary

Copies the system.Collections.Stack to an existing one-dimensional System.Array,
starting at the specified array index.

Parameters

The one-dimensional System.Array that is the destination of the elements
array copied from System.Collections.Stack. The System.Array must have zero-
based indexing.

index The zero-based index in array at which copying begins.

Description

The elements are copied onto the array in last-in-first-out (LIFO) order, similar to the
order of the elements returned by a succession of calls to
System.Collections.Stack.Pop.

This method is an O(n) operation, where n is System.Collections.Stack.Count.

Exceptions

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException index is less than zero.

array is multidimensional.

System.ArgumentException
_or_




System.InvalidCastException

The number of elements in the source
System.Collections.Stack is greater than
the available space from index to the end of
the destination array.

The type of the source
System.Collections.Stack cannot be cast
automatically to the type of the destination
array.

10



=

B~ WN

10

11

12

13
14

15
16
17

18

Stack.GetEnumerator() Method

Summary

Returns an System.Collections.IEnumerator for the System.Collections.Stack.

Return Value

An System.Collections.IEnumerator for the System.Collections.Stack.

Description

Usage

For a detailed description regarding the use of an enumerator, see
System.Collections.Generic.IEnumerator<Ts>.

This method is an O(1) operation.

11



H~wWN

10

11

12
13
14
15
16
17
18
19
20
21

22

23

24

Stack.Peek() Method

Summary

Returns the object at the top of the System.Collections.Stack without removing it.

Return Value

The System.Object at the top of the System.Collections.Stack.

Description

This method is similar to the System.Collections.Stack.Pop method, but
System.Collections.Stack.Peek does not modify the System.Collections.Stack.

null can be pushed onto the System.Collections.Stack as a placeholder, if needed.
To distinguish between a null value and the end of the stack, check the
System.Collections.Stack.Count property or catch the

System. InvalidOperationException, which is thrown when the
System.Collections.Stack is empty.

This method is an O(1) operation.

Exceptions

‘System.InvalidOperationException ‘The System.Collections.Stack is empty.

12



=

10

11
12
13
14
15
16
17
18
19
20
21

22

23

24

Stack.Pop() Method

Summary

Removes and returns the object at the top of the System.Collections.Stack.

Return Value

The System.Object removed from the top of the System.Collections.Stack.

Description

This method is similar to the System.Collections.Stack.Peek method, but
System.Collections.Stack.Peek does not modify the System.Collections.Stack.

null can be pushed onto the System.Collections.Stack as a placeholder, if needed.
To distinguish between a null value and the end of the stack, check the
System.Collections.Stack.Count property or catch the

System. InvalidOperationException, which is thrown when the
System.Collections.Stack is empty.

System.Collections.Stack is implemented as a circular buffer. This method is an O(1)
operation.

Exceptions

‘System.InvalidOperationException ‘The System.Collections.Stack is empty.

13



B~ WN

oy

~

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Stack.Push(System.Object) Method

Summary

Inserts an object at the top of the System.Collections.Stack.

Parameters

obj
) can be null.

The System.Object to push onto the System.Collections.Stack. The value

Description

System.Collections.Stack is implemented as a circular buffer.

If System.Collections.Stack.Count already equals the capacity, the capacity of the
System.Collections.Stack is increased by automatically reallocating the internal

array, and the existing elements are copied to the new array before the new element is

added.

null can be pushed onto the System.Collections.Stack as a placeholder, if needed.

occupies a slot in the stack and is treated like any object.

If System.Collections.Stack.Count is less than the capacity of the stack,
System.Collections.Stack.Push is an O(1) operation. If the capacity needs to be
increased to accommodate the new element, System.Collections.Stack.Push
becomes an O(n) operation, where n is System.Collections.Stack.Count.

It

14




oy

O 0o

10

11

12

13
14

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

Stack.Synchronized(System.Collections.Stack
) Method

Summary

Returns a synchronized (thread safe) wrapper for the System.Collections.Stack.

