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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are 
members of ISO or IEC participate in the development of International Standards through technical 
committees established by the respective organization to deal with particular fields of technical 
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international 
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work. In the field of information technology, ISO and IEC have established a joint technical committee, 
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the 
different types of ISO documents should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of 
any patent rights identified during the development of the document will be in the Introduction and/or 
on the ISO list of patent declarations received (see www​.iso​.org/patents).

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to the 
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following 
URL: www​.iso​.org/iso/foreword​.html.

This document was prepared by Technical Committee ISO/IEC  JTC  1, Information technology, SC  32, 
Data management and interchange.

This second edition cancels and replaces the first edition (ISO/IEC  24707:2007), which has been 
technically revised.

The main changes compared to the previous edition are as follows:

—	 the list of syntactic errors that have already been identified in the Defect Report has been fixed;

—	 the XML syntax in Annex C has been corrected and completed;

—	 a more general approach to annotation of CL-texts has been made;

—	 semantics has been modified to allow the existence of definitional extensions in CL;

—	 support for circular imports;

—	 semantics of CL-module have been clarified;

—	 clarification of the distinction between segregated and non-segregated dialects;

—	 clarification of conformance conditions has been made.

Any feedback or questions on this document should be directed to the user’s national standards body. A 
complete listing of these bodies can be found at www​.iso​.org/members​.html. 
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Introduction

Common Logic is a logic framework intended for information exchange and transmission. The 
framework allows for a variety of different syntactic forms, called dialects, all translatable by a 
semantics-preserving transformation to a common XML-based syntax.

Common Logic has some novel features, chief among them being a syntax which permits “higher-
order” constructions, such as quantification over classes or relations while preserving a first-order 
model theory, and a semantics which allows theories to describe intentional entities such as classes or 
properties. It also has provision for the use of datatypes and for naming, importing and transmitting 
content on the World Wide Web using XML.
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Information technology — Common Logic (CL) — A 
framework for a family of logic-based languages

1	 Scope

This document specifies a family of logic languages designed for use in the representation and 
interchange of information and data among disparate computer systems.

The following features are essential to the design of this document.

—	 Languages in the family have declarative semantics. It is possible to understand the meaning of 
expressions in these languages without appeal to an interpreter for manipulating those expressions.

—	 Languages in the family are logically comprehensive – at its most general, they provide for the 
expression of arbitrary first-order logical sentences.

—	 Languages in the family are translatable by a semantics-preserving transformation to a common 
XML-based syntax, facilitating interchange of information among heterogeneous computer systems.

The following are within the scope of this document:

—	 representation of information in ontologies and knowledge bases;

—	 specification of expressions that are the input or output of inference engines;

—	 formal interpretations of the symbols in the language.

The following are outside the scope of this document:

—	 specification of proof theory or inference rules;

—	 specification of translators between the notations of heterogeneous computer systems;

—	 computer-based operational methods of providing relationships between symbols in the logical 
“universe of discourse” and individuals in the “real world”.

This document describes Common Logic’s syntax and semantics.

This document defines an abstract syntax and an associated model-theoretic semantics for a specific 
extension of first-order logic. The intent is that the content of any system using first-order logic can 
be represented in this document. The purpose is to facilitate interchange of first-order logic-based 
information between systems.

Issues relating to computability using this document (including efficiency, optimization, etc.) are not 
addressed.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2382:2015, Information technology — Vocabulary

ISO/IEC 10646:2014, Information technology — Universal Coded Character Set (UCS)

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

INTERNATIONAL STANDARD� ISO/IEC 24707:2018(E)
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3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 IEC Electropedia: available at http:​//www​.electropedia​.org/

—	 ISO Online browsing platform: available at https:​//www​.iso​.org/obp

3.1
axiom
any sentence (3.15), statement or text which is assumed to be true, or from which others are derived, or 
by which they are entailed

Note 1 to entry: In a computational setting, an axiom is a sentence which is never posed as a goal to be proved, 
but only used to prove other sentences.

3.2
conceptual graph
CG
graphical or textual display of symbols arranged according to the style of conceptual graph theory (3.3)

3.3
conceptual graph theory
form of first-order logic which represents existential quantification and conjunction via the assertion 
of logical constructs called concepts and relations which are arranged in an abstract or visually 
displayed graph

3.4
CLIF
text-based first-order formalism using a LISP-like list notation

Note 1 to entry: This is one of the concrete syntaxes for Common Logic (described in Annex A).

Note 2 to entry: CLIF is a KIF-based syntax that is used for illustration purposes in this document. KIF, introduced 
by Mike Genesereth[3], originated with the Knowledge Sharing Effort sponsored by the U.S. DARPA. The name 
“KIF” is not used for this syntax in order to distinguish it from the commonly used KIF dialects. No assumptions 
are made in this document with respect to KIF semantics; in particular, no equivalence between CLIF and KIF is 
intended.

Note 3 to entry: Historically, CLIF was an acronym for Common Logic Interchange Format. However, CLIF does 
not hold a privileged position among Common Logic dialects (3.7), as the expanded name suggests. Further, XCL is 
the recommended interchange format on the Web.

3.5
Conceptual Graph Interchange Format
CGIF
text version of conceptual graphs (3.2)

Note 1 to entry: Sometimes, this may refer to an example of a character string that conforms to Annex B, intended 
to convey exactly the same structure and semantics as an equivalent conceptual graph.

3.6
denotation
relationship holding between a name or expression and the thing to which it refers

Note 1 to entry: Also used with “of” to mean the thing being named, i.e. the referent of a name or expression.

﻿
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3.7
Common Logic dialect
concrete instance of Common Logic syntax that shares (at least some of) the uniform semantics of 
Common Logic

Note 1 to entry: A dialect may be textual or graphical or possibly some other form. A dialect, by definition, is also 
a conforming language (see 7.1 for further details).

3.8
eXtensible Common Logic Markup Language
XCL
XML-based syntax for Common Logic

3.9
individual
<of an interpretation> one element of the universe of discourse (3.17) of an interpretation (3.12)

Note 1 to entry: The universe of discourse of an interpretation is the set of all of its individuals.

3.10
internationalized resource identifier
IRI
string of Unicode characters intended for use as an Internet network identifier syntax which can 
accommodate a wide variety of international character forms

3.11
inscription
structure of symbols that may be either linear or graphic

3.12
interpretation
formal specification of the meanings of the names in a vocabulary of a Common Logic dialect (3.7) in 
terms of a universe of reference (3.18)

Note  1  to entry:  A Common Logic interpretation, in turn, determines the semantic values of all complex 
expressions of the dialect, in particular, the truth values of its sentences (3.15), statements and texts.

Note 2 to entry: See 6.2 for a more precise description of how an interpretation is defined.

3.13
operator
distinguished syntactic role played by a specified component within a functional term (3.16)

Note  1  to  entry:  The denotation (3.6) of a functional term in an interpretation (3.12) is determined by the 
functional extension of the denotation of the operator together with the denotations of the arguments.

3.14
predicate
<Common Logic> distinguished syntactic role played by exactly one component within a simple 
sentence (3.15)

Note 1 to entry: The truth value of a simple sentence in an interpretation (3.12) is determined by the relational 
extension of the denotation (3.6) of the predicate together with the denotations of the arguments.

3.15
sentence
<Common Logic> expression in the syntactic form of a traditional first-order logical formula

EXAMPLE	 A simple sentence (see 6.1.1.15), Boolean sentence (see 6.1.1.14) or quantification (see 6.1.1.13).

﻿
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3.16
term
<Common Logic> expression which denotes an individual (3.9), consisting of either a name or, 
recursively, a functional term applied to a sequence of arguments, which are themselves terms

Note 1 to entry: Languages for traditional first-order logic specifically exclude predicate (3.14) quantifiers and 
the use of the same name in both predicate and argument position in simple sentences (3.15), both of which are 
permitted (though not required) in Common Logic. Languages for traditional first-order logic fall within the 
category of presupposing CL dialect, with a discourse presupposition of “non-discourse” for all names used as 
function operators (3.13) or predicates, and “discourse” for all names used as the arguments of functional terms 
or simple sentences or as bindings.

3.17
universe of discourse
domain of discourse
set of all the individuals (3.9) in an interpretation (3.12), i.e. the set over which the quantifiers range

Note 1 to entry: Required to be a subset of the universe of reference (3.18) and may be identical to it.

3.18
universe of reference
set of all the things needed to define the meanings of logical expressions in an interpretation (3.12)

Note 1 to entry: Required to be a superset of the universe of discourse (3.17) and may be identical to it.

4	 Symbols and abbreviated terms

4.1	 Symbols

funI mapping from URI to functions from UDI* to UDI

I interpretation in the model-theoretic sense

intI mapping from names in a vocabulary V to URI; informally, a means of associating names in V 
to referents in URI

relI mapping from URI to subsets of UDI*

seqI mapping from sequence markers in V to UDI*

λ lexicon, which consists of a vocabulary, a set of sequence markers (Smark), and a set of 
titles (Ttl)

V vocabulary, which is a set of names

Smark set of sequence markers

Ttl set of titles

UDI universe of discourse; a non-empty set of individuals that an interpretation I is “about” and 
over which the quantifiers are understood to range

URI universe of reference, i.e. the set of all referents of names in an interpretation I

X* set of finite sequences of the elements of X, for any set X. Thus, X* = {<x1,...,xn> | x1,…,xn ∈ X}, 
for any n ≥ 0. Note that the empty sequence is in X*, for any X.

﻿
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4.2	 Abbreviated terms

CL Common Logic

DF display form

EBNF Extended Backus-Naur Format (as in ISO/IEC 14977)

FO first-order

KIF Knowledge Interchange Format

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

TFOL traditional first-order logic

XML eXtensible Markup Language

5	 Requirements and design overview

5.1	 Requirements

5.1.1	 Common Logic should include full first-order logic with equality

Common Logic abstract syntax and semantics shall provide for the full range of first-order syntactic 
forms with their usual meanings. Any traditional first-order syntax will be directly translatable into 
Common Logic without loss of information or alteration of meaning.

5.1.2	 Common Logic should provide a general-purpose syntax for communicating logical 
expressions

a)	 There should be a single XML syntax for communicating Common Logic content on the Web.

b)	 Common Logic languages should be able to express various commonly used “syntactic sugarings” 
for logical forms or commonly used patterns of logical sentences.

c)	 The Common Logic abstract syntax should relate to existing conventions; in particular, it should be 
capable of rendering any content expressible in RDF, RDFS or OWL.

d)	 There should be at least one human-readable presentation syntax defined which can be used to 
express the entire language.

5.1.3	 Common Logic should be easy and natural for use on the Web

a)	 The XML syntax should be compatible with the published specifications for XML, IRI syntax, XML 
Schema, Unicode and other conventions relevant to transmission of information on the Web.

b)	 IRIs should be usable as names in the language.

c)	 IRIs should be usable to title texts and label expressions, in order to facilitate Web operations such 
as retrieval, importation and cross-reference.

﻿
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5.1.4	 Common Logic should support open networks

a)	 Transmission of content between Common Logic-aware agents should not require negotiation 
about syntactic roles of symbols or translations between syntactic roles.

b)	 Any piece of Common Logic text should have the same meaning, and support the same entailments, 
everywhere on the network. Every name should have the same logical meaning at every node of the 
network.

c)	 No agent should be able to limit the ability of another agent to refer to anything or to make 
assertions about anything.

d)	 The language should support ways to refer to a local universe of discourse and be able to relate it to 
other such universes.

e)	 Users of Common Logic should be free to invent new names and use them in published Common 
Logic content.

5.1.5	 Common Logic should not make arbitrary assumptions about semantics

a)	 Common Logic does not make gratuitous or arbitrary assumptions about logical relationships 
between different expressions.

b)	 If possible, Common Logic agents should express these assumptions in Common Logic directly.

5.2	 A family of languages

This subclause describes what is meant by a “family” of languages and gives some of the rationale 
behind the development of Common Logic.

Following the convention whereby any language has a grammar, then Common Logic is a family 
of languages rather than a single language. Different Common Logic languages, referred to in this 
document as dialects, may differ sharply in their surface syntax, but they have a single uniform 
semantics and can all be transcribed into the common abstract syntax. Membership in the family is 
defined by being inter-translatable with the other dialects while preserving meaning, rather than by 
having any particular syntactic form. Several existing logical notations and languages, therefore, can 
be considered to be Common Logic dialects.

A Common Logic dialect called CLIF based on KIF (see Annex A) is used in giving examples throughout 
this document. CLIF can be considered an updated and simplified form of KIF 3.0[3] and hence a 
separate language in its own right. Conceptual graphs[1] are also a well-known form of first-order logic 
for machine processing; the CGIF language is specified in Annex B. An exactly conformant XML Dialect, 
called XCL, is specified in Annex C, for the purpose of satisfying requirements 5.1.2 a) and 5.1.3 a).

6	 Common Logic abstract syntax and semantics

6.1	 Common Logic abstract syntax

6.1.1	 Abstract syntax categories

6.1.1.1	 Terms, sequence markers, sentences, statements and texts are well-formed expressions.

6.1.1.2	 A text is a text construction, domain restriction, or importation.

6.1.1.3	 A text construction contains a set, list or bag of sentences, statements and/or texts. A Common 
Logic text may be a sequence, a set or a bag of sentences, statements and/or texts; dialects may 
specify which is intended or leave this undefined. Re-orderings and repetitions of arguments of a text 

﻿
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construction are semantically irrelevant. However, applications which transmit or re-publish Common 
Logic text shall preserve the structure of text constructions, since other applications are allowed to utilize 
the structure for other purposes, such as indexing. If a dialect imposes conditions on text constructions, 
then these conditions shall be preserved by conforming applications. A text construction may be empty.

6.1.1.4	 A domain restriction consists of a term and a text called the body text. The term indicates the 
“local” universe of discourse in which the text is understood.

6.1.1.5	 An importation contains a title. The intention is that the title provides an identifier to an 
external Common Logic text, and that the importation re-asserts that external text in the importing text.

6.1.1.6	 An axiom is a statement, sentence or text.

6.1.1.7	 A statement is either a discourse statement or a titling.

6.1.1.8	 A discourse statement is either an out-of-discourse statement or an in-discourse statement.

6.1.1.9	 An out-of-discourse statement contains a sequence of terms.

6.1.1.10	 An in-discourse statement contains a sequence of terms.

6.1.1.11	 A titling contains a name and a text. The titling assigns a title to a text. Titles are often IRIs, 
which identify the text as resource.

6.1.1.12	 A sentence is either a quantified sentence or a Boolean sentence or a simple sentence.

6.1.1.13	 A quantified sentence has (i) a type, called a quantifier, (ii) a finite, nonrepeating sequence 
of interpretable names called the binding sequence, each element of which is called a binding of the 
quantified sentence, and (iii) a sentence called the body of the quantified sentence. The abstract syntax 
distinguishes the universal and the existential types of quantified sentence. A name which occurs in the 
binding sequence is said to be bound in the body. Any name or sequence marker which is not bound in 
the body is said to be free in the body.

6.1.1.14	 A Boolean sentence has a type, called a connective, and a number of sentences called the 
components of the Boolean sentence. The number depends on the particular type. The abstract syntax 
distinguishes five types of Boolean sentences: conjunctions and disjunctions, which have any number 
of components, implications and biconditionals, which have exactly two components, and negations, 
which have exactly one component. The two components of an implication fill different roles; one is the 
antecedent and the other is the consequent.

6.1.1.15	 A simple sentence is either an equation containing two arguments, which are terms, or is an 
atomic sentence, which consists of a term, called the predicate, and a term sequence called the argument 
sequence, the elements of which are called arguments of the atomic sentence.

6.1.1.16	 A term is either a name or a functional term. A term may have an attached comment. Further, 
every name is a term.

6.1.1.17	 A functional term consists of a term, called the operator, and a term sequence called the 
argument sequence, the elements of which are called arguments of the functional term.

6.1.1.18	 A term sequence is a finite sequence of terms and/or sequence markers. Term sequences 
may be empty, but a functional term with an empty argument sequence shall not be identified with 
its operator, and an atomic sentence with an empty argument sequence shall not be identified with its 
predicate.

﻿
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6.1.1.19	 A lexicon is a set of names (i.e. the vocabulary of the lexicon), a set of sequence markers, and a 
set of titles.

6.1.1.20	 Irregular sentences in a concrete syntax are parsed into the abstract syntax as propositions 
(i.e. nullary atomic sentences) with a new name for the predicate. In this way, irregular sentences can be 
nested within texts, statement and (otherwise) regular compound sentences, and the semantics of the 
resulting expressions is determined as usual from Table 2.

6.1.1.21	 A comment is a piece of data. Any number of comments may be attached to well-formed 
expressions that are texts, statements, sentences or functional terms, but not to names, sequence markers 
or other comments. No particular restrictions are placed on the nature of Common Logic comments; in 
particular, a comment may be Common Logic text. Particular dialects may impose conditions on the form 
of comments.

6.1 completely describes the abstract syntactic structure of Common Logic. Any fully conformant 
Common Logic dialect shall provide an unambiguous syntactic representation for each of the above 
types of well-formed expressions.

Sentence types are commonly indicated by the inclusion of explicit text strings, such as “forall” for 
universal sentence and “and” for conjunction. However, no conditions are imposed on how the various 
syntactic categories are represented in the surface forms of a dialect. In particular, expressions in a 
dialect are not required to consist of character strings.

6.1.2	 Metamodel of the Common Logic abstract syntax

6.1.2.1	 Names and sequence markers

The class of names and sequence markers of a Common Logic language is the classes obtained from 
strings using the following operators:

—	 Voc : String → V

—	 Seqmark : String → Smark

—	 Titling : String → Ttl

—	 Binder = V ∪ Smark

6.1.2.2	 Terms and term sequences

The class of terms of a Common Logic language is the class Term that includes all names in V and all 
functional terms. The class of functional terms of a Common Logic language is the class FunctionalTerm 
obtained by the recursive application of the operator Func to pairs made up of one term and one term 
sequence. The class of term sequences of a Common Logic language is the class TermSequence that 
includes all finite sequences of terms and/or sequence markers.

—	 Func:​Term × TermSequence → FunctionalTerm

—	 Term = V ∪ FunctionalTerm

—	 TSeq:(Term ∪ Smark) × ... × (Term ∪ Smark) → TermSequence

6.1.2.3	 Sentences

The class of sentences of a Common Logic language is the class Sentence that includes all simple 
sentences (including equations, if applicable) formed by the application of the operation(s) Atomic (and 
Id) from well-formed terms and term sequences and all compound sentences formed by the recursive 

﻿

8� © ISO/IEC 2018 – All rights reserved



﻿

ISO/IEC 24707:2018(E)

application of the set of operations Neg, Conj, Disj, Cond, BiCond, EQuant, and UQuant that satisfy the 
following conditions:

—	 each operation is one-to-one;

—	 the range of the operations is pairwise disjoint and disjoint from the set of terms of λ.

