b wN

N o

10
11
12
13

14

15
16
17
18

19

20
21

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

System.Array Class

[ILAsm]
.class public abstract serializable Array extends System.Object implements

System.I1Cloneable, System.Collections.ICollection,
System.Collections. IEnumerable, System.Collections.IList

[C#]
public abstract class Array: ICloneable, ICollection, IEnumerable, IList

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.x
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.ICloneable

e System.Collections.ICollection

e System.Collections.lEnumerable

e System.Collections.lList
Summary

Serves as the base class for arrays. Provides methods for creating, copying,
manipulating, searching, and sorting arrays.

Inherits From: System.Object
Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded operations.
No instance members are guaranteed to be thread safe.

Description

This class is intended to be used as a base class by language implementations that
support arrays. Only the system can derive from this type: derived classes of
System.Array are not to be created by the developer.

[Note: An array is a collection of identically typed data elements that are accessed and
referenced by sets of integral indices.

The rank of an array is the number of dimensions in the array. Each dimension has its
own set of indices. An array with a rank greater than one can have a different lower
bound and a different number of elements for each dimension. Multidimensional arrays

OooNOOULTL P WN -

21
22
23

24
25
26
27

28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

(i.e. arrays with a rank greater than one) are processed in row-major order.

The lower bound of a dimension is the starting index of that dimension.

The length of an array is the total number of elements contained in all of its dimensions.
A vector is a one-dimensional array with a lower bound of '0".

If the implementer creates a derived class of System.Array, expected System.Array
behavior cannot be guaranteed. For information on array-like objects with increased
functionality, see the System.Collections.IList and
System.Collections.Generic.IList<T> interfaces. For more information regarding the
use of arrays versus the use of collections, see Partition V of the CLI Specification.

1

Every specific System.Array type has three instance methods defined on it. While some
programming languages allow direct access to these methods, they are primarily
intended to be called by the output of compilers based on language syntax that deals
with arrays.

e Get: Takes as many System.Int32 arguments as the array has dimensions and
returns the value stored at the given index. It throws a
System. IndexOutOfRangeException exception for invalid indices.

e Set: Takes as many System.Int32 arguments as the array has dimensions, plus one
additional argument (the last argument) which has the same type as an array
element. It stores the final value in the specified index of the array. It throws a
System. IndexOutOfRangeException exception for invalid indices.

e Address: Takes as many System.Int32 arguments as the array has dimensions and
returns the address of the element at the given index. It throws a
System. IndexOutOfRangeException exception for invalid indices.

In addition, every specific System.Array type has a constructor on it that takes as many
non-negative System. Int32 arguments as the array has dimensions. The arguments specify
the number of elements in each dimension, and a lower bound of 0. Thus, a two-
dimensional array of System.Int32 objects would have a constructor that could be called
with (2, 4) as its arguments to create an array of eight zeros with the first dimension
indexed with O and 1 and the second dimension indexed with 0, 1, 2, and 3.

For all specific array types except vectors (i.e. those permitted to have non-zero lower
bounds and those with more than one dimension) there is an additional constructor. It takes
twice as many arguments as the array has dimensions. The arguments are considered in
pairs, with the first of the pair specifying the lower bound for that dimension and the second
specifying the total number of elements in that dimension. Thus, a two-dimensional array of
System.Int32 objects would also have a constructor that could be called with (-1, 2, 1,
3) as its arguments, specifying an array of 6 zeros, with the first dimension indexed by -1
and 0, and the second dimension indexed by 1, 2, and 3.

o Uk WN -

Enumeration over an array occurs in ascending row-major order, starting from the first
element. (For example, a 2x3 array is traversed in the order [0,0], [0,1], [0,2], [1,0],
[1,1], and [1,2].)

Parallel implementation of methods taking a System.Predicate argument are not
permitted.

[uny

Array() Constructor

Summary

Constructs a new instance of the System.Array class.

S~ N

10

11
12

13
14

15

16
17
18
19
20
21
22
23
24
25

26

27

28

Array.AsReadOnly<T=(T[]) Method

Summary

Returns a read-only System.Collections.Generic.IList<T> wrapper around the

specified array.

Parameters

The array to wrap in a read-only System.Collections.Generic.IList<T>

arra
Y wrapper.

Return Value

A read-only System.Collections.Generic.IList<T> wrapper around the specified

array.

Description

[Note: To prevent any modifications to the array, expose the array only through this

wrapper.]

The returned IList<T> has the same enumeration order as the array it wraps.

A collection that is read-only is simply a collection with a wrapper that prevents

modifying the underlying array; therefore, if changes are made to the underlying array,

the read-only collection reflects those changes.

Exceptions

‘System.ArgumentNuIIException

array is null.

1 Array.BinarySearch(System.Array,
2 System.Int32, System.Int32, System.Object,
3 System.Collections.IComparer) Method

Noups

o Vo

11 Summary

12 Searches the specified section of the specified one-dimensional System.Array for the
13 specified value, using the specified System.Collections.IComparer implementation.

14 Parameters

array A System.Array to search.

index A System.Int32 that contains the index at which searching starts.

A System.Int32 that contains the number of elements to search, beginning

length with index.

value A System.Object for which to search.

The System.Collections.IComparer implementation to use when comparing
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

15
16 Return Value

17 A system.Int32 with one of the following values based on the result of the search
18 operation.

‘The index of value in the array. value was found.

ok wNR

~N

10
11
12
13
14
15
16
17
18
19
20

21

The bitwise complement of the index |value was not found, and at least one array element
of the first element that is larger than |in the range of index to index + length - 1 was
value. greater than value.

value was not found, and value was greater than all
array elements in the range of index to index +
length- 1.

The bitwise complement of (index +
length).

[Note: If value is not found, the caller can take the bitwise complement of the return
value to determine the index of array where value would be found in the range of index
to index + length - 1 if array is already sorted.]

Description

value is compared to each element of array using comparer until an element with a
value greater than or equal to value is found. If comparer is null, the

System. IComparable interface of the element being compared - or of value if the
element being compared does not implement the interface -- is used. If value does not
implement the System. IComparable interface and is compared to an element that does
not implement the System.IComparable interface, a

System. InvalidOperationException exception is thrown. If array is not already
sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore, comparisons with a
null reference do not generate exceptions.]

Exceptions

Exception Condition
System.ArgumentNullException array is null.
System.RankException array has more than one dimension.

index is less than array.GetLowerBound (0) .

System.ArgumentOutOfRangeException -Or-

length is less than zero.

System.ArgumentException index + length is greater than
array .GetLowerBound (0) + array.Length.

upbh w

OoONO

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

or

array.UpperBound ==
System.Int32.MaxValue.

comparer is null, and both value and at least

System.InvalidOperationException one element of array do not implement the
System.IComparable interface.

Example

This example demonstrates the System.Array.BinarySearch method.
[C#]

using System;
class BinarySearchExample {
public static void Main() {
int[] intAry = { 0, 2, 4, 6, 8 };
Console.WriteLine("The indices and elements of the array are
for (int 1 = 0; 1 < IntAry.Length; i++)
Console Write("'[{0}]1: {1, -5}, i, IntAry[i]);
Console._WriteLine();
SearchFor(intAry, 3);
SearchFor(intAry, 6);
SearchFor(intAry, 9);
}
public static void SearchFor(Array ar, Object value) {
int 1 = Array.BinarySearch(ar, 0, ar.Length, value, null);
Console. WriteLine();
if(i>0){
Console._Write("The object searched for, {0}, was found ",
Console._WriteLine("at index {1}.", value, i);

}

else if (~1i == ar.Length) {
Console.Write("The object searched for, {0}, was ", value
Console._Write(""not found,\nand no object in the array had
Console._WriteLine("'greater value. ');

else {
Console.Write("The object searched for, {0}, was
Console._Write(""not found.\nThe next larger object is at
Console _WriteLine("index {0}.", ~i);

*, value

}
}
}

The output is

The indices and elements of the array are:

value);

)

")

)
)

)

OCooNOOTULLE, WN -

PR R R PR R R R R
ONOUTD WNRO

[EN
\e]

N
o

0]

The

The

The

The

and

0 [1]1:2 [2]1:4 [3]:6 [4]:8

object searched for, 3, was not found.

next larger object is at index 2.

object searched for, 6, was found at index 3.

object searched for, 9, was not found,

no object in the array had greater value.

o up

O 0o~

10

11
12

13

14
15

16
17

Array.BinarySearch(System.Array,
System.Object,
System.Collections.IComparer) Method

Summary

Searches the specified one-dimensional System.Array for the specified value, using the
specified System.Collections.IComparer implementation.

Parameters

array A System.Array to search.
value A System.Object for which to search.
The System.Collections.IComparer implementation to use when comparing
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

Return Value

A system.Int32 with one of the following values based on the result of the search

operation.

The index of value in the array. value was found.

The bitwise complement of the index of the first |value was not found, and at least one
element that is larger than value.

array element was greater than value.

The bitwise complement of value was not found, and value was
(array.GetLowerBound(0) + array.Length). greater than all array elements.

10

u b WN

)]

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25

26

[Note: If value is not found, the caller can take the bitwise complement of the return
value to determine the index where value would be found in array if it is already sorted.]

Description

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0), array.Length, value,
comparer).

value is compared to each element of array using comparer until an element with a
value greater than or equal to value is found. If comparer is null, the

System. IComparable interface of the element being compared - or of value if the
element being compared does not implement the interface - is used. If value does not
implement the System. IComparable interface and is compared to an element that does
not implement the System.IComparable interface, a

System. InvalidOperationException exception is thrown. If array is not already
sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore, comparisons with a
null reference do not generate exceptions.]

Exceptions

Exception Condition
System.ArgumentNullException array is null.
System.RankException array has more than one dimension.
comparer is null, and both value and at least one

System.InvalidOperationException element of array do not implement the
System.IComparable interface.

11

o by

O 0o

10

11
12

13

14
15

16
17

Array.BinarySearch(System.Array,
System.Int32, System.Int32, System.Object)

Method

Summary

Searches the specified section of the specified one-dimensional System.Array for the

specified value.

Parameters

array A System.Array to search.

index A System.Int32 that contains the index at which searching starts.

length with index.

A System.Int32 that contains the number of elements to search, beginning

value A System.Object for which to search.

Return Value

A system.Int32 with one of the following values based on the result of the search

operation.

The index of value in the array.

value was found.

The bitwise complement of the index
of the first element that is larger than
value.

value was not found, and at least one array element

in the range of index to index + length - 1 was
greater than value.

The bitwise complement of (index +

value was not found, and value was greater than all

12

OOk, wWNE

~N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

length). array elements in the range of index to index +
length- 1.

[Note: If value is not found, the caller can take the bitwise complement of the return
value to determine the index of the array where value would be found in the range of
index to index + length - 1 if array is already sorted.]

Description

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0), array.Length, value,
null).

value is compared to each element of array using the System.IComparable interface of
the element being compared - or of value if the element being compared does not
implement the interface - until an element with a value greater than or equal to value is
found. If value does not implement the System.IComparable interface and is compared
to an element that does not implement the System. IComparable interface, a

System. InvalidOperationException exception is thrown. If array is not already
sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore, comparisons with a
null reference do not generate exceptions.]

Exceptions

Exception Condition
System.ArgumentNullException array is null.
System.RankException array has more than one dimension.

index < array.GetLowerBound(0).
System.ArgumentOutOfRangeException -Or-

length < O.

index and length do not specify a valid range

System.ArgumentException in array (i.e. index + length >
array.GetLowerBound(0O) + array.Length).

13

or

array.UpperBound ==
System.Int32.MaxValue.

Either value or at least one element of array
System.InvalidOperationException does not implement the System.IComparable
interface.

14

10

11
12

13
14

15
16
17
18
19

Array.BinarySearch(System.Array,
System.Object) Method

Summary

Searches the specified one-dimensional System.Array for the specified object.

Parameters
array A System.Array to search for an object.
value A System.Object for which to search.

Return Value

A system.Int32 with one of the following values based on the result of the search

operation.
The index of value in the array. value was found.

value was not found and the value of at

The bitwise complement of the index of the first
least one element of array was greater

element that is larger than value.

than value.
The bitwise complement of value was not found, and value was greater
(array.GetLowerBound(0) + array.Length). than the value of all array elements.

[Note: If value is not found, the caller can take the bitwise complement of the return
value to determine the index where value would be found in array if it is sorted already.]

15

[uny

PR R R R R R R
NOUDWNROOONOOULIDAWN

18

19

20

Description

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0), array.Length, value,

null).

value is compared to each element of array using the System.IComparable interface of
the element being compared - or of value if the element being compared does not
implement the interface - until an element with a value greater than or equal to value is
found. If value does not implement the System.IComparable interface and is compared
to an element that does not implement the System. IComparable interface, a
System. InvalidOperationException exception is thrown. If array is not already
sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore, comparisons with a

null reference do not generate exceptions.]

Exceptions

System.ArgumentNullException

array is null.

System.RankException

array has more than one dimension.

