
Information technology — Coding of
audio-visual objects —
Part 22:
Open Font Format
AMENDMENT 1: Color font technology
and other updates
Technologies de l'information — Codage des objets audiovisuels —
Partie 22: Format de police de caractères ouvert
AMENDEMENT 1: Technologie des polices colorées et autres mises à
jour

INTERNATIONAL
STANDARD

ISO/IEC
14496-22

Fourth edition
2019-01

Reference number
ISO/IEC 14496-22:2019/Amd.1:2020(E)

AMENDMENT 1
2020-06

© ISO/IEC 2020

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)
﻿

ii� © ISO/IEC 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC
list of patent declarations received (see http://​patents​.iec​.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence
to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT)
see www​.iso​.org/​iso/​foreword​.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

A list of all parts in the ISO/IEC 14496 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www​.iso​.org/​members​.html.

﻿

© ISO/IEC 2020 – All rights reserved� iii

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
http://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html

﻿

Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 1: Color font technology and other updates
	

4.5.2

Replace the description of the “Offset” field in the “Table Directory” table with the following:

Offset from beginning of OFF font file.

5.3.4.1.1

Replace the first sentence of the first paragraph with the following:

This is the table information needed if numberOfContours is greater than or equal to zero, that is, a
glyph is not a composite.

Replace the final paragraph (immediately following the “Simple Glyph flags” table) with the following:

A non-zero-fill algorithm is needed to avoid dropouts when contours overlap. The OVERLAP_SIMPLE
flag is used by some rasterizer implementations to ensure that a non-zero-fill algorithm is used rather
than an even-odd-fill algorithm. Implementations that always use a non-zero-fill algorithm will ignore
this flag. Note that some implementations might check this flag specifically in non-variable fonts, but
always use a non-zero-fill algorithm for variable fonts. This flag can be used in order to provide broad
interoperability of fonts — particularly non-variable fonts — when glyphs have overlapping contours.

Note that variable fonts often make use of overlapping contours. This has implications for tools that
generate static-font data for a specific instance of a variable font, if broad interoperability of the derived
font is desired: if a glyph has overlapping contours in the given instance, then the tool should either
set this flag in the derived glyph data, or else should merge contours to remove overlap of separate
contours.

5.4.3.10

In the descriptions of both “FDSelect Format3” and “Range3 Record Format”, add the following NOTE
after the last paragraph:

NOTE	 Since a sentinel GID is used to delimit the last range in the array, its value, encoded as a uint16, cannot
exceed the value 65535. Therefore, the last GID encoded when using FDSelect Format3 cannot exceed 65534.

In the description of “FDSelect Format4”, in the first paragraph, replace the reference to 65536 [glyphs]
with 65535.

ISO/IEC 14496-22:2019/Amd.1:2020(E)

© ISO/IEC 2020 – All rights reserved� 1

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In the description of “Range4 Record Format” replace all references to 65536 [glyphs] with 65535.

5.4.3.11

In the 'blend' row of the table – replace "number of blends" with the "numberOfBlends".

5.5.1

Replace the entire content of subclause 5.5.1 with the following:

This table contains SVG descriptions for some or all of the glyphs in the font.

OFF provides various formats for color fonts, one of which is the SVG table. The SVG table provides the
benefits of supporting scalable color graphics using the Scalable Vector Graphics markup language, a
vector graphics file format that is widely used on the Web and that provides rich graphics capabilities,
such as gradients.

SVG was developed for use in environments that allow for a rich set of functionality, including leveraging
the full functionality of Cascading Style Sheets for styling, and programmatic manipulation of graphics
objects using the SVG Document Object Model. Adoption of SVG for use in OpenType does not entail
wholesale incorporation of all SVG capabilities. Text-rendering engines typically have more stringent
security, performance and architectural requirements than general-purpose SVG engines. For this
reason, when used within OFF fonts, the expressiveness of the language is limited and simplified to be
appropriate for environments in which font processing and text layout occurs.

The SVG table is optional, and may be used in OFF fonts with TrueType, CFF or CFF2 outlines. For every
SVG glyph description, there must be a corresponding TrueType, CFF or CFF2 glyph description in the font.

SVG Table Header

Type Name Description
uint16 version Table version (starting at 0). Set to 0.
Offset32 offsetToSVGDocumentList Offset the SVG Documents List, from the start of the SVG table.

Must be non-zero.
uint32 reserved Set to 0.

SVG Document List

The SVG document list provides a set of SVG documents, each of which defines one or more glyph
descriptions.

Type Name Description
uint16 numEntries Number of SVG Document Index Entries.

Must be non-zero.
SVGDocumentRecord documentRecords[numEntries] Array of SVG document records.

﻿

2� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

SVGDocumentRecord

Each SVG document record specifies a range of glyph IDs (from startGlyphID to endGlyphID, inclusive),
and the location of its associated SVG document in the SVG table.

Type Name Description
uint16 startGlyphID The first glyph ID for the range covered by this record.
uint16 endGlyphID The last glyph ID for the range covered by this record.
Offset32 svgDocOffset Offset from the beginning of the SVGDocumentList to an SVG document.

Must be non-zero.
uint32 svgDocLength Length of the SVG document data. Must be non-zero.

Records must be sorted in order of increasing startGlyphID. For any given record, the startGlyphID must
be less than or equal to the endGlyphID of that record, and also must be greater than the endGlyphID of
any previous record.

NOTE	 Two or more records can point to the same SVG document. In this way, a single SVG document can
provide glyph descriptions for discontinuous glyph ID ranges. See Example 1 in subclause 5.5.6

5.5.2

Insert a new subclause 5.5.2 and renumber the remaining subclauses within subclause 5.5:

5.5.2 SVG Documents

SVG specification

The SVG markup language used in the SVG table shall be as defined in the Scalable Vector Graphics
(SVG) 1.1 (2nd edition), W3C Recommendation. Any additional SVG features are not supported, unless
explicitly indicated otherwise.

Previous editions of this document allowed use of context-fill and other context-* property values,
which are defined in the draft SVG 2 specification. Use of these properties is deprecated: conforming
implementations may support these properties, but support is not required or recommended, and use
of these properties in fonts is strongly discouraged.