—	 Atomic:​Term × TermSequence → Sentence

—	 Id:​Term × Term → Sentence

—	 Neg:​Sentence → Sentence

—	 Conj : Sentence × ... × Sentence → Sentence

—	 Disj : Sentence × ... × Sentence → Sentence

—	 Cond : Sentence × Sentence → Sentence

—	 BiCond:​Sentence × Sentence → Sentence

—	 EQuant:​Binder × ... × Binder × Sentence → Sentence, n ≥ 0

—	 UQuant:​Binder × ... × Binder × Sentence → Sentence, n ≥ 0

Figure 1 — Abstract syntax of texts
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Figure 2 — Abstract syntax of text constructions

Figure 3 — Abstract syntax of statements

﻿
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Figure 4 — Abstract syntax of terms
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Figure 5 — Abstract syntax of a simple sentence
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Figure 6 — Abstract syntax of sentences

Figure 7 — Abstract syntax of Boolean sentences
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Figure 8 — Abstract syntax of a quantified sentence

6.1.2.4	 Statements

The class of statements of a Common Logic language is the class Statement obtained from the recursive 
application of operations outDiscourse, inDiscourse, and title under the following conditions:

—	 outDiscourse:​TermSequence → DiscourseStatement

—	 inDiscourse:​TermSequence → DiscourseStatement

—	 title:​Ttl × Text → Titling

Discourse statements and titlings are statements:

—	 Statement = DiscourseStatement ∪ Titling

6.1.2.5	 Texts

The class of texts of a Common Logic language is the class Text that is obtained from the recursive 
application of the set of operations txt, imports, and domain under the following conditions:

—	 txt:(Sentence ∪ Statement ∪ Text) × ... × (Sentence ∪ Statement ∪ Text) → TextConstruction

—	 imports:​Ttl → Importation

—	 domain:​Term × Text → DomainRestriction

Text Constructions, domain restrictions, and importations are texts:

—	 Text = TextConstruction ∪ DomainRestriction ∪ Importation

﻿
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Figure 9 — Abstract syntax of text constructions

10 Well-formed Expressionspackage CL [   ]

WellFormedExpression

SequenceMarker StatementSentence TextTerm

Figure 10 — Abstract syntax of well-formed expressions

6.1.2.6	 Well-Formed Expressions

Terms, sequence markers, sentences, sfitatements, and texts are well-formed expressions:

—	 Wfe = Term ∪ SequenceMarker ∪ Sentence ∪ Statement ∪ Text

6.1.2.7	 Metamodel

Figures  1 to 9 provide a non-normative metamodel showing relationships among the syntactic 
categories.

6.1.3	 Importation closure

An untitled importation in a text is an occurrence of an importation expression that is not a descendant 
of a titling in the abstract syntax tree as defined in 6.1.2.

﻿
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A corpus is a set of texts in the Common Logic abstract syntax. A corpus may be empty, finite, or infinite. 
An importation fixed-point under a title mapping ttl is a corpus C such that if G is a text in C, then 
C contains every text G' derived from G by replacing one occurrence of an untitled importation with 
name N by the text which is the value ttl(N) of the title mapping. The importation closure of a corpus C 
under a title mapping ttl is the intersection of all importation fixed-points under ttl that contain C. The 
importation closure of every non-empty corpus in a Common Logic language is non-empty.

6.1.4	 Abstract syntactic structure of dialects

Dialects may, in addition, provide for other forms of sentence construction not described by this syntax, 
but in order to be fully conformant, such constructions shall either be new categories defined in terms 
of these categories or be extensions of these categories (e.g. new kinds of Boolean sentence, or kinds 
of quantifier) which are equivalent in meaning to a construction using just this syntax, interpreted 
according to the Common Logic semantics; that is, they can be considered to be systematic abbreviations 
or macros, also known as “syntactic sugar”. The CLIF dialect (described in Annex A) and XCL (described 
in Annex C) contain a number of syntactic sugared forms for quantified and atomic sentences. (Other 
types of compliance are also recognized: see Clause 7 for a full account of conformance.)

The only undefined terms in the abstract syntax clause are name, sequence marker, and title. The 
only required syntactic constraint on the basic lexical categories of name and sequence marker is 
that they shall be exclusive. Dialects intended for transmission of content on a network should not 
impose arbitrary or unnecessary restrictions on the form of names, and shall provide for certain 
names to be used as titles of Common Logic texts. Dialects intended for use on the Web should allow 
Internationalized Resource Identifiers to be used as names[2][4]. Common Logic dialects should define 
names in terms of Unicode (ISO/IEC 10646) conventions.

There is no notion of “bound variable” in the CL abstract syntax. Names that can occur bound are not 
required to be lexically distinguished from those that can (only) occur free, nor are names required 
to be partitioned into distinct classes such as relation, function or individual names. There are no 
sortal restrictions on names. Particular Common Logic dialects may make these or other distinctions 
between subclasses of names, and impose extra restrictions on the occurrence of types of names or 
terms in expressions — for example, by requiring that names that can occur bound (i.e. the variables 
of traditional first-order languages) be written with a special prefix, as in KIF, or with a particular 
style, as in Prolog; or by requiring that operators be in a distinguished category of relation names, as in 
traditional first-order syntax.

A dialect may impose particular semantic conditions on some categories of names, and apply syntactic 
constraints to limit where such names occur in expressions. For example, the CLIF and XCL syntaxes 
treat numerals as having a fixed denotation and prohibit their use as titles.

A dialect may require some names to be syntactic non-discourse names, which are understood to 
never denote entities in the universe of discourse. This requirement may be imposed, for example, by 
partitioning the vocabulary or by requiring names that occur in certain syntactic positions to be non-
discourse. A dialect with syntactic non-discourse names is called segregated. In segregated dialects, 
names which are not non-discourse names are called discourse names.

A dialect shall provide sufficient syntactic constraints to guarantee that in any syntactically legal text 
of the dialect,

—	 every name shall be classified as either discourse or as non-discourse,

—	 no name shall be classified as both discourse and non-discourse,

—	 no non-discourse name shall be an argument of a simple sentence or functional term, and

—	 no non-discourse name shall be bound in a quantified sentence.

A dialect may have additional mechanisms for embedding information within CL texts that may be 
deleted without affecting the parsing of the text into the abstract syntax and may be omitted during the 
translation into other concrete dialects.

﻿
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6.2	 Common logic semantics

The semantics of Common Logic is defined in terms of a satisfaction relation between Common Logic 
text and mathematical structures called interpretations.

An interpretation I of a Common Logic language L with lexicon λ = (Vλ, Smarkλ, Ttlλ) (where Vλ ⊆ V, 
Smarkλ ⊆ Smark, Ttlλ ⊆ Ttl) is a set URI, the universe of reference, with a distinguished subset UDI, the 
universe of discourse, and five mappings:

—	 intI from names in Vλ to URI;

—	 relI from URI to the power set of UDI*;

—	 funI from URI to total functions from URI* into URI;

—	 seqI from sequence markers in Smarkλ to URI*;

—	 a title mapping ttlI from Ttlλ to texts of L.

If UDI is non-empty and the range of funI is total functions from UDI* into UDI, then it can be said that I 
is a core interpretation of L.

Intuitively, UDI is the universe or domain of discourse containing all the individual things the 
interpretation is “about” and over which the quantifiers range. URI is a potentially larger set of things 
that might also contain entities which are not in the universe of discourse. In particular, URI might 
contain relations not in UDI to serve as the interpretations of the non-discourse names. All names are 
interpreted in the same way, whether or not they are understood to denote something in the universe of 
discourse; that is why there is only a single interpretation mapping that applies to all names regardless 
of their syntactic role. In particular, relI(x) is in UDI* even when x is not in UDI. When considering only 
classical dialects, the elements of the universe of reference which are outside the universe of discourse 
may be identified with their corresponding values of the relI and funI mappings, which are then re-
interpreted to be the identity mapping. The resulting construction maps predicates directly to relations 
and operators to functions, yielding a more traditional interpretation structure for the segregated 
syntax of traditional first-order logic.

Although sequence markers are mapped into finite sequences in an interpretation, these sequences are 
not denoted by names, and so are not required to be in the universe of reference.

The assignment of semantic values to complex expressions — notably, the assignment of truth values to 
sentences — requires some auxiliary definitions.

Let S be a subset of V ∪ Smark. An interpretation J of V is an S-variant of I if it is exactly like I except that 
intJ and seqJ might differ with intI and seqI on what they assign to the members of S. More formally, J is 
an S-variant of I if URJ = URI, UDJ = UDI, relJ = relI, funJ = funI, ttlI = ttlJ, intJ(n) = intI(n) for names n ∉ S, 
intI(n) ∈ UDJ for names n ∈ S, seqJ(s) = seqI(s) for sequence markers s ∉ S, and seqJ(s) ∈ UD*J for s ∈ S.

If E is a subset of UDI, then the restriction of I to E is an interpretation K of the same language L and over 
the same universe of reference and with intK = intI and seqK = seqI, but where UDK = E, relK(v) is the 
restriction of relI(v) to E* and funK(v) = funI(v) for all v in the vocabulary of I.

If s = <s1, ..., sn> and t = <t1, ...., tm> are finite sequences, then s;t is the concatenated sequence <s1, ..., sn, 
t1, ..., tm>. In particular, s;<> = s for any sequence s.

Table 1 — Specification of auxiliary definitions to be used for the semantics

E ∈ λ ArgC(E) = ∅
E = Func (T,T1,...,Tn) ArgC(E) = { T1,…,Tn } ∪ ArgC(T)
E = Atomic(T,T1,…,Tn) ArgC(E) = { T1,…,Tn } ∪ ArgC(T)
E = Neg(S) ArgC(E) = ArgC(S)
NOTE   For any well-formed expression E, this table specifies the set ArgC(E) of argument constants of E.

﻿
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E = Conj(S1,…,Sn) ArgC(E) = ArgC(S1,…,Sn)
E = EQuant(N,S) ArgC(E) = ArgC(S) ∪ N
E = outDiscourse(T1,…,Tn) ArgC(E) = ∪i ArgC(Ti)
E = inDiscourse(T1,…,Tn) ArgC(E) = ∪i ArgC(Ti)
E = txt(E1,…,En) ArgC(E) = ArgC(Ei)
E = domain(T,G) ArgC(E) = ArgC(G) ∪ ArgC(T)
E = title(E1,G) ArgC(E) = ArgC(G)
E = imports(E1) ArgC(E) = ∅
NOTE   For any well-formed expression E, this table specifies the set ArgC(E) of argument constants of E.

The value of any expression E in the interpretation I is given by following the rules in Table 2.

Table 2 — Interpretations of Common Logic expressions

E1 Name N I(E) = intI(N)
E2 Sequence marker S I(E) = seqI(S)
E3 Title N I(E) = ttlI(N)
E4 Term sequence T1 … Tn with T1 a term I(E) = <I(T1)>;I(<T2 … Tn >)
E5 Term sequence T1 … Tn with T1 a sequence 

marker
I(E) = I(T1);I(<T2 … Tn >)

E6 Term with operator O and argument  
sequence S

I(E) = funI(I(O))(I(S))

E7 Simple sentence which is an equation  
containing terms T1, T2

I(E) = true if I(T1) = I(T2); otherwise, I(E) = false

E8 Atomic sentence with predicate P and  
argument sequence S

I(E) = true if I(S) is in relI(I(P)); otherwise, I(E) = false

E9 Boolean sentence of type negation and  
component C

I(E) = true if I(C) = false; otherwise, I(E) = false

E10 Boolean sentence of type conjunction and 
components C1 … Cn

I(E) = true if I(C1) = … = I(Cn) = true; otherwise, 
I(E) = false

E11 Boolean sentence of type disjunction and 
components C1 … Cn

I(E) = false if I(C1) = … = I(Cn) = false; otherwise, 
I(E) = true

E12 Boolean sentence of type implication and 
components C1, C2

I(E) = false if I(C1) = true and I(C2) = false;  
otherwise, I(E) = true

E13 Boolean sentence of type biconditional and 
components C1, C2

I(E) = true if I(C1) = I(C2); otherwise, I(E) = false

E14 Quantified sentence of type universal with 
bindings N and body B

I(E) = true if for every N-variant J of I, J(B) is true; 
otherwise, I(E) = false

E15 Quantified sentence of type existential with 
bindings N and body B

I(E) = true if for some N-variant J of I, J(B) is true; 
otherwise, I(E) = false

E16 Irregular sentence S I(E) = intI(S)
E17 An out-discourse statement outDiscourse(T1 

… Tn)
I(E) = true if I(Ti) ∉ UDI ∪ UDI* for 0 < i < n;  
otherwise, I(E) = false

E18 An in-discourse statement inDiscourse(T1 … 
Tn)

I(E) = true if I(Ti) ∈ UDI ∪ UDI* for 0 < i < n;  
otherwise, I(E) = false

E19 A text construction txt(E1 … En) I(E) = true if I(E1) = … = I(En) = true; otherwise, 
I(E) = false

﻿
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E20 A domain restriction domain(N,G) I(E) = true if there is some interpretation  
J I x x rel I NI= < ∈ ( )( ){ }    

and J(G) = true;
otherwise, I(E) = false

E21 A text titling title(E1 ,G), where G is a text in 
the sense of the abstract syntax

I(E) = true if ttlI(E1) = G; otherwise, I(E) = false

E22 An import statement imports(E1) I(E) = true

These are the basic logical semantic conditions which all conforming dialects shall satisfy. For texts 
with occurrences of interpreted names, the interpretations are further restricted (see 6.3). A dialect 
may impose further semantic conditions in addition to these.

A semantic extension which restricts Common Logic interpretations according to naming conventions, 
such as network identification conventions, is called external. External semantic constraints may refer 
to conventions or structures which are defined outside the model theory itself.

Table 2 specifies no interpretation for comments. The interpretation of an expression with an attached 
comment is the same as the interpretation of the corresponding expression without the comment. 
Thus, adding or deleting comments does not change the truth-conditions of any Common Logic text. 
Nevertheless, comments are part of the formal syntax and applications should preserve them when 
transmitting, editing or re-publishing Common Logic text. In particular, a name used to title a text in 
Common Logic is understood to be mapped to an expression of the abstract syntax, so that if the same 
name is used, within the same corpus, to title a text that parses to a different abstract syntax expression, 
that corpus will be unsatisfiable (see 6.4) even if the texts are identical except for comments.

Titlings are not required to be in 1:1 correspondence to documents, files or other units of data storage. 
Dialects or implementations may provide for texts to be distributed across storage units, or for multiple 
named texts to be stored in one unit. The titling conventions for text may be related to the addressing 
conventions in use for data units, but this is not required. Texts may also be identified by external 
naming conventions, for example, by encoding the text in documents or files which have network 
identifiers; the Common Logic semantics described in 6.2 shall be applicable to all network identifiers 
used as text titles on a network on which Common Logic texts are published or transmitted.

6.3	 Datatypes

A datatype is a mapping from a lexical space (which can be represented explicitly in the syntax) to a 
value space (which is arbitrary). Within the abstract syntax, elements of a datatype's lexical space are 
interpreted names.

The semantics of datatypes in Common Logic is specified by the following conditions.

a)	 The denotation of interpreted names is the same in all interpretations.

b)	 The denotations of interpreted names of default datatypes are defined explicitly.

c)	 The denotations for datatyped interpreted names in cases where the datatype is standardized 
shall be specified by the corresponding standard (e.g. XSD).

d)	 For user-defined datatypes, the denotations shall be specified either by an explicit axiomatization 
or definition in mathematical language, or use the mechanisms for user-defined datatypes provided 
in other standards (e.g. XML Schema or Relax NG). If the name of the datatype is an IRI, then that 
IRI shall dereference to a document that provides this definition.

The occurrence of any interpreted name in a Common Logic text imposes a constraint on the 
interpretation of that text such that the value of int(I) for such a name is always the truth value 
assigned by the datatype associated with that interpreted name. A Common Logic dialect that includes 
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interpreted names according to the above specifications is not classified as a semantic extension on 
that basis.

6.4	 Satisfaction, validity and entailment

Since the semantics of Common Logic does not assume a fixed distinction between names which are 
out of discourse and names which are in discourse, texts may differ on these two sets. A discourse 
supposition may be full or partial. A full discourse presupposition D is a partition of the lexicon λ of 
names (V) and sequence markers (Smark) into the set of names and sequence markers λD which are 
in-discourse and the complementary set of names and sequence markers λN which are said to be out-
of-discourse. While a full discourse presupposition provides a discourse assignment for every symbol 
in the lexicon, a partial discourse presupposition makes such an assignment for a proper subset of the 
lexicon; that is, λ ∪ D ∪ λN is a subset of λ.

An interpretation I meets a discourse presupposition D iff

a)	 for any name N ∈ λD, there is intI (N) ∈ UDI,

b)	 for any sequence marker S ∈ λD, there is seqI (S) ∈ UDI*,

c)	 for any name N ∈ λN, there is intI (N) ∉ UDI, and

d)	 for any sequence marker S ∈ λN, there is seqI (S) ∉ UDI*.

A Common Logic corpus C is satisfied by an interpretation I under the discourse presupposition D iff

1)	 I(G) = true and ArgC(G) ∈ UDI ∪ UDI* for every G in the importation closure of C under ttlI, and

2)	 I meets D.

A corpus C is satisfiable under a discourse presupposition D if there is a core interpretation which satisfies 
it and meets D; otherwise, it is unsatisfiable or contradictory. If every core interpretation which satisfies 
S under a discourse presupposition D also satisfies C under the same discourse presupposition, then S 
entails C under the discourse presupposition D.

A corpus C is satisfiable if there is an interpretation which satisfies it; otherwise, it is unsatisfiable or 
contradictory. If every interpretation which satisfies S also satisfies C, then S entails C.

Common logic interpretations treat irregular sentences as opaque sentence variables by requiring that 
irregular sentences be parsed to propositions (nullary atomic sentences) in the abstract syntax. In a 
dialect which recognizes irregular sentences, the above definitions are used to refer to interpretations 
determined by the semantics of the dialect; however, when qualified by the prefixing adjective or adverb 
“common-logic”, as in “common-logic entails”, they shall be understood to refer to interpretations which 
conform exactly to the Common Logic semantic conditions. For example, a dialect might support modal 
sentences, and its semantics supports the entailment (Necessary P) entails P; but this would not be a 
common-logic entailment, even if the language was conformant as a Common Logic extension. However, 
the entailment (Necessary P) entails (Necessary P) is a common-logic entailment.

Several of the later discussions consider restricted classes of interpretations. All the above definitions 
may be qualified to apply only to interpretations in a certain restricted class. Thus, S foo entails 
T just when for any interpretation I in the class foo, if I satisfies S then I satisfies T. Entailment (or 
unsatisfiability) with respect to a class of interpretations implies entailment (or unsatisfiability) with 
respect to any subset of that class.

When describing entailment of T from S, S is referred to as the set of premises, and T the conclusion, of 
the entailment.

6.5	 Sequence markers, recursion and argument lists: discussion

Sequence markers take Common Logic beyond first-order expressivity. A sequence marker occurring 
in an argument sequence stands for an arbitrary finite sequence of arguments. A universal sentence 
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binding a sequence marker has the same semantic import as the infinite conjunction of all the 
expressions obtained by replacing the sequence marker by a finite sequence of names, all bound by 
universal quantification.