System.InvalidOperationException

Both value and at least one element of array do not

implement the System.IComparable interface.

16

B~ WN

12
13

14

15

16

17
18

Array.BinarySearch<T=>(T[], T) Method

Summary

Searches an entire one-dimensional sorted array for a specific element, using the
System. IComparable<T> OF System.IComparable interface implemented by each

element of the array and by the specified object.

Parameters

array The one-dimensional array to search.

value The object for which to search.

Return Value

One of the following values based on the result of the search operation:

A non-negative index of value in the array.

value was found.

A negative value, which is the bitwise
complement of the index of the first element
that is larger than value.

value was not found and the value of at
least one element of array was greater
than value.

A negative value, which is the bitwise
complement of one more than the index of the
final element.

value was not found, and value was
greater than the value of all array
elements.

Description

Either value or every element of array must implement the System.IComparable<Ts> Or
System. IComparable interface, which is used for comparisons. The elements of array

17

CoOoONOOTULLE WN

14

15

must already be sorted in increasing value according to the sort order defined by the

System.IComparable<T> Or System.IComparable implementation; otherwise, the

behavior is unspecified

Duplicate elements are allowed. If the array contains more than one element equal to

value, the method returns the index of only one of the occurrences, but not necessarily

the first one.

[Note: null can always be compared with any other reference type; therefore,
comparisons with null do not generate an exception.]

Exceptions

System.ArgumentNullException

array is null.

System.InvalidOperationException

Neither value nor the elements of the array
implement the System.IComparable<T> Or
System.IComparable interfaces.

18

1 Array.BinarySearch<T=>(T[], T,
2 System.Collections.Generic.IComparer<T>)
3 Method

o by

O 0o

10 Summary

11 Searches an entire one-dimensional sorted array for a value using the specified
12 System.Collections.Generic.IComparer<Ts> interface.

13 Parameters

array The one-dimensional array to search.

value The object for which to search.

The implementation to use when comparing elements.

Or
comparer

null to use the System.IComparable<T> Or System.IComparable
implementation of each element.

14
15 Return Value

16 One of the following values based on the result of the search operation:
A non-negative index of value in the array. value was found.
A negative value, which is the bitwise value was not found and the value of at
complement of the index of the first element least one element of array was greater
that is larger than value. than value.

19

N

NRPRRPRRPRRRRRRR
CLONOUBDAWNROOVONOU AW

21

22

23

A negative value, which is the bitwise

value was not found, and value was

complement of one more than the index of the |greater than the value of all array

final element.

elements.

Description

The comparer customizes how the elements are compared.

The elements of array must already be sorted in increasing value according to the sort

order defined by comparer; otherwise, the behavior is unspecified

If comparer is not null, the elements of array are compared to the specified value using
the specified System.Collections.Generic.IComparer implementation.

If comparer is null, the default comparer is used.

Duplicate elements are allowed. If the array contains more than one element equal to
value, the method returns the index of only one of the occurrences, but not necessarily

the first one.

[Note: null can always be compared with any other reference type; therefore,
comparisons with null do not generate an exception.]

Exceptions

System.ArgumentNullException

array is null.

System.InvalidOperationException

comparer is null, and neither value nor the
elements of the array implement the

System.IComparable<Ts> Or System.IComparable

interface.

20

1 Array.BinarySearch<T=>(T[], System.Int32,
2 System.Int32, T) Method

v bhw

00 N

9 Summary

10 Searches a range of elements in a one-dimensional sorted array for a value, using the
11 System. IComparable interface implemented by each element of the array and by the
12 specified value.

13 Parameters

array The one-dimensional array to search.
index The starting index of the range to search.
length The length of the range to search.

value The object for which to search.

14
15 Return Value

16 One of the following values based on the result of the search operation:
A non-negative index of value in the array. value was found.
A negative value, which is the bitwise value was not found and the value of at
complement of the index of the first element least one element of array was greater
that is larger than value. than value.
A negative value, which is the bitwise value was not found, and value was
complement of one more than the index of the greater than the value of all array
final element. elements.

21

N

PR R PR R R
U bhhWNREFROOOONOOULIA W

16

17

18

Description

Either value or every element of array must implement the System.IComparable
interface, which is used for comparisons. The elements of array must already be sorted
in increasing value according to the sort order defined by the System.IComparable<T>
or System. IComparable implementation; otherwise, the behavior is unspecified

Duplicate elements are allowed. If the array contains more than one element equal to
value, the method returns the index of only one of the occurrences, but not necessarily

the first one.

[Note: null can always be compared with any other reference type; therefore,
comparisons with null do not generate an exception.]

Exceptions

System.ArgumentException

index + length is greater than array.Length.

System.ArgumentNullException

array is null.

System.ArgumentOutOfRangeException

index is less than zero
or

length is less than zero.

System.InvalidOperationException

Neither value nor the elements of the array
implement the System.IComparable<T> Or
System.IComparable interface.

22

12

13
14

15

16
17

18

Array.BinarySearch<T=(T[], System.Int32,
System.Int32, T,
System.Collections.Generic.lIComparer<T>)
Method

Summary

Searches a range of elements in a one-dimensional sorted array for a value, using the
specified System.Collections.Generic.IComparer<T> interface.

Parameters

array The one-dimensional array to search.

index The starting index of the range to search.

length The length of the range to search.

value The object for which to search.
The implementation to use when comparing elements.
or

comparer
null to use the System.IComparable<T> Or System.IComparable
implementation of each element.

Return Value

One of the following values based on the result of the search operation:

23

N

A non-negative index of value in the array. value was found.

A negative value, which is the bitwise value was not found and the value of at
complement of the index of the first element least one element of array was greater
that is larger than value. than value.

A negative value, which is the bitwise value was not found, and value was
complement of one more than the index of the |greater than the value of all array

final element. elements.

Description

The comparer customizes how the elements are compared.

The elements of array must already be sorted in increasing value according to the sort
order defined by comparer; otherwise, the behavior is unspecified.

If comparer is not null, the elements of array are compared to the specified value using
the specified System.Collections.Generic.IComparer<T> implementation.

If comparer is null, the comparison is done using the System.IComparable<T> Or
System.IComparable implementation provided by the element itself or by the specified
value.

Duplicate elements are allowed. If the array contains more than one element equal to
value, the method returns the index of only one of the occurrences, but not necessarily
the first one.

[Note: null can always be compared with any other reference type; therefore,
comparisons with null do not generate an exception.]

Exceptions

Exception Condition

index and length do not specify a valid range
in array.

System.ArgumentException
System.ArgumentNullException array is null.

. index is less than zero
System.ArgumentOutOfRangeException

or

24

System.InvalidOperationException

length is less than zero.

comparer is null, and neither value nor the
elements of the array implement the
System.IComparable<Ts> Or
System.IComparable interface.

25

Array.Clear(System.Array, System.Int32,
2 System.Int32) Method

=

v bhw

8 Summary

9 Sets the specified range of elements in the specified System.Array to zero, false, or to a
10 null reference, depending on the element type.

11 Parameters

array The System.Array to clear.

index A System.Int32 that contains the index at which clearing starts.

A System.Int32 that contains the number of elements to clear, beginning with

length .
d index.
12
13 Description
14 Reference-type elements will be set to null. Value-type elements will be set to zero,
15 except for System.Boolean elements, which will be set to false.

16 Exceptions

System.ArgumentNullException array is null.

index < array.GetLowerBound(0).

length < O.
System.ArgumentOutOfRangeException
index and length do not specify a valid range
in array (i.e. index + length >
array.GetLowerBound(0) + array.Length).

26

27

=

10

11
12
13

14

15
16
17

18

19

20

21

22

23

24

25

26

27

28

Array.Clone() Method

Summary

Returns a System.Object that is a copy of the current instance.

Return Value

A system.Object that is a copy of the current instance.

Description

[Note: This method is implemented to support the System.ICloneable interface.]

Behaviors

Each of the elements of the current instance is copied to the clone. If the elements are
reference types, the references are copied. If the elements are value-types, the values
are copied. The clone is of the same type as the current instance.

Default

As described above.

How and When to Override

Override this method to return a clone of an array.

Usage

Use this method to obtain the clone of an array.

Example

28

WN =

4
5
6
7
8

(Yo}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47

This example demonstrates the System.Array.Clone method.

[C#]

using System;
public class ArrayCloneExample {

}

p

}

ublic static void Main(Q) {
int[] intAryOrig = { 3, 4, 5 };
//must explicitly convert clones object into an array
int[] intAryClone = (int[]) intAryOrig.Clone();
Console _Write("The elements of the first array are:
foreach(int 1 in intAryOrig)
Console. Write("{0,3}", 1);
Console_WriteLine();
Console._Write("The elements of the cloned array are:
foreach(int 1 in intAryClone)
Console. Write("{0,3}", 1);
Console. WriteLine();
//Clear the values of the original array.
Array.Clear(intAryOrig, 0, 3);
Console._WriteLine("After clearing the first array,”);
Console. Write("The elements of the first array are: "
foreach(int 1 in intAryOrig)
Console . Write("{0,3}", 1);
Console_WriteLine();
Console . Write("The elements of the cloned array are: "
foreach(int 1 in intAryClone)
Console. Write("{0,3}", 1);

The output is

The elements of the first array are: 3 4 5

The elements of the cloned array are: 3 4 5

After clearing the first array,

The elements of the first array are: 0 0 O

The elements of the cloned array are: 3 4 5

29

10

11
12

13

14

15
16
17

18

19

20

Array.ConvertAll<T,U=>(T[],
System.Converter<T,U>) Method

Summary

Converts an array of one type to an array of another type.

Parameters

array

The one-dimensional array to convert.

converter

A System.Converter<T, Us> that converts each element from one type to
another type.

Return Value

A new array of the target type containing the converted elements from array.

Description

The System.Converter<T,Us> is a delegate that converts an array element to the target
type. The elements of array are individually passed to this converter, and the converted
elements are saved in the new array. The source array remains unchanged.

Exceptions

‘System.ArgumentNuIIException

array is null or converter is null.

30

U pbhw

00 N

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Array.Copy(System.Array, System.Array,
System.Int32) Method

Summary

Copies the specified number of elements from the specified source array to the specified
destination array.

Parameters
sourceArray A System.Array that contains the data to copy.

destinationArray |A System.Array that receives the data.

A System.Int32 desighating the number of elements to copy, starting with

length . L
9 the first element and proceeding in order.

Description

This version of System.Array.Copy is equivalent to System.Array.Copy (sourceArray,
sourceArray.GetLowerBound(0), destinationArray, destinationArray.GetLowerBound(0),
length).

If sourceArray and destinationArray are of different types, System.Array.Copy performs
widening conversions on the elements of sourceArray as necessary before storing the
information in destinationArray. Value types will be boxed when being converted to a
System.Object. If the necessary conversion is a narrowing conversion, a
System.ArrayTypeMismatchException exception is thrown. [Note: For information
regarding valid conversions performed by this method, see System.Convert.]

If an exception is thrown while copying, the state of destinationArray is undefined.
If sourceArray and destinationArray are the same array, System.Array.Copy copies the

source elements safely to their destination, as if the copy were done through an
intermediate array.

31

1

w

o b~

Exceptions

System.ArgumentNullException

sourceArray or destinationArray is null.

System.RankException

sourceArray and destinationArray have
different ranks.

System.ArrayTypeMismatchException

The elements in both arrays are built-in types,
and converting from the type of the elements
of sourceArray into the type of the elements in
destinationArray requires a narrowing
conversion.

or
Both arrays are built-in types, and one array is

a value-type array and the other an array of
interface type not implemented by that value-

type.
or

Both arrays are user-defined value types and
are not of the same type.

System.InvalidCastException

At least one of the elements in sourceArray is
not assignment-compatible with the type of
destinationArray.

System.ArgumentOutOfRangeException

length < 0.

System.ArgumentException

length > sourceArray.Length.
or

length > destinationArray.Length.

Example

This example demonstrates the System.Array.Copy method.

[C#]

32

OCoOoONOULT A WNBE

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27

using System;
public class ArrayCopyExample {
public static void Main() {

}
}

int[] intAryOrig = new int[3];
double[] dAryCopy = new double[3];
for (int i = 0; i < intAryOrig.Length; i++)
intAryOrig[i] = i+3;
//copy the first 2 elements of the source into the destination
Array.Copy(intAryOrig, dAryCopy, 2);
Console._Write("The elements of the first array are: ");
for (int i = 0; i < intAryOrig.Length; i++)
Console. Write("{0,3}", intAryOrig[i]);
Console_WriteLine();
Console._Write("The elements of the copied array are: ");
for (int i = 0; i < dAryCopy.Length; i++)
Console . Write("{0,3}", dAryCopy[i]);

The output is

The elements of the first array are: 3 4 5

The elements of the copied array are: 3 4 0

33

Noups

O 00

11

12
13

14

15
16

17
18
19
20
21
22
23
24
25
26

Array.Copy(System.Array, System.Int32,
System.Array, System.Int32, System.Int32)

Method

Summary

Copies the specified number of elements from a source array starting at the specified
source index to a destination array starting at the specified destination index.