Document encoding and format

SVG documents within an OFF SVG table may either be plain text or gzip-encoded, and applications that
support the SVG table shall support both.

The gzip format is defined in RFC 1952 (Reference [31]). Within a gzip-encoded SVG document, the
deflate compression method (defined by RFC 1951) must be used. Thus, the first three bytes of the gzip-
encoded document header must be 0x1F, 0x8B, 0x08.

Whether compressed or plain-text transfer encoding is used, the SVGDocLength field of the SVG
document record specifies the length of the encoded data, not the decoded document.

The encoding of the (uncompressed) SVG document must be UTF-8.

While SVG 1.1 is defined as an XML application, some SVG implementations for the Web use an
“HTML dialect”. The “HTML dialect” differs from the XML-based definition in various ways, including
being case-insensitive (XML is case-sensitive), and not requiring an xmlns attribute on the SVG root
element. Applications that support the OFF SVG table shall support the XML-based definition for SVG
1.1. Applications may use SVG-parsing libraries that also support the “HTML dialect”. However, SVG
documents within the OFF fonts must always conform to the XML-based definition.

﻿

© ISO/IEC 2020 – All rights reserved� 3

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

While SVG 1.1 requires conforming interpreters to support XML namespace constructs, applications
that support the OpenType SVG table are not required to have full support for XML namespaces. The
root element of each SVG document must declare SVG as the default namespace:

	 <svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”>

If the XLink href attribute is used, the root must also declare “xlink” as a namespace in the root element:

	 <svg version=”1.1” 	 xmlns=”http://www.w3.org/2000/svg”
								 xmlns:xlink=”http://www.w3.org/1999/xlink”>

No other XLink attributes or other mechanisms may be used anywhere in the document. Also, no other
namespace declarations should be made in any element.

SVG capability requirements and restrictions

Most SVG 1.1 capabilities are supported in OFF and should be supported in all OFF applications that
support the SVG table. Some SVG 1.1 capabilities are not required and may be optionally supported
in applications. Certain other capabilities are not supported in OFF and must not be used in SVG
documents within OFF fonts.

The following capabilities are restricted from use in OFF and must not be used in conforming fonts. If
use of associated elements is encountered within a font, conforming applications must ignore and not
render those elements.

—	 <text>, , and associated elements

—	 <foreignObject> elements

—	 <switch> elements

—	 <script> elements

—	 <a> elements

—	 <view> elements

—	 XSL processing

—	 Use of relative units em, ex

—	 Use of SVG data within <image> elements

—	 Use of color profiles (the <icccolor> data type, the <color-profile> element, the color-profile property,
or the CSS @color-profile rule)

—	 Use of the contentStyleType attribute

—	 Use of CSS2 system color keywords

SVG documents may include <desc>, <metadata> or <title> elements, but these are ignored by
implementations.

Support for the following capabilities is not required in conforming implementations, though some
applications may support them. Font developers should evaluate support for these capabilities in
the target environments in which their fonts will be used before using them in fonts. To ensure
interoperability across the broadest range of environments, use of these capabilities should be avoided.

—	 Internal CSS stylesheets (expressed using the <style> element)

—	 CSS inline styles (expressed using the style attribute)

—	 CSS variables (custom properties) — but see further qualifications below

﻿

4� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

—	 CSS media queries, calc() or animations

—	 SVG animations

—	 SVG child elements

—	 <filter> elements and associated attributes, including enableBackground

—	 <pattern> elements

—	 <mask> elements

—	 <marker> elements

—	 <symbol> elements

—	 Use of XML entities

—	 Use of image data within <image> elements in formats other than JPEG or PNG

—	 Interactivity capabilities (event attributes, zoomAndPan attributes, the cursor property, or <cursor>
elements)

NOTE 1	 In fonts intended for broad distribution, use of XML presentation attributes for styling is recommended
over CSS styling as that will have the widest support across implementations.

NOTE 2	 Use of media queries to react to environment changes within a glyph description is not recommended,
even when fonts are used in applications that provide CSS media query support. Instead, a higher-level
presentation framework is expected to handle environment changes. The higher-level framework can interact
with options implemented within the font using OpenType mechanisms such as glyph substitution, or selection
of color palettes.

While supporting the use of CSS variables is optional, it is strongly recommended that all
implementations support the CSS var() function for color variables defined in the CPAL table. Fonts
should not define any variables within an SVG document; var() should only be used in attributes or
properties that accept a color value, and should only occur as the first item in the value. See subclause
5.5.3 for more information.

While support for patterns and masks is not required, all conforming implementations must support
gradients (<linearGradient> and <radialGradient> elements), clipping paths and opacity properties.

Conforming implementations must support all other capabilities of SVG 1.1 that are not listed above as
restricted or as optional and best avoided for broad interoperability.

5.5.3

Rename subclause 5.5.3 as “Color and color palettes” and replace the content of subclause 5.5.3 with
the following:

In SVG 1.1, color values can be specified in various ways. For some of these, special considerations apply
when used in the SVG table. Also, OFF provides a mechanism for alternate, user-selectable color palettes
that can be used within SVG glyph descriptions.

Colors

Implementations must support numerical RGB specifications; for example, "#ffbb00", or
"rgb(255,187,0)". Implementations must also support all of the recognized color keywords supported in
SVG 1.1. However, CSS2 system color keywords are not supported and must not be used.

Some implementations may use graphics engines that happen to support RGBA specifications using the
rgba() function. This is not supported in OFF, however, and rgba() specifications must not be used in
conforming fonts. Note that SVG 1.1 provides opacity properties that can achieve the same effects.

﻿

© ISO/IEC 2020 – All rights reserved� 5

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Implementations must also support the “currentColor” keyword. The initial value must be set by the
text-layout engine or application environment. This can be set in whatever way is considered most
appropriate for the application. In general, it is recommended that this be set to the text foreground
color applied to a given run of text.

NOTE	 Within an SVG document, the value of “currentColor” for any element is the current color property
value for that element. If a color property is set explicitly on an element, it will reset the “currentColor” value for
that element and its children. Doing so will override the value set by the host environment. In SVG documents
within the SVG table, there is no scenario in which it would be necessary to set a color property value since any
effects can be achieved in other ways. It is best practice to avoid setting a color property value.