Parameters

stack ‘The System.Collections.Stack to synchronize.

Return Value

A synchronized wrapper around the System.Collections.Stack.

Description

To guarantee the thread safety of the System.Collections.Stack, all operations must
be done through this wrapper.

[Note: The returned stack contains a reference to the original stack.

1

Enumerating through a collection is intrinsically not a thread-safe procedure. Even when
a collection is synchronized, other threads can still modify the collection, which causes
the enumerator to throw an exception. To guarantee thread safety during enumeration,
you can either lock the collection during the entire enumeration or catch the exceptions
resulting from changes made by other threads.

This method is an O(1) operation.

Exceptions

15




System.ArgumentNullException

stack is null.

16



B~ WN

10

11

12
13
14
15
16

17

Stack.ToArray() Method

Summary

Copies the System.Collections.Stack to a new array.

Return Value

A new array containing copies of the elements of the System.Collections.Stack.

Description

The elements are copied onto the array in last-in-first-out (LIFO) order, similar to the
order of the elements returned by a succession of calls to
System.Collections.Stack.Pop.

This method is an O(n) operation, where n is System.Collections.Stack.Count.

17



10

11
12
13
14
15
16
17
18
19
20

21

Stack.Count Property

Summary

Gets the number of elements contained in the System.Collections.Stack.

Property Value

The number of elements contained in the System.Collections.Stack.

Description

The capacity is the number of elements that the System.Collections.Stack can store.
System.Collections.Stack.Count is the number of elements that are actually in the
System.Collections.Stack.

The capacity is always greater than or equal to System.Collections.Stack.Count. If
System.Collections.Stack.Count exceeds the capacity while adding elements, the
capacity is automatically increased by reallocating the internal array before copying the
old elements and adding the new elements.

Retrieving the value of this property is an O(1) operation.

18



[e< BN

10
11

12

13
14
15
16
17
18
19
20
21
22
23

24

Stack.IsSynchronized Property

Summary

Gets a value indicating whether access to the System.Collections.Stack is
synchronized (thread safe).

Property Value

true, if access to the System.Collections.Stack is synchronized (thread safe);
otherwise, false. The default is false.

Description

To guarantee the thread safety of the System.Collections. Stack, all operations must
be done through the wrapper returned by the
System.Collections.Stack.Synchronized method.

Enumerating through a collection is intrinsically not a thread-safe procedure. Even when
a collection is synchronized, other threads can still modify the collection, which causes
the enumerator to throw an exception. To guarantee thread safety during enumeration,
you can either lock the collection during the entire enumeration or catch the exceptions
resulting from changes made by other threads.

Retrieving the value of this property is an O(1) operation.

19



[e< BN

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

[ILAsm]
-property instance object SyncRoot

[C#]
public virtual object SyncRoot { get; }

Summary

Gets an object that can be used to synchronize access to the
System.Collections.Stack.

Property Value

An System.Object that can be used to synchronize access to the
System.Collections.Stack.

Description

To create a synchronized version of the System.Collections.Stack, use the
System.Collections.Stack.Synchronized method. However, derived classes can
provide their own synchronized version of the System.Collections.Stack using the
System.Collections.Stack.SyncRoot property. The synchronizing code must perform
operations on the System.Collections.Stack.SyncRoot of the
System.Collections.Stack, not directly on the System.Collections.Stack. This
ensures proper operation of collections that are derived from other objects. Specifically,
it maintains proper synchronization with other threads that might be simultaneously
modifying the System.Collections.Stack object.

Enumerating through a collection is intrinsically not a thread-safe procedure. Even when
a collection is synchronized, other threads can still modify the collection, which causes
the enumerator to throw an exception. To guarantee thread safety during enumeration,
you can either lock the collection, using the System.Collections.Stack.SyncRoot
object, during the entire enumeration or catch the exceptions resulting from changes
made by other threads.

Retrieving the value of this property is an O(1) operation.

20