This ability to represent infinite sets of sentences in a finite form means that Common Logic with 
sequence markers is not compact, and therefore not first-order; for clearly the infinite set of sentences 
corresponding in meaning to a single sentence quantifying a sequence marker is logically equivalent to 
that sentence and so entails it, but no finite subset of the infinite set does. However, the intended use 
of sentences containing sequence markers is to act as axiom schemata, and when they are restricted to 
this use, the resulting logic is compact. This amounts to allowing sequence markers to be bound only 
by universal quantifiers at the top statement level of a text and restricting these sentences to be used 
only as axioms. This restriction is often appropriate for texts which are considered to be “ontologies”, 
i.e. authoritative information sources representing a conceptualization of some domain of application, 
intended to be applied to other data.

A compact dialect which does not support sequence markers can imitate much of the functionality 
provided by sequence markers, by the use of explicit argument lists, represented in Common Logic 
by terms built up from a list-constructing function. A sequence marker translates into the name of a 
list, and quantification over list names replaces quantification over sequence markers. The finiteness 
condition on sequences then corresponds to an implicit fixed-point assumption made on all “standard” 
models of the list axioms. Such conventions are widely used in logic programming applications and 
in RDF and OWL. The costs of this technique are a considerable reduction in syntactic clarity and 
readability, the need to allow lists as entities in the domain of discourse, and possibly the reliance on 
external software to manipulate the lists. The advantage is the ability of rendering arbitrary argument 
sequences using only a small number of primitives and the use of a compact base logic. Implementations 
based on argument-list constructions are often limited to conventional first-order expressivity and 
fail to support all inferences involving quantification over lists. This may be considered either as an 
advantage or as a disadvantage.

6.6	 Special cases and translations between dialects

A dialect in which all operators and predicates are non-discourse names and all non-discourse names 
are operators or predicates is called a classical dialect.

An interpretation I is single-universe when UDI = URI. An interpretation I is extensional when relI and 
funI are the identity function on (URI − UDI), so that the entities in the universe of reference outside 
the domain are the extensions of the non-discourse names. For classical dialects, only extensional 
interpretations need be considered: for any given interpretation I, there is an extensional interpretation 
J which satisfies the same expressions of any text of the dialect as I does. J may be obtained by replacing 
I(x) by funI(I(x)) for every operator x and by relI(I(x)) for every predicate x in the vocabulary, and 
removing them from the domain if they are present. Since all operator and predicates in a classical 
dialect influence the truth-conditions only through their associated extensions, this does not affect any 
truth-values. Formally, UDJ = UDI − {I(v): v an operator or predicate in V}, intJ(x) = intI(x) for discourse 
names, intJ(x) = relI(intI(x)) for predicates x and intJ(x) = funI(intI(x)) for operators x.

Guidelines for specifying translations between dialects are given in Annex D.

7	 Conformance

7.1	 Dialect conformance

7.1.1	 Syntax

A dialect is defined over some set of inscriptions, which shall be specified. Commonly, this should be 
Unicode character strings (as specified in ISO/IEC 10646), but other inscriptions, e.g. diagrammatical 
representations such as directed graphs or structured images, are possible. A method shall be 
specified for the dialect which will unambiguously parse any inscription of text in the set, or reject it 
as syntactically illegal. For Unicode character string inscriptions, a grammar in EBNF is a sufficiently 
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precise specification. A parsing is an assignment of each part of a legal inscription into its corresponding 
CL abstract syntax category in 6.1.1, and the parsed inscription is an expression.

A dialect which provides only some types of the Common Logic expressions is said to be a syntactically 
partial Common Logic dialect or syntactically partially conformant. In particular, a dialect that does 
not include sequence markers, but is otherwise fully conformant, is known as a syntactically compact 
dialect. See 7.1 for a description of some relationships between syntactic and semantic conformance.

A dialect is syntactically fully conformant if its parsings recognize expressions for every category of 
the abstract syntax in 6.1.1. For Common Logic conformity, dialects or sub-dialects whose parsings 
include other categories of sentences shall either (a) categorize them as irregular sentences or (b) 
specify how these categories are mapped into the abstract syntax categories defined in 6.1.1. If a 
dialect conforms as in (a), such a dialect or sub-dialect shall be referred to as semantic extensions (see 
7.1.2). It is conformant as a syntactic sub-dialect if it recognizes at least one of the CL categories, but 
any dialect shall recognize some form of sentence category. Three particular cases of syntactic sub-
dialect are identified. A compact sub-dialect is a dialect that does not recognize sequence markers. An 
unstructured sub-dialect is a dialect that does not recognize titlings and importation statements. A 
single domain sub-dialect is a dialect that does not recognize domain restrictions.

A dialect is syntactically segregated if the parsing requires a distinction to be made between lexical 
categories of CL names in order to check legality of an expression in that dialect. Segregated dialects 
shall specify criteria which are sufficient to enable an application to detect the category of a name in 
the dialect without performing operations on any structure other than the name itself.

7.1.2	 Semantics

Any CL dialect shall have a model-theoretic semantics, defined on a set of interpretations, called dialect 
interpretations, which assigns one of the two truth-values true or false to every statement, sentence or 
text in that dialect.

A dialect is weakly semantically conformant when, for any syntactically legal sentence (except 
comment) or text T in that dialect, there exists a mapping tr from expressions in the dialect to 
expressions in Common Logic abstract syntax and there exists a mapping mod from Common Logic 
interpretations to dialect interpretations such that the following conformance condition is true:

—	 mod(I) entails T iff I entails tr(T) for each Common Logic interpretation I of tr(T).

A dialect is faithfully semantically conformant when, for any syntactically legal sentence, statement 
(except comment) or text T in that dialect, there exists a mapping tr from expressions in the dialect to 
expressions in Common Logic abstract syntax such that the following conformance condition is true:

—	 a text T’ is entailed by T iff tr(T’) is entailed by tr(T).

A dialect is expansively conformant iff it is weakly semantically conformant and mod is a surjective 
mapping.

A dialect is sublanguage semantically conformant when, for any syntactically legal sentence, 
statement (except comment) or text T in that dialect, there exists a mapping tr from expressions in the 
dialect to expressions in Common Logic abstract syntax and there exists a mapping mod from Common 
Logic interpretations to dialect interpretations such that the following conformance conditions are true:

—	 the dialect is weakly semantically conformant;

—	 tr is an injective mapping;

—	 mod is a bijective mapping.

A dialect is exactly semantically conformant when, for any syntactically legal sentence, statement 
(except comment) or text T in that dialect, there exists a mapping tr from expressions in the dialect 
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to expressions in Common Logic abstract syntax and there exists a mapping mod from Common Logic 
interpretations to dialect interpretations such that the following conformance conditions are true:

—	 the dialect is weakly semantically conformant;

—	 tr is a bijective mapping;

—	 mod is a bijective mapping.

It follows that the notions of satisfiability, contradiction and entailment corresponding to the dialect 
interpretations, and to Common Logic interpretations, are identical for an exactly conforming dialect.

The simplest way to achieve exact semantic conformance is to adopt the CL model theory as the model-
theoretic semantics for the dialect, but the definition is phrased so as to allow other ways of formulating 
the semantic meta-theory to be used if they are preferred for mathematical or other reasons, provided 
only that satisfiability, contradiction and entailment are preserved.

A semantic sub-dialect is a syntactic sub-dialect (see 7.1.1) and meets the semantic conditions in Table 1 
and Table 2; that is, it recognizes only some parts of the full Common Logic and its interpretations are 
equivalent to the restrictions of a Common Logic interpretation to those parts.

A semantic extension is a dialect which satisfies the first condition, but does not satisfy the second 
condition. In other words, a semantic extension dialect has some part(s) whose interpretation is more 
constrained than they would be by a CL interpretation. Any dialect which imposes non-trivial semantic 
conditions on irregular sentences is a semantic extension in this sense.

This allows a semantic extension to apply “external” semantic conditions to irregular sentences, in 
addition to the CL semantic conditions. CLIF is an example of a semantic extension, by virtue of the 
semantic conditions it imposes on numbers and quoted strings.

Semantic extensions shall be referred to as “conforming semantic extension” or “conforming 
extension”, rather than as exactly conformant or simply as “conformant”. For sentences, statements 
and texts of a conforming extension, contradiction and entailment with respect to the Common Logic 
semantics implies, respectively, contradiction and entailment with respect to the dialect semantics, but 
not vice versa; and satisfaction with respect to the dialect semantics implies satisfaction with respect 
to Common Logic semantics, but not vice versa. This means that inference engines which perform 
Common Logic inferences will be correct, but may be less complete, for the dialect.

No dialect may restrict the range of quantification of a different dialect. Other dialects may treat all 
names as discourse names.

7.1.3	 Presupposing dialects

CL dialects may mandate a partial or full discourse presupposition as the entailment regime for its 
texts. The specification of the discourse presupposition shall be unambiguously specified for each text 
in the dialect, but otherwise is arbitrary, e.g. it may be based on a naming convention or may be derived 
from the usage of names in the text.

Traditional first-order logic as a CL dialect is presupposing, with a discourse presupposition of “non-
discourse” for all names used as function operators or predicates, and “discourse” for all names used as 
the arguments of functional terms or simple sentences or as bindings.

Single-universe CL dialects are also presupposing, with a discourse presupposition of “discourse” for 
all names.

Any CL dialect may include a syntactic construct for referring to an external discourse presupposition 
as the intended entailment regime for a text.
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7.2	 Application conformance

“Application” means any piece of computational machinery (software or hardware, or a network) which 
performs any operations on CL text (even very trivial operations like storing it for later re-transmission).

Conformance of applications is defined relative to a collection of dialects called the conformance set. 
Applications which are conformant for the XCL dialect may be referred to as “conformant” without 
qualification.

All conformant applications shall be capable of processing all legal inscriptions of the dialects in the 
conformance set. Applications which input, output or transmit CL text, even if embedded inside text 
processed using other textual conventions, shall be capable of round-tripping any CL text; that is, they 
shall output or transmit the exact inscription that was input to them, without textual alteration.

Applications which detect entailment relationships between CL texts in the conformance set are 
correct when, for any texts T and S in dialects in the conformance set, if the application detects the 
entailment of T from S, then S common-logic entails T [that is, for any Common Logic interpretation I, if 
I(S) = true, then I(T) = true]. The application is complete when, for any texts T and S in dialects in the 
conformance set, if S common-logic entails T, then the application can detect the entailment of T from S. 
(Note that this requires completeness “across” dialects in the conformance set).

Completeness does not require that the application can detect entailment in a semantic extension 
which is not common-logic entailment. If a dialect is a semantic extension, then an application is 
dialect complete for that dialect if, for any dialect interpretation I of that dialect, I(T) = true whenever 
I(S) = true, then the application detects the entailment of T by S.

7.3	 Network conformance

Conformance of communication networks is defined relative to a collection of dialects called the 
conformance set. A network is conformant when it transmits all expressions of all dialects in the 
conformance set without distortion from any node in the network to any other node, and provides for 
network identifiers which satisfy the semantic conditions E17, E20 and as described in 6.2. Network 
transmission errors or failures which are indicated as error conditions do not count as distortion for 
purposes of conformance of a network.
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Annex A 
(normative) 

 
Common Logic Interchange Format (CLIF)

A.1	 General

Historically, the Common Logic project arose from an effort to update and rationalize the design of 
KIF[3] which was first proposed as a “knowledge interchange format” over a decade ago and, in a 
simplified form, has become a de facto standard notation in many applications of logic. Several features 
of Common Logic, most notably its use of sequence markers, are explicitly borrowed from KIF. However, 
the design philosophy of Common Logic differs from that of KIF in various ways, which is briefly 
reviewed here.

First, the goals of the languages are different. KIF was intended to be a common notation into which a 
variety of other languages could be translated without loss of meaning. Common Logic is intended to be 
used for information interchange over a network, as far as possible without requiring any translation 
to be done, and when it shall be done, Common Logic provides a single common semantic framework, 
rather than a syntactically defined interlingua.

Second, largely as a consequence of this, KIF was seen as a “full” language, containing representative 
syntax for a wide variety of forms of expressions, including, for example, quantifier sorting, various 
definition formats and with a fully expressive meta-language. The goal was to provide a single language 
into which a wide variety of other languages could be directly mapped. Common Logic, in contrast, 
has been deliberately kept “small”. This makes it easier to state a precise semantics and to place exact 
bounds on the expressiveness of subsets of the language, and allows extended languages to be defined 
as encodings of axiomatic theories expressed in Common Logic.

Third, KIF was based explicitly on LISP. KIF syntax was defined to be LISP S-expressions, and LISP-
based ideas were incorporated into the semantics of KIF, for example, in the way that the semantics 
of sequence variables was defined. Although the CLIF surface syntax retains a superficially LISP-
like appearance in its use of a nested unlabelled parentheses and could be readily parsed as LISP 
S-expressions, Common Logic is not LISP-based and makes no basic assumptions of any LISP structures. 
The recommended Common Logic interchange notation is based on XML, a standard which was not 
available when KIF was originally designed.

Finally, many of the “new” features of Common Logic have been motivated directly by the ideas arising 
from new work on languages for the semantic web[9].

The name chosen for Common Logic’s KIF-like syntax is the Common Logic Interchange Format (CLIF). 
This is primarily to identify it as the version being prescribed in this document and to distinguish it 
from various other dialects of KIF that may or may not be exactly compatible.

KIF and CLIF are similar in several ways. Both languages contain as sub-dialects a syntax for classical 
first-order (FO) logic. Both languages have notation for sequence variables (called sequence markers in 
this document). Both languages use exclusively a prefix notational convention and S-expression style 
syntax conventions. Both use parentheses as lexical delimiters. Both indicate quantifier restrictions 
similarly.

Some known differences between KIF and CLIF are as follows.

a)	 KIF requires ASCII encoding; CLIF uses Unicode encoding.

b)	 KIF has explicit notations for defining functions and relations, which CLIF does not.

c)	 KIF does not use the enclosed-name notation which CLIF has.
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d)	 KIF uses the “@” symbol as a sequence variable prefix; CLIF uses the three-dot sequence for 
sequence markers.

e)	 KIF handles comments differently than CLIF and does not have the “enclosing” construction.

f)	 KIF does not have the role-pair construction which CLIF has.

g)	 KIF does not have the irregular sentence type which CLIF has to allow for extensions of the 
language.

h)	 KIF does not have the notions of importation, texts, statements, and domain restrictions which 
CLIF has.

i)	 KIF distinguishes variables from names and requires quantifiers to bind only variables; CLIF does 
not make the distinction.

j)	 Free variables in KIF are treated as universally quantified. Free names in CLIF are simply names, 
and no quantification is implied.

k)	 KIF restricts operators and predicates to be names; CLIF allows general terms and also allows 
these names to be bound by quantifiers.

l)	 KIF does not support the guarded quantifier construction.

A.2	 CLIF syntax

A.2.1	 Characters

Any CLIF expression is encoded as a sequence of Unicode characters in accordance with ISO/IEC 10646. 
Any character encoding which supports the repertoire of ISO/IEC 10646 may be used, but UTF-8 (ISO/
IEC 10646:2014, Annex D) is preferred. Only characters in the US-ASCII subset are reserved for special 
use in CLIF itself, so that the language can be encoded as an ASCII text string if required. This document 
uses ASCII characters. Unicode characters outside the ASCII range are represented in CLIF ASCII text by 
a character coding sequence of the form \unnnn or \Unnnnnn where n is a hexadecimal digit character. 
When transforming an ASCII text string to a full-repertoire character encoding, or when printing or 
otherwise rendering the text for maximum accessibility for human readers, such a sequence may be 
replaced by the corresponding direct encoding of the character or an appropriate glyph. Moreover, 
these coding sequences are understood as denoting the corresponding Unicode character when they 
occur in quoted strings (see below).

The syntax is defined in terms of disjoint blocks of characters called lexical tokens (in accordance with 
ISO/IEC  2382:2015, 15.01.01 on lexical tokens). A character stream can be converted into a stream 
of lexical tokens by a simple process of lexicalization which checks for a small number of delimiter 
characters, which indicate the termination of one lexical token and possibly the beginning of the next 
lexical token. Any consecutive sequence of whitespace characters acts as a separator between lexical 
tokens (except within quoted strings and names; see below). Certain characters are reserved for special 
use as the first character in a lexical item. The double-quote (U+0022) character is used to start and 
end names which contain delimiter characters, the single-quote (apostrophe U+002C) character is used 
to start and end quoted strings, which are also lexical items which may contain delimiter characters, 
and the equality sign shall be a single lexical item when it is the first character of an item.

The backslash \ (reverse solidus U+005C) character is reserved for special use. Followed by the letter 
u or U and a four- or six-digit hexadecimal code, respectively, it is used to transcribe non-ASCII Unicode 
characters in an ASCII character stream, as explained above. Any string of this form in an ASCII string 
rendering plays the same Common Logic syntactic role as a single ordinary character. The combination 
\' (U+005C, U+002C) is used to encode a single quote inside a Common Logic quoted string, and similarly, 
the combination \" (U+005C, U+0022) indicates a double quote inside a double-quoted enclosed name 
string. In both cases, a backslash is indicated by two backslashes \\ (U+005C, U+005C). Any other 
occurrence of the backslash character is an error. These inner-quote conventions apply in both ASCII 
and full Unicode renderings.
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A.2.2	 Lexical syntax

A.2.2.1	 General

A distinction is made between lexical and syntactic constructs for convenience in dividing up the 
presentation into two parts. This subclause may help implementers in identifying logical tokens that 
make up syntactic expressions, as shown in the next subclause, A.2.3. Implementations are not required 
to adhere to this distinction.

A.2.2.2	 White space

white = space U+0032 | tab U+0009 | line U+0010 | page U+0012 | return U+0013 ;

A.2.2.3	 Delimiters

Single quote (apostrophe) is used to delimit quoted strings, and double quote to delimit enclosed names, 
which obey special lexicalization rules. Quoted strings and enclosed names are the only CLIF lexical 
items which can contain whitespace and parentheses. Parentheses elsewhere are self-delimiting; they 
are considered to be lexical tokens in their own right. Parentheses are the primary grouping device in 
CLIF syntax.

open = '(' ;

 

close = ')' ; 

 

stringquote = ''' ; 

 

namequote=  '"' ;

 

backslash=  '\' ;

A.2.2.4	 Characters

char is all the remaining ASCII non-control characters, which can all be used to form lexical tokens (with 
some restrictions based on the first character of the lexical token). This includes all the alphanumeric 
characters.

char = digit | '~' | '!' | '#' | '$' | '%' | '^' | '&' | '*' | '_' | '+' | '{' | '}' | '|' |

     ':' |    '<' | '>' | '?' | '`' | '-' | '=' | '[' | ']' |   ';'| ',' | '.' | '/' | 'A' |

     'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' |

     'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' | 'a' | 'b' | 'c' |

     'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' |

     'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' ;

 

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;

 

hexa = digit | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' ;

A.2.2.5	 Quoting within strings

Certain character sequences are used to indicate the presence of a single character. nonascii is the set of 
characters or character sequences which indicates a Unicode character outside the ASCII range.
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For input using a full Unicode character encoding, this production should be ignored and nonascii 
should be understood instead to be the set of all non-control characters of Unicode outside the ASCII 
range which are supported by the character encoding. The use of the \uxxxx and \Uxxxxxx sequences 
in text encoded using a full Unicode character repertoire is deprecated.

innerstringquote is used to indicate the presence of a single-quote character inside a quoted string. A 
quoted string can contain any character, including whitespace; however, a single-quote character can 
occur inside a quoted string only as part of an innerstringquote, i.e. when immediately preceded by a 
backslash character. The occurrence of a single-quote character in the character stream of a quoted 
string marks the end of the quoted string lexical token unless it is immediately preceded by a backslash 
character. Inside enclosed name strings, double quotes are treated exactly similarly. Innernamequote is 
used to indicate the presence of a double-quote character inside an enclosed name.

nonascii = '\u' , hexa, hexa, hexa, hexa | '\U' , hexa, hexa, hexa, hexa, hexa, hexa ;

 

innerstringquote = '\'' ; 

 

innernamequote = '\"' ; 

 

innerbackslash= '\\'

 

numeral = digit , { digit } ;

Sequence markers are a distinctive syntactic form with a special meaning in Common Logic. Note that a 
bare ellipsis without any text (i.e. '...') is itself a sequence marker.

seqmark = '...' , { char } ;

Single quotes are delimiters for quoted strings; double quotes for enclosed names.