Color palettes

Implementations can optionally support color palettes defined in the CPAL table in subclause 5.7.12.
The CPAL table allows the font designer to define one or more palettes, each containing a number
of colors. All palettes defined in the font have the same number of colors, which are referenced by
base-zero index. Within an SVG document in the SVG table, colors in a CPAL palette are referenced as
implementation-defined CSS variables (custom properties), using the var() function.

Support for the CPAL table and palettes in implementations is strongly recommended. Implementations
that support palettes must support the CSS var() function for purposes of referencing palette entries
as custom properties. Fonts should only use custom properites and the var() function to reference
CPAL palette entries. Fonts should not define any variables within an SVG document. The var() function
should only be used in attributes or properties that accept a color value, and should only occur as the
first item in the value.

NOTE	 Even if an implementation does not support CPAL palettes, it is strongly recommended that the var()
function be supported, and that the implementation is able to apply a fallback value specified as a second var()
argument if the first argument (the color variable) is not supported. This will allow fonts intended for wide
distribution to include use of the CPAL table but to be able to specify fallback colors in case CPAL palettes are not
supported in some applications.

The text-layout engine or application defines a custom property for each palette entry and assigns color
values to each one. Custom color properties should only be defined for fonts that include a CPAL table.
In general, the values of the custom properties should be set using palette entries from the CPAL table,
though applications can assign values derived by other means, such as user input. When assigning values
from CPAL palette entries, the first palette should normally be used by default. If the font has palettes
marked with the USABLE_WITH_LIGHT_BACKGROUND or USABLE_WITH_DARK_BACKGROUND flag,
however, one of these palettes can be used as the default instead.

However, the values are assigned, the number of custom properties defined must be numPaletteEntries,
as specified in the CPAL table header. The custom-property names must be of the form “--color<num>”,
where <num> is a non-zero-padded decimal number in the range [0, numPaletteEntries-1]. For example,
“--color0”, “--color1”, and so on.

The following illustrates how a color variable might be used in an SVG glyph description:

 <path fill="var(--color0, yellow)" d="..."/>

In implementations that do support color variables and palettes, the color value assigned to the variable
will be applied. If an implementation does not support color variables and palettes, however, the color
variable will be ignored, and the fallback color value, yellow, will be applied.

Palette entries in the CPAL table are specified as BGRA values. (CPAL alpha values are in the range 0 to
255, where 0 is fully transparent and 255 is fully opaque.) Note that SVG 1.1 supports RGB color values,
but not RGBA/BGRA color values. As noted above, use of rgba() color values within SVG documents in the
SVG table is not supported and must not be used in conforming fonts. Alpha values in CPAL entries are
supported, however. When a CPAL color entry is applied to a fill or stroke property of a shape element,
to the stop-color of a gradient stop element, or to the flood-color property of an feFlood filter element,
then the alpha value from that palette entry must be converted to a value in the range [0.0 – 1.0] and
multiplied into the corresponding fill-opacity, stroke-opacity, stop-opacity or flood-opacity property of

﻿

6� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

the same element. If an implementation supports feDiffuseLighting or feSpecularLighting filters and a
palette entry is applied to the lighting-color property, then the alpha value is ignored. When the alpha
value is applied in this way to an opacity property of an element, it is the original opacity property
value that is inherited by child elements, not the computed result of applying the alpha value to the
opacity property. The alpha value is inherited as a component of the color-related property (fill, stroke,
etc.), however.

5.5.4

Replace the content of subclause 5.5.4 with the following:

Each SVG document defines one or more glyph description. For each glyph ID in the glyph ID range of a
document record within the SVG Document list, the associated SVG document shall contain an element
with ID “glyph<glyphID>”, where <glyphID> is the glyph ID expressed as a non–zero-padded decimal
value. This element functions as the SVG glyph description for the given glyph ID.

For example, suppose a font with 100 glyphs (glyph IDs 0 – 99) has SVG glyph definitions only for its last
5 glyphs. Suppose also that the last SVG glyph definition has its own SVG document, but that the other
four glyphs are defined in a single SVG document (to take advantage of shared graphical elements, for
instance). There will be two document records, the first with glyph ID range [95, 98]; and the second,
with glyph ID range [99, 99]. The SVG document referenced by the first record will contain elements
with id “glyph95”, “glyph96”, “glyph97”, and “glyph98”. The SVG document referenced by the second
record will contain an element with id “glyph99”.

Glyph identifiers may appear deep within an SVG element hierarchy, but SVG itself does not define how
partial SVG documents are to be rendered. Thus, font engines shall render an element designated in
this way as the glyph description for a given glyph ID according to SVG’s <use> tag behaviour, as though
the given element and its content were specified in a <defs> tag and then referenced as the graphic content
of an SVG document. For example, consider the following SVG document, which defines two glyphs:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
 <defs>...</defs>
 <g id="glyph13">...</g>
 <g id="glyph14">...</g>
</svg>

NOTE	 The <g> element in SVG is a container for grouping of elements, not a “glyph” element.

When a font engine renders glyph 14, the result shall be the same as rendering the following SVG
document:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/
xlink">
 <defs>
 <defs>...</defs>
 <g id="glyph14">...</g>
 </defs>
 <use xlink:href="#glyph14" />
</svg>

5.5.5

Rename subclause 5.5.5 as “Glyph semantics and text layout processing” and replace the content
with the following:

An SVG glyph description in the SVG table is an alternate to the corresponding glyph description with
the same glyph ID in the 'glyf', 'CFF ' or CFF2 table. The SVG glyph description must provide a depiction
of the same abstract glyph as the corresponding TrueType/CFF glyph description.

When SVG glyph descriptions are used, text layout is done in the same manner, using the 'cmap', 'hmtx',
GSUB and other tables. This results in an array of final glyph IDs arranged at particular x,y positions on

﻿

© ISO/IEC 2020 – All rights reserved� 7

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

a surface (along with applicable scale/rotation matrices). After this layout processing is done, available
SVG descriptions are used in rendering, instead of the TrueType/CFF descriptions. For each glyph ID in
the final glyph array, if an SVG glyph description is available for that glyph ID, then it is rendered using
an SVG engine; otherwise, the TrueType or CFF glyph description is rendered. Glyph advance widths or
heights are the same for SVG glyphs as for TrueType/CFF glyphs, though there may be small differences
in glyph ink bounding boxes. Because advances are the same, switching between SVG and non-SVG
rendering should not require re-layout of lines unless the line layout depends on bounding boxes.