Parameters

sourceArray

The System.Array that contains the data to copy.

sourcelndex

A System.Int32 that contains the index in sourceArray from which
copying begins.

destinationArray

The System.Array that receives the data.

destinationlndex

A System.Int32 that contains the index in destinationArray at which
storing begins.

length

A System.Int32 that contains the number of elements to copy.

Description

If sourceArray and destinationArray are of different types, System.Array.Copy performs
widening conversions on the elements of sourceArray as necessary before storing the
information in destinationArray. Value types will be boxed when being converted to a
System.Object. If the necessary conversion is a narrowing conversion, a
System.ArrayTypeMismatchException exception is thrown. [Note: For information
regarding valid conversions performed by this method, see System.Convert.]

If an exception is thrown while copying, the state of destinationArray is undefined.

34

A OWN P

(6]

If sourceArray and destinationArray are the same array, System.Array.Copy copies the
source elements safely to their destination as if the copy were done through an

intermediate array.

Exceptions

System.ArgumentNullException

sourceArray or destinationArray is null.

System.RankException

sourceArray and destinationArray have
different ranks.

System.ArrayTypeMismatchException

The elements in both arrays are built-in types,
and converting from the type of the elements
of sourceArray into the type of the elements in
destinationArray requires a narrowing
conversion.

or
Both arrays are built-in types, and one array is

a value-type array and the other an array of
interface type not implemented by that value-

type.
or

Both arrays are user-defined value types and
are not of the same type.

System.InvalidCastException

At least one element in sourceArray is
assignment-incompatible with the type of
destinationArray.

System.ArgumentOutOfRangeException

sourcelndex < sourceArray.GetLowerBound(0).
or

destinationindex <
destinationArray.GetLowerBound(0).

Or

35

upbh w

OoONO

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

length < O.

(sourcelndex + length) >
(sourceArray.GetLowerBound(0) +
sourceArray.Length).

System.ArgumentException
(destinationlndex + length) > (
destinationArray.GetLowerBound(0) +
destinationArray.Length).

Example

This example demonstrates the System.Array.Copy method.
[C#]

using System;
class ArrayCopyExample {
public static void Main() {
int[] intAry = { 0, 10, 20, 30, 40, 50 };
Console.Write("The elements of the array are: ");
foreach (int i in intAry)
Console . Write("{0,3}", 1);
Console._WriteLine();
Array.Copy(intAry, 2, intAry, 0, 4);
Console. WriteLine("After copying elements 2 through 5 into elements 0
through 4");
Console._Write("The elements of the array are: ");
foreach (int i in intAry)
Console Write("{0,3}", 1);
Console. WriteLine();
}
}

The output is

The elements of the array are: 0 10 20 30 40 50
After copying elements 2 through 5 into elements 0 through 4

The elements of the array are: 20 30 40 50 40 50

36

11

12
13

14
15
16
17
18
19
20
21
22

23

24

25

26

27

28

Array.CopyTo(System.Array, System.Int32)
Method

Summary

Copies all the elements of the current zero-based instance to the specified one-
dimensional array starting at the specified subscript in the destination array.

Parameters

arra A one-dimensional System.Array that is the destination of the elements copied
Y from the current instance.
index A System.Int32 that contains the index in array at which copying begins.

Description

index is the array index in the destination array at which copying begins.

[Note: This method is implemented to support the System.Collections.ICollection
interface. If implementing System.Collections.ICollection is not explicitly required,
use System.Array.Copy to avoid an extra indirection.

If this method throws an exception while copying, the state of array is undefined.

]

Behaviors

As described above.

Default

As described above.

37

1 How and When to Override

2 Override this method to copy elements of the current instance to a specified array.
3

4 Usage

5 Use this method to copy elements of the current instance to a specified array.

6

7 Exceptions

System.ArgumentNullException array is null.

The current instance has more than one

System.RankException dimension.

System.ArgumentOutOfRangeException |index < array.GetLowerBound (0) .

array has more than one dimension.
or

(index + Length of the current instance) >
. (array .GetLowerBound (0) + array.Length).
System.ArgumentException

or
The number of elements in the current

instance is greater than the available space
from index to the end of array.

The element type of the current instance is not
System.ArrayTypeMismatchException |assignment-compatible with the element type

of array.
8
9 Example
10 The following example shows how to copy the elements of one System.Array into
11 another.
12
13 [C#]

38

OCoOoONOULT A WNBE

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34

35
36

37
38

39
40

41
42

43
44

45

usi

pub

3
The

The
one
The
01
The

0o

ng System;
lic class ArrayCopyToExample

public static void Main()
{

Array aryOne = Array.Createlnstance(typeof(Object), 3);

aryOne.SetValue('one™, 0);
aryOne.SetValue("two™, 1);
aryOne.SetValue(*"three"™, 2);

Array aryTwo = Array.Createlnstance(typeof(Object), 5);

for (int i=0; i < aryTwo.Length; i++)
aryTwo.SetValue(i, 1);

Console . WriteLine("The contents of the first array are:");

foreach (object o in aryOne)
Console Write("'{0} ", 0);
Console_WriteLine();

Console._WriteLine("'The original contents of the second array are:');

foreach (object o in aryTwo)
Console. Write("'{0} ", 0);
Console_WriteLine();

aryOne.CopyTo(aryTwo, 1);

Console.WriteLine('The new contents of the second array are:'");

foreach(object o in aryTwo)
Console Write("'{0} ™, 0);

}

output is

contents of the first array are:

two three

original contents of the second array are:
234

new contents of the second array are:

ne two three 4

39

1

2 -

3 Array.Createlnstance(System.Type,
2 System.Int32[]) Method

10 Summary

11 Creates a zero-based, multidimensional array of the specified System. Type and
12 dimension lengths.

13 Parameters

The System.Type of the elements contained in the new System.Array
instance.

elementType

A one-dimensional array of System.Int32 objects that contains the size of

lengths . . .
each dimension of the new System.Array instance.

14
15 Return Value

16 A new zero-based, multidimensional System.Array instance of the specified
17 System. Type with the specified length for each dimension. The System.Array.Rank of
18 the new instance is equal to lengths.Length.

19 Description

20 The number of elements in lengths is required to equal the number of dimensions in the
21 new System.Array instance. Each element of lengths specifies the length of the

22 corresponding dimension in the new instance.

23

24 Reference-type elements will be set to null. Value-type elements will be set to zero,

25 except for System.Boolean elements, which will be set to false.

26

27 [Note: Unlike most classes, System.Array provides the System.Array.CreateInstance
28 method, instead of public constructors, to allow for late bound access.]

29

30

40

w N

NO o B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Exceptions
Exception Condition
System.ArgumentNullException elementType or lengths is null.
elementType is not a valid System. Type.

System.ArgumentException -or-

lengths.Length = 0.

System.ArgumentOutOfRangeException A value in lengths is less than zero.

Example

The following example shows how to create and initialize a multidimensional
System.Array.

[C#]

using System;

public class CreateMultiDimArrayExample

{
public static void Main()

{
int i, j, k;
int[] indexAry = {2, 4, 5};
Array ary = Array.Createlnstance(typeof(int), indexAry);
for(1 = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)

{
for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
{
ary.SetvValue((100*1 + 10*j + k), 1, J, k);
}
}
}

Console.WriteLine("The elements of the array are:');
for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)

{
for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1l); j++)

for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
{

}

Console.WriteLine();

Console Write("'{0, 3} ", ary.GetValue(i, j, kK));

41

NoOoOupk,WNE

10
11
12
13
14
15
16
17

18

}

}

}

Console.WriteLine();

}

The output is

The elements of

0
10
20
30

100
110
120
130

1 2 3
11 12 13
21 22 23
31 32 33

101 102 103
111 112 113
121 122 123
131 132 133

the array are:

4

14

24

34

104
114
124
134

42

1 —
Array.Createlnstance(System.Type,
2 System.Int32, System.Int32, System.Int32)

s Method

w N

00 N

10
11

12 Summary

13 Creates a zero-based, three-dimensional array of the specified System. Type and
14 dimension lengths.

15 Parameters

The System. Type of the elements contained in the new System.Array
instance.

elementType

A System.Int32 that contains the number of elements contained in the first

lengthl . . .
dimension of the new System.Array instance.
lenath2 A System.Int32 that contains the number of elements contained in the
9 second dimension of the new System.Array instance.
length3 A System.Int32 that contains the number of elements contained in the third

dimension of the new System.Array instance.

16
17 Return Value

18 A new zero-based, three-dimensional System.Array instance of elementType objects
19 with the size lengthl for the first dimension, length2 for the second, and length3 for the
20 third.

21 Description

43

1 Reference-type elements will be set to null. Value-type elements will be set to zero,
2 except for System.Boolean elements, which will be set to false.
3
4 [Note: Unlike most classes, System.Array provides the System.Array.CreateInstance
5 method, instead of public constructors, to allow for late bound access.]
6
7
8 Exceptions
System.ArgumentNullException elementType is null.
System.ArgumentException elementType is not a valid System. Type.
lengthl < O.
Or
System.ArgumentOutOfRangeException length2 < 0.
Or
length3 < 0.
9
10 Example
11 The following example shows how to create and initialize a three-dimensional
12 System.Array.
13
14 [C#]
15
16 using System;
17
18 public class Create3DArrayExample
19
20 public static void Main()
21 {
22 int i, j, k;
23 Array ary = Array.Createlnstance(typeof(int), 2, 4, 3);
24 for(1 = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
25 {
26 for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1); j++)
27 {
28 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
29 {
30 ary.SetValue((100*i + 10*j + k), i, J, kK);

44

OCoOoONOULT A WNBE

RPRRPRRRRRRR
CONOOUDAWNRO

N
o

21
22
23
24
25
26
27
28
29
30
31

32

}

}

}

}
}

Console._WriteLine(""The elements of the array are:');
for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)

{

}

for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1); j++)

for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
{

}

Console . WriteLine();

Console. Write("'{0, 3} ", ary.GetValue(i, j, kK));

}

Console._WriteLine();

The output is

The
0
10
20
30

100
110
120
130

elements of the array are:

1
11
21
31

101
111
121
131

2
12
22
32

102
112
122
132

45

11

12
13

14

15
16

17
18

19

20
21
22
23
24
25
26

—

Array.Createlnstance(System.Type,
System.Int32, System.Int32) Method

Summary

Creates a zero-based, two-dimensional array of the specified System. Type and
dimension lengths.

Parameters

elementType

The System.Type of the elements contained in the new System.Array
instance.

lengthl

A System.Int32 that contains the number of elements contained in the first
dimension of the new System.Array instance.

length2

A System.Int32 that contains the number of elements contained in the
second dimension of the new System.Array instance.

Return Value

A new zero-indexed, two-dimensional System.Array instance of elementType objects
with the size lengthl for the first dimension and length2 for the second.

Description

Reference-type elements will be set to null. Value-type elements will be set to zero,
except for System.Boolean elements, which will be set to false.

[Note: Unlike most classes, System.Array provides the System.Array.CreateInstance
method, instead of public constructors, to allow for late bound access.]

46

1

w N

NoO &

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

Exceptions

System.ArgumentNullException elementType is null.
System.ArgumentException elementType is not a valid System. Type.
lengthl < O.
System.ArgumentOutOfRangeException -or-
length2 < 0.
Example

The following example shows how to create and initialize a two-dimensional
System.Array.

[C#]

using System;

public class Create2DArrayExample

{
public static void Main()
L
int i, j;
Array ary = Array.Createlnstance(typeof(int), 5, 3);
for(1 = ary.GetLowerBound(0); i1 <= ary.GetUpperBound(0); i++)
for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1l); j++)
{
ary.SetvValue((10*1 + J), 1, J);
}
}
Console.WriteLine("The elements of the array are:');
for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1l); j++)
{
Console Write("'{0, 2} ", ary.GetValue(i, j));
Console._WriteLine(Q);
}
}
}

The output is

47

O NOUTPWN K

The elements of the array are:
0 1 2

10 11 12

20 21 22

30 31 32

40 41 42

48

1 Array.Createlnstance(System.Type,
2 System.Int32) Method

8 Summary

9 Constructs a zero-based, one-dimensional array with the specified number of elements
10 of the specified type.

11 Parameters

The System.Type of the elements contained in the new System.Array
instance.

elementType

A System.Int32 that contains the number of elements contained in the new

length .
System.Array Instance.

12
13 Return Value

14 A zero-based, one-dimensional System.Array object containing length elements of type
15 elementType.

16 Description

17 Reference-type elements will be set to null. Value-type elements will be set to zero,

18 except for System.Boolean elements, which will be set to false.

19

20 [Note: Unlike most classes, System.Array provides the System.Array.CreateInstance
21 method, instead of public constructors, to allow for late bound access.]

22

23

24 Exceptions

49

N

ol bW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

System.ArgumentNullException elementType is null.

System.ArgumentException

System.ArgumentOutOfRangeException length < 0.