An enclosed name is simply a name which may contain characters which would break the lexicalization, 
such as “Mrs Norah Jones” or “Girl(interrupted)”; like any other name, it may denote anything. The 
surrounding double-quote marks are not considered part of the name, which is defined to be the 
character string obtained by removing the enclosing double-quote marks and replacing any internal 
occurrences of an innernamequote by a single double-quote character. In the case of double-quoted 
numerals, a new symbol is assigned to this interpretable name during parsing into the abstract 
syntax. It is recommended to use the enclosed-name syntax when writing URIs, URI references and 
IRIs as names, since these Web identifiers may contain characters which would otherwise break CLIF 
lexicalization: in particular, Xpath-compliant URI references will often end in a closing parenthesis.

A quoted string, in contrast, is an expression with a fixed semantic meaning: it denotes a text string 
similarly related to the string inside the quotes.

A.2.2.6	 Quoted strings

Quoted strings and enclosed names require a different lexicalization algorithm than other parts of CLIF 
text, since parentheses and whitespace do not break a quoted text stream into lexical tokens.

When CLIF text is enclosed inside a text or document which uses character escaping conventions, the 
Common Logic quoted string conventions here described are understood to apply to the text described 
or indicated by the conventions in use, which should be applied first. Thus, for example, the content 
of the XML element <cl- text>&apos;a\&apos;b&lt;c&apos</cl-text> is the CLIF syntax 
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quoted string 'a\'b<c' which denotes the five-character text string a'b<c. Considered as bare CLIF text, 
however, &apos;a\&apos;b&lt;c&apos would simply be a rather long name.

quotedstring  = stringquote,  { white | open | close | char | nonascii  | namequote  |

      innerstringquote | innerbackslash }, stringquote ;

 

enclosedname  = namequote,  { white | open | close | char | nonascii  | stringquote  |

      innernamequote }, namequote

A.2.2.7	 Reserved tokens

reservedelement consists of the lexical tokens which are used to indicate the syntactic structure of 
Common Logic expressions. These may not be used as names in CLIF text.

reservedelement = '='  |  'and'  |  'or'  |  'iff'  |  'if'  |  'forall'  |  'exists'  |

      'not' | 'cl:text' |  'cl:ttl' | 'cl:imports'  |  'cl:restrict'  |  'cl:indiscourse' |

      'cl:outdiscourse'  |  'cl:comment' | 'cl:prefix' ;

A.2.2.8	 Name character sequence

A namecharsequence is a lexical token which does not start with any of the special characters. Note that 
namecharsequences may not contain whitespace or parentheses, and may not start with a quote mark 
although they may contain them. Numerals and sequence markers are not namecharsequences.

namecharsequence  = ( char  , { char  | stringquote  | namequote  | backslash  } ) - (

      reservedelement | numeral | seqmark ) ;

A.2.2.9	 Lexical categories

The task of a lexical analyser is to parse the character stream into consecutive, non-overlapping 
lexbreak and nonlexbreak strings, and to deliver the lexical tokens it finds as a stream of tokens to the 
next stage of syntactic processing. Lexical tokens are divided into eight mutually disjoint categories: 
the open and closing parentheses, numerals, quoted strings (which begin and end with '''), sequence 
markers (which begin with '...'), enclosed names (which begin and end with '"'), and namesequences 
and reserved elements.

lexbreak  = open | close | white , { white } ;

 

nonlexbreak  = numeral  | quotedstring  | seqmark  | reservedelement  | namecharsequence  |

     enclosedname ;

 

lexicaltoken  = open | close | nonlexbreak ;

 

charstream = { white } , { lexicaltoken, lexbreak }  ;
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A.2.3	 Expression syntax

A.2.3.1	 Term sequence

Both terms and atomic sentences use the notion of a sequence of terms representing a vector of 
arguments to a function or relation. Sequence markers are used to indicate a subsequence of a term 
sequence; terms indicate single elements.

termseq = { term  | seqmark } ;

 

cseqmark = seqmark | ( open, 'cl:comment', quotedstring , seqmark , close ) ;

A.2.3.2	 Name

A name is any lexical token which is understood to denote an element. The names which have a fixed 
meaning from those which are given a meaning by an interpretation are distinguished.

interpretedname =  numeral | quotedstring | ( open, 'cl:comment', quotedstring , (numeral |

      quotedstring) , close ) ;

 

interpretablename =  namecharsequence | enclosedname |( open, 'cl:comment', quotedstring ,

      interpretablename , close );

 

name = interpretedname | interpretablename ;

A.2.3.3	 Term

Names count as terms, and a functional term consists of an operator, which is itself a term, together with 
a vector of arguments. Terms may also have an associated comment, represented as a quoted string (in 
order to allow text which would otherwise break the lexicalization). Comment wrappers syntactically 
enclose the term they comment upon.

term = name | ( open, operator, termseq, close ) | ( open, 'cl:comment', quotedstring , 

     term, close ) ;

 

operator = term  ;

A.2.3.4	 Equation

Equations are distinguished as a special category because of their special semantic role and special 
handling by many applications. The equality sign is not a name.

equation = open, '=', term, term, close ;

A.2.3.5	 Sentence

Like terms, sentences may have enclosing comments. Note that comments may be applied to sentences 
which are subexpressions of larger sentences.

sentence = atomsent | boolsent | quantsent | commentsent ;

A.2.3.6	 Atomic sentence

Atomic sentences are similar in structure to terms, but in addition, the arguments to an atomic sentence 
may be represented using role-pairs consisting of a role-name and a term. Equations are considered to 
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be atomic sentences, and an atomic sentence may be represented using role-pairs consisting of a role-
name and a term.

atomsent = equation | atom ;

 

simple_sentence = ( open, predicate , termseq, close ) ;

 

predicate =  term ;

A.2.3.7	 Boolean sentence

Boolean sentences require implication and biconditional to be binary, but allow conjunction and 
disjunction to have any number of arguments, including zero; the sentences (and) and (or) can be used 
as the truth-values true and false, respectively.

boolsent = ( open, ('and' | 'or') , { sentence }, close ) | ( open, ('if' | 'iff') , 

     sentence , sentence, close ) | ( open, 'not' , sentence, close ;

A.2.3.8	 Quantified sentence

Quantifiers may bind any number of variables, and bound variables may be restricted to a category 
indicated by a term.

quantsent  = open, ('forall' | 'exists') ,  boundlist, sentence, close ;

 

boundlist = open, bvar, { bvar } , close ;

 

bvar = interpretablename |  cseqmark |

 

       ( open, (interpretablename | cseqmark), term, close ) ;

A.2.3.9	 Commented sentence

A comment may be applied to any sentence, so comments may be attached to sentences which are 
subexpressions of larger sentences.

commentsent = open, 'cl:comment', quotedstring , sentence , close ;

A.2.3.10	 Titling

CLIF titling gives a text a name.

titling = open, 'cl:ttl', interpretable  name , text , close ;

﻿

© ISO/IEC 2018 – All rights reserved� 31



﻿

ISO/IEC 24707:2018(E)

A.2.3.11	 Discourse statement

A CLIF discourse statement is either an in-discourse statement (that specifies the set of terms which 
denote elements in universe of discourse) or an out-of-discourse statement (that specifies the set of 
terms which do not denote elements in the universe of discourse).

indiscourse = open, 'cl:indiscourse', term, {term} , close ;

 

outdiscourse = open, 'cl:outdiscourse', term, {term} , close ;

 

discoursestatement = indiscourse | outdiscourse ;

A.2.3.12	 Statement

A CLIF statement is either a titling or a discourse statement, optionally with a comment.

statement = titling | discoursestatement | ( open, 'cl:comment', quotedstring , statement , 

      close ) ;

A.2.3.13	 Importation

A CLIF importation contains a title that provides an identifier to an external Common Logic text.

importation = open, 'cl:imports', interpretablename , close ;

A.2.3.14	 Domain restriction

Domain restrictions are named text segments which represent a text intended to be understood in 
a “local” context, where the name indicates the domain of the quantifiers in the text. The text name 
shall not be a numeral or a quoted string. Note that text and domain restriction are mutually recursive 
categories, so that domain restrictions may be nested.

domainrestriction =  open, 'cl:restrict , term , text, close;

A.2.3.15	 Text

CLIF text is a text construction, importation, or domain restriction.

textconstruction = open, 'cl:text', { sentence | statement | text },  close ; 

 

prefixdeclaration = open, 'cl:prefix', (quotedstring - 'cl'), interpretablename, close ; 

 

commenttext = open, 'cl-comment', quotedstring, {prefixdeclaration}, cltext, close ;

 

text  = textconstruction | domainrestriction | importation |  commenttext ;

 

cltext = {text} ;

﻿

32� © ISO/IEC 2018 – All rights reserved



﻿

ISO/IEC 24707:2018(E)

A.3	 CLIF semantics

The semantics of CLIF is equivalent to the semantics of the abstract CL syntax in 6.2.

NOTE	 The interpretation of any expression of CLIF is then determined by the entries in Table  A.1. The 
notation <T1 … Tn> indicates a term sequence when referring to the syntax, and a sequence, i.e. an element of UI*, 
when referring to the semantics. The first column indicates links to rows in Table 2.

Table A.1 — CLIF semantics

If E is an expression of the form Then I(E) =
E1 A decimal numeral The natural number denoted by the decimal numeral
E1 A quoted string ‘s’ The Unicode character string formed by removing 

the outer single quotes and replacing escaped inner 
substrings by their Unicode equivalents

E1, E2 An interpretable name I(E) = intI(E)
E3 A term sequence <T1 … Tn> starting with a 

term T1
I(E) = <I(T1)>;I(<T2 … Tn>)

E4 A term sequence T1 … Tn starting with a  
sequence marker T1

I(E) = I(T1); I(<T2 … Tn>)

E5 A term (O T1 … Tn) I(E) = funI(I(O))(I(<T1 … Tn>)
A name, term or sequence marker  
(cl-comment ‘string’ T)

I(E) = I(T)

E6 An equation (= T1 T2) I(E) = true if I(T1) = I(T2); otherwise, I(E) = false
E7 An atomic sentence (P T1 … Tn) I(E) = true if I(<T1 … Tn>) is in relI(I(P)); otherwise, 

I(E) = false
E8 A Boolean sentence (not P) I(E) = true if I(P) = false; otherwise, I(E) = false
E9 A Boolean sentence (and P1 … Pn) I(E) = true if I(P1) =…I(Pn) = true; otherwise,  

I(E)= false
E10 A Boolean sentence (or P1 … Pn) I(E) = false if I(P1) = …I(Pn) = false; otherwise, 

I(E) = true
E11 A Boolean sentence (if P Q) I(E) = false if I(P) = true and I(Q) = false; otherwise, 

I(E) = true
E12 A Boolean sentence (iff P Q) I(E) = true if I(P) = I(Q); otherwise, I(E) = false

A sentence or statement (cl:​comment 
“string” P)

I(E) = I(P)

E13 A quantified sentence (forall (N1 … Nn) B) 
where N = {N1, …, Nn} is the set of bindings for 
the sentence

I(E) = true if for every N-variant J of I, J(B) = true; 
otherwise, I(E) = false

E14 A quantified sentence (exists (N1 … Nn) B) 
where N = {N1, …, Nn} is the set of bindings for 
the sentence

I(E) = true if for some N-variant J of I, J(B) = true; 
otherwise, I(E) = false

A well-formed expression (cl:​comment 
“string”)

I(E) = true

E17 An importation (cl:​imports N) I(E) = true
E19 A text construction (cl:​text T1 … Tn) I(E) = true if I(T1)= … = I(Tn) = true; otherwise, 

I(E) = false
E20 A titling (cl:​ttl N T) I(E) = true if ttlI(N) = T; otherwise, I(E) = false
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If E is an expression of the form Then I(E) =
E21 An in-discourse statement 

(cl:​indiscourse T1 … Tn)
I(E) = true if I(Ti) ∈ UDI ∪ UDI* for 1 ≤ i ≤ n;  
otherwise, I(E) = false

E22 An out-of-discourse statement 
(cl:​outdiscourse T1 … Tn)

I(E) = true if I(Ti) ∉ UDI ∪ UDI* for 1 ≤ i ≤ n; 
otherwise, I(E) = false

E23 A domain restriction 
(cl:​restricts N T)

The text
T [ T’ ])
where T’ is the text T in which every name or  
sequence marker X in the boundlist of a quantifier  
is replaced with (X N)

Not every CLIF syntactic form is covered by Table A.1. The interpretation of the remaining syntactic 
cases is defined by mapping them to other CLIF expressions whose interpretation is defined by Table A.1. 
The translation is defined by Table A.2, which defines the translation T [ E ] of the expression E.

Table A.2 — Mapping from additional CLIF forms to core CLIF forms

If E is Then E translates to T [ E ] =
A quantified sentence 
(forall ((N1 T1) …) B )

The quantified sentence 
(forall (N1) T [ (forall (…) (if (T1 N1) B) ]

A quantified sentence 
(exists ((N1 T1) …) B )

The quantified sentence 
(exists (N1) T [ (exists (…) (and (T1 N1) B) ]

The forms on the left side of Table A.2 can be considered to be “syntactic sugar” for their translations on 
the right, which are correspondingly referred to as their sour syntactic equivalents, and the subdialect 
of CLIF without these expressions forms as sour CLIF.

A.4	 CLIF conformance

A.4.1	 Syntactic conformity

The correspondence of CLIF syntax to the CL abstract syntax is indicated by the entries in the 
left column of Table  A.1, which refer to the entries in Table  2, and from which the full syntactic 
conformance of sour CLIF can be determined by inspection. Note that both interpretednames and 
interpretablenames are considered to be CL names. The syntactic conformity of CLIF then follows 
by virtue of the mapping defined by Table A.2. Note that the CLIF comments syntax treats a commented 
expression as identical in meaning to the expression without the comment, so the comment can be 
considered to be “attached” to the uncommented expression.

A.4.2	 Semantic conformity

CLIF is a CL semantic extension. To show that CLIF is a CL semantic extension, it is necessary to show 
that if I is a CLIF interpretation, then a CL interpretation shall exist which gives the same truth value to 
every sentence. This will be demonstrated by constructing J from I using the notation and conventions 
from above when describing I and from 6.2 when describing J.

J has the same vocabulary as I: UDJ  =  URJ  =  UI, relJ  =  relI and funJ  =  funI. The interpretation of 
interpretablenames is defined in the obvious way: intJ(x) = intI(x) for any interpretablename x. Since the 
interpretednames of a CLIF vocabulary are classified as CL names, intJ(x) shall also be defined when x is 
an interpretedname, and clearly, this is done to follow the first two entries in the CLIF semantic table, 
i.e. intJ(x) = the integer denoted by x when x is a decimal numeral, and intJ(x) = the Unicode character 
string denoted by x when x is a CLIF quoted string. It is then easy to see by a comparison of cases that 
J(s) = I(s) for any CLIF sentence s. If s is a text named N with an exclusion list L and a body B, then it shall 
be shown that J(s) = true just when [J<L](B) = true and rel(J(N)) = UR[ J<L]* (since UDJ = URJ). It is easy to 
see that this is exactly equivalent to the truth in I of sentences in the sour translation of the body text 
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defined by the second table above, as described in 6.2. (A formal proof would proceed by a structural 
induction on the sentences of the body text.) Hence, for any CLIF text t, J(t) = I(t).

It is not the case that if I is any CL interpretation of a CLIF text t, that there shall be a CLIF interpretation 
J which gives t the same value; for since CLIF interpretednames are treated simply as names in CL, J may 
assign them a value which does not conform to their fixed interpretation in CLIF, e.g. J(‘a string’) = 3 is 
not ruled out by the common logic semantics rules. This is a general phenomenon with any dialect which 
imposes predetermined, externally defined, meanings on some category of names, such as numerals or 
datatyped expressions. Such dialects may support inferences which cannot be expressed as CL axioms, 
and shall be classified as external CL semantic extensions. The subdialect of CLIF which does not use 
numerals or quoted strings is exactly semantically conformant, as can be shown by inverting the above 
construction of J from I.
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Annex B 
(normative) 

 
Conceptual Graph Interchange Format (CGIF)

B.1	 General

B.1.1	 General

This clause summarizes conceptual graphs and then describes a set of transformation (rewrite) rules 
that will be used with the rest of this annex to specify the description of the syntactic rules for CGIF.

The CG abstract syntax is a notation-independent specification of the expressions and components of 
the conceptual graph core, which is the minimal CG subset capable of expressing the full CL semantics. 
The semantics of any expression x in the CG core syntax is specified by the function cg2cl(x), which 
maps x to a logically equivalent expression in the CL abstract syntax. The function cg2cl is recursive, 
since a CG or its components may be nested inside other components.

B.2.1 to B.2.11 define the abstract CG syntax, the mapping of the abstract CG syntax to the abstract 
CL syntax, and the corresponding concrete syntax for CGIF core. Each subclause includes a formal 
definition, a mapping to CL, a syntax rule for CGIF concrete syntax, and a comment with explanation 
and examples. The syntax rules are written in Extended Backus-Naur Form (EBNF) rules, as specified 
by ISO/IEC 14977, and summarized in B.1.3. For each CGIF syntax rule, the lexical categories of A.2.2 
shall be assumed. In A.2.3.2, the category name includes a category enclosedname of strings enclosed 
in quotes and a category namesequence of strings that are not enclosed. To avoid possible ambiguities, 
the category CGname requires that all CLIF name sequences except those in the CGIF category identifier 
shall be enclosed in quotes:

   CGname  =  identifier | '"', (namesequence - identifier), '"' 
            | numeral | enclosedname | quotedstring; 
   identifier   =  letter, {letter | digit | "_"};
 

When CGIF is translated to CL, any CGname shall be translated to a CLIF name by removing any quotes 
around a name sequence. CLIF does not make a syntactic distinction between constants and variables, 
but in CGIF, any CGname that is not used as a defining label or a bound label shall be called a constant.

The start symbol for CGIF syntax shall be the category text, if the input is a complete text, or the 
category CG, if the input is a string that represents a conceptual graph.