Coordinate systems and glyph metrics

The default SVG coordinate system is vertically mirrored in comparison to the TrueType/CFF
design grid: the positive y-axis points downward, rather than usual convention for OpenType of the
positive y-axis pointing upward. In other respects, the default coordinate system of an SVG document
corresponds to the TrueType/CFF design grid: the default units for the SVG document are equivalent to
font design units; the SVG origin (0,0) is aligned with the origin in the TrueType/CFF design grid; and
y = 0 is the default horizontal baseline used for text layout.

The size of the initial viewport for the SVG document is the em square: height and width both equal to
head.unitsPerEm. If a viewBox attribute is specified on the <svg> element with width or height values
different from the unitsPerEm value, this will have the effect of a scale transformation on the SVG user
coordinate system. Similarly, if height or width attributes are specified on the <svg> element, this will
also have the effect of a scale transformation on the coordinate system.

Although the initial viewport size is the em square, the viewport must not be clipped. The <svg>
element is assumed to have a clip property value of auto, and an overflow property value of visible. A
font should not specify clip or overflow properties on the <svg> element. If clip or overflow properties
are specified on the <svg> element with any other values, they must be ignored.

NOTE	 Because SVG uses a y-down coordinate system, then by default, glyphs will often be drawn in the
+x –y quadrant of the SVG coordinate system. (See Example 2.) In many other environments, however, graphic
elements need to be in the +x +y quadrant to be visible. Font development tools are expected to provide an
appropriate transfer between a design environment and the representation within the font’s SVG table. In
Example 3, a viewBox attribute is used to shift the viewport up. In Example 4, a translate transform is used on
container elements to shift the graphic elements that comprise the glyph descriptions.

Glyph advance widths are specified in the 'hmtx' table; advance heights are specified in the 'vmtx' table.
Note that glyph advances are static and cannot be animated.

As with CFF glyphs, no explicit glyph bounding boxes are recorded. Note that left side bearing values in
the 'hmtx' table, top side bearings in the 'vmtx' table, and bit 1 in the flags field of the 'head' table are not
used for SVG glyph descriptions. The “ink” bounding box of the rendered SVG glyph should be used if a
bounding box is desired; this box may be different for animated versus static renderings of the glyph.

Glyph advances and positions can be adjusted by data in the GPOS or 'kern' tables. Note that data in
the GPOS and kern table use the y-up coordinate system, as with TrueType or CFF glyph descriptions.
When applied to SVG glyph descriptions, applications must handle the translation between the y-up
coordinate system and the y-down coordinates used for the SVG glyph descriptions.

5.5.6

Rename subclause 5.5.6 as “Animations” and replace the content with the following:

Some implementations may support use of animations—either SVG animation or CSS animation. Note
that support for animation is optional and is not recommended in fonts intended for wide distribution.

Applications that support animations may, in some cases, require a static rendering for glyphs that
include animations. This may be needed, for example, when printing. Note that a static rendering is
obtained by ignoring and not running any animations in the SVG document, not by allowing animations
to run and capturing the initial frame at time = 0.

﻿

8� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Note that glyph advance widths and advance heights are defined in the 'hmtx' and 'vmtx' tables and
cannot be animated. A glyph’s bounding box may change during animation but should remain within
the glyph advance width/height and the font’s default line metrics to avoid collision with other text
elements.

5.5.7

Rename the subclause 5.5.7 as “Examples” and replace the first two paragraphs with the following:

The SVG code in these examples is presented exactly as could be used in the SVG documents of an OFF
font with SVG glyph descriptions. The code is not optimized for brevity.

Add the following text as Example 1:

Example 1: SVG table header and document list

This example shows an SVG table header and document list.

In the SVG Document List, multiple SVG Document Records can point to the same SVG document. In this
way, a single SVG document can provide glyph descriptions for a discontinuous range of glyph IDs. This
example shows multiple records in the Document List pointing to the same SVG document.

Example 1:

Hex Data Source Comments
SVGHeader

0000 Version Table version = 0
0000000A offsetToSVGDocumentlist Offset to document list
00000000 Reserved Offset to AttachList table

SVGDocumentList
0005 numEntries Five documentRecord entries, index 0 to 4
 documentRecords[0] Document record for glyph ID range [1,1]
0001 startGlyphID
0001 endGlyphID
0000003E svgDocOffset Offset to SVG document for glyph1
0000019F svgDocLength Length of SVG document for glyph1
 documentRecords[1] Document record for glyph ID range [2,2]
0002 startGlyphID
0002 endGlyphID
000001DD svgDocOffset Offset to SVG document for glyph2. The same SVG doc-

ument is also used for glyph13 and glyph14.
000002FF svgDocLength Length of SVG document for glyph2 – length of the entire

SVG document, covering glyphs 2, 13 and 14.
 documentRecords[2] Document record for glyph ID range [3,12]
0003 startGlyphID
000C endGlyphID
000004DC svgDocOffset Offset to SVG document for glyphs 3 to 12
000006F4 svgDocLength Length of SVG document for glyphs 3 to 12
 documentRecords[3] Document record for glyph ID range [13,14]

﻿

© ISO/IEC 2020 – All rights reserved� 9

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

000D startGlyphID
000E endGlyphID
000001DD svgDocOffset Offset to SVG document for glyphs 2, 13 and 14. Offset

is the same as for documentRecords[1].
000002FF svgDocLength Length of SVG document for glyphs 2, 13 and 14. Length

is the same as for documentRecords[1].
 documentRecords[4] Document record for glyph ID range [15,19]
000F startGlyphID
0013 endGlyphID
00000BD0 svgDocOffset Offset to SVG document for glyphs 15 to 19
00000376 svgDocLength Length of SVG document for glyphs 15 to 19

Example 4 illustrates an SVG document with glyph descriptions for the discontinuous ranges [2, 2],
[13, 14].