Example

The following example shows how to create and initialize a one-dimensional
System.Array.

[c#]
using System;

public class ArrayCreatelnstanceExample

{

public static void Main()
{

Array intAry = Array.Createlnstance(typeof(int),5);

for (int i=intAry.GetLowerBound(0);i<=intAry.GetUpperBound(0);i++)
intAry.SetValue(i*3,1);

Console . Write("'The values of the array are:");

foreach (int 1 in intAry)
Console . Write("'{0} ",1);

}

The output is

The values of the array are: 0 3 6 9 12

elementType is not a valid System. Type.

50

1

2 -

3 Array.Createlnstance(System.Type,

s System.Int32[], System.Int32[]) Method

11 Summary

12 Creates a multidimensional array whose element type is the specified System. Type, and
13 dimension lengths and lower bounds, as specified.

14 Parameters

The System.Type of the elements contained in the new System.Array
instance.

elementType

A one-dimensional array of System.Int32 objects that contains the size of

lengths . . .
each dimension of the new System.Array instance.

A one-dimensional array of System.Int32 objects that contains the lower

lowerBounds . . .
bound of each dimension of the new System.Array instance.

15
16 Return Value

17 A new multidimensional System.Array whose element type is the specified System. Type
18 and with the specified length and lower bound for each dimension.

19 Description

20 The lengths and lowerBounds are required to have the same number of elements. The
21 number of elements in lengths equals the number of dimensions in the new

22 System.Array instance

23

24 Each element of lengths specifies the length of the corresponding dimension in the new
25 System.Array instance.

26

27 Each element of lowerBounds specifies the lower bound of the corresponding dimension
28 in the new System.Array instance.

Reference-type elements will be set to null. Value-type elements will be set to zero,
except for System.Boolean elements, which will be set to false.

[Note: Unlike most classes, System.Array provides the System.Array.CreateInstance
method, instead of public constructors, to allow for late bound access.]

ONOOULT D WN -

9 Exceptions
System.ArgumentNullException elementType, lengths, or lowerBounds is null.
elementType is not a valid System. Type.
Or
. lengths.Length = 0.
System.ArgumentException
Or
lengths and lowerBounds do not contain the
same number of elements.
System.ArgumentOutOfRangeException (A value in lengths is less than zero.
10

11 Example

12 The following example shows how to create and initialize a multidimensional

13 System.Array with specified low bounds

14

15 [C#]

16

17 using System;

18

19 public class MultiDimNonZeroBoundExample

20 {

21 public static void Main()

22 {

23 int i, j, k;

24 int[] indexAry = {4, 2, 3};

25 int[] lowboundAry = {3, 2, 1};

26 Array ary = Array.Createlnstance(typeof(int), indexAry, lowboundAry);
27 for(1 = ary.GetLowerBound(0); 1 <= ary.GetUpperBound(0); i++)

28

29 for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1); j++)

52

OCoOoONOULT A WNBE

NNNNRRRRRPRRRRRR
WNROWVLONIOTUDAWNRO

N
s

25
26
27
28
29
30
31
32
33
34
35
36

37

}

}

}

{
for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)

{
}

ary.SetValue((100%i + 10*j + k), i, j, K):

}

Console._WriteLine(""The elements of the array are:');
for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)

{

}

for(j = ary.GetLowerBound(1l); j <= ary.GetUpperBound(1); j++)

for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
{

}

Console.WriteLine();

Console Write("'{0O, 3} ", ary.GetvValue(i, J, k));

}

Console . WriteLine();

The output is

The
321
331

421
431

521
531

621
631

elements of the array are:

322
332

422
432

522
532

622
632

323
333

423
433

523
533

623
633

53

Array.Exists<T=(T[], System.Predicate<T>)
2 Method

[any

v bW

8 Summary

9 Determines whether the specified array contains any element that matches the
10 conditions defined by the specified predicate.

11 Parameters

array The array to search.

match The predicate that defines the conditions of the elements to search for.

12
13 Return Value

14 true, if the array contains one or more elements that match the conditions defined by
15 the specified predicate; otherwise, false.

16 Description

17 The predicate returns true if the object passed to it matches the delegate. Each element
18 of array is passed to the predicate in turn, and processing is stopped when the predicate
19 returns true.

20 Exceptions

‘System.ArgumentNuIIException array or match is null.

21

22

54

Array.FiInd<T>=>(T[], System.Predicate<T>)
> Method

=

v bhw

8 Summary

9 Searches for an element that matches the predicate, and returns the first occurrence
10 within the entire array.

11 Parameters

array The array to search.

match The predicate that defines the conditions of the element to search for.

12
13 Return Value

14 The first element that matches the conditions defined by the specified predicate, if
15 found; otherwise, the default value for type T.

16 Description

17 The elements of array are individually passed to the predicate, moving forward in the
18 array, starting with the first element and ending with the last element. Processing is
19 stopped when the predicate returns true.

20 Exceptions

array or match is null.

‘System.ArgumentNuIIException

21

22

55

Array.FINdAII<T=(T[], System.Predicate<T>)
2 Method

=

v bhw

8 Summary

9 Retrieves all the elements that match the conditions defined by the specified predicate.

10 Parameters

array The array to search.

match The predicate that specifies the elements to search for.

11
12 Return Value

13 An array containing all the elements that match the conditions defined by the specified
14 predicate, if found; otherwise, an empty array.

15 Description

16 The elements of array are individually passed to the predicate, and those elements for
17 which the predicate returns true, are saved in the returned array.

18 Exceptions

‘System.ArgumentNuIIException array or match is null.

19

20

56

1 Array.FindIndex<T=>(T[],
2 System.Predicate<T>) Method

8 Summary

9 Searches for an element that matches the predicate, and returns the zero-based index
10 of the first occurrence within the entire array.

11 Parameters

array The array to search.

match The predicate that specifies the elements to search for.

12
13 Return Value

14 The zero-based index of the first occurrence of an element that matches the conditions
15 defined by match, if found; otherwise, -1.

16 Description

17 The elements of array are individually passed to the predicate. The array is searched
18 forward starting at the first element and ending at the last element. Processing is
19 stopped when the predicate returns true.

20 Exceptions

array or match is null.

‘System.ArgumentNuIIException

21

22

57

v bhw

00 N

10
11
12

13

14
15

16
17

18

19
20
21

22

Array.Findlndex<T>(T[], System.Int32,
System.Predicate<T>) Method

Summary

Searches for an element that matches the predicate, and returns the zero-based index
of the first occurrence within the range of elements in the array that extends from the
specified index to the last element.

Parameters

array The array to search.
startlndex The zero-based starting index of the search.
match The predicate that specifies the elements to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The elements of array are individually passed to the predicate. The array is searched
forward starting at the specified index and ending at the last element. Processing is
stopped when the predicate returns true.

Exceptions

System.ArgumentNullException array or match is null.

System.ArgumentOutOfRangeException

startindex is less than zero or greater than

58

array . Length.

59

v bhw

00 N

10
11
12

13

14
15

16
17

18

19
20
21

22

Array.Findlndex<T>(T[], System.Int32,
System.Int32, System.Predicate<T>) Method

Summary

Searches for an element that matches the predicate, and returns the zero-based index
of the first occurrence within the range of elements in the array that starts at the
specified index and contains the specified number of elements.

Parameters

array The array to search.

startlndex The zero-based starting index of the search

count The number of consecutive elements to search.

match The predicate that specifies the elements to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The elements of array are individually passed to the predicate. The array is searched
forward starting at the specified index and going for count elements. Processing is
stopped when the predicate returns true.

Exceptions

60

System.ArgumentNullException

System.ArgumentOutOfRangeException

array or match is null.
startlndex is less than zero.
—or-

count is less than zero.

—or-

startindex + count is greater than
array.Length.

61

1 Array.FindLast<T=(T[],
2 System.Predicate<T>) Method

8 Summary

9 Searches for an element that matches the predicate, and returns the last occurrence
10 within the entire array.

11 Parameters

array The array to search.

match The predicate that specifies the elements to search for.

12
13 Return Value

14 The last element that matches the conditions defined by the specified predicate, if
15 found; otherwise, the default value for type T.

16 Description

17 The elements of array are individually passed to the predicate, moving backward in the
18 array, starting with the last element and ending with the first element. Processing is
19 stopped when a match is found.

20 Exceptions

array or match is null.

‘System.ArgumentNuIIException

21

22

62

1 Array.FindLastindex<T=(T[],
2 System.Predicate<T>) Method

8 Summary

9 Searches for an element that matches the predicate, and returns the zero-based index
10 of the last occurrence within the entire array.

11 Parameters

array The array to search.

match The predicate that specifies the elements to search for.

12
13 Return Value

14 The zero-based index of the first occurrence of an element that matches the conditions
15 defined by match, if found; otherwise, -1.

16 Description

17 The elements of array are individually passed to the predicate. The array is searched
18 backwards starting at the last element and ending at the first element. Processing is
19 stopped when the predicate returns true.

20 Exceptions

array or match is null.

‘System.ArgumentNuIIException

21

22

63

v bhw

00 N

10
11
12

13

14
15

16
17

18

19
20
21

22

Array.FindLastIndex<T=>(T[], System.Int32,
System.Predicate<T>) Method

Summary

Searches for an element that matches the predicate, and returns the zero-based index
of the last occurrence within the range of elements in the array that extends from the
specified index to the last element.

Parameters

array The array to search.
startlndex The zero-based starting index of the backward search.
match The predicate that specifies the elements to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The elements of array are individually passed to the predicate. The array is searched
backward starting at the specified index and ending at the first element. Processing is
stopped when the predicate returns true.

Exceptions

System.ArgumentNullException array or match is null.

System.ArgumentOutOfRangeException

startindex is less than zero or greater than

64

array . Length.

65

v bhw

00 N

10
11
12

13

14
15

16
17

18

19
20
21

22

Array.FindLastIndex<T=>(T[], System.Int32,
System.Int32, System.Predicate<T>) Method

Summary

Searches for an element that matches the predicate, and returns the zero-based index
of the last occurrence within the range of elements in the array that ends at the
specified index and contains the specified number of elements.

Parameters

array The array to search.

startlndex The zero-based starting index of the backward search.
count The number of consecutive elements to search.

match The predicate that specifies the elements to search for.

Return Value

The zero-based index of the first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

Description

The elements of array are individually passed to the predicate. The array is searched
backward starting at the specified index and going for count elements. Processing is
stopped when the predicate returns true.

Exceptions

66

System.ArgumentNullException

System.ArgumentOutOfRangeException

array or match is null.

startindex is less than zero or greater than

array .Length.

-or-

count is less than zero.
-or-

count is greater than startindex + 1.

67

10

11
12

13
14
15
16

17

18

19

Array.ForEach<T=>(T[], System.Action<T>)
Method

Summary

Performs the specified action on each element of the specified array.

Parameters
array The array on whose elements the action is to be performed.
action The action to perform on each element of array.

Description

The elements of array are individually passed to the action. The elements of the current
array are individually passed to the action delegate, sequentially, in index order, and on
the same thread as that used to call ForEach. Execution stops if the action throws an
exception.

Exceptions

array or action is null.

‘System.ArgumentNuIIException

68

B~ WN

10

11

12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

[ILAsm]
-method public hidebysig virtual class System.Collections. |Enumerator

GetEnumerator()

[C#]
public virtual IEnumerator GetEnumerator()

Summary

Returns a System.Collections.IEnumerator for the current instance.

Return Value

A System.Collections.IEnumerator for the current instance.

Description

A System.Collections.IEnumerator grants read-access to the elements of a
System.Array.

[Note: This method is implemented to support the System.Collections.IEnumerator
interface. For more information regarding the use of an enumerator, see
System.Collections.IEnumerator.]

Behaviors

Enumerators can be used to read the data in the collection, but they cannot be used to
modify the underlying collection.

Initially, the enumerator is positioned before the first element of the current instance.
System.Collections.IEnumerator.Reset returns the enumerator to this position.
Therefore, after an enumerator is created or after a
System.Collections.IEnumerator.Reset,
System.Collections.IEnumerator.MoveNext is required to be called to advance the
enumerator to the first element of the collection before reading the value of
System.Collections.IEnumerator.Current.

System.Collections.IEnumerator.Current returns the same object until either
System.Collections.IEnumerator.MoveNext Or
System.Collections.IEnumerator.Reset is called.
System.Collections.IEnumerator.MoveNext sets
System.Collections.IEnumerator.Current to the next element.