B.1.2	 Conceptual graphs

A conceptual graph (CG) is a representation for logic as a bipartite graph with two kinds of nodes, called 
concepts and conceptual relations. The Conceptual Graph Interchange Format (CGIF) is a fully conformant 
dialect of Common Logic (CL) that serves as a serialized representation for conceptual graphs. This 
annex specifies the CGIF syntax and its mapping to the CL semantics. A nonnormative graphical 
notation, called the CG display form, is used in this document only in examples that illustrate the CG 
structures. The first example, Figure B.1, shows the display form that represents the sentence John is 
going to Boston by bus.
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Figure B.1 — CG display form for “John is going to Boston by bus”

In the display form, rectangles or boxes represent concepts, and circles or ovals represent conceptual 
relations. An arc with an arrowhead pointing toward a circle marks the first argument of the relation, 
and an arc pointing away from a circle marks the last argument. If a relation has only one argument, 
the arrowhead is omitted. If a relation has more than two arguments, the arrowheads are replaced by 
integers 1,...,n.

The CG in Figure B.1 has four concepts, each with a type label that represents the type of entity to which 
the concept refers: Person, Go, Boston, and Bus. Two of the concepts have constants that identify 
individuals: John and Boston. Each of the three conceptual relations has a type label that represents 
the type of relation: Agnt for the agent of going, Inst for the instrument, and Dest for the destination. 
The CG as a whole indicates that the person John is the agent of an instance of going with Boston as the 
destination and a bus as the instrument. The following is the CGIF representation of Figure B.1:

   [Go: *x] [Person: John] [City: Boston] [Bus: *y] 
   (Agnt ?x John) (Dest ?x Boston) (Inst ?x ?y)
 

In CGIF, the concepts are represented by square brackets and the conceptual relations are represented 
by parentheses. A character string prefixed with an asterisk, such as *x, is a defining label, which may 
be referenced by the bound label ?x, which is prefixed with a question mark. These strings, which are 
called coreference labels in CGIF, correspond to variables in Common Logic Interchange Format (CLIF). 
Unless prefixed with the symbol @every, a defining label is translated to an existential quantifier. The 
following is the equivalent CLIF representation of Figure B.1:

   (exists ((x Go) (y Bus)) 
      (and (Person John) (city Boston) 
           (Agnt x John) (Dest x Boston) (Inst x y)))
 

As this example illustrates, the differences between CGIF and CLIF result from the graph structure: 
the nodes of the graph have no implicit ordering, and the coreference labels such as *x or ?x represent 
connections of nodes rather than variables. Note that CGIF uses the prefixes * and ? to distinguish 
coreference labels from constants, but CLIF does not use any syntactic convention for distinguishing 
variables and constants.

Figure B.1 and its representation in CGIF illustrate the extended syntax of CGIF, which adds type labels 
on concepts and several other syntactic extensions to the core syntax. To convert the extensions of 
the extended syntax to the core CGIF, the type labels in the concept nodes are replaced by relations 
linked to the nodes. The concept [Go:*x], for example, becomes an untyped concept [*x] and a 
conceptual relation (Go ?x). The concept [Person: John] becomes [:John] (Person John), 
which may be simplified to just the relation (Person John). The following is the core CGIF and the 
corresponding CLIF:

   [*x] [*y] 
   (Go ?x) (Person John) (City Boston) (Bus ?y) 
   (Agnt ?x John) (Dest ?x Boston) (Inst ?x ?y) 
  
   (exists (x y) 
      (and (Go x) (Person John) (City Boston) (Bus y) 
           (Agnt x John) (Dest x Boston) (Inst x y)))
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To illustrate contexts and logical operators, Figure B.2 shows the display form for the sentence If a cat 
is on a mat, then it is a happy pet. As in Figure B.1, the rectangles represent concept nodes, but the two 
large rectangles contain nested conceptual graphs. Any concept that contains a nested CG is called a 
context; in this example, the type labels If and Then indicate that the proposition stated by the CG in 
the if-context implies the proposition stated by the CG in the then-context. The Attr relation indicates 
that the cat, also called a pet, has an attribute, which is an instance of happiness.

Figure B.2 — CG display form for “If a cat is on a mat, then it is a happy pet”

The dotted line connecting the concepts [Cat] and [Pet] is a coreference link, which indicates that 
they both refer to the same entity. In CGIF, the connection is shown by the defining label *x in the 
concept [Cat: *x] and the bound label ?x in the concept [Pet: ?x]:

   [If: [Cat: *x] [Mat: *y] (On ?x ?y) 
      [Then: [Pet: ?x] [Happy: *z] (Attr ?x ?z) ]]
 

In core CGIF, the type labels If and Then are replaced by a negation symbol ~ in front of the opening 
bracket, and the type labels are replaced by monadic relations:

   ~[ [*x] [*y] (Cat ?x) (Mat ?y) (On ?x ?y) 
      ~[ [*z] (Pet ?x) (Happy ?z) (Attr ?x ?z) ]]
 

CLIF:

   (not (exists (x y) (and (Cat x) (Mat y) (On x y) 
      (not (exists (z) (and (Pet x) (Happy z) (Attr x z)))))))
 

In core CGIF, the only quantifier is the existential. In extended CGIF, universal quantifiers may be used 
to represent the logically equivalent sentence For every cat and every mat, if the cat is on the mat, then it 
is a happy pet. In extended CGIF, the universal quantifier is represented as @every:

   [Cat: @every *x] [Mat: @every *y] 
   [If: (On ?x ?y) [Then: [Pet: ?x] [Happy: *z] (Attr ?x ?z) ]]
 

CLIF:

   (forall ((x Cat) (y Mat)) 
      (if (On x y) (and (Pet x) (exists ((z Happy)) (Attr x z)))))
 

In CGs, functions are represented by conceptual relations called actors. Figure  B.3 is the CG display 
form for the following equation written in ordinary algebraic notation:

   y = (x + 7)/sqrt(7)
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The three functions in this equation would be represented by three actors, which are drawn in 
Figure B.3, as diamond-shaped nodes with the type labels Add, Sqrt, and Divide. The boxes represent 
concept nodes, which contain the input and output values of the actors. The two empty concepts contain 
the output values of Add and Sqrt.

Figure B.3 — CL functions represented by actor nodes

In CGIF, actors are represented as relations with two kinds of arcs: a sequence of input arcs and a 
sequence of output arcs, which are separated by a vertical bar:

   [Number: *x] [Number: *y] [Number: 7] 
   (Add ?x 7 | [*u]) (Sqrt 7 | [*v]) (Divide ?u ?v | ?y)
 

In the display form, the input arcs of Add and Divide are numbered 1 and 2 to indicate the order in 
which the arcs are written in CGIF. The following is the corresponding CLIF:

   (exists ((x Number) (y Number)) 
      (and (Number 7) (= y (Divide (Add x 7) (Sqrt 7)))))
 

No CLIF variables are needed to represent the coreference labels *u and *v since the functional notation 
used in CLIF shows the connections directly.

All semantic features of CL, including the ability to quantify over relations and functions, are supported 
by CGIF. As an example, someone might say “Bob and Sue are related,” but not say exactly how they are 
related. The following sentences in CGIF and CLIF state that there exists some familial relation r that 
relates Bob and Sue:

   [Relation: *r] (Familial ?r) (#?r Bob Sue) 
  
   (exists ((r Relation)) (and (Familial r) (r Bob Sue)))
 

The concept [Relation: *r] states that there exists a relation r. The next two relations state that r 
is familial and r relates Bob and Sue. In CGIF, the prefix # indicates a bound coreference label used as a 
type label.

B.1.3	 EBNF Syntax Rules for CGIF

In order to describe the syntax of CGIF, the EBNF notation is used, in accordance with ISO/IEC 14977. 
The specifications in this annex use only the following subset of the features specified by ISO/IEC 14977. 
B.1.3 is intended as informative only, as ISO/IEC 14977 shall be considered the normative reference.

Terminal symbol. Any string enclosed in either single quotes or double quotes.

EXAMPLE	 

   "This is a quoted string." 'and so is this'
 

﻿

© ISO/IEC 2018 – All rights reserved� 39



﻿

ISO/IEC 24707:2018(E)

Nonterminal symbol. A name of a category in a syntax rule. For example, the following syntax rule 
contains two nonterminal symbols: one terminal symbol '";"', a defining symbol "=", a concatenation 
symbol ",", and a terminator symbol ";".

   syntaxRule  =  expression, ";";
 

Option. An expression enclosed in square brackets. It specifies zero or one occurrence of any string 
specified by the enclosed expression.

EXAMPLE	 

   [ "This string may or may not occur." ]
 

Iteration. An expression enclosed in curly braces. It specifies zero or more occurrences of any string 
specified by the enclosed expression.

EXAMPLE	 

   { "This string may occur many times." }
 

Concatenation. Two or more terms separated by commas.

   "Two kinds of quotes: ", "'", " and ", '"', "."
 

Exception. Two terms separated by a minus sign −, which specifies any string specified by the first 
term, but not the second. The following example specifies a sequence of zero or more digits that does 
not contain "6":

   {digit} - 6
 

Group. An expression enclosed in parentheses and treated as a single term. The following group 
encloses an exception that specifies a sequence of one or more digits by excluding the empty term:

   ({digit} - )
 

Alternatives. Two or more concatenations separated by vertical bars.

EXAMPLE	 

   "cat", "dog" | "cow", "horse", "sheep" | wildAnimal
 

Special sequence. Any string enclosed by question marks. These sequences shall not affect the syntax 
specified by the syntax rules, but they may be used to copy strings analysed by a syntax rule for later 
use by the rewrite rules specified in B.1.3.

EXAMPLE	 

   ?sqn?
 

Syntax rule. A nonterminal symbol followed by "=" followed by an expression and ending with ";". The 
following syntax rules define the syntax of the syntax rules used in Annex B.

   syntaxRule  =  expression, ";"; 
   expression  =  alternative, {"|" alternative} | term, "-", term; 
   alternative =  term [variable], {"," term [variable]}; 
   term        =  terminal | nonterminal | "[", expression, "]" 
                | "{", expression, "}" | "(", expression, ")" | empty; 
   terminal    =  "'", ({character - '"'} - empty), "'" 
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                | '"', ({character - "'"} - empty), '"'; 
   nonterminal =  identifier; 
   variable    =  "?", identifier, "?"; 
   identifier   =  letter, {letter | digit | "_"}; 
   empty       =  ;
 

These rules specify a subset of the syntax rules specified in ISO/IEC 14977:1996, 8.1. The rules imply 
that "," has higher precedence than "|", which has higher precedence than "=". Parentheses may be 
used to override the precedence or to make the grouping more obvious.

B.1.4	 Notation for rewrite rules

B.1.4.1	 General

The syntax of both core (see B.2) and extended CGIF (see B.3) is defined by rules in Extended Backus-
Naur Form (EBNF) rules as specified by ISO/IEC 14977. To specify the translation from core CGIF to 
Common Logic, B.2 uses a combination of EBNF rules and mathematical notation supplemented with 
English. To specify the translation from extended CGIF to core CGIF, B.3 uses a combination of EBNF 
rules in B.1.4 and the rewrite rules defined in B.1.4.2. The syntax rules in Annex B presuppose a lexical 
analysis stage that has subdivided the text into tokens as in ISO/IEC  2382:2015, 15.01.01 (on lexical 
tokens); therefore, at any point where a comma occurs in an EBNF rule, zero or more characters of 
white space may occur in the input text.

B.1.4.2	 Transformation rules

Each transformation rule shall define a function that analyses an input string and returns a sequence 
of one or more output strings. A transformation rule shall have three parts: a header, a syntax rule as 
defined in B.1.3, and zero or more rewrite rules. The first string in a header shall specify the name of the 
function, which shall also be the name of the nonterminal symbol defined by the syntax rule. The header 
shall also specify a variable whose value shall be the input string to be analysed by the syntax rule, and 
it shall specify a sequence of one or more output variables. If the syntax rule successfully analyses the 
input string from beginning to end, the rewrite rules, if any, are executed. The following are the syntax 
rules that define the syntax of the transformation rules; transRule is the start symbol.

  transRule = header, syntaxRule, {rewriteRule}, "end", ";";

  header = nonterminal, "(", variable, ")", "->",

      variable, {"," variable};

  rewriteRule = assignment | conditional;

  assignment = variable, "=", rewriteExpr, ";";

  conditional = "if", condition, ({rewrite rule} - empty),

      {"elif", condition, ({rewrite rule} - empty)},

      ["else", ({rewrite rule} - empty)], "end;"

  condition = "(", test, {"&", test}, ")";

  test = rewriteTerm, ["~"], "=", rewriteTerm;

  test = rewriteTerm, ["~"], "=", rewriteTerm;

  rewriteExpr = rewriteTerm {"," rewriteTerm};

  rewriteTerm = terminal | variable | funTerm;

  funTerm = identifier, "(", [funTerm, {"," funTerm}, ")";

The following nonterminal symbols from ISO/IEC  14977 shall be defined as in B.1.3: syntaxRule, 
terminal, nonterminal, variable, identifier, empty.

The function defined by a transformation rule shall translate the input string to the sequence of values 
of the output variables by copying substrings from the input and executing rewrite rules to transform 
those strings. The execution shall be determined by the following procedure.
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Any parsing algorithm may be used to the analyse the input string according to the specifications of the 
syntax rule. At the beginning of the analysis, all variables that occur in the transformation rule shall 
be initialized to the empty string. Although some parsing algorithms may assign values to variables 
during the parsing phase, the semantics shall not require those values to be accessible for executing 
any rewrite rules until after all parsing has finished.

Any variable x in the syntax rule shall occur immediately after some term t in that rule; there shall be 
no comma or other symbol separating t and x. The value assigned to x shall be the substring s of the 
input string that was matched to the pattern specified by t. If the alternative in which t occurs was not 
taken or if t matched the empty string, the value of x shall be empty.

After parsing has finished, the rewrite rules following the syntax rule are executed sequentially, unless 
one or more rewrite rules in the options of a conditional are skipped.

When an assignment is executed, the values of the terminals, variables, and functional terms on the 
right side of the rule shall be concatenated in the order in which they are written. The resulting string 
shall be assigned as the value of the variable on the left side of the rule.

A condition that occurs in a conditional is a conjunction of one or more tests for the equality or 
inequality of the values of two terms. An empty term, which is written as a blank, has the empty string 
as value. Therefore, the condition (?x?= & ?y?~= ) shall be true if and only if ?x? is empty and ?y? 
is not empty.

When a conditional is executed, the conditions for the if, elif, and else options shall be evaluated 
sequentially. (The condition for else shall always be true.) When the first true condition is found, the 
rewrite rules following that condition shall be executed sequentially until the next occurrence of elif, 
else, or end for that rule is found. Then execution shall continue with the rewrite rule, if any, which 
occurs after the end marker for that conditional.

When the end marker for the transformation rule is reached, execution shall stop. Then the value of the 
function named in the header shall be a sequence of the values of all the output variables. Any output 
variable that had not been assigned a value shall have the value of the empty string. Any output variable 
that has the same identifier as some variable in the syntax rule shall have the value assigned to it from the 
input string. No assignment shall change the value of any variable after a value has been assigned to it.

According to this specification, some transformation rules may have no rewrite rules. The following 
rule, for example, defines an identity function, whose output is identical to its input:

   identity(?s?) -> ?t?;  
   identity = {character} ?t?;  
   end;
 

The input string s is parsed by the syntax rule as a string of zero or more characters. That string is 
assigned to t, which becomes the output of the function.

The value assigned to a variable as a result of the parse is always some substring from the input. Except 
for the identity function, the output values generated by the rewrite rules for any syntactic category 
are often very different from any substring of the input. As an example, the transformation rule named 
negation translates a negation from extended CGIF to core CGIF:

   negation(?b?) -> ?ng?; 
   negation  =  "~[", [comment] ?cm?, CG ?x?, [endComment] ?ecm?, "]"; 
   ?ng?  =  "~[", ?cm?, CG(?x?), ?ecm?, "]"; 
   end;
 

The strings for the opening comment cm and the ending comment ecm are copied unchanged from input 
to output. But the nested CG, whose input string x is in extended CGIF, is very different from the core 
CGIF output of CG(x). The transformation rules for the syntactic categories of extended CGIF behave like 
compilers that translate input strings for extended CGIF categories to output strings in core CGIF.
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B.1.4.3	 Functions used in rewrite rules

Any function defined by a transformation rule may be used in a rewrite rule. It may even be used 
recursively in the same transformation rule that defines it. In addition to the functions defined by 
transformation rules, the following seven functions shall be available for use in processing strings or 
sequences in any rewrite rule.

—	 first(s) shall return the first or only element of a sequence s. If length(s)="0", first(s) shall be empty.

—	 gensym() shall return a string that represents a CGname that shall be different from any other 
CGname in the current text. Each time gensym() is invoked, the string it returns shall also be 
different from any string it had previously returned.

—	 length(s) shall return the length of the sequence s as a string of one or more characters that represent 
the decimal digits of the length. If s is empty, length(s) shall be "0". If s is a single element, length(s) 
shall be "1".

—	 map( f,s) shall apply a function f to each element of a sequence s in order to return the sequence of 
values of f(x) for each x in s.

—	 second(s) shall return the second element of a sequence s. If length(s)<"2", second(s) shall be empty.

—	 substitute(s,t,x) shall return the result of substituting the string s for every occurrence of the string 
t in the string x. If t does not occur in x, substitute(s,t,x) shall be x.

—	 third(s) shall return the third element of a sequence s. If length(s)<"3", third(s) shall be empty. The 
English phrase “CG name” shall refer to any syntactic token of the category “CGname”.

B.2	 CG core syntax and semantics

B.2.1	 actor

Definition: A conceptual relation ac=(r,s), in which r shall be a reference called the type label of ac and 
the arc sequence s=s1,s2 shall consist of an arc sequence s1, called the input arcs, and a single arc s2, 
called the output arc.

CL: cg2cl(ac) shall be an equation eq: the first term of eq shall be the name cg2cl(s2), and the second term 
of eq shall be the functional term with operator cg2cl(r) and term sequence cg2cl(s1) with an optional 
sequence marker sqn.

CGIF:

   actor  =  "(", [comment], [ "#", "?"], CGname, arcSequence, "|", arc,  
                  [endComment], ")";
 

Like other conceptual relations, an actor node is enclosed in parentheses. The symbol # shall mark a 
bound coreference label that is used as a type label.

Comment: Although an actor is defined as a special case of a conceptual relation, the CG core syntax 
restricts an actor to exactly one output arc so that it may be mapped to a CL function. The input arcs 
may include a sequence marker at the end, but no sequence marker shall be used for the output arc. The 
extended CGIF syntax allows actors to have any number of output arcs.

B.2.2	 arc

Definition: A reference ar that occurs in an arc sequence of some conceptual relation.

CL: cg2cl(ar) shall be the name n without the marker of the reference ar.

CGIF:
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   arc  =  [comment], reference;
 

Comment: The function cg2cl maps an arc to the name of the reference and omits any marker that 
distinguishes a bound label.