Rename “Example: Glyph specified directly in expected position" as “Example 2: Glyph specified
directly in expected position" and rearrange the content of the example to move the textual
description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 2: Glyph specified directly in expected position" with
the following:

In this example, the letter “i” is drawn directly in the +x –y quadrant of the SVG coordinate system,
upright, with its baseline on the x axis. Note that the y attribute of the <rect> elements specifies the top
edge, with the height of the rectangle below that.

Rename “Example: Glyph shifted up with viewBox" as “Example 3: Glyph shifted up with viewBox"
and rearrange the content of the example to move the textual description to the beginning, followed by
the code example.

Replace the textual description of “Example 3: Glyph shifted up with viewBox" with the following:

When designing in an SVG illustration application, it may be most natural to draw objects in the +x
+y quadrant of the SVG coordinate system. In this example, the glyph description of the letter “i” is
specified with upright orientation in the +x +y quadrant as though the baseline were at y = 1000 in the
SVG coordinate system. A viewBox in the <svg> element is then used to shift the viewport down by
1000 units so that the actual baseline aligns with the design’s baseline.

NOTE	 When using a viewBox attribute on the <svg> element, it is important to specify unitsPerEm for
width and height values to avoid a scaling effect. See “Coordinate Systems and Glyph Metrics” above for more
information.

Replace the last sentence of “Example 3: Glyph shifted up with viewBox" with the following:

The visual result is the same as that shown for Example 2.

﻿

10� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Rename the “Example: Common elements shared across glyphs in same SVG doc" to “Example 4:
Common elements shared across glyphs in same SVG doc" and rearrange the content of the example
to move textual description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 4: Common elements shared across glyphs in same
SVG doc" with the following:

In this example, the base of the letter 'i' is specified as a component within the <defs> element so that it
can be re-used across three glyphs. This shared component is referenced using the identifier “i-base”.
In glyph2, the component is used alone to comprise the dotless 'i'. In glyph13, a dot is added on top. In
glyph14, an acute accent is adds a dot on top. Glyph ID 14 adds an acute accent on top.

This example also illustrates the use of a translate transform to shift elements drawn in the +x +y
quadrant of the SVG coordinate system so that they appear in the +x –y quadrant, above the baseline.

Replace the last paragraph of “Example 4: Common elements shared across glyphs in same SVG
doc" with the following:

The following image shows the visual results for glyph IDs 2, 13, and 14, from left to right.

Rename “Example: Specifying current text color in glyphs" as “Example 5: Specifying current
Color in glyphs" and rearrange the content of the example to move the textual description to the
beginning, followed by the code example and the illustration.

Replace the textual description of “Example 5: Specifying current Color in glyphs" with the following:

This example uses the same glyph description for “i” as in Example 2 with one modification: the
“darkblue” color value for the dot of the “i” is replaced with the “currentColor” keyword. The application
sets the color value for currentColor, typically with the text foreground color.

In the code block of “Example 5: Specifying current Color in glyphs", replace “context-fill” in the last
<rect> element with “currentColor”.

Replace the last paragraph of “Example 5: Specifying current Color in glyphs" with the following:

The following image illustrate visual results with currentColor set to two different color values by the
application: black (left), and red (right).

Rename “Example: Specifying color palette variables in glyphs" as “Example 6: Specifying color
palette variables in glyphs" and rearrange the content of the example to move textual description to
the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 6: Specifying color palette variables in glyphs" with the
following:

This example uses the same glyph description for “i” as in Example 2, but with a modification: the stop
colors of the linear gradient are specified using color variables --color0 and --color1.

﻿

© ISO/IEC 2020 – All rights reserved� 11

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

The font in this example includes a CPAL table. The value for the color variables is set by the application,
typically using CPAL entries. The CPAL table assumed in this example has two palettes, each with two
entries, with BGRA color values as follows:

—	 palette 0: {8B0000FF, B3AA00FF}

—	 palette 1: {800080FF, D670DAFF}

(SVG equivalents for colors in palette 0 would be {darkblue, #00aab3}. SVG equivalents for colors in
palette 1 would be {purple, orchid}.)

In each of the var() invocations used to reference the color variables, a second parameter for a fallback
color value has been specified. The values match the values used in palette 0. These fallback values will
be used if the application does not support the CPAL table.

After the code block of “Example 6: Specifying color palette variables in glyphs", add the following
text paragraph:

The following images show the visual results in three situations, from left to right:

After the illustration of “Example 6: Specifying color palette variables in glyphs", add the
following text:

The first case, on left, shows the result when the value of the color variables have been set using palette
0 from the CPAL table. The second case, in the middle, shows the result when values have been set using
palette 1.

The third case, on the right, shows a result in which the application has set the values of the color
variables using a custom palette with user-specified colors:

—	 --color0: red

—	 --color1: orange

Note that, in all three cases, the dot of the “i” is still dark blue, since this is hard coded in the glyph
description and not controlled by a color variable.

If the application has not set values for --color0 and --color1 (because it does not support the CPAL
table, for example), then the fallback values provided in the var() functions (darkblue and #00aab3,
respectively) are used. Note that these are in fact the same colors as in the first (default) CPAL color
palette, which means the glyph will render as in the first case shown above.

Rename “Example: Embedding a PNG in an SVG glyph" as “Example 7: Embedding a PNG in an SVG
glyph" and rearrange the content of the example to move textual description to the beginning, followed
by the code example and the illustration.

Replace the textual description of “Example 7: Embedding a PNG in an SVG glyph" with the following:

In this example, PNG data is embedded within an <image> element.

A typical use case for embedding PNG data is detailed artwork in a lettering font.

﻿

12� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

After the code block of “Example 7: Embedding a PNG in an SVG glyph", add the following text
paragraph:

The following image shows the visual result:

5.7.9

In “vhea – Vertical header table” in the version 1.1 vertical header table, in the table entry defining
“vertTypoAscender”, replace the text of the Description field with the following:

The vertical typographic ascender for this font. It is the distance in FUnits from the ideographic em-box
center baseline for the vertical axis to the right edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to 500. See subclause 6.4.4 for a description of the ideographic em-box.