If System.Collections.IEnumerator.MoveNext passes the end of the collection, the
enumerator is positioned after the last element in the collection and
System.Collections.IEnumerator.MoveNext returns false. When the enumerator is at
this position, subsequent calls toSystem.Collections.IEnumerator.MoveNext also

69

1 return false. If the last call to System.Collections.IEnumerator.MoveNext returned
2 false, System.Collections.IEnumerator.Current is unspecified. To set
3 System.Collections.IEnumerator.Current to the first element of the collection again,
4 you can call System.Collections.IEnumerator.Reset followed by
5 System.Collections.IEnumerator.MoveNext.
6
7 An enumerator remains valid as long as the collection remains unchanged. If changes
8 are made to the collection, such as adding, modifying, or deleting elements, the
9 enumerator is irrecoverably invalidated and its behavior is undefined.
10
11 The enumerator does not have exclusive access to the collection; therefore,
12 enumerating through a collection is intrinsically not a thread safe procedure. To
13 guarantee thread safety during enumeration, you can lock the collection during the
14 entire enumeration. To allow the collection to be accessed by multiple threads for
15 reading and writing, you must implement your own synchronization.
16 Default
17 Multidimensional arrays will be processed in Row-major form.
18
19 [Note: For some multidimensional System.Array objects, it can be desirable for an
20 enumerator to process them in Column-major form.]
21
22

23 How and When to Override

24 Override this method to provide read-access to the current instance.
25

26 Usage

27 Use this method to iterate over the elements of the current instance.
28

29 Example

30 This example demonstrates the System.Array.GetEnumerator method.
31
32 [C#]

33 using System;
34 using System.Collections;
35 public class ArrayGetEnumerator {

36 public static void Main() {

37 string[,] strAry = {{"1","one"}, {"2", "two"}, {"3", "three"}};
38 Console. Write("The elements of the array are: ");

39 IEnumerator senum = strAry.GetEnumerator();

40 while (sEnum.MoveNext())

41 Console . Write(" {0}, sEnum.Current);

70

N o B WNBE

}
}

The output is

The elements of the array are: 1 one 2 two 3 three

71

10

11
12

13

14

15

16

F

Array.GetLength(System.Int32) Method

Summary

Gets the number of elements in the specified dimension of the array.

Parameters

‘dimension ’The zero-based dimension of the array whose length is to be determined.

Return Value

The number of elements in the specified dimension of the array.

Exceptions

System.IndexOutOfRangeException

dimension is less than zero.
or

dimension is equal to or greater than
System.Array.Rank.

72

! F

3 Array.GetLowerBound(System.Int32) Method

N o

8 Summary

Ye)

Returns the lower bound of the specified dimension in the current instance.

10 Parameters

A System.Int32 that contains the zero-based dimension of the current instance
whose lower bound is to be determined.

dimension

11
12 Return Value

13 A System.Int32 that contains the lower bound of the specified dimension in the current
14 instance.

15 Description

16 [Note: For example, System.Array.GetLowerBound (0) returns the lower bound of the
17 first dimension of the current instance, and

18 System.Array.GetLowerBound(System.Array.Rank - 1) returns the lower bound of the
19 last dimension of the current instance.]

20

21

22 Exceptions

dimension < 0.

System.IndexOutOfRangeException |-Or-

dimension is equal to or greater than the
System.Array.Rank property of the current

73

instance.

74

! F

3 Array.GetUpperBound(System.Int32) Method

N o

8 Summary

Ye)

Returns the upper bound of the specified dimension in the current instance.

10 Parameters

A System.Int32 that contains the zero-based dimension of the current instance
whose upper bound is to be determined.

dimension

11
12 Return Value

13 A System.Int32 that contains the upper bound of the specified dimension in the current
14 instance.

15 Description

16 [Note: For example, System.Array.GetUpperBound (0) returns the upper bound of the
17 first dimension of the current instance, and

18 System.Array.GetUpperBound(System.Array.Rank - 1) returns the upper bound of the
19 last dimension of the current instance.]

20

21

22 Exceptions

dimension < 0.

System.IndexOutOfRangeException |-Or-

dimension is equal to or greater than the
System.Array.Rank property of the current

75

instance.

76

! —

3 Array.GetValue(System.Int32[]) Method

N o

8 Summary

Ye)

Gets the value at the specified position in the current multidimensional instance.

10 Parameters

A one-dimensional array of System.Int32 objects that contains the indices that
specify the position of the element in the current instance whose value to get.

indices

11
12 Return Value

13 A System.Object that contains the value at the specified position in the current
14 instance.

15 Description

16 The number of elements in indices is required to be equal to the number of dimensions
17 in the current instance. All elements in indices collectively specify the position of the
18 desired element in the current instance.

19

20 [Note: Use the System.Array.GetLowerBound and System.Array.GetUpperBound

21 methods to determine whether any of the values in indices are out of bounds.]

22

23

24 Exceptions

System.ArgumentNullException indices is null.

The number of dimensions in the current instance

System.ArgumentException . L
y g P is not equal to the number of elements in indices.

At least one element in indices is outside the range

System.IndexOutOfRangeException |of valid indices for the corresponding dimension of
the current instance.

78

10

11
12

13

14
15
16
17

18

19
20

21

22
23

Array.GetValue(System.Int32) Method

Summary

Gets the value at the specified position in the current one-dimensional instance.

Parameters

index .
instance.

A System.Int32 that contains the position of the value to get from the current

Return Value

A System.Object that contains the value at the specified position in the current

instance.

Description

[Note: Use the System.Array.GetLowerBound and System.Array.GetUpperBound
methods to determine whether index is out of bounds.]

Exceptions

System.ArgumentException

The current instance has more than one dimension.

System.IndexOutOfRangeException

index is outside the range of valid indices for the
current instance.

Example

This example demonstrates the System.Array.GetValue method.

[C#]

79

OCoOoONOULT A WNBE

[T Y
WN RO

=
o

using System;
public class ArrayGetValueExample {
public static void Main() {
String[] strAry = { "one", "two', '"three', "four", "five" };
Console . Write("The elements of the array are: ");
for(int i = 0; 1 < strAry.Length; i++)
Console.Write(" "{0}" ", strAry.Getvalue(i1));
}
}

The output is

The elements of the array are: “one" "two" "three® "four® "five-

80

1

2 -

Array.GetValue(System.Int32, System.Int32)
1+ Method

w

N oun

10 Summary

11 Gets the value at the specified position in the current two-dimensional instance.

12 Parameters

index1 A System.Int32 that contains the first-dimension index of the element in the
current instance to get.

index?2 A System.Int32 that contains the second-dimension index of the element in
the current instance to get.

13
14 Return Value

15 A System.Object that contains the value at the specified position in the current
16 instance.

17 Description

18 [Note: Use the System.Array.GetLowerBound and System.Array.GetUpperBound
19 methods to determine whether any of the indices are out of bounds.]

20

21

22 Exceptions

The current instance does not have exactly two
dimensions.

System.ArgumentException

At least one of index1 or index2 is outside the
System.IndexOutOfRangeException range of valid indexes for the corresponding
dimension of the current instance.

82

1 —
2

Array.GetValue(System.Int32, System.Int32,

s System.Int32) Method

w

N owu,

10 Summary

11 Gets the value at the specified position in the current three-dimensional instance.

12 Parameters

index A System.Int32 that contains the first-dimension index of the element in the
current instance to get.

index2 A System.Int32 that contains the second-dimension index of the element in
the current instance to get.

index3 A System.Int32 that contains the third-dimension index of the element in the
current instance to get.

13
14 Return Value

15 A System.Object that contains the value at the specified position in the current
16 instance.

17 Description

18 [Note: Use the System.Array.GetLowerBound and System.Array.GetUpperBound
19 methods to determine whether any of the indices are out of bounds.]

20

21

22 Exceptions

. The current instance does not have exactly three
System.ArgumentException . .
dimensions.

At least one ofindex1 or index2 or index3 is outside
System.IndexOutOfRangeException [the range of valid indexes for the corresponding

dimension of the current instance.

84

v bhw

00 N

10
11

12

13
14

15
16
17
18
19
20

21

22

23

Array.IndexOf(System.Array, System.Object,
System.Int32, System.Int32) Method

Summary

Searches the specified one-dimensional System.Array, returning the index of the first
occurrence of the specified System.0Object in the specified range.

Parameters
array A one-dimensional System.Array to search.
value A System.Object to locate in array.

startindex |A System.Int32 that contains the index at which searching starts.

A System.Int32 that contains the number of elements to search, beginning

count .
with startindex.

Return Value

A System.Int32 containing the index of the first occurrence of value in array, within the
range startindex through startindex + count- 1, if found; otherwise,
array.GetLowerBound(0) - 1. [Note: For a vector, if value is not found, the return value
will be -1. This provides the caller with a standard code for the failed search.]

Description

The elements are compared using System.Object.Equals.

Exceptions

85

System.ArgumentNullException

System.ArgumentOutOfRangeException

System.RankException

array is null.

startindex is less than
array.GetLowerBound (0) .

Or
count is less than zero.
Or

startlndex + count is greater than
array.GetLowerBound (0) + array.Length.

array has more than one dimension.

86

1 Array.IndexOf(System.Array, System.Object,
2 System.Int32) Method

8 Summary

9 Searches the specified one-dimensional System.Array, returning the index of the first
10 occurrence of the specified system.Object between the specified index and the last
11 element.

12 Parameters

array A one-dimensional System.Array to search.

value A System.Object to locate in array.

startindex A system.Int32 that contains the index at which searching starts.

13
14 Return Value

15 A System.Int32 containing the index of the first occurrence of value in array, within the
16 range startindex through the last element of array, if found; otherwise,

17 array.GetLowerBound(0O) - 1. [Note: For a vector, if value is not found, the return value
18 will be -1. This provides the caller with a standard code for the failed search.]

19

20

21 Description

22 This version of System.Array.IndexOf is equivalent to System.Array.IndexOf (array,
23 value, startindex, (array.Length - startindex+array.GetLowerBound(0))).

24

25 The elements are compared using System.Object.Equals.

26 Exceptions

87

System.ArgumentNullException array is null.

startindex is less than

System.ArgumentOutOfRangeException |array . GetLowerBound (0) or greater than
array .GetLowerBound (0) + array.Length.

System.RankException array has more than one dimension.

88

11

12
13

14
15
16
17
18

19

20
21
22
23

24

Array.IndexOf(System.Array, System.Object)

Method

Summary

Searches the specified one-dimensional System.Array, returning the index of the first
occurrence of the specified System.Object.

Parameters

array

A one-dimensional System.Array to search.

value

A System.Object to locate in array.

Return Value

A system.Int32 containing the index of the first occurrence of value in array, if found;
otherwise, array.GetLowerBound(0) - 1. [Note: For a vector, if value is not found, the
return value will be -1. This provides the caller with a standard code for a failed search.]

Description

This version of System.Array.IndexOf is equivalent to System.Array. IndexOf(array,
value, array.GetLowerBound(0),array.Length).

The elements are compared using System.Object.Equals.

Exceptions

System.ArgumentNullException array is null.

System.RankException array has more than one dimension.

89

upbh w

OoONO

10

12
13
14
15
16
17

18
19
20
21
22
23

24

25

Example

The following example demonstrates the System.Array.IndexOf method.

[C#]

using System;

public class ArraylndexOfExample {
public static void Main() {
int[] intAry = { 0, 1, 2, 0, 1 };

Console.Write("The values of the array are: ")

foreach(int 1 in intAry)
Console Write("{0,5}", 1);

Console.WriteLine();

int J = Array.IndexOf(intAry, 1);
Console.WriteLine("The first occurrence of 1 is at index {0}, j);

}
}
The output is

The values of the array arez 01 201

The Ffirst occurrence of 1

is at index 1

90

v bW

(eI N Ne)]

10
11
12

13

14
15

16
17
18

19

20
21
22

23

Array.IndexOf<T=(T[], T, System.Int32,
System.Int32) Method

Summary

Searches for the specified value and returns the index of the first occurrence within the
range of elements in the array starting at the specified index and continuing for, at
most, the specified number of elements.

Parameters

array The array to search.

value The value to locate.

startindex The zero-based starting index of the search.
count The number of consecutive elements to search.

Return Value

The zero-based index of the first occurrence of value within the range of elements in
array that starts at startindex and contains the number of elements specified in count, if
found; otherwise, -1.

Description

The elements are compared using System.Object.Equals. The array is searched
forward starting at startindex and ending at startindex + count - 1. Processing is
stopped when the predicate returns true.

Exceptions

91

System.ArgumentNullException

System.ArgumentOutOfRangeException

array is null.

startlndex is less than zero.
—or-

count is less than zero.

—or-

startindex + count is greater than
System.Array.Length.

92

11

12
13

14
15
16

17

18
19
20

21

Array.IndexOf<T=(T[], T, System.Int32)

Method

Summary

Searches the specified array, returning the index of the first occurrence in the specified
array starting at the specified index and including the last element.

Parameters

array The array to search.
value The value to locate.
startindex The zero-based starting index of the search.

Return Value

The zero-based index of the first occurrence of value within the range of elements in
array that extends from startindex to the last element, if found; otherwise, -1. If
startindex is equal to the length of the array, -1 is returned.

Description

The elements are compared using System.Object.Equals. The array is searched
forward starting at startindex and ending at the last element. Processing is stopped
when the predicate returns true.

Exceptions

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException

startindex is less than zero or greater than

93

array . Length.