B.2.3	 arcSequence

Definition: A pair as=(s,sqn) consisting of a sequence s of zero or more arcs followed by an optional 
sequence marker sqn.

CL: cg2cl(as) shall be a term sequence ts=cg2cl(s) and the sequence marker sqn if present in as. The term 
sequence ts shall be map(cg2cl,s), where map is a function that applies cg2cl to each arc of the sequence 
s to extract the name that becomes the corresponding element of the sequence ts.

CGIF:

   arcSequence  =  {arc}, [[comment], "?", seqmark];
 

Any sequence marker in an arc sequence as shall be identical to the sequence marker in some existential 
concept that is directly contained in a context that contains the actor or conceptual relation that has the 
arc sequence as.

Comment: The option of having a sequence marker in an arc sequence implies that a conceptual relation 
may have a variable number of arcs.

B.2.4	 comment

Definition: A string cm, which shall have no effect on the semantics of any CGIF expression x in which 
s occurs.

CL: cg2cl(cm) shall be the substring s of cm that does not include the delimiters "/*" and "*/" of a 
comment or the opening ";" of an end comment. The string s shall be included in a CL representation 
for a comment and shall be associated with the CL syntactic expression to which the CGIF expression x is 
translated. The syntax rules for comment and end comment are identical for core CGIF and extended CGIF.

CGIF:

   comment = "/*", {(character-"*") | [ "*", (character-"/")]}, [ "*"], "*/"; 
  
   endComment  =  ";", {character - ("]" | ")")};
 

The string enclosed by the delimiters "/*" and "*/" shall not contain a substring "*/". The string of 
an end comment may contain any number of ";", but it shall not contain "]" or ")".

Comment: A comment may occur immediately after the opening bracket of any concept, immediately 
after the opening parenthesis of any actor or conceptual relation, immediately before any arc, or 
intermixed with the concepts and conceptual relations of any conceptual graph. An end comment 
may occur immediately before the closing bracket of any concept or immediately before the closing 
parenthesis of any conceptual relation or actor. Since the syntax of comments is identical in core and 
extended CGIF, no additional syntax rules for comments shall be included in B.3.

B.2.5	 concept

Definition: A pair c=(R,g) where R shall be either a defining label or a set of zero or more references, 
and g shall be a conceptual graph that is said to be directly contained in c.

CL: cg2cl(c) shall be the sentence s determined by one of the first three options below.

Context. If R is empty, then s=cg2cl(g). In this case, c shall be called a context.
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Existential. If g is blank and R is a defining label, then the sentence s shall be a quantified sentence of 
type existential with a set of names {cg2cl(R)} and with a body consisting of a Boolean sentence of type 
conjunction and zero components. In this case, c shall be called an existential concept.

Coreference. If g is blank and R is a set of one or more references, then let r be any reference in R. The 
sentence s shall be a Boolean sentence of type conjunction whose components are the set of equations 
with first term cg2cl(r) and second term cg2cl(t) for every reference t in R−{r}. In this case, c shall be 
called a coreference concept.

Syntactically invalid. The case in which g is nonblank and R is not empty is not permitted in core CGIF, 
and no translation to CL is defined.

CGIF:

   concept  =  context | existentialConcept | coreferenceConcept; 
  
   context  =  "[", [comment], CG, [endComment], "]"; 
  
   existentialConcept  =  "[", [comment], "*", (CGname | seqmark),  
                               [endComment], "]"; 
  
   coreferenceConcept  =  "[", [comment], ":", {reference}-,  
                               [endComment], "]";
 

A context shall be a concept that contains a CG; if the CG is blank, the context is said to be empty, even 
if it contains one or more comments. Any comment that occurs immediately after the opening bracket 
shall be part of the concept; any other comments shall be part of the nested CG. A coreference concept 
shall contain one or more constants or bound coreference labels; in EBNF, an iteration followed by a 
minus sign with nothing after it indicates at least one iteration.

Comment: A context is represented by a pair of brackets, which serve to limit the scope of quantifiers 
of the nested CG; an empty context [ ] is translated to CLIF as (and), which is true by definition. An 
existential concept is represented by a concept such as [*x], which is translated to CLIF as (exists 
(x) (and)); this sentence asserts that there exists some x. A coreference concept is represented by a 
concept that contains a set of constants or bound coreference labels, such as [: ?x Cicero Tully 
?abcd], which is translated to a conjunction of equations in CLIF:

   (and (= x Cicero) (= x Tully) (= x abcd))
 

A coreference concept with just one reference, such as [:?x], would become an empty conjunction 
(and). Since it has no semantic effect, such a concept may be deleted.

B.2.6	 conceptual graph (CG)

Definition: A triple g=(C,R,A), where C is a set of concepts, R is a set of conceptual relations, and A is the 
set of arcs that shall consist of all and only those arcs that occur in the arc sequence of some conceptual 
relation in R. If C and R are both empty, then A is also empty, and g is called a blank conceptual graph.

CL: Let E be the subset of C of existential concepts; and let X be the set of all concepts, conceptual 
relations, and negations of g except for those in E.

Let B be a Boolean sentence of type conjunction with components consisting of all the sentences cg2cl(x) 
for every x in X.

If E is empty, then cg2cl(g) is B.

If E is non-empty, then cg2cl(g) is a quantified sentence of type existential with the set of names 
consisting of the CGname of the defining coreference label of every e in E and with the body B.

CGIF:
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   CG  =  {concept | conceptualRelation | negation | comment};
 

A conceptual graph consists of an unordered set of concepts, conceptual relations, negations, and 
comments. Formally, a negation is a pair consisting of a concept and a conceptual relation that are never 
separated in CGIF.

Comment: According to this specification, every CG maps to either a quantified sentence of type 
existential or to a Boolean sentence of type conjunction. If the conjunction has only one component, 
then the sentence could be simplified to an equality, an atomic sentence, or a Boolean sentence of type 
negation. If g is blank, the corresponding CLIF is (and), which is true by definition. Although there is 
no required ordering of the nodes of a CG, some software that processes CGIF may run more efficiently 
if the defining coreference labels occur before the corresponding bound labels; the simplest way to 
ensure that condition is to move the existential concepts to the front of any context.

B.2.7	 conceptual relation

Definition: A pair cr=(r,s), in which r shall be a reference called the type label of cr and s shall be an arc 
sequence.

CL: cg2cl(ac) shall be an atomic sentence whose predicate is cg2cl(r) and whose term sequence is cg2cl(s).

CGIF:

   conceptualRelation  =  ordinaryRelation | actor; 
  
   ordinaryRelation  =  "(", [comment], [ "#", "?"], CGname, arcSequence,  
                             [endComment], ")";
 

An ordinary conceptual relation has just one sequence of arcs. An actor partitions the sequence of arcs 
in two subsequences. A bound coreference label that is used as a type label shall begin with the string 
"#?" or “#?”.

Comment: By allowing the type label of a conceptual relation to be a bound label, CGIF supports the 
CL ability to quantify over relations and functions. As an example, see the CGIF at the end of B.1.2 that 
represents the sentence “Bob and Sue are related.”

B.2.8	 negation

Definition: A pair ng=(c,cr), in which c shall be a concept and cr shall be a conceptual relation whose 
type label r shall be a constant with CGname Neg. The pair (c,cr) shall be treated as a single unit.

CL: cg2cl(ng) shall be a Boolean sentence of type negation with the component cg2cl(g).

CGIF:

   negation  =  "~", context;
 

A negation shall begin with the symbol ~. Although a negation is formally defined as a pair consisting 
of a context and a conceptual relation, the two elements of the pair shall not be expressed as separate 
nodes in CGIF.

Comment: A negation negates the proposition stated by the nested conceptual graph g. For examples, 
see the CGIF for Figure B.2. The negation of the blank CG, written ~[ ], is always false; the corresponding 
CLIF is (not (and)).

B.2.9	 reference

Definition: A pair r=(m,n) where n is a CG name and m is a marker that shall designate a constant or a 
bound label.
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CL: cg2cl(r) shall be the name n. The marker m shall be ? for a bound label and the empty string "" for 
a constant.

CGIF: 

   reference  =  ["?"], CGname;
 

This syntax of references is identical in core CGIF and extended CGIF. Any CG name that consists of a 
quoted namesequence shall be translated to a CL name by erasing the enclosing quotes; all other CG 
names are identical to the corresponding CL names. Sequence markers are identical in CLIF and CGIF.

Comment: Since references are identical in core and extended CGIF, no additional syntax rules for 
references are included in B.3.

B.2.10	scope

Definition: A set of contexts S associated with a concept x that has a defining label with CG name n.

The following terms are used in defining the constraints on defining labels in both core and 
extended CGIF:

—	 constant, a CG name without any prefix.

—	 bound coreference label, a CG name with the prefix "?".

—	 bound sequence label, a sequence marker with the prefix "?".

—	 bound label, a bound coreference label or a bound sequence label.

—	 defining coreference label, a CG name with the prefix "*".

—	 defining sequence label, a sequence marker with the prefix "*".

—	 defining label, either a defining coreference label or a defining sequence label.

According to this definition, a defining sequence label shall begin with the string “*…” and a bound 
sequence label shall begin with the string “?...”.

Constraints: The verb contains shall be defined as the transitive closure of the relation directly contains, 
and it shall satisfy the following constraints in both core and extended CGIF.

If a context c directly contains a conceptual graph g, then c directly contains every node of g and every 
component of those nodes, except for those that are contained in some context of g.

If a context c directly contains a context d, then c indirectly contains everything that d contains.

The phrase "c contains x" is synonymous with "c directly or indirectly contains x".

If a concept x with a defining label with name n is directly contained in some context c, then c shall not 
contain any concept other than x with a defining label with the same CG name n, and c shall be in the 
scope S associated with the concept x.

If a context c is in the scope S associated with a concept x, then any context d directly contained in c 
shall also be in the scope S, unless d directly contains a concept y with a defining label with the same CG 
name as the defining label of x.

Every bound label with CG name n shall be in the scope associated with some concept with a defining 
label with CG name n.

No constant with CG name n shall be in the scope associated with some concept with a defining label 
with CG name n.
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These constraints ensure that for every CGIF sentence s, the translation cg2cl(s) shall obey the CL 
constraints on scope of quantifiers. Since the constraints on scope are identical in core and extended 
CGIF, no additional constraints shall be included in B.3.

B.2.11	text

Definition: A context c that is not contained directly or indirectly in any context.

CL: cg2cl(c) shall be text consisting of the sentence cg2cl(g), where g is the conceptual graph directly 
contained in c. If a CG name n occurs immediately before g in the CGIF specification of the context c, 
then n shall be the name of the CL text.

CGIF:

   text  =  "[", [comment], "Proposition", ":", [CGname], CG,  
                 [endComment], "]";
 

Since a text is not contained in any context, it shall also be called the outermost context.

Comment: This syntax rule uses the syntax of extended CGIF, which allows a context to have a type 
label and a CG name. Since core CGIF syntax is a subset of extended CGIF syntax, text in core CGIF can be 
used by any processor that accepts extended CGIF. Context brackets may be used to group the concepts 
and relations of a text into units that correspond to CLIF sentences. That grouping is a convenience that 
has no effect on the semantics.

B.3	 Extended CGIF syntax

B.3.1	 General

Extended CGIF is a superset of core CGIF, and every syntactically correct sentence of core CGIF is also 
syntactically correct extended CGIF. Its most prominent feature is the option of a type label or a type 
expression on the left side of any concept. In addition to types, extended CGIF adds the following features 
to core CGIF:

—	 more options in concepts, including universal quantifiers;

—	 Boolean contexts for representing the operators or, if, and iff;

—	 the option of allowing concept nodes to be placed in the arc sequence of conceptual relations;

—	 the ability to import text into a text.

These extensions are designed to make sentences more concise, more readable, and more suitable as 
a target language for translations from natural languages and from other CL dialects, including CLIF. 
None of them, however, extend the expressive power of CGIF beyond the CG core, since the semantics 
of every extended feature is defined by its translation to core CGIF, whose semantics is defined by its 
translation to CL.

B.3 defines the concrete syntax of extended CGIF and the translation of each extended feature to 
core CGIF. This translation has the effect of specifying a function CG, which translates any sentence 
s of extended CGIF to a semantically equivalent sentence CG(s) of core CGIF. The combined functions 
cg2cl(CG(s)) translate s to a logically equivalent sentence in the CL abstract syntax.

The function CG and other functions for the other CGIF categories are defined by transformation rules 
whose notation is specified in B.1.4.1. Two categories, comment and reference, have identical 
syntax in core and extended CGIF; for any comment cm in extended CGIF, comment(cm)=cm; and for 
any reference r in extended CGIF, reference(r)=r. For any other category X of core CGIF, the strings of 
category X are a proper subset of the extended CGIF strings of the same category.
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Since the definitions in B.2 specified the conceptual graph abstract syntax and its mapping to the 
abstract syntax of Common Logic, they used notation-independent constructs, such as sets. The 
definitions below specify the mapping from the concrete syntax of extended CGIF to the concrete syntax 
of core CGIF. Therefore, they are defined in terms of strings and functions that transform strings.

B.3.2	 actor

Definition: A string ac that shall contain a comment cm, a reference r called the type label, an arc 
sequence s1 called the input arcs, an arc sequence s2 called the output arcs, and an optional end comment 
ecm. The output arcs s2 shall not contain a sequence marker.

Translation: A conceptual graph g.

   actor(?ac?) -> ?g?; 
      actor  =  "(", [comment] ?cm?, (["#", "?"], CGname) ?r?, 
                arcSequence ?s1?, "|", {arc} ?s2?, [endComment] ?ecm?, ")"; 
      ?z1?   =  first(arcSequence(?s1?)); 
      ?z2?   =  first(arcSequence(?s2?)); 
      ?sqn?  =  third(arcsequence(?s1?)); 
      if (length(?s2?)="0") 
         ?cr? = "(", ?cm?, ?r?, ?z1?, ?sqn?, ?ecm?, ";0-output actor", ")"; 
      elif (length(?s2?)="1") 
         ?cr? = "(", ?cm?, ?r?, ?z1?, ?sqn?, "|", ?z2?, ?ecm?, ")"; 
      else ?cr? = "(", ?cm?, ?r?, ?z1?, ?sqn?, "/*|*/", ?z2?, ?ecm?, ")"; 
      end; 
      ?g?  =  second(arcSequence(?s1?)), second(arcSequence(?s2?)), ?cr?; 
      end;
 

If s2 has no output arcs, cr shall be an ordinary conceptual relation, as defined in B.3.7; but to show that 
cr was derived from an actor, an end comment "0-output actor" is inserted. If s2 has one output arc, cr 
shall be an actor, but cr differs from ac because the arcs are translated to core CGIF. If s2 has two or 
more output arcs, cr shall be an ordinary conceptual relation, but the comment "/*|*/" is inserted 
to distinguish the input arcs from the output arcs. The final rewrite rule puts cr after any conceptual 
graphs derived from the arc sequences.

Comment: As an example, the combined effect of the transformation rules for actors, arcs, arc 
sequences, and concepts would translate the following actor node:

   (IntegerDivide [Integer: *x] [Integer: 7] | *u *v)
 

to a six-node conceptual graph consisting of three concepts and three conceptual relations:

   [*x] (Integer ?x) (Integer 7) [*u] [*v] 
   (IntegerDivide ?x 7 /*|*/ ?u ?v)
 

The comment /*|*/ has no semantic effect in core CGIF or CL, but if preserved, it would enable a 
mapping back to extended CGIF to distinguish the input arcs from the output arcs. If the distinction 
is important for some application, axioms may be used to state the functional dependencies of the 
outputs on the inputs. For example, the CL relation that results from the translation of an actor of type 
IntegerDivide would satisfy the following constraint stated in CLIF:

   (exists (Quotient Remainder) (forall (x1 x2 x3 x4) 
      (iff (IntegerDivide x1 x2 x3 x4) 
           (and (= x3 (Quotient x1 x2)) (= x4 (Remainder x1 x2))))))
 

This sentence asserts that there exist functions Quotient and Remainder that determine the values 
of the third and fourth arguments of the relation IntegerDivide. The translation rules would not 
generate that axiom automatically, but it could be stated by a CGIF sentence that would be translated to 
the CLIF sentence:
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   [*Quotient] [*Remainder] 
   [[@every*x1] [@every*x2] [@every*x3] [@every*x4] 
   [Equiv: [Iff: (IntegerDivide ?x1 ?x2 | ?x3 ?x4)] 
           [Iff: (#?Quotient ?x1 ?x2 | ?x3) (#?Remainder ?x1 ?x2 | ?x4)]]]
 

To show that the existential quantifiers for [*Quotient] and [*Remainder] take precedence 
over the universal quantifiers for the four arguments, a pair of context brackets is used to enclose the 
concept nodes with universal quantifiers.

B.3.3	 arc

Definition: A string ar that shall contain an optional comment cm and either a reference r, a defining 
label with CG name n, or a concept c.

Translation: A pair (x,g) consisting of an arc x and a conceptual graph g.

   arc(?ar?) -> ?x?, ?g?; 
   arc = [comment] ?cm?, (reference ?r? | "*", CGname ?n? | concept ?c?); 
   if   (?r?~= )  ?x?  =  ?ar;  ?g?  =  ; 
   elif (?n?~= )  ?x?  =  ?cm?, "?", ?n?;  ?g?  =  "[*", ?n?, "]"; 
   else           ?x?  =  ?cm?, first(concept(?c?)); 
                  ?g?  =  third(concept(?c?)); 
   end; end;
 

If ar is a reference, x shall be ar unchanged, and g shall be blank. If ar contains a defining label, x shall be 
the result of replacing the marker * in ar with ?, and g shall be the concept [*n]. If ar contains a concept 
c, x shall be the result of replacing the concept c in ar with a reference r, and g shall be third(concept(c)).

Comment: As an example, if the arc ar is [Integer], the value of concept([Integer]) would be a CG 
name, such as g00023, and arc([Integer]) would be the pair consisting of the reference ?g00023 
and the conceptual graph [*g00023] (Integer ?g00023).

B.3.4	 arcSequence

Definition: A string as that shall contain a sequence s of zero or more arcs followed by an optional 
sequence marker sqn.

Translation: A triple (rs,g,sqn) consisting of a sequence of references rs, a conceptual graph g, and the 
sequence marker sqn.

   arcSequence(?as?) -> ?rs?, ?g?, ?sqn?; 
   arcSequence  =   {arc} ?s?, [[comment], "?", seqmark] ?sqn?; 
   ?rs? = map(first,map(arc,?s?)); 
   ?g? = map(second,map(arc,?s?)); 
   end;
 

Comment: The function map(arc,?s?) applies arc to each arc of s to generate a sequence of pairs 
consisting of a reference and a concept. Then map(first,map(arc,?s?)) extracts the sequence of 
references from the first element of each pair. Finally, map(second,map(arc,?s?)) extracts the 
sequence of concepts from the second element of each pair. The option of having a sequence marker in 
an arc sequence implies that a conceptual relation may have a variable number of arcs. An actor may 
have a variable number of input arcs, but the number of output arcs shall be fixed; therefore, the output 
arcs shall not have a sequence marker.