In “vhea – Vertical header table”, in the version 1.1 vertical header table, in the table entry defining
“vertTypoDescender”, replace the text of the Description field with the following:

The vertical typographic descender for this font. It is the distance in FUnits from the ideographic em-
box center baseline for the vertical axis to the left edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to −500.

6.2.3

In the last section entitled “SVG and CPAL”, replace the text of the second paragraph with the following:

Foreground color is expressed by the “currentColor” keyword in the SVG glyph descriptions.

6.2.3

In “Table Organization”, in third paragraph, replace the last sentence to read:

OFF Layout has eight types of GSUB lookups (described in the GSUB subclause) and nine types of GPOS
lookups (described in the GPOS subclause).

6.2.6

In “Coverage table”, in the description of Coverage Table, replace the last paragraph to read:

A Coverage table defines a unique index value (Coverage Index) for each covered glyph. The Coverage
Indexes are sequential, from 0 to the number of covered glyphs minus 1. This unique value specifies the
position of the covered glyph in the Coverage table. The client uses the Coverage Index to look up values
in the subtable for each glyph.

In “Coverage table”, in the description of Coverage Format 2 replace the second paragraph to read:

The Coverage Indexes for the first range begin with zero (0) and increase sequentially to (endGlyphId −
startGlyphId). For each successive range, the starting Coverage Index is one greater than the ending
Coverage Index of the the preceding range. Thus, startCoverageIndex for each non-initial range must

﻿

© ISO/IEC 2020 – All rights reserved� 13

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

equal the length of the preceding range (endGlyphID − startGlyphID + 1) added to the startGlyphIndex
of the preceding range. This allows for a quick calculation of the Coverage Index for any glyph in any
range using the formula: Coverage Index (glyphID) = startCoverageIndex + glyphID − startGlyphID.

6.3.3.2

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 1 description, replace the
first sentence of the paragraph with the following:

A single adjustment positioning subtable (SinglePos) is used to adjust the placement or advance of a
single glyph, such as a subscript or superscript.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 2 description, replace the
first sentence of the paragraph with the following:

A pair adjustment positioning subtable (PairPos) is used to adjust the placement or advance of two
glyphs in relation to one another – for instance, to specify kerning data for pairs of glyphs.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 3 description, add the
following paragraphs immediately after the first paragraph, and preceding the CursivePosFormat1
subtable description:

Positioning adjustments from anchor alignment may be either horizontal or vertical. Note that the
positioning effects in the text-layout direction (horizontal, for horizontal layout) work differently for
than for the cross-stream direction (vertical, in horizontal layout):

—	 For adjustments in the line-layout direction, the layout engine adjusts the advance of the first glyph
(in logical order). This effectively moves the second glyph relative to the first so that the anchors are
aligned in that direction.

—	 For the cross-stream direction, placement of one glyph is adjusted to make the anchors align. Which
glyph is adjusted is determined by the rightToLeft flag in the parent lookup table: if the rightToLeft
flag is clear, the second glyph is adjusted to align anchors with the first glyph; if the rightToLeft flag
is set, the first glyph is adjusted to align anchors with the second glyph.

Note that, if the rightToLeft lookup flag is set, then the last glyph in the connected sequence keeps its
initial position in the cross-stream direction relative to the baseline, and the cross-stream positions of
the preceding, connected glyphs are adjusted.

In “GPOS lookup type descriptions” in the Lookup Type 4 description, replace the last sentence of the
second paragraph with the following:

When a mark is combined with a given base, the mark placement is adjusted so that the mark anchor is
aligned with the base anchor for the applicable mark class. Placement of the base glyph and advances of
both glyphs are not affected.

In “GPOS lookup type descriptions” in the Lookup Type 5 description, add the following paragraphs
immediately after the fourth paragraph, and preceding the MarkLigPosFormat1 subtable description:

As with mark-to-base attachment, when a mark is combined with a given ligature base, the mark
placement is adjusted so that the mark anchor is aligned with the applicable base anchor. Placement of
the base glyph and advances of both glyphs are not affected.

﻿

14� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In “GPOS lookup type descriptions” in the Lookup Type 6 description, replace the fourth paragraph
with the following:

The mark2 glyph that combines with a mark1 glyph is the glyph preceding the mark1 glyph in glyph
string order (skipping glyphs according to LookupFlags). The subtable applies precisely when that
mark2 glyph is covered by mark2Coverage. To combine the mark glyphs, the placement of the mark1
glyph is adjusted such that the relevant attachment points coincide. Advance widths are not affected.
The input context for MarkToBase, MarkToLigature and MarkToMark positioning tables is the mark
that is being positioned. If a sequence contains several marks, a lookup may act on it several times, to
position them.

6.3.3.3

In “Shared tables: Value record, Anchor table and MarkArray table”, in the ValueRecord table
description – replace the descriptions of the DeviceOffset fields (xPlaDeviceOffset, yPlaDeviceOffset,
xAdvDeviceOffset, yAdvDeviceOffset) with the following:

xPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

xAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

6.3.3.4

In “GPOS subtable examples” in Example 5, replace the Comment field of the "class1Records[0]" with
the following:

First Class1Record, for contexts beginning with class 0

6.3.4.1

In “GSUB – Table overview” in the fifth paragraph, in the bulleted list entry describing “Contextual
substitution”, replace the first sentence with the following:

Contextual substitution is a powerful extension of the above lookup types, describing glyph substitutions
in context – that is, a substitution of one or more glyphs within a certain pattern of glyphs.

﻿

© ISO/IEC 2020 – All rights reserved� 15

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

6.3.4.3

In “GSUB – Lookup type descriptions” in the Lookup Type 5 description, replace the first paragraph
with the following:

A Contextual Substitution (ContextSubst) subtable defines a powerful type of glyph substitution
lookup: it describes glyph substitutions in context that replace one or more glyphs within a certain
pattern of glyphs.

6.4.2

In “Language tags” in the description of Language tags, replace the text of the sixth paragraph with the
following:

All tags are four-character strings composed of a limited set of ASCII characters; for details regarding
the Tag data type see §4.3 “Data types”. By convention, registered language system tags use three or
four capital letters (0x41 – 0x5A).