94

1 Array.IndexOf<T>(T[], T) Method

6 Summary

7 Searches the specified array, returning the index of the first occurrence of the specified
8 value.

9 Parameters

array The array to search.

value The value to locate.

10
11 Return Value

12 The zero-based index of the first occurrence of value in array, if found; otherwise, - 1.

13 Description

14 The elements are compared using System.Object.Equals. The array is searched
15 forward starting at the first element and ending at the last element. Processing is
16 stopped when the predicate returns true.

17 Exceptions

‘System.ArgumentNuIIException array is null.

18

19

95

11

12
13
14
15
16
17
18
19
20
21

22

F

Array.Initialize() Method

Summary

Initializes every element of the current instance of value-type objects by calling the
default constructor of that value type.

Description

This method cannot be used on reference-type arrays.

If the current instance is not a value-type System.Array or if the value type does not
have a default constructor, the current instance is not modified.

The current instance can have any lower bound and any number of dimensions.

[Note: This method can be used only on value types that have constructors.]

96

o up

O 0o~

10

11
12

13

14
15

16
17
18
19
20
21

22

23

24

Array.LastlndexOf(System.Array,
System.Object, System.Int32, System.Int32)

Method

Summary

Searches the specified one-dimensional System.Array, returning the index of the last
occurrence of the specified system.0Object in the specified range.

Parameters

array A one-dimensional System.Array to search.

value A System.Object to locate in array.

startindex |A System.Int32 that contains the index at which searching starts.

count A System.Int32 that contains the number of elements to search, beginning
with startindex.

Return Value

A System.Int32 containing the index of the last occurrence of value in array, within the
range startindex through startindex - count + 1, if found; otherwise,
array.GetLowerBound(0O) - 1. [Note: For a vector, if value is not found, the return value
will be -1. This provides the caller with a standard code for the failed search.]

Description

The elements are compared using System.Object.Equals.

Exceptions

97

System.ArgumentNullException array is null.

startlndex is outside the range of valid indices
for array.

-0r-
System.ArgumentOutOfRangeException count < 0.

-0or-

count is greater than startindex + 1.

System.RankException array has more than one dimension.

98

1 Array.LastlndexOf(System.Array,
2 System.Object, System.Int32) Method

8 Summary

9 Searches the specified one-dimensional System.Array, returning the index of the last
10 occurrence of the specified system.Object between the specified index and the first
11 element.

12 Parameters

array A one-dimensional System.Array to search.

value A System.Object to locate in array.

startindex A system.Int32 that contains the index at which searching starts.

13
14 Return Value

15 A system.Int32 containing the index of the last occurrence of value in the range

16 startindex through the lower bound of array, if found; otherwise,

17 array.GetLowerBound(0O) - 1. [Note: For a vector, if value is not found, the return value
18 will be -1. This provides the caller with a standard code for the failed search.]

19

20

21 Description

22 This version of System.Array.LastIndexOf is equivalent to

23 System.Array.LastIndexOf(array, value, startindex,startindex+ 1 -
24 array.GetLowerBound(0)).

25

26 The elements are compared using System.Object.Equals.

27 Exceptions

99

System.ArgumentNullException array is null.

startlndex is outside the range of valid indices

System.ArgumentOutOfRangeException for array.

System.RankException array has more than one dimension.

100

11

12
13

14
15
16
17
18
19

20

21
22
23
24
25

26

Array.LastlndexOf(System.Array,
System.Object) Method

Summary

Searches the specified one-dimensional System.Array, returning the index of the last
occurrence of the specified System.Object.

Parameters
array A one-dimensional System.Array to search.
value A System.Object to locate in array.

Return Value

A system.Int32 containing the index of the last occurrence in array of value, if found;
otherwise, array.GetLowerBound(0) - 1. [Note: For a vector, if value is not found, the
return value will be -1. This provides the caller with a standard code for the failed
search.]

Description

This version of System.Array.LastIndexOf is equivalent to
System.Array.LastIndexOf(array, value, (array.GetLowerBound(0) + array.Length -
1), array.Length).

The elements are compared using System.Object.Equals.

Exceptions

‘System.ArgumentNuIIException array is null.

101

System.RankException array has more than one dimension.

Example

The following example demonstrates the System.Array.LastIndexOf method.
[Cc#]

using System;

public class ArraylLastlndexOfExample {

public static void Main() {
int[] intAry = { 0, 1, 2, 0, 1 };
Console._Write("The values of the array are: ');
foreach(int i1 in intAry)
Console. Write("{0,5}", 1);
Console . WriteLine();
int J = Array.LastindexOf(intAry, 1);
Console._WriteLine("The last occurrence of 1 is at index {0}, j);
}
}
The output is

The values of the array are: 012 0 1

The last occurrence of 1 is at index 4

102

v bW

(eI N Ne)]

10
11
12

13

14
15

16
17
18

19

20
21
22

23

Array.LastlndexOf<T=(T[], T, System.Int32,
System.Int32) Method

Summary

Searches for the specified value and returns the index of the last occurrence within the
range of elements in the array starting at the specified index and continuing backwards
for, at most, the specified number of elements.

Parameters

array The array to search.

value The value to locate.

startindex The zero-based starting index of the search.
count The number of consecutive elements to search.

Return Value

The zero-based index of the last occurrence of value within the range of elements in
array that ends at startindex and contains the number of elements specified in count, if
found; otherwise, -1.

Description

The elements are compared using System.Object.Equals. The array is searched
backward starting at startindex and going for count elements. Processing is stopped
when the predicate returns true.

Exceptions

103

System.ArgumentNullException array is null.

startindex is outside the range of valid indices
for array.

Or
System.ArgumentOutOfRangeException count is less than zero.

-0r-

count is greater than startindex + 1.

104

11

12
13

14
15

16

17
18
19

20

Array.LastindexOf<T=(T[], T, System.Int32)

Method

Summary

Searches the specified array backwards, returning the index of the last occurrence of the
specified array, starting at the specified index.

Parameters

array The array to search.
value The value to locate.
startindex The zero-based starting index of the search.

Return Value

The zero-based index of the last occurrence of value within the range of elements in
array that extends from startindex to the first element, if found; otherwise, -1.

Description

The elements are compared using System.Object.Equals. The array is searched
backward starting at startindex and ending at the first element. Processing is stopped
when the predicate returns true.

Exceptions

System.ArgumentNullException array is null.

System.ArgumentOutOfRangeException

startlndex is outside the range of valid indices
for array.

105

106

1 Array.LastindexOf<T=>(T[], T) Method

7 Summary

8 Searches the specified array, returning the index of the last occurrence of the specified
9 value.

10 Parameters

array The array to search.

value The value to locate.

11
12 Return Value

13 The zero-based index of the last occurrence of value in array, if found; otherwise, - 1.

14 Description

15 The elements are compared using System.Object.Equals. The array is searched
16 backward starting at the last element and ending at the first element. Processing is
17 stopped when the predicate returns true.

18 Exceptions

‘System.ArgumentNuIIException array is null.

19

20

107

=

B~ WN

10
11

12
13
14
15
16
17
18
19
20
21
22

23

24

25

Array.Resize<T=>(T[], System.Int32) Method

Summary

Changes the size of an array to the specified new size.

Parameters

The array to resize.

array -or-

null to create a new array with the specified size.

newsSize The size of the new array.

Description

If array is null, this method creates a new array with the specified size.

If array is not null, then if newSize is equal to System.Array.Length of the old array,
this method does nothing. Otherwise, this method allocates a new array with the
specified size, copies elements from the old array to the new one, and then assigns the
new array reference to the array parameter. If newSize is greater than
System.Array.Length of the old array, a new array is allocated and all the elements are
copied from the old array to the new one. If newSize is less than System.Array.Length
of the old array, a new array is allocated and elements are copied from the old array to
the new one until the new one is filled; the rest of the elements in the old array are
ignored.

Exceptions

‘System.ArgumentOutOfRangeException newSize is less than zero.

108

1 Array.Reverse(System.Array, System.Int32,
2 System.Int32) Method

8 Summary

9 Reverses the sequence of the elements in the specified range of the specified one-
10 dimensional System.Array.

11 Parameters

array The one-dimensional System.Array to reverse.
index A System.Int32 that contains the index at which reversing starts.
length A System.Int32 that contains the number of elements to reverse.

12
13 Exceptions

System.ArgumentNullException array is null.

System.RankException array is multidimensional.

index < array.GetLowerBound(0).
System.ArgumentOutOfRangeException
length < 0.

index and length do not specify a valid range
System.ArgumentException in array (i.e. index + length >
array.GetLowerBound(0) + array.Length).

14
15 Example

109

WN =

The following example demonstrates the System.Array.Reverse method.
[C#]

using System;
public class ArrayReverseExample {
public static void Main() {
string[] strAry = { "one", "two', "three" };
Console._Write("The elements of the array are:');
foreach(string str in strAry)
Console . Write(" {0}, str);
Array.Reverse(strAry);
Console. WriteLine();
Console._WriteLine("After reversing the array,”);
Console._Write("the elements of the array are:');
foreach(string str in strAry)
Console. Write(" {0}, str);

}
}
The output is

The elements of the array are: one two three

After reversing the array,

the elements of the array are: three two one

110

10

11
12

13

14

15

Array.Reverse(System.Array) Method

Summary

Reverses the sequence of the elements in the specified one-dimensional System.Array.

Parameters

array ’The one-dimensional System.Array to reverse.

Description

This version of System.Array.Reverse is equivalent to System.Array.Reverse(array,
array.GetLowerBound(0), array.Length).

Exceptions
System.ArgumentNullException array is null.
System.RankException array has more than one dimension.

111

(o]

10

11
12

13
14
15
16
17
18
19

20

Array.SetValue(System.Object,
System.Int32) Method

Summary

Sets the value of the element at the specified position in the current one-dimensional

instance.

Parameters

value

A System.Object that contains the new value for the specified element.

index

A System.Int32 that contains the index of the element whose value is to be
set.

Description

[Note: Use the System.Array.GetLowerBound and System.Array.GetUpperBound
methods to determine whether index is out of bounds.

For more information regarding valid conversions that will be performed by this method,
see System.Convert.

1

Exceptions

System.ArgumentException The current instance has more than one dimension.

System.IndexOutOfRangeException

index is outside the range of valid indices for the
current instance.

System.InvalidCastException

value is not assignment-compatible with the
element type of the current instance.

112

113

10

11
12

13

14
15

16
17
18
19
20
21
22

23

—

Array.SetValue(System.Object, System.Int32,
System.Int32) Method

Summary

Sets the value of the element at the specified position in the current two-dimensional

instance.

Parameters

value A System.Object that contains the new value for the specified element.

index1 A System.Int32 that contains the first-dimension index of the element in the
current instance to set.

index2 A System.Int32 that contains the second-dimension index of the element in
the current instance to set.

Description

[Note: For more information regarding valid conversions that will be performed by this
method, see System.Convert.

Use the System.Array.GetLowerBound and System.Array.GetUpperBound methods to
determine whether any of the indices are out of bounds.

]

Exceptions

System.ArgumentException

The current instance does not have exactly two
dimensions.

114

At least one of index1 or index2 is outside the
System.IndexOutOfRangeException [range of valid indices for the corresponding
dimension of the current instance.

value is not assignment-compatible with the

System.InvalidCastException element type of the current instance.

115

10

11
12

13

14
15

16
17
18
19
20
21
22

23

—

Array.SetValue(System.Object, System.Int32,
System.Int32, System.Int32) Method

Summary

Sets the value of the element at the specified position in the current three-dimensional

instance.

Parameters

value A System.Object that contains the new value for the specified element.

index1 A System.Int32 that contains the first-dimension index of the element in the
current instance to set.

index2 A System.Int32 that contains the second-dimension index of the element in
the current instance to set.

index3 A System.Int32 that contains the third-dimension index of the element in the
current instance to set.

Description

[Note: For more information regarding valid conversions that will be performed by this
method, see System.Convert.

Use the System.Array.GetLowerBound and System.Array.GetUpperBound methods to
determine whether any of the indices are out of bounds.

1

Exceptions

116

The current instance does not have exactly three

System.ArgumentException dimensions.

At least one of index1, index2, or index3 is outside
System.IndexOutOfRangeException the range of valid indices for the corresponding
dimension of the current instance.

value is not assignment-compatible with the

System.InvalidCastException element type of the current instance.

117

10

11
12

13

14
15

16
17
18
19
20
21
22
23
24
25
26

27

—

Array.SetValue(System.Object,
System.Int32[]) Method

Summary

Sets the value of the element at the specified position in the current multidimensional

instance.

Parameters

value

A System.Object that contains the new value for the specified element.

indices

A one-dimensional array of System.Int32 objects that contains the indices that
specify the position of the element in the current instance to set.

Description

The number of elements in indices is required to be equal to the number of dimensions
in the current instance. All elements in indices collectively specify the position of the
desired element in the current instance.

[Note: For more information regarding valid conversions that will be performed by this
method, see System.Convert.

Use the System.Array.GetLowerBound and System.Array.GetUpperBound methods to
determine whether any of the values in indices is out of bounds.