B.3.5	 boolean

Definition: A string b that shall contain a context bc, which shall not directly contain a reference or a 
defining label. The context bc shall have either a prefix "~" and no type label or no prefix and one of the 
following constants as type label: Either, Equiv, Equivalence, If, Iff, Then.

﻿

50� © ISO/IEC 2018 – All rights reserved



﻿

ISO/IEC 24707:2018(E)

Translation: A negation ng that shall be negation(b), eitherOr(b), ifThen(b), or equiv(b).

   boolean  =  negation | eitherOr | ifThen | equiv; 
  
   negation(?b?) -> ?ng?; 
   negation  =  "~[", [comment] ?cm?, CG ?x?, [endComment] ?ecm?, "]"; 
   ?ng?  =  "~[", ?cm?, CG(?x?), ?ecm?, "]"; 
   end; 
  
   ifThen(?b?) -> ?ng?; 
   ifThen  =  "[", [comment] ?cm1?, "If", [":"], CG ?ante?, 
                "[", [comment] ?cm2?, "Then", [":"], CG ?conse?,  
                   [endComment] ?ecm1?, "]", [endComment] ?ecm2?, "]"; 
   ?ng?    =  "~[", ?cm1?, CG(?ante?), 
                 "~[", ?cm2?, CG(?conse?), ?ecm1?, "]", ?ecm2?, "]"; 
   end; 
  
   equiv(?b?) -> ?ng?; 
   equiv = "[", [comment] ?cm1?, ("Equiv" | "Equivalence"), [":"], 
           "[", [comment] ?cm2?, "Iff", [":"], CG ?g1?, 
                [endComment] ?ecm2? "]", 
           "[", [comment] ?cm3?, "Iff", [":"], CG ?g2?,  
                [endComment] ?ecm3? "]", [endComment] ?ecm1? "]"; 
   ?ng? = "[", ?cm1?, "~[", ?cm2?, CG(?g1?), 
                      "~[", CG(?g2?), "]", ?ecm2?, "]", 
               ?cm2?, "~[", ?cm3?, CG(?g2?), 
                      "~[", CG(?g1?), "]", ?ecm3?, "]", ?ecm1?, "]"; 
   end; 
  
   eitherOr(?b?) -> ?ng?; 
   eitherOr = "[", [comment] ?cm?, "Either", [":"], 
                   {[comment], nestedOrs} ?ors?, [endComment] ?ecm?, "]"; 
   ?ng?  =  "~[", ?cm?, nestedOrs(?ors?), ?ecm?, "]"; 
   end; 
  
   nestedOrs(?ors?) -> ?g?; 
   nestedOrs  = ( "[", [comment] ?cm?, "Or" ?first?, [":"], CG ?ng?,  
                      [endComment] ?ecm?, "]", nestedOrs ?more? 
                | ); 
   if (?first?= )  ?g? = ; 
   else ?g? = "~[", ?cm?, CG(?ng?), ?ecm?, "]", nestedOrs(?more?); 
   end; end;
 

The rule for nestedOrs recursively processes a sequence of zero or more Boolean contexts of type Or. 
If b contains zero nested Ors, eitherOr(b) shall be ~[ ], which is false; the corresponding CLIF 
sentence (or) is defined to be false.

Comment: The scope of quantifiers in any of the Boolean contexts shall be determined by the nesting of 
their translations to core CGIF. Any defining label in a context of type If shall have the nested context 
of type Then within its scope. For any two contexts directly contained in a context of type Either, 
Equivalence, or Equiv, neither one shall have the other within its scope.

B.3.6	 concept

Definition: A string c consisting of four substrings, any or all of which may be omitted: an opening 
comment cm, a type field, a referent field, and an end comment ecm.

The referent field of c may contain a defining sequence label with sequence marker sqn. If so, the type 
field of c shall be empty, the defining sequence label may be preceded by "@every", and there shall not 
be any references or any conceptual graph in the referent field of c.

If no sqn, the type field of c shall contain either a type expression tx and a colon ":" or an optional 
reference ty called a type label and an optional colon ":". If no sqn, the referent field of c shall contain 
an optional defining label with CG name df (which may be preceded by "@every"), a sequence of zero 
or more references rf, and a conceptual graph g, which may be blank. If all the options are omitted, the 
concept c shall be the string "[]".
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Translation: A triple (r,q,g) consisting of a reference or a bound sequence label r, a quantifier q, which 
shall be "@every" or the empty string, and a conceptual graph g, which shall contain at least one concept.

concept = "[", [comment] ?cm?, 
           ( (typeExpression ?tx?, ":" 
             | [["#" , "?"], CGname] ?ty?, [":"]), 
             [["@every"] ?q?, "*", CGname ?df?], {reference} ?rf?, CG ?x? 
           | ["@every"] ?q?, "*", seqmark ?sqn? 
           ), [endComment] ?ecm?, "]"; 
   if (?sqn?~= )  ?r? = "?", ?sqn?; ?g1? = "[", ?cm?, "*", ?sqn?, ?ecm?]; 
   elif (?df?~= ) ?r? = "?", ?df?; ?g1? = "[", ?cm?, "*", ?df?, ?ecm?]; 
                  if (?rf?~= ) ?g2? = "[", ":", ?r?, ?rf?, "]"; end; 
   elif (?rf?~= ) ?r? = first(?rf?); 
                  ?g2? = "[", ?cm?, ":", ?rf?, ?ecm?, "]"; 
   else           ?df? = gensym(); ?r? = "?", ?df?; 
                  ?g1? = "[", ?cm?, "*", ?df?, ?ecm?, "]"; 
   end; 
   if (?tx?~= )   ?b?  = first(typeExpression(?tx?)); 
                  ?gx? = second(typeExpression(?tx?)); 
                  ?g3? = substitute(?r?,?b?,?gx?);  
   elif (?ty?~= ) ?g3? = "(", ?ty?, ?r?, ")"; end;  
   if (?x?~= )  ?g4? = "[", CG(?x?), "]"; 
   end; 
   ?g? = ?g1?, ?g2?, ?g3?, ?g4?; 
   end;
 

Four options are permitted in the type field: a type expression tx, a bound coreference label prefixed 
with "#", a constant, or the empty string; a colon is required after tx, but optional after the other three. 
The rewrite rules move features from the concept c to four strings, which are concatenated to form the 
conceptual graph g: g1 is an existential concept with the defining label from c or with a label generated 
by gensym() if no defining label or reference occurs in c; g2 is a coreference concept if any references 
occur in c; g3 is either a conceptual relation with a type label ty or a conceptual graph generated from 
a type expression tx; and g4 is a context containing any nonblank CG x. Any comments cm and ecm are 
placed in the first nonblank concept, which shall be either g1 or g2.

Comment: To illustrate the translation, the sentence A pet cat Yojo is on a mat could be represented in 
extended CGIF with two concept nodes in the arc sequence of a conceptual relation:

   (On [@*x (Pet ?x) (Cat ?x): Yojo] [Mat])
 

To generate the equivalent core CGIF, the concepts are removed from the arc sequence. In their place, 
references are left to link them to the concepts, which are expanded by the above rewrite rules. The 
following is the resulting core CGIF:

   [: Yojo] (Pet Yojo) (Cat Yojo) 
   [*g00238] (Mat ?g00238) (On Yojo ?g00238)
 

The CG name Yojo is the reference for the first concept, and the CG name g00238 for the mat is 
generated by gensym(). See B.3.9 for a discussion of the type expression and its translation. The 
translation by cg2cl would translate the core CGIF to the abstract syntax, which would be expressed by 
the following CLIF:

   (exists (g00238) (and (= Yojo Yojo) (Pet Yojo) (Cat Yojo)  
           (Mat ?g00238) (On Yojo ?g00238)))
 

A coreference concept with only one reference, such as [: Yojo], has no effect on the truth or falsity 
of the sentence. It could be deleted by an optimizing compiler, unless it is needed as a container for 
comments.
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B.3.7	 conceptual graph (CG)

Definition: A string cg consisting of an unordered sequence of substrings that represent concepts, 
conceptual relations, booleans, and comments.

Translation: A conceptual graph g.

   CG(?cg?) -> ?g?; 
   CG  =  {concept | conceptualRelation | boolean | comment}; 
   if (first(sortCG(?cg?)~= ) 
         ?g?  =  "~", "[", first(sortCG(?cg?)), 
                 "~", "[", second(sortCG(?cg?), "]", "]"; 
   else  ?g?  =  second(sortCG(?cg?)); 
   end; end;
 

sortCG(cg) shall be the pair (g1,g2), where g1 is the conceptual graph derived from all the universally 
quantified concepts in cg and g2 is the conceptual graph derived from all other concepts, conceptual 
relations, and comments in cg.

   sortCG(?cg?) -> ?g1?,?g2?; 
   sortCG = ( (concept ?c? | conceptualRelation ?x? 
              | boolean ?x? | comment ?x?), sortCG ?rem? 
            | ); 
   if (?c?= ) ?cg2? = CG(?x?)); 
   elif (second(concept(?c?)) = "@every") 
              ?cg1? = third(concept(?c?)); 
   else       ?cg2? = third(concept(?c?)); 
   end; 
   ?g1? = ?cg1?, first(sortCG(?rem?)); ?g2? = ?cg2, second(sortCG(?rem?)); 
   end;
 

Comment: If there are no concepts containing universal quantifiers in the input string, the result shall 
be a single string in core CGIF that concatenates the results of translating each node independently of 
any other node. But if the input string contains any universal concepts, the output string shall be a nest 
of two negations. The outer context shall contain the translations of all the universal concepts, and the 
inner context shall contain the translations of all other nodes in the input.

B.3.8	 conceptual relation

Definition: A string cr that represents an ordinary conceptual relation or an actor.

Translation: A conceptual graph g, which shall be either ordinaryRelation(cr) or actor (cr).

   conceptualRelation = ordinaryRelation | actor; 
  
   ordinaryRelation(?cr?) -> ?g?; 
      ordinaryRelation  =  "(", [comment] ?cm?, (["#", "?"], CGname) ?r?, 
                           arcSequence ?s?, [endComment] ?ecm?, ")"; 
      ?g?  =  second(arcSequence(?s?)), 
              "(", ?cm?, ?r?, first(arcSequence(?s?)), 
              third(arcSequence(?s?)), ?ecm?, ")"; 
      end;
 

The first line of the rewrite rule extracts a conceptual graph from the arc sequence s. The second line 
adds the opening comment, type label, and arc sequence of a conceptual relation. The third line adds 
the sequence marker, if any, the end comment, and the closing parenthesis of the conceptual relation.

Comment: As an example, the conceptual relation (On [Cat: Yojo] [Mat]) would be translated 
by the rules for conceptual relations, arcs, arc sequences, and concepts to generate a conceptual graph 
expressed in core CGIF, such as the following:

   [: Yojo] (Cat Yojo) [*g00719] (Mat ?g00719) (On Yojo ?g00719)
 

﻿

© ISO/IEC 2018 – All rights reserved� 53



﻿

ISO/IEC 24707:2018(E)

B.3.9	 text

Definition: A context c that is not contained directly or indirectly in any context.

Translation: A context cx.

   text(?c?) -> ?cx?; 
   text = "[", [comment] ?cm?, "Proposition", ":", [CGname] ?n?, 
          CG ?g?, [endComment] ?ecm?, "]"; 
   ?cx? = "[", ?cm?, "Proposition", ":", ?n?, CG(?g?), ?ecm?, "]"; 
   end;
 

Comment: CGIF does not provide an explicit syntax for modules. Instead, any CL module shall first be 
translated to a text in core CLIF according to the specification in A.3. Then the result of that translation 
shall be translated to a text in extended CGIF according to the function cl2cg, which is defined in B.4.

B.3.10	type expression

Definition: A string tx containing a CG name n and a conceptual graph g.

Translation: A pair (b,g), consisting of a bound label b and a conceptual graph g.

   typeExpression(?tx?) -> ?b?,?g?; 
   typeExpression  =  "@", "*", CGname ?n?, CG ?g?; 
   ?b?  =  "?", ?n?; 
   end;
 

If a concept c contains a type expression, the rewrite rules that specify concept(c) use the function 
substitute(?r?,?b?,?g?) to substitute some reference r for every occurrence of b in g.

Comment: A type expression corresponds to a lambda expression in which the CG name n specifies the 
formal parameter, and the conceptual graph g is the body of the expression. If a concept c contains a 
type expression, the transformation rules that process c shall substitute a reference derived from c for 
every occurrence of the bound label ?n that occurs in g.

B.4	 CGIF conformance

This annex has specified the syntax of three CL dialects: an abstract syntax for conceptual graphs, a 
concrete syntax for core CGIF, and a concrete syntax for extended CGIF. All three of these languages 
are fully conformant CL dialects in the sense that every CL sentence can be translated to a semantically 
equivalent sentence in each of them, and every sentence in any of these three dialects can be translated 
to a semantically equivalent sentence in CL. The semantic equivalence is established by definition: the 
semantics of every sentence in extended CGIF is defined by a translation to a sentence in core CGIF, the 
semantics of every sentence in core CGIF is defined by a translation to a sentence in the abstract CG 
syntax, and the semantics of every abstract CG sentence is defined by its translation to the abstract 
syntax of CL.

To demonstrate full conformance, B.4 specifies the function cl2cg, which shall translate any sentence 
s in CL to a sentence cl2cg(s) in extended CGIF, which shall have the same truth value as s under every 
interpretation for CL. For most CL expressions, the mapping to some expression in extended CGIF 
is straightforward. The translation of functional terms from CL to CGIF, however, requires more than 
one step. Any CL function application can be translated to an actor that represents the function plus a 
reference to some concept whose referent is the value of that function. In order to translate a sequence of 
CL terms to an arc sequence in extended CGIF, the actor node shall be enclosed inside the concept node.

As an example, let (F X1 X2) be a CLIF term with an operator F applied to arguments X1 and X2, where 
the names X1 and X2 are bound by quantifiers, but F is not. When that term is translated by cl2cg, 
the gensym() function shall be used to generate a CG name, such as g00592. When prefixed with "?", 
that name becomes a bound coreference label, which shall be used as the output arc of an actor that 
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represents the function F. The result of translating the original CLIF term by cl2cg shall be (F ?X1 ?X2 
| ?g00592). The defining label *g00592 shall be placed in a concept, such as [*g00592], and the actor 
shall be placed inside that concept as a nested conceptual graph: [*g00592 (F X1 X2 | ?g00592)]. This 
concept shall be the result of cl2cg when applied to the functional term. It may appear as an arc in an arc 
sequence of some actor or conceptual relation.

Since the predicate of a CL relation or the operator of a CL function may be a functional term, the same 
transformation shall be used to translate the predicate or the operator to a concept. As an example, 
let ((F X1 X2) Y1 Y2) be a CLIF atomic sentence whose predicate is the same functional term that 
appeared in the previous example. Therefore, the bound label "?g00592", which represents the value 
of the function, shall be the type label of the corresponding conceptual relation. If both Y1 and Y2 are 
bound by quantifiers in CL, the conceptual relation shall be (#?g00592 ?Y1 ?Y2). In order to generate 
a single syntactic unit as the value of cl2cg, this conceptual relation shall be placed inside the concept 
that represents the functional term, immediately before "]": [*g00592 (F X1 X2 | ?g00592) (#?g00592 
?Y1 ?Y2)]. This concept shall be the result of cl2cg when applied to the original atomic sentence. It may 
appear as a node of a conceptual graph that results from the translation of a larger CL sentence that 
contains the original atomic sentence.

For every CL expression E, Table B.1 specifies the extended CGIF expression that defines cl2cg(E). In 
order to ensure that the CL constraints on quantifier scope are preserved in the translations by cl2cg, 
context brackets, "[" and "]", are used to enclose the translations for expressions of type E13 and E14. In 
some cases, these brackets are unnecessary, and they may be ignored.

The first column of Table B.1 indicates links to rows in Table 2. The second column uses the metalanguage 
and conventions used to define the CL abstract syntax. The third column mixes that metalanguage 
with the notation used for rewrite rules in B.1.4.2. That combination defines a function cg2cl, which 
translates any sentence s of core CGIF to a logically equivalent sentence cg2cl(x) of Common Logic.

Table B.1 — Mapping from CL abstract syntax to extended CGIF syntax

If E is a CL expression of the form Then cl2cg(E) =
E1 A numeral 'n' The numeral 'n'
E1 A quoted string ‘s’ The quoted string 's'
E1 A interpretable name 'n' The name 'n' shall be enclosed in quotes if it is not 

a CG identifier. If it occurs in the quantifier of some 
CL sentence, it shall be prefixed with "*". If it is 
bound by a quantifier, it shall be prefixed with "?".

E2 Sequence marker S S
E3 A term sequence <T1 … Tn> starting with a term 

T1
An arc sequence: cl2cg(T1) … cl2cg(Tn)

E4 A term sequence T1 … Tn starting with a  
sequence marker T1

An arc sequence: cl2cg(T2), ..., cl2cg(Tn), cl2cg(T1)

E5 A term (O T1 … Tn) A concept with a generated name 'n' that contains 
a nested actor: "[", "*", 'n', "(", cl2cg(O), cl2cg(T1, … 
Tn), ")", "|", "?", 'n', ")", "]"

  A term (cl:​comment ‘string’ T) An arc with a comment: "/*", 'string', "*/", cg2cl(T)
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If E is a CL expression of the form Then cl2cg(E) =
E6 An equation (= T1 T2) A CG consisting of one, two, or three concepts

If both T1 and T2 are names, one concept: "[:", 
cl2cg(T1), cl2cg(T2), "]"
If both T1 and T2 are functional terms, three  
concepts: cg2cl(T1), cg2cl(T2), "[", "?", 'n1', "?",  
'n2', "]" where 'n1' is the name generated for T1  
and 'n2' is the name generated for T2

    If Ti is a functional term (where i=1 or i=2) and the 
other term Tj is a name, two concepts: cl2cg(Ti), 
"[", "?", 'ni', cl2cg(Tj), "]" where 'ni' is the name 
generated for Ti

E7 An atomic sentence (P T1 … Tn) A CG consisting of either a conceptual relation or 
a concept
If P is a name, a conceptual relation: "(", cl2cg(P), 
cl2cg(T1 ...Tn), ")"
If P is a functional term, a concept: cl2cg(P) as 
modified by inserting the following conceptual 
relation immediately before the closing "]": "(", 'n', 
cl2cg(T1 ... Tn), ")" where 'n' is the name generated 
for cl2cg(P)

E8 A Boolean sentence (not P) A negation: "~", "[", cl2cg(P), "]"
E9 A Boolean sentence (and P1 … Pn) A CG: cl2cg(P1), ..., cl2cg(Pn)
E10 A Boolean sentence (or P1 … Pn) A CG: "[", "Either", "[", "Or", cl2cg(P1), "]", ..., "[", 

cl2cg(Pn), "]", "]"
E11 A Boolean sentence (if P Q) A CG: "[", "If", cl2cg(P), "[", "Then", cl2cg(Q), "]", "]"
E12 A Boolean sentence (iff P Q) A CG: "[", "Equiv", ":", "[", "Iff", cl2cg(P), "]", "[", 

“Iff”, cl2cg(Q), "]", "]"
  A sentence (cl:​comment ‘string’ P) A comment and a CG: "/*", 'string', "*/", cl2cg(P)
E13 A quantified sentence (forall (N1 … Nn) B)  

where N1 to Nn are names or sequence markers
A CG: "[", "[", "@every", "*", cl2cg(N1), "]", ..., "[", "@
every", "*", cl2cg(Nn), "]", cl2cg(B), "]"

E14 A quantified sentence (exists (N1 … Nn) B) 
where N1 to Nn are names or sequence markers

A CG:  "[", "[", "*", cl2cg(N1), "]", ..., "[", "*",  
cl2cg(Nn), "]", cl2cg(B), "]"

  A statement (cl:​comment “string”) A comment: "/*", 'string', "*/"
E17 A statement (cl:​imports N) A concept: "[", "cg_Imports", cl2cg(N), "]"
E18 A module with name N, exclusion list N1 ... Nn, 

and text T
If M is the translation to core CL specified in A.3, 
then a text: "[", "Proposition", ":", cl2cg(M), "]"

E19 A statement (cl:​text T1 … Tn) A text: "[", "Proposition", cl2cg(T1 ... Tn), "]"
E20 (cl:​text N T1 …Tn) A text: "[", "Proposition", ":", cl2cg(N), cg2cl(T1 ... 