In “Language tags” in the table describing Language System tags, make the following table content
changes:

—	 In the row describing the Language System “Bikol” – replace the corresponding ISO 639 ID with “bik,
bhk, bcl, bto, cts, bln, fbl, lbl, rbl, ubl”.

—	 In the row describing the Language System “Beti” – replace the corresponding ISO 639 ID with “btb,
beb, bum, bxp, eto, ewo, mct”.

—	 In the row describing the Language System “Creoles” – replace the corresponding ISO 639 ID with “crp,
cpe, cpf, cpp”.

—	 In the row describing the Language System “Dhuwal” – replace the corresponding ISO 639 ID with “duj,
dwu, dwy”.

—	 In the row describing the Language System “Forest Nenets” – replace the corresponding ISO 639 ID
with “enf, yrk”.

—	 In the row describing the Language System “Halam” – replace the Language System name of “Halam”
with “Halam (Falam Chin)” and replace the corresponding ISO 639 ID with “flm, cfm, rnl”.

—	 In the row describing the Language System “Armenian” – replace the corresponding ISO 639 ID with
“hye, hyw”.

—	 In the row describing the Language System “Ijo languages” – replace the corresponding ISO 639 ID with
“ ijc, ijo”.

—	 In the table describing Language System tags – add the new row for Language system “Bumthngkha”
with the Language System tag ‘KJZ’ and the corresponding ISO 639 ID “kjz”.

—	 In the row describing the Language System “Nisi” – replace the corresponding ISO 639 ID with “dap,
njz, tgj”.

—	 In the row describing the Language System “Provencal” – replace the Language System name of
“Provencal” with “Provençal / Old Provençal”.

—	 In the row describing the Language System “Silte Gurage” – replace the corresponding ISO 639 ID with
“xst, stv, wle”.

—	 In the row describing the Language System “Tundra Nenets” – replace the corresponding ISO 639 ID
with “enh, yrk”.

﻿

16� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

—	 In the table describing Language System tags – add the new row for Language system “Tshangla” with
the Language System tag ‘TSJ’ and the corresponding ISO 639 ID “tsj”.

—	 In the table describing Language System tags – add the new row for Language system “Khengkha” with
the Language System tag ‘XKF’ and the corresponding ISO 639 ID “xkf”.

—	 In the row describing the Language System “Standard Morrocan Tamazigh” – replace the Language
System name of “Standard Morrocan Tamazigh” with “Standard Moroccan Tamazight”.

—	 In the table describing Language System tags – add the new row for Language system “Chinese, Macao
SAR” with the Language System tag 'ZHTM' and the corresponding ISO 639 ID “zho”.

6.4.3

In “Feature tags” in the description of Feature tags, replace the text of the second, third and fourth
paragraphs with the following:

Each OFF Layout feature has a feature tag that identifies its typographic function and effects. By
examining a feature's tag, a text-processing client can determine what a feature does and decide whether
to implement it. All tags are four-character strings composed of a limited set of ASCII characters; for
details regarding the Tag data type see subclause 4.3. By convention, registered feature tags use four
lowercase letters. For instance, the ‘mark’ feature manages the placement of diacritical marks, and the
‘swsh’ feature renders swash glyphs.

The tag space of tags consisting of four uppercase letters (A-Z) with no punctuation, spaces, or numbers,
is reserved as a vendor space. Font vendors may use such tags to identify private features. For example,
the feature tag PKRN might designate a private feature that may be used to kern punctuation marks.

A feature definition may not provide all the information required to properly implement glyph
substitution or positioning actions. In many cases, a text-processing client may need to supply
additional data. For example, the function of the ‘init’ feature is to provide initial glyph forms. Nothing
in the feature's lookup tables indicates when or where to apply this feature during text processing.
To correctly use the ‘init’ feature in Arabic text, in which initial glyph forms appear at the beginning
of connected letter groups determined by character-joining properties, text-processing clients must
be able to identify the glyphs to which the feature should be applied, based on character context and
joining properties. In all cases, the text-processing client is responsible for applying, combining, and
arbitrating among features and rendering the result.

6.4.3.1

In “Feature tag list” in the "Registered features" table, add the following entries for two new 'chws'
and 'vchw' tags:

'chws' Contextual Half-width Spacing

'vchw' Vertical Contextual Half-width Spacing

6.4.3.2

In “Feature descriptions and implementations”, add the new Tag: 'chws' with the following description:

Friendly name: Contextual Half-width Spacing

Registered by: Adobe/W3C

﻿

© ISO/IEC 2020 – All rights reserved� 17

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Function: Contextually respaces glyphs designed to be set on full-em widths, fitting them onto individual
half-width horizontal widths, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'halt' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment, such as for UIs or terminal apps.

Example: When FULLWIDTH RIGHT PARENTHESIS (U+FF09; ")") is followed by IDEOGRAPHIC COMMA
(U+3001; "、"), the latter is respaced to remove half-em of width between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual
pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'chws' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behaviour).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g., 'fwid',
'halt', 'hwid', 'palt', 'pwid', 'qwid', 'twid'), which should be turned off when this feature is applied. It
deactivates the 'kern' feature. See also 'vchw'.

In “Feature descriptions and implementations” in the description of Function and Example fields for
Tag: 'med2', replace the corresponding portions of the descriptive text with the following:

Function: Replaces Alaph glyphs in the middle of Syriac words when the preceding base character can
be joined to.

Example: When an Alaph is preceded by a Heth, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

In “Feature descriptions and implementations”, add the new Tag: 'vchw' with the following
description:

Friendly name: Vertical Contextual Half-width Spacing

Registered by: Adobe/W3C

Function: Contextually respaces glyphs designed to be set on full-em heights, fitting them onto individual
half-width vertical heights, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'vhal' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment.

Example: When PRESENTATION FORM FOR VERTICAL RIGHT PARENTHESIS (U+FE36; "︶", vertical
form of FULLWIDTH RIGHT PARENTHESIS U+FF09; ")") is followed by PRESENTATION FORM FOR
VERTICAL IDEOGRAPHIC COMMA (U+FE11; "︑", vertical form of IDEOGRAPHIC COMMA U+3001; "、"),
the latter is respaced to remove half-em of height between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual

﻿

18� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'vchw' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g., 'valt',
'vhal', 'vpal'), which should be turned off when this feature is applied. It deactivates the 'vkrn' feature.
See also 'chws'.