1

Exceptions

‘System.ArgumentNuIIException

indices is null.

118

System.ArgumentException

System.IndexOutOfRangeException

System.InvalidCastException

The number of dimensions in the current instance
is not equal to the number of elements in indices.

At least one element in indices is outside the range
of valid indices for the corresponding dimension of
the current instance.

value is not assignment-compatible with the
element type of the current instance.

119

Noups

o Vo

11

12
13
14
15

16

17
18

19
20
21
22
23
24

Array.Sort(System.Array, System.Array,
System.Int32, System.Int32,
System.Collections.IComparer) Method

Summary

Sorts the specified range of the specified pair of one-dimensional System.Array objects
(one containing a set of keys and the other containing corresponding items) based on
the keys in the first specified System.Array using the specified
System.Collections.IComparer implementation.

Parameters
keys A one-dimensional System.Array that contains the keys to sort.
. A one-dimensional System.Array that contains the items that correspond to
items .
each element of keys. Specify a null reference to sort only keys.
index A System.Int32 that contains the index at which sorting starts.
length A System.Int32 that contains the number of elements to sort.
The System.Collections.IComparer implementation to use when comparing
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

Description

Each key in keys is required to have a corresponding item in items. The sort is
performed according to the order of keys. After a key is repositioned during the sort, the
corresponding item in items is similarly repositioned. Only keys.Length elements of
items will be sorted. Therefore, items is sorted according to the arrangement of the
corresponding keys in keys. If the sort is not successfully completed, the results are
undefined.

120

A OWN P

(6]

If comparer is a null reference, each element of keys is required to implement the
System. IComparable interface to be capable of comparisons with every other element

in keys.

Exceptions

System.ArgumentNullException

keys is null.

System.RankException

keys has more than one dimension.
Or

items is not a null reference and has more
than one dimension.

System.ArgumentOutOfRangeException

index < keys.GetLowerBound(0).
or

length < O.

System.ArgumentException

items is not a null reference, and
keys.GetLowerBound(0O) does not equal
items.GetLowerBound(0).

or

index and length do not specify a valid range
in key.

-0r-

items is not a null reference, and index and
length do not specify a valid range in items.

System.InvalidOperationException

comparer is null, and one or more elements
in keys that are used in a comparison do not
implement the System.IComparable interface.

121

=

o by

O 0o

10

11
12

13

14
15

16
17
18
19
20
21

22

Array.Sort(System.Array, System.Int32,
System.Int32, System.Collections.IComparer)

Method

Summary

Sorts the elements in the specified section of the specified one-dimensional
System.Array using the specified System.Collections.IComparer implementation.

Parameters

array A one-dimensional System.Array to sort.
index A System.Int32 that contains the index at which sorting starts.
length A System.Int32 that contains the number of elements to sort.
The System.Collections.IComparer implementation to use when comparing
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

Description

This version of System.Array.Sort is equivalent to System.Array.Sort(array, null,
index, length, comparer).

If comparer is a null reference, each element of array is required to implement the
System. IComparable interface to be capable of comparisons with every other element
in array. If the sort is not successfully completed, the results are unspecified.

Exceptions

122

System.ArgumentNullException array is null.

System.RankException array has more than one dimension.
index < array.GetLowerBound(0).

System.ArgumentOutOfRangeException -Or-

length < O.

. index and length do not specify a valid range
System.ArgumentException .
in array.
comparer is null, and one or more elements
System.lInvalidOperationException in array that are used in a comparison do not
implement the System.IComparable interface.

123

1 Array.Sort(System.Array, System.Array,
2 System.Collections.IComparer) Method

8 Summary

9 Sorts the specified pair of one-dimensional System.Array objects (one containing a set
10 of keys and the other containing corresponding items) based on the keys in the first
11 specified System.Array using the specified System.Collections.IComparer
12 implementation.

13 Parameters

keys A one-dimensional System.Array that contains the keys to sort.

A one-dimensional System.Array that contains the items that correspond to

items each element in keys. Specify a null reference to sort only keys.

The System.Collections.IComparer implementation to use when comparing
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

14
15 Description

16 This version of System.Array.Sort is equivalent to System.Array.Sort(keys, items,
17 keys.GetLowerBound(0), keys.Length, comparer).

18

19 Each key in keys is required to have a corresponding item in items. The sort is

20 performed according to the order of keys. After a key is repositioned during the sort, the
21 corresponding item in items is similarly repositioned. Only keys.Length elements of

22 items are sorted. Therefore, items is sorted according to the arrangement of the

23 corresponding keys in keys. If the sort is not successfully completed, the results are
24 unspecified.

25

26 If comparer is a null reference, each element of keys is required to implement the

27 System. IComparable interface to be capable of comparisons with every other element
28 in keys.

29 Exceptions

124

System.ArgumentNullException keys is null.

keys has more than one dimension.

or
System.RankException

items is not a null reference and has more than one
dimension.

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

System.ArgumentException —or-

items is not a null reference, and keys.Length >
items.Length.

comparer is a null, and one or more elements in
System.InvalidOperationException keys that are used in a comparison do not
implement the System.IComparable interface.

125

11

12
13

14
15
16
17
18
19

20

Array.Sort(System.Array,
System.Collections.IComparer) Method

Summary

Sorts the elements in the specified one-dimensional System.Array using the specified
System.Collections.IComparer implementation.

Parameters

array The one-dimensional System.Array to sort.

The System.Collections.
comparer |elements. Specify a null reference to use the System.IComparable
implementation of each element.

IComparer implementation to use when comparing

Description

This version of System.Array.Sort is equivalent to System.Array.Sort(array, null,
array.GetLowerBound(0), array.Length, comparer).

If comparer is a null reference, each element of array is required to implement the
System. IComparable interface to be capable of comparisons with every other element
in array. If the sort is not successfully completed, the results are unspecified.

Exceptions

System.ArgumentNullException

array is null.

System.RankException

array has more than one dimension.

System.InvalidOperationException

comparer is a null reference, and one or more
elements in array that are used in a comparison do

126

not implement the System.IComparable interface.

127

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25

26

Array.Sort(System.Array, System.Array,
System.Int32, System.Int32) Method

Summary

Sorts the specified ranges of the specified pair of one-dimensional System.Array objects
(one containing a set of keys and the other containing corresponding items) based on
the keys in the first specified System.Array.

Parameters

keys A one-dimensional System.Array that contains the keys to sort.

items A one-dimensional System.Array that contains the items that correspond to
each element in keys. Specify a null reference to sort only keys.

index A System.Int32 that contains the index at which sort begins.

length A System.Int32 that contains the number of elements to sort.

Description

This version of System.Array.Sort is equivalent to System.Array.Sort(keys, items,
index, length, null).

Each key in keys is required to have a corresponding item in items. The sort is
performed according to the order of keys. After a key is repositioned during the sort, the
corresponding item in items is similarly repositioned. Therefore, items is sorted
according to the arrangement of the corresponding keys in keys. If the sort is not
successfully completed, the results are undefined.

Each element of keys is required to implement the System.IComparable interface to be
capable of comparisons with every other element in keys.

Exceptions

128

System.ArgumentNullException keys is null.

keys has more than one dimension.

or
System.RankException

items is not a null reference and has more
than one dimension.

index < keys.GetLowerBound(0).

System.ArgumentOutOfRangeException |-0r-

length < O.

items is not a null reference, and
keys.GetLowerBound(0O) does not equal
items.GetLowerBound(0).

-0r-

System.ArgumentException index and length do not specify a valid range
in keys.

or

items is not a null reference, and index and
length do not specify a valid range in items.

One or more elements in keys that are used in
System.InvalidOperationException a comparison do not implement the
System.IComparable interface.

129

10

11
12
13
14
15

16

17
18

19

20
21

22
23

Array.Sort(System.Array) Method

Summary

Sorts the elements of the specified one-dimensional System.Array.

Parameters

array ‘A one-dimensional System.Array to sort.

Description

This version of System.Array.Sort is equivalent to System.Array.Sort(array, null,
array.GetLowerBound(0), array.Length, null).

Each element of array is required to implement the System. IComparable interface to be
capable of comparisons with every other element in array.

Exceptions

System.ArgumentNullException

array is null.

System.RankException

array has more than one dimension.

System.InvalidOperationException

One or more elements in array that are used in a
comparison do not implement the
System. IComparable interface.

Example

This example demonstrates the System.Array.Sort method.

[C#]

using System;
public class ArraySortExample {

130

OCoOoONOULT A WNBE

[
N O

[T S W I Y
oONO U W

[EN
\e]

N
o

public static void Main() {

string[] strAry = { "All"s", "well", "that", "ends", "well" };

Console._Write("The original string array is: ")
foreach (String str in strAry)
Console Write(str + " ");
Console. WriteLine();
Array.Sort(strAry);
Console._Write("The sorted string array is: ");
foreach (string str in strAry)
Console Write(str + " ");
}

}
The output is

The original string array is: All"s well that ends well

The sorted string array is: All"s ends that well well

131

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25
26

27

Array.Sort(System.Array, System.Array)
Method

Summary

Sorts the specified pair of one-dimensional System.Array objects (one containing a set
of keys and the other containing corresponding items) based on the keys in the first
specified System.Array.

Parameters
keys A one-dimensional System.Array that contains the keys to sort.
. A one-dimensional System.Array that contains the items that correspond to
items .
each of element of keys. Specify a null reference to sort only keys.

Description

This version of System.Array.Sort is equivalent to System.Array.Sort(keys, items,
keys.GetLowerBound(0), keys.Length, null).

Each key in keys is required to have a corresponding item in items. The sort is
performed according to the order of keys. After a key is repositioned during the sort, the
corresponding item in items is similarly repositioned. Only keys.Length elements of
items are sorted. Therefore, items is sorted according to the arrangement of the
corresponding keys in keys. If the sort is not successfully completed, the results are
unspecified.

Each element of keys is required to implement the System.IComparable interface to be
capable of comparisons with every other element in keys.

Exceptions

‘System.ArgumentNuIIException keys is null.

132

upbh w

keys has more than one dimension.

Or
System.RankException

items is not a null reference and has more than one
dimension.

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

System.ArgumentException ~or-

items is not a null reference, and keys.Length >
items.Length.

One or more elements in keys that are used in a

System.InvalidOperationException comparison do not implement the
System.IComparable interface.

Example

This example demonstrates the System.Array.Sort method.
[C#]
using System;

public class ArraySortExample {
public static void Main() {

O 00N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28

string[] strAry = { "All"s", "well”, "that", "ends", "well" }
int[] intAry = { 3, 4, 0, 1, 2 };
Console.Write("The original string array is: ")
foreach (string str in strAry)
Console._Write(str + ™ ")
Console._WriteLine();
Console. Write("The key array is: ");
foreach (int i
Console. Write(1 + " ")
Console_WriteLine();
Array.Sort(intAry, sStrAry);
Console.Write("The sorted string array is: ")
foreach (string str in strAry)
Console. Write(str + " ")

in intAry)

The output is

The original string array is: All"s well that ends well

O Uk, WN PR

The key array is: 34012

The sorted string array is: that ends well All"s well

134

1 Array.Sort(System.Array, System.Int32,
2 System.Int32) Method

8 Summary

9 Sorts the elements in the specified range of the specified one-dimensional
10 System.Array.

11 Parameters

array A one-dimensional System.Array to sort.
index A System.Int32 that contains the index at which sorting starts.
length A System.Int32 that contains the number of elements to sort.

12
13 Description

14 This version of System.Array.Sort is equivalent to System.Array.Sort(array, null,

15 index, length, null).

16

17 Each element of array is required to implement the System. IComparable interface to be
18 capable of comparisons with every other element in array. If the sort is not successfully
19 completed, the results are unspecified.

20 Exceptions

System.ArgumentNullException array is null.

System.RankException array has more than one dimension.

. index < array.GetLowerBound(0).
System.ArgumentOutOfRangeException

-0r-

135

length < O.

. index and length do not specify a valid range

System.ArgumentException .
in array.

One or more elements in array that are used in

System.InvalidOperationException a comparison do not implement the
System.IComparable interface.

136

12

13
14

15

16
17

Array.Sort<K,V>(K[], VL[], System.Int32,

System.

INt32,

System.Collections.Generic.IComparer<K=>=)

Method

Summary

Sorts a range of elements in a pair of arrays based on the keys in the first array using
the specified System.Collections.Generic.IComparer<Ks.

Parameters

keys The array that contains the keys to sort.
The array that contains the items that correspond to each of the keys in keys.
items -or-
null to sort only the keys array.
index The starting index of the range to sort.
length The number of elements in the range to sort.
The System.Collections.Generic.IComparer<Ks> implementation to use when
comparing elements.
comparer |-Or-
null to use the System.IComparable<K> Or System.IComparable
implementation of each element.

