
Reference number
ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016

INTERNATIONAL
STANDARD

ISO/IEC
20802-1

First edition
2016-12-15

Information technology — Open data
protocol (OData) v4.0

Part 1:
Core

Technologies de l'information — Protocole de données ouvertes
(OData) v4.0 —

Partie 2: Base

ISO/IEC 20802-1:2016(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any

means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.

Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Ch. de Blandonnet 8 • CP 401

CH-1214 Vernier, Geneva, Switzerland

Tel. +41 22 749 01 11

Fax +41 22 749 09 47

copyright@iso.org

www.iso.org

ii © ISO/IEC 2016 – All rights reserved

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved iii

Foreword

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	governmental	and	non‐governmental,	 in	 liaison	with	 ISO	and	 IEC,	also	 take	part	 in	 the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular	the	different	approval	criteria	needed	for	the	
different	 types	 of	 document	 should	 be	 noted.	 This	 document	 was	 drafted	 in	 accordance	 with	 the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	 rights.	
Details	 of	 any	 patent	 rights	 identified	 during	 the	 development	 of	 the	 document	 will	 be	 in	 the	
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	
assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:	www.iso.org/iso/foreword.html.		

ISO/IEC	20802‐1	was	prepared	by	OASIS	and	was	adopted,	under	the	PAS	procedure,	by	Joint	Technical	
Committee	ISO/IEC	JTC	1,	Information technology,	in	parallel	with	its	approval	by	the	national	bodies	of	
ISO	and	IEC.	

http://www.iso.org/directives�
http://www.iso.org/patents�
http://www.iso.org/iso/foreword.html�

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 74

OData Version 4.0 Part 1: Protocol Plus
Errata 02

OASIS Standard incorporating Approved Errata 02

30 October 2014

Specification URIs
This version:

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.pdf

Previous version:
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.pdf

Latest version:
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC
Chairs:

Ralf Handl (ralf.handl@sap.com), SAP AG
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP AG
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
 List of Errata items. OData Version 4.0 Errata 02. Edited by Michael Pizzo, Ralf Handl, Martin

Zurmuehl, and Hubert Heijkers. 30 October 2014. OASIS Approved Errata. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html.

 OData Version 4.0 Part 1: Protocol Plus Errata 02 (this document). Edited by Michael Pizzo,
Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved
Errata 02. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-complete.html.

 OData Version 4.0 Part 2: URL Conventions Plus Errata 02. Edited by Michael Pizzo, Ralf
Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.doc
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 74

Errata 02. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-
conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html.

 OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02.
Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-
csdl-complete.html.

 ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/.

 Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/.

 XML schemas: OData EDMX XML Schema and OData EDM XML Schema. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/schemas/.

 OData Metadata Service Entity Model: http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/models/.

 Change-marked (redlined) versions of OData Version 4.0 Part 1, Part 2, and Part 3. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/redlined/.

Related work:

This specification is related to:
 OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin

Zurmuehl. 24 February 2014. OASIS Standard. http://docs.oasis-
open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html.

 OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl.
Latest version. http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-
v4.0.html.

 OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte.
Latest version. http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-
v4.0.html.

Declared XML namespaces:

 http://docs.oasis-open.org/odata/ns/edmx
 http://docs.oasis-open.org/odata/ns/edm

Abstract:
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in an Entity Data
Model (EDM), to be published and edited by Web clients using simple HTTP messages. This
document defines the core semantics and facilities of the protocol.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.
TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/ns/edmx
http://docs.oasis-open.org/odata/ns/edm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 74

[OData-Part1]
OData Version 4.0 Part 1: Protocol Plus Errata 02. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved Errata 02.
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html. Latest version: http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 74

Notices

Copyright © OASIS Open 2014. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 74

Table of Contents

1 Introduction ... 10

1.1 Terminology .. 10

1.2 Normative References .. 10

1.3 Typographical Conventions .. 11

2 Overview ... 12

3 Data Model ... 13

3.1 Annotations ... 13

4 Service Model ... 15

4.1 Entity-Ids and Entity References .. 15

4.2 Read URLs and Edit URLs ... 15

4.3 Transient Entities .. 15

5 Versioning ... 16

5.1 Protocol Versioning ... 16

5.2 Model Versioning .. 16

6 Extensibility ... 17

6.1 Query Option Extensibility .. 17

6.2 Payload Extensibility ... 17

6.3 Action/Function Extensibility ... 17

6.4 Vocabulary Extensibility .. 17

6.5 Header Field Extensibility ... 18

6.6 Format Extensibility .. 18

7 Formats .. 19

8 Header Fields ... 20

8.1 Common Headers ... 20

8.1.1 Header Content-Type .. 20

8.1.2 Header Content-Encoding ... 20

8.1.3 Header Content-Language ... 20

8.1.4 Header Content-Length ... 20

8.1.5 Header OData-Version.. 20

8.2 Request Headers .. 21

8.2.1 Header Accept ... 21

8.2.2 Header Accept-Charset ... 21

8.2.3 Header Accept-Language ... 21

8.2.4 Header If-Match .. 21

8.2.5 Header If-None-Match.. 21

8.2.6 Header OData-Isolation ... 22

8.2.7 Header OData-MaxVersion ... 22

8.2.8 Header Prefer ... 22

8.2.8.1 Preference odata.allow-entityreferences .. 23

8.2.8.2 Preference odata.callback .. 23

8.2.8.3 Preference odata.continue-on-error ... 24

8.2.8.4 Preference odata.include-annotations ... 24

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 74

8.2.8.5 Preference odata.maxpagesize .. 25

8.2.8.6 Preference odata.track-changes .. 25

8.2.8.7 Preference return=representation and return=minimal ... 25

8.2.8.8 Preference respond-async .. 26

8.2.8.9 Preference wait .. 26

8.3 Response Headers ... 26

8.3.1 Header ETag ... 26

8.3.2 Header Location .. 27

8.3.3 Header OData-EntityId ... 27

8.3.4 Header Preference-Applied ... 27

8.3.5 Header Retry-After .. 27

9 Common Response Status Codes ... 28

9.1 Success Responses ... 28

9.1.1 Response Code 200 OK ... 28

9.1.2 Response Code 201 Created ... 28

9.1.3 Response Code 202 Accepted .. 28

9.1.4 Response Code 204 No Content .. 28

9.1.5 Response Code 3xx Redirection .. 28

9.1.6 Response Code 304 Not Modified .. 28

9.2 Client Error Responses ... 29

9.2.1 Response Code 404 Not Found .. 29

9.2.2 Response Code 405 Method Not Allowed ... 29

9.2.3 Response Code 410 Gone .. 29

9.2.4 Response Code 412 Precondition Failed .. 29

9.3 Server Error Responses ... 29

9.3.1 Response Code 501 Not Implemented ... 29

9.4 In-Stream Errors ... 29

10 Context URL ... 30

10.1 Service Document .. 30

10.2 Collection of Entities ... 30

10.3 Entity ... 31

10.4 Singleton ... 31

10.5 Collection of Derived Entities .. 31

10.6 Derived Entity ... 32

10.7 Collection of Projected Entities ... 32

10.8 Projected Entity