In “Feature descriptions and implementations” in the description of Tag: 'vert', replace the
corresponding portions of the descriptive text with the following:

Friendly name: Vertical Alternates

Registered by: Adobe/Microsoft

UI suggestion: This feature should be active by default in vertical writing mode.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: The 'vert' and 'vrtr' features are intended to be used in conjunction: 'vert' for glyphs
to be presented upright in vertical writing, and 'vrtr' for glyphs intended to be presented sideways.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vert' and 'vrtr'. Because 'vrt2' supplies pre-rotated glyphs,
the 'vert' feature should never be used with 'vrt2' but may be used in addition to any other feature.

In “Feature descriptions and implementations” in the description of "Feature interaction" field for
Tag: 'vrtr', replace the descriptive text with the following:

Feature interaction: The 'vrtr' and 'vert' features are intended to be used in conjunction: 'vrtr' for glyphs
intended to be presented sideways in vertical writing, and 'vert' for glyphs to be presented upright.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vrtr' and vert. Because 'vrt2' supplies pre-rotated glyphs,
the 'vrtr' feature should never be used with 'vrt2', but it may be used in addition to any other feature.

﻿

© ISO/IEC 2020 – All rights reserved� 19

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Clause 8

In “Recommendations for OFF fonts”, remove subclause 8.2 "sfnt version". The same content is
presented in subclause 4.5.

8.7

In “Base table”, replace the first paragraph with the following:

The 'BASE' table allows for different scripts in the font to specify different values for the same baseline
tag. This situation could arise, for example, when a developer makes a multi-script font by combining
glyphs from multiple fonts that use different baseline systems.

8.8

In “cmap' table”, update the content to remove outdated references to UCS-4 and replace the content of
entire subclause with the following:

When building a font for Windows, a 'cmap' subtable for platform ID 3 should be included. When
building a Unicode font, encoding ID 1 should be used for this subtable. (This subtable must use format
4.) When building a symbol font for Windows, encoding ID 0 should be used for this subtable.

When building a font to support Unicode supplementary characters (U+10000 to U+10FFFF)), include
a 'cmap' subtable for platform ID 3, encoding ID 10. (This subtable must use format 12.) To provide
compatibility with older software, a subtable for platform 3, encoding ID 1 should also be included.
Depending on application support and the content of text being displayed, either the 3/1/4 or 3/10/12
subtable may be used. Therefore, glyph mappings for characters in the range U+0000 to U+FFFF must
be identical between the 3/1/4 or 3/10/12 subtables. Also note that the characters mapped in the
3/10/12 subtable must be a superset of the characters mapped in the 3/1/4 subtable.

Remember that encoding records must be stored in sorted order by platform ID, then by encoding ID.

8.21

In “OS/2' table”, replace the first paragraph with the following text:

All data required.

PANOSE values

PANOSE values improve the user's experience for font selection in some applications or font management
utilities.

If the font is a symbol font, the first byte of the PANOSE value must be set to “Latin Pictorial” (value = 5).

In “OS/2' table” in the text describing the values of sTypoAscender, sTypoDescender and
sTypoLineGap, replace the text with the following:

The sTypoAscender, sTypoDescender and sTypoLineGap fields are used to specify the recommended
default line spacing for single-spaced horizontal text. The baseline-to-baseline distance is calculated as
follows:

OS/2.sTypoAscender − OS/2.sTypoDescender + OS/2.sTypoLineGap

﻿

20� © ISO/IEC 2020 – All rights reserved

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)

sTypoAscender should be used to determine an optimal default offset from the top of a text frame to the
first baseline. Similarly, sTypoDescender should be used to determine an offset from the last baseline to
the bottom of the text frame.

It is often appropriate to set the sTypoAscender and sTypoDescender values such that the distance
(sTypoAscender − sTypoDescender) is equal to one em. This is not a requirement, however, and may not
be suitable in some situations. For example, if a font is designed for a script that (in horizontal layout)
requires greater vertical extent relative to Latin script but also needs to support Latin script, and needs
to have the visual size of Latin glyphs be similar to other fonts when set at the same text size, then the
(sTypoAscender − sTypoDescender) distance for that font would likely need to be greater than one em.

The sTypoLineGap value will often be set such that the default baseline-to-baseline distance is
approximately 120 % of the em. For example, in the Minion Pro font family, fonts are designed
on a 1000 units-per-em grid, the (sTypoAscender − sTypoDescender) distance is one em, and the
sTypoLineGap value is set to 200.

In CJK (Chinese, Japanese, and Korean) fonts, it is permissible for the sTypoDescender and sTypoAscender
fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp baselines in the 'BASE'
table. However, some applications may not read the 'BASE' table at all but simply use the sTypoDescender
and sTypoAscender fields to describe the bottom and top edges of the ideographic em-box. If developers
want their fonts to work correctly with such applications, they should ensure that any ideographic
em-box values in the 'BASE' table describe the same bottom and top edges as the sTypoDescender
and sTypoAscender fields. See subclause 9.8 "OFF CJK Font Guidelines" and "Ideographic Em-Box"
respectively for more details.

In “OS/2' table” – insert new text in the end of the subclause as follows:

usLowerOpticalPointSize and usUpperOpticalPointSize

Use of the usLowerOpticalPointSize and usUpperOpticalPointSize fields has been superseded by the
‘STAT’ table. See subclause 9.9 for more information.

Bibliography

Replace the descriptive text of Reference [23] with the following:

[23] Unicode Standard Annex #50: Unicode Vertical Text Layout. http://​www​​.unicode​​.org/​reports/​tr50/​

Add a new entry 31 as follows:

[31] RFC 1952, “GZIP file format specification version 4.3” http://​www​​.ietf​​.org/​rfc/​rfc1952​​.txt

﻿

© ISO/IEC 2020 – All rights reserved� 21

http://www.unicode.org/reports/tr50/
http://www.ietf.org/rfc/rfc1952.txt

﻿

ISO/IEC 14496-22:2019/Amd.1:2020(E)
﻿

© ISO/IEC 2020 – All rights reserved

ICS 35.040.40
Price based on 21 pages