Description

137

QuwVwoONOOTULLPEA, WN K

[

[any
[y

12

13

If items is non-null, each key in keys is required to have a corresponding item in items.
The sort is performed according to the order of keys. After a key is repositioned during
the sort, the corresponding item in items is similarly repositioned. Only keys.Length
elements of items will be sorted. Therefore, items is sorted according to the
arrangement of the corresponding keys in keys. If the sort is not successfully

completed, the results are undefined.

If comparer is a null reference, each element of keys is required to implement the
System. IComparable<K> Or System.IComparable interface to be capable of
comparisons with every other element in keys.

Exceptions

System.ArgumentException

index and length do not specify a valid range
in keys.

or

items is not null, and index and length do not
specify a valid range in items.

System.ArgumentNullException

keys is null.

System.ArgumentOutOfRangeException

index is less than zero.
or

length is less than zero.

System.InvalidOperationException

comparer is null, and one or more elements
in keys that are used in a comparison do not
implement the System.IComparable<K> Or
System.IComparable interface.

138

1 Array.Sort<K,vV>(KI[], VI[1.
2 System.Collections.Generic.IComparer<K=>=)
3 Method

9 Summary

10 Sorts a pair of arrays based on the keys in the first array, using the specified
11 System.Collections.Generic.IComparer.

12 Parameters

keys The array that contains the keys to sort.

The array that contains the items that correspond to each of the keys in keys.
items -or-

null to sort only the keys array.

The System.Collections.Generic.IComparer<K> implementation to use when
comparing elements.

comparer -or-

null to use the System.IComparable<K> Or System.IComparable
implementation of each element.

13
14 Description

15 This version of System.Array.Sort is equivalent to System.Array.Sort<K, V> (keys,
16 items, 0, keys.Length, comparer).

17

18 If items is non-null, each key in keys is required to have a corresponding item in items.
19 The sort is performed according to the order of keys. After a key is repositioned during
20 the sort, the corresponding item in items is similarly repositioned. Only keys.Length

21 elements of items will be sorted. Therefore, items is sorted according to the

139

auhswN PRk

~

arrangement of the corresponding keys in keys. If the sort is not successfully

completed, the results are unspecified.

If comparer is a null reference, each element of keys is required to implement the
System. IComparable<K> Or System.IComparable interface to be capable of
comparisons with every other element in keys.

Exceptions

System.ArgumentNullException

keys is null.

System.ArgumentException

items is not null, and the length of keys does not
match the length of items.

System.InvalidOperationException

comparer is null, and one or more elements in keys
that are used in a comparison do not implement the
System.IComparable<K> Or System.IComparable
interface.

140

11

12
13

14
15
16
17
18
19
20
21
22
23
24
25

Array.Sort<K,V>(K[], V[], System.Int32,
System.Int32) Method

Summary

Sorts a range of elements in a pair of arrays based on the keys in the first array, using
the System.IComparable<K> Or System.IComparable implementation of each key.

Parameters

keys The array that contains the keys to sort.
The array that contains the items that correspond to each of the keys in keys.
items -or-
null to sort only the keys array.
index The starting index of the range to sort.
length The number of elements in the range to sort.

Description

If items is non-null, each key in keys is required to have a corresponding item in items.
When a key is repositioned during the sorting, the corresponding item in items is
similarly repositioned. Therefore, items is sorted according to the arrangement of the
corresponding keys in keys.

If the sort is not successfully completed, the results are unspecified.

Each key within the specified range of elements in keys must implement the
System. IComparable<K> Or System.IComparable interface to be capable of
comparisons with every other key.

This implementation performs an unstable sort; that is, if two elements are equal, their

141

1 order might not be preserved. In contrast, a stable sort preserves the order of elements
2 that are equal.

3 Exceptions

index and length do not specify a valid range
in keys.

System.ArgumentException -or-

items is not null, and index and length do not
specify a valid range in items.

System.ArgumentNullException keys is null.

index is less than zero.

System.ArgumentOutOfRangeException |-Or-

length is less than zero.

One or more elements in keys that are used in
a comparison are the null reference or do not
implement the System.IComparable<K> Or
System.IComparable interface.

System.InvalidOperationException

142

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

25

Array.Sort<K,vV=>(K][], VI[]) Method

Summary

Sorts a pair of arrays based on the keys in the first array using the
System. IComparable implementation of each key.

Parameters
keys The array that contains the keys to sort.
The array that contains the items that correspond to each of the keys in keys.
items -or-
null to sort only the keys array.

Description

If items is non-null, each key in keys is required to have a corresponding item in items.
When a key is repositioned during the sorting, the corresponding item in items is
similarly repositioned. Therefore, items is sorted according to the arrangement of the
corresponding keys in keys.

Each key in keys must implement the System.IComparable<K> Or System.IComparable
interface to be capable of comparisons with every other key.

If the sort is not successfully completed, the results are undefined.
This implementation performs an unstable sort; that is, if two elements are equal, their
order might not be preserved. In contrast, a stable sort preserves the order of elements

that are equal.

Exceptions

‘System.ArgumentException

items is not null, and the length of keys does not

143

equal the length of items.

System.ArgumentNullException keys is null.

One or more elements in keys that are used in a
comparison are the null reference or do not
implement the System.IComparable<K> or
System.IComparable interface.

System.InvalidOperationException

144

11

12

13

14
15

16
17
18
19
20
21
22

Array.Sort<T=>(T[], System.Int32,
System.Int32,
System.Collections.Generic.lIComparer<T>)
Method

Summary

Sorts the elements in a range of elements in an array using the specified comparer.

Parameters
array The array to sort.
index The starting index of the range to sort.
length The number of elements in the range to sort.

The System.Collections.Generic.IComparer<K> implementation to use when
comparing elements.

comparer -or-

null to use the System.IComparable<K> Or System.IComparable
implementation of each element.

Description

If comparer is null, each element within the specified range of elements in array must
implement the System.IComparable interface to be capable of comparisons with every
other element in array.

If the sort is not successfully completed, the results are undefined.

This implementation performs an unstable sort; that is, if two elements are equal, their

145

1 order might not be preserved. In contrast, a stable sort preserves the order of elements
2 that are equal.

3 Exceptions

System.ArgumentNullException array is null.

index is less than zero.
System.ArgumentOutOfRangeException |-0r-

length is less than zero.

index and length do not specify a valid range

System.ArgumentException .
in array.

comparer is null, and one or more elements
in array that are used in a comparison do not
implement the System.IComparable<K> Or
System.IComparable interface.

System.InvalidOperationException

146

10

11

12
13

14
15
16
17
18
19
20
21
22

23

Array.Sort<T=(T[],

System.Collections.Generic.lIComparer<T>)

Method

Summary

Sorts the elements in an array using the specified comparer.

Parameters

null to use the System.IComparable<T> Or System.IComparable
implementation of each element.

array The array to sort.
The System.Collections.Generic.IComparer<Ts> implementation to use when
comparing elements.

comparer |-Or-

Description

If comparer is null, each element of array must implement the System.IComparable<T>

or System.IComparable interface to be capable of comparisons with every other

element in array.

If the sort is not successfully completed, the results are undefined.

This implementation performs an unstable sort; that is, if two elements are equal, their
order might not be preserved. In contrast, a stable sort preserves the order of elements
that are equal.

Exceptions

147

System.ArgumentNullException array is null.

comparer is null, and one or more elements in
array that are used in a comparison do not
implement the System.IComparable<T> Or
System.IComparable interface.

System.InvalidOperationException

148

10

11
12

13
14
15
16
17

18

19

20

Array.Sort<T=>(T[], System.Comparison<T>)

Method

Summary

Sorts the elements in an array using the specified comparison.

Parameters

array The array to sort.

comparison The System.Comparison<Ts> to use when comparing elements.

Description

If the sort is not successfully completed, the results are undefined.

This implementation performs an unstable sort; that is, if two elements are equal, their
order might not be preserved. In contrast, a stable sort preserves the order of elements

that are equal.

Exceptions

System.ArgumentNullException

array is null.
Or

comparison is null.

149

=

[e BN

10
11

12
13
14
15
16
17
18
19
20

21

22

23

Array.Sort<T=>(T[]) Method

Summary

Sorts the elements in an entire array using the System.IComparable<T> Or
System. IComparable implementation of each element of that array.

Parameters

array ‘The array to sort.

Description

Each element of array is required to implement the System. IComparable<T> Or
System. IComparable interface to be capable of comparisons with every other element

in array.

If the sort is not successfully completed, the results are undefined.

This implementation performs an unstable sort; that is, if two elements are equal, their
order might not be preserved. In contrast, a stable sort preserves the order of elements

that are equal.

Exceptions

System.ArgumentNullException

array is null.

System.InvalidOperationException

One or more elements in array that are used in a
comparison are the null reference or do not
implement the System.IComparable<T> Or
System. IComparable interface.

150

11

12
13

14
15
16
17
18
19
20
21
22

23

Array.Sort<T=>(T[], System.Int32,
System.Int32) Method

Summary

Sorts an array using the System. IComparable<T> Or System.IComparable
implementation of each element of that array.

Parameters

array The array to sort.
index The starting index of the range to sort.
length The number of elements in the range to sort.

Description

Each element within the specified range of elements in array must implement the
System. IComparable<T> Or System.IComparable interface to be capable of
comparisons with every other element in array.

If the sort is not successfully completed, the results are undefined.

This implementation performs an unstable sort; that is, if two elements are equal, their
order might not be preserved. In contrast, a stable sort preserves the order of elements

that are equal.

Exceptions

System.ArgumentException

index and length do not specify a valid range
in array.

System.ArgumentNullException array is null.

151

index is less than zero.

System.ArgumentOutOfRangeException |-Or-

length is less than zero.

One or more elements in array that are used in
a comparison do not implement the
System.IComparable<Ts> Or
System.IComparable interface.

System.InvalidOperationException

152

2 Array.System.Collections.lList. Add(System.O
3 bject) Method

4

5

6

7

8

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.Add.]
12

153

[any

v bW

11

Array.System.Collections.IList.Clear()
Method

Summary

Implemented to support the System.Collections.IList interface. [Note: For more
information, see System.Collections.IList.Clear.]

154

2 Array.System.Collections.lList.Contains(Syste
s mM.Object) Method

4

5

6

7

8

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.Contains.]
12

155

2 Array.System.Collections.lList.IndexOf(Syste
s mM.Object) Method

4

5

6

7

8

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.IndexOf.]
12

156

N

Array.System.Collections.lList.Insert(System.
INt32, System.Object) Method

w

o up

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.Insert.]
12

157

2 Array.System.Collections.lList.Remove(Syste
s mM.Object) Method

4

5

6

7

8

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.Remove.]
12

158

2 Array.System.Collections.lList.RemoveAt(Sys
;3 tem.Int32) Method

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.RemoveAt.]
12

159

1 Array.TrueForAll<T=(T[],
2 System.Predicate<T>) Method

8 Summary

9 Determines whether every element in the array matches the predicate.

10 Parameters

array The array to check against the conditions.

match The predicate against which the elements are checked..

11
12 Return Value

13 true, if every element in array matches the specified predicate; otherwise, false.

14 Description

15 The predicate returns true if the object passed to it matches the delegate. The elements
16 of array are individually passed to the predicate, and processing is stopped when the
17 delegate returns false for any element.

18 Exceptions

array or match is null.

‘System.ArgumentNuIIException

19

20

160

Yo)

10

Array.lsFixedSize Property

Summary

Implemented to support the System.Collections.IList interface. [Note: For more
information, see System.Collections.IList.IsFixedSize.]

161

O

10

Array.lIsReadOnly Property

Summary

Implemented to support the System.Collections.IList interface. [Note: For more
information, see System.Collections.IList.IsReadOnly.]

162

10

Array.lIsSynchronized Property

Summary

Implemented to support the System.Collections.ICollection interface. [Note: For
more information, see System.Collections.ICollection.IsSynchronized.]

163

10
11

12

13

14

Array.Length Property

Summary

Gets the total number of elements in all the dimensions of the current instance.

Property Value

A System.Int32 that contains the total number of elements in all the dimensions of the

current instance.

Description

This property is read-only.

164

10

11

12

13

Array.LongLength Property

Summary

Gets the total number of elements in all the dimensions of the current instance.

Property Value

A system.Inté4 value containing the length of the array.

Description

This property is read-only.

165

10

11

12

13

Array.Rank Property

Summary

Gets the rank (number of dimensions) of the current instance.

Property Value

A system.Int32 that contains the rank (number of dimensions) of the current instance.

Description

This property is read-only.

166

[uny

H~wWN

10

Array.SyncRoot Property

Summary

Implemented to support the System.Collections.ICollection interface. [Note: For
more information, see System.Collections.ICollection.SyncRoot.]

167

N

v bW

11

Array.System.Collections.ICollection.Count
Property

Summary

Implemented to support the System.Collections.ICollection interface. [Note: For
more information, see System.Collections.ICollection.Count.]

168

[any

Array.System.Collections.lList.1tem Property

Uk wN

[e N}

9 Summary

10 Implemented to support the System.Collections.IList interface. [Note: For more
11 information, see System.Collections.IList.Item.]
12

169