Tn), "]"

To specify the translation from extended CGIF to core CGIF, B.3 uses a combination of EBNF syntax rules 
plus the rewrite rules specified in B.1.4.2 to define a function ex2cor, which translates any sentence s of 
extended CGIF to a logically equivalent sentence CG(s) of core CGIF.
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Annex C 
(normative) 

 
eXtended Common Logic Markup Language (XCL)

C.1	 General

XCL is an XML notation for Common Logic. It is the intended interchange language for communicating 
Common Logic across a network. It is a straightforward mapping of the CL abstract syntax and 
semantics into an XML form.

C.2	 XCL syntax

Since XCL’s lexical syntax is the same as XML itself, the syntax of XCL is described by a Relax NG 
schema in compact form (RNC), which is usually accessed in electronic form. For completeness and 
standardization purposes, the RNC is provided here in its entirety.

An XML document with XCL elements mixed with elements of foreign namespaces should be processed 
as defining a corpus, where the XCL elements closest to the root each express a text. Elements and 
attributes within XCL elements other than those explicitly defined in the schema below should be 
treated as syntactic extensions and shall not be ignored by parsers or treated as comments.

Relax NG schemas allow ambiguous definitions. In the case of a match to more than one production of 
the XCL schema, the first match takes precedence when mapping to the abstract syntax.

In the schema documentation, “content” of an element means the XML content, as defined in the XML 
Specification. According to the XML Specification, XML Content includes character data and markup, 
but excludes XML comments and processing instructions. The attributes of an element are not part of 
its XML content.

default namespace = "http:​//purl​​.org/xcl/2​​.0/"

namespace xs = "http:​//www​​.w3​​.org/2001/XMLSchema"

## Common Logic Syntax XCL Version 2.0

## Root Elements

## The root element of a purely XCL document

## may be cl:​Document or any element matching the

## clText, clStatement or clSentence patterns.

start |= clDocument

start |= clText

start |= clStatement

start |= clSentence

## Documents

## A cl:​Document element provides a semantically-neutral

## root element that allows an XML document to contain
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## multiple Common Logic texts.

clDocument = element Document { Document.type }

Document.type = clCommentable, clText*

## Texts

clText |= Construct

clText |= Restrict

clText |= Import

## -Text Constructions

## A cl:​Construct element manifests a text construction

## (TextConstruction) of the abstract syntax.

Construct = element Construct { Construct.type }

Construct.type =

clCommentable,

## the arguments

(clText | clStatement | clSentence)*

## -Domain Restrictions

## A cl:​Restrict element manifests a domain restriction

## text (DomainRestriction) of the abstract syntax.

Restrict = element Restrict { Restrict.type }

Restrict.type =

clCommentable,

## the local universe of discourse

clTerm,

## the body text

clText

## -Imports

## A cl:​Import element manifests an importation

## text (Importation) of the abstract syntax.

Import = element Import { Import.type }

Import.type =

clCommentable,

## the name

Name
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## Statements

clStatement |= In

clStatement |= Out

clStatement |= Titling

## -Discourse Statements

## A cl:In element manifests an in-discourse

## statement (DiscourseStatement) of the abstract syntax.

In = element In { Discourse.type }

## A cl:​Out element manifests an out-of-discourse

## statement (DiscourseStatement) of the abstract syntax.

Out = element Out { Discourse.type }

Discourse.type =

clCommentable,

## the sequence of terms

clTerm+

## -Text Titlings

## A cl:​Titling element manifests a titling

## statement (Titling) of the abstract syntax.

Titling = element Titling { Titling.type }

Titling.type =

clCommentable,

## the name

Name,

## the text

clText

## Sentences clSentence |=

Atom clSentence |= Equal

clSentence |= And

clSentence |= Or

clSentence |= Not

clSentence |= Implies

clSentence |= Biconditional

clSentence |= Forall
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clSentence |= Exists

## -Atomic Formulas

## A cl:​Atom element manifests an atomic

## sentence (Atomic) of the abstract syntax.

Atom = element Atom { Atom.type }

Atom.type =

clCommentable,

## the operator

clTerm,

## the argument sequence

clTermSequence

## -Equals

## A cl:​Equal element manifests an equation

## sentence (Id) of the abstract syntax.

Equal = element Equal { Equal.type }

Equal.type =

clCommentable,

## the arguments

clTerm,

clTerm

## -Connectives

## A cl:​And element manifests a conjunction

## sentence (Conj) of the abstract syntax.

And = element And { AndOr.type }

## A cl:Or element manifests a disjunction

## sentence (Disj) of the abstract syntax.

Or = element Or { AndOr.type }

AndOr.type =

clCommentable,

## the component sentences

clSentence*

## A cl:​Not element manifests an negation

## sentence (Neg) of the abstract syntax.
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Not = element Not { Not.type }

Not.type =

clCommentable,

## the negated sentence

clSentence

## A cl:​Implies element manifests an implication

## sentence (Cond) of the abstract syntax.

Implies = element Implies { Implies.type }

Implies.type =

clCommentable,

## the premise (antecedent) sentence

clSentence,

## the conclusion (consequent) sentence

clSentence

## A cl:​Biconditional element manifests a biconditional

## sentence (Bicond) of the abstract syntax.

Biconditional = element Biconditional { Biconditional.type }

Biconditional.type =

clCommentable,

## the two component sentences

clSentence,

clSentence

## -Quantifications

## A cl:​Forall element manifests a universally quantified

## sentence (UQuant) of the abstract syntax.

Forall = element Forall { Forall.type }

## A cl:​Forall element manifests a existentially quantified

## sentence (EQuant) of the abstract syntax.

Exists = element Exists { Exists.type }

Forall.type = Quantifier.type

Exists.type = Quantifier.type

Quantifier.type =

clCommentable,
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## the binding sequence

(Name | Marker)+,

## the quantified sentence

clSentence

## Term Sequences

clTermSequence = (clTerm | Marker)*

## Terms

clTerm |= Apply

clTerm |= Name

## -Functional Terms

## A cl:​Apply element manifests a FunctionalTerm

## of the abstract syntax.

Apply = element Apply { Apply.type }

Apply.type =

clCommentable,

## the operator

clTerm,

## the argument sequence

clTermSequence

## -Names

## A cl:​Name element manifests a Name (V) of the

## abstract syntax.

## The actual symbol of the Name, the entity

## that belongs to the lexicon, is obtained by mapping the lexical

## value of the cl:​Name element into the value space of a

## datatype.

## The xsd:​string datatype is used when the lexical value belongs to

## the lexical space of xsd:​string.

## Otherwise the datatype rdf:​XMLLiteral is used.

## The lexical value is the content of the

## symbol child element, if present; otherwise it is the content

## of the cl:​Name element.

Name = element Name { Name.type }
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Name.type |= clCommon, (cri.attrib | symbol)

Name.type |= text & anyElement*

symbol = element symbol { symbol.type }

symbol.type = text & anyElement*

## Constrained Names in Quantifiers

## A cl:​Name element containing one or more cl:​type

## children is a constrained name. It has no explicit

## counterpart in the abstract syntax.

## A quantifier whose binding sequence contains

## one or more constrained names is syntactic sugar

## for a quantifier whose binding sequence contains

## only unconstrained names, and whose quantified sentence

## is a modification of the original quantified sentence as follows:

## - if the constrained name is universally quantified, then the

## quantified sentence is replaced by an implication where the

## if part of the implication is an atomic sentence

## asserting the membership of name denotation in the relation

## associated with the constraining type, and the

## then part is the original quantified sentence.

## - if the constrained name is existentially quantified, then the

## quantified sentence is replaced by a conjunction

## of two sentences where

## one conjunct is an atomic sentence

## asserting the membership of name denotation in the relation

## associated with the constraining type, and the

## other conjunct is the original quantified sentence.

Quantifier.type |= clCommon, (Name | Name-constrained)*, clSentence

Name-constrained = element Name { Name-constrained.type }

Name-constrained.type = clCommon, type+, (cri.attrib | symbol)

type = element type { type.type }

type.type = Name

## -Data

## A cl:​Data element manifests a Name (V) of the abstract syntax

﻿

© ISO/IEC 2018 – All rights reserved� 63



﻿

ISO/IEC 24707:2018(E)

## which is given a fixed interpretation.

## The fixed interpretation is specified according to a datatype

## mapping applied to the lexical value.

## The lexical value is the content of the

## symbol child element, if present; otherwise it is the content

## of the cl:​Data element.

## If the datatype attribute is present, then the attribute value

## as an IRI defines the datatype mapping.

## If the datatype attribute is absent, then the xsd:​string

## datatype is used when the lexical value belongs to the

## lexical space of xsd:​string,

## otherwise the datatype rdf:​XMLLiteral is used.

## It is a syntactic error if the lexical value does not belong

## to the lexical space of the indicated datatype, even if the

## XML document is valid according to this schema.

clTerm |= Data

Data = element Data { Data.type }

Data.type |= clCommon, symbol-data

Data.type |= datatype.attrib?, (text & anyElement*)

symbol-data = element symbol { symbol-data.type }

symbol-data.type = datatype.attrib?, (text & anyElement*)

datatype.attrib = attribute datatype { curieOrAbsIRI.datatype }

## Datatype

clStatement |= Datatype

Datatype = element Datatype{ Datatype.type }

Datatype.type |= clCommentable, cri.attrib, xsdUserDefined.type

xsdUserDefined.type|= element xs:​simpleType { xsdSimpleType.type}

xsdSimpleType.type |= xsdSimpleDerivation

xsdSimpleDerivation |= xsdRestriction

xsdSimpleDerivation |= xsdList

xsdSimpleDerivation |= xsdUnion

xsdRestriction |= element xs:​restriction { baseAtt?, xsdSimpleRestrictionModel}

baseAtt = attribute base { xsd:​QName}
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xsdSimpleRestrictionModel |= element xs:​simpleType { xsdSimpleType.type }?, xsdFacets*

xsdFacets |= xsdMinExclusive

xsdFacets |= xsdMinInclusive

xsdFacets |= xsdMaxExclusive

xsdFacets |= xsdMaxInclusive

xsdFacets |= xsdTotalDigits

xsdFacets |= xsdFractionDigits

xsdFacets |= xsdLength

xsdFacets |= xsdMinLength

xsdFacets |= xsdMaxLength

xsdFacets |= xsdEnumeration

xsdFacets |= xsdWhiteSpace

xsdFacets |= xsdPattern

xsdFacet |= attribute value { xsd:​string}

xsdMinExclusive |= element xs:​minExclusive { xsdFacet }

xsdMinInclusive |= element xs:​maxExclusive { xsdFacet }

xsdMaxExclusive |= element xs:​minInclusive { xsdFacet }

xsdMaxInclusive |= element xs:​maxInclusive { xsdFacet }

xsdNumFacet |= attribute value { xsd:​nonNegativeInteger }

xsdPosNumFacet |= attribute value { xsd:​positiveInteger }

xsdTotalDigits |= element xs:​totalDigits { xsdPosNumFacet }

xsdFractionDigits |= element xs:​fractionDigits { xsdNumFacet }

xsdLength |= element xs:​length { xsdNumFacet }

xsdMinLength |= element xs:​minLength { xsdNumFacet }

xsdMaxLength |= element xs:​maxLength { xsdNumFacet }

xsdEnumeration |= element xs:​enumeration { xsdFacet }

xsdWhiteSpace |= element xs:​whiteSpace {

attribute value { xsd:​NMTOKEN "preserve" | "replace" | "collapse" }

}

xsdPattern |= element xs:​pattern { xsdFacet }

xsdList = element xs:​list {

attribute itemType { xsd:​QName} |

element xs:​simpleType { xsdSimpleType.type}
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}

xsdUnion = element xs:​union {

attribute memberTypes { xsd:​string} |

element xs:​simpleType { xsdSimpleType.type}+

}

## Sequence Markers

## A cl:​Marker element manifests a sequence marker (SMark) of the

## abstract syntax. The actual symbol of the sequence marker,

## the entity that belongs to the lexicon,

## is obtained by mapping the lexical

## value of the cl:​Marker element into the value space of a

## datatype.

## The xsd:​string datatype is used when the lexical value belongs to

## the lexical space of xsd:​string.

## Otherwise the datatype rdf:​XMLLiteral is used.

## The lexical value is the content of the

## symbol child element, if present; otherwise it is the content

## of the cl:​Marker element.

Marker = element Marker { Marker.type }

Marker.type |= clCommon, symbol

Marker.type |= text & anyElement*

## The clCommon and clCommentable patterns:

## Prefixes, Comments, Keys

clCommentable = clCommon, label?, Comment*

clCommon = base.attrib?, Prefix*

## The cl:​Prefix element is a syntactic mechanism for

## abbreviating IRIs, and does not correspond to any explicit

## part of the abstract syntax.

## All CURIEs that appear as XCL attribute values should be expanded

## to IRIs according to the prefix definitions prior to mapping into

## the abstract syntax.

## XML namespace definitions shall not be considered to define

## CURIE prefixes.
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## Prefix definitions apply within the scope of the parent element

## and its descendants.

## In the case of conflicting prefix definitions:

## prefix definitions that are children of an element E take precedence

## over prefix definitions that are children of ancestors of E;

## prefix definitions take precedence over their preceding siblings.

Prefix = element Prefix { Prefix.type }

Prefix.type = pre.attrib, iri.attrib

pre.attrib = attribute pre { pre.datatype }

pre.datatype = xsd:​NCName?

## A cl:​Comment element manifests a Comment of the abstract syntax.

## The lexical value of a cl:​Comment element is the element content.

## Attributes may be used to specify a datatype to be used to map

## the lexical value into the value space of the datatype,

## providing the Comment of the abstract syntax as “a piece of data”.

Comment =

element Comment {

attribute * { text }*,

(text & anyElement*)

}

label = key.attrib

iri.attrib = attribute iri { absIRI.datatype }

cri.attrib = attribute cri { curieOrAbsIRI.datatype } key.attrib

= attribute key { curieOrAbsIRI.datatype }

curieOrAbsIRI.datatype = curie.datatype | absIRI.datatype

curie.datatype = xsd:​string { minLength = "1" pattern = "(([\i-[:]][\c-[:]]*)?:)?.*" }

absIRI.datatype = xsd:​anyURI { pattern = "[\i-[:]][\c-[:]]*:.*" }

anyElement =

element * { attribute *

{ text }*, (text &

anyElement*)

}

base.attrib = attribute xml:​base {xsd:​anyURI}
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C.3	 XCL semantics

Common Logic can be rendered into XCL directly, in a form which displays the Common Logic syntax 
directly in the XML markup. Since XML has no inherent semantics, the intent of C.2 is that for each 
function in the abstract syntax (see 6.1), there is a corresponding construct in the XCL syntax that 
carries exactly the semantics given in 6.2. The documentation within the schema clearly indicates these 
elements.

In addition, there are XCL elements that are syntactic sugar for some more complex expression of the 
abstract syntax.

No other semantics is implied or expressed.

C.4	 XCL conformance

XCL is a strictly conforming dialect for the following reasons. XCL’s concrete syntax in C.2 conforms 
exactly to the abstract syntax of Common Logic as expressed in 6.1. Furthermore, since XCL’s semantics 
(summarized in C.3) is taken directly and exactly from Common Logic’s semantics as given in 6.2, it 
conforms both syntactically and semantically to the body of this document.
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Annex D 
(informative) 

 
Translating between dialects

A translation is a mapping tr from expressions in a text in some dialect A, the source dialect, to 
expressions in a text in some dialect B, the target dialect, such that for every interpretation I of the 
vocabulary of the text in A, there is an interpretation J of the vocabulary of the text in B, and for every 
interpretation J of the vocabulary of the text in B, there is an interpretation I of the vocabulary of the 
text in A, with I(E)=J(tr(E)) for any expression E in the text in A, where tr is this translation. Since 
all Common Logic dialects have the same truth-conditions, translation is usually straightforward. 
Complications arise, however, in translating between classical and non-classical dialects.

Translation from a classical dialect A into a non-classical dialect B requires the translation to indicate 
which terms are non-discourse in A. For each name in the non-classical dialect that denotes a thing in 
the domain, it is necessary for the translation to introduce a discourse name whose extension in B is 
the domain of an interpretation of A, and the for the translation to restrict all quantifiers in the text 
to range over this domain, and assert that non-discourse names of the classical dialect denote entities 
outside this domain. No other translation is required. The domain construction provides a general-
purpose technique for such translations: text in A has the same meaning as a text in B named with the 
domain name and with the non-discourse names of the text listed in the exclusion list of the text.

Translation from a non-classical dialect B into a dialect A with discourse presuppositions requires that 
names are used so as to respect the restrictions of the dialect. This may require adding axioms to the 
translations in order to ensure that the domain of an interpretation of the classical translation of any 
text corresponds to the universe of reference of an interpretation of the non-classical text. There is 
a general technique called the holds-app translation for translating any Common Logic dialect into a 
similar classical dialect. It is assumed that a predicate holds and an operator app which do not occur in 
any vocabulary are available. Specifically (for non-classical dialects), an atomic sentence with predicate 
P and argument sequence S1 … Sn translates into an atomic sentence with predicate holds and argument 
sequence P S1 … Sn. A term with operator O and argument sequence S1 … Sn translates into a term 
with operator app and argument sequence O S1 … Sn. The introduced predicate and operator require no 
other axioms. Their only role is to allow the operators and predicates of the B dialect to denote entities 
in the domain of the A dialect translation.

Some dialects impose notational restrictions of various kinds, such as requiring bound names to have 
a particular lexical form, or requiring operator and predicates to be used with a particular length of 
argument sequence (conventionally called the arity of the operator or predicate). Translation into a 
dialect with such restrictions can usually be done by re-writing names to conform to the restrictions 
and by “de-punning” occurrences of a name which are required to be made distinct in the target dialect, 
for example, by adding suffixes to indicate the arity. In these cases also, it may be necessary to introduce 
distinct holds-n and app-n predicates and operators for each arity. Applications which are required to 
faithfully translate multiple texts shall maintain consistency between such name re-writings.
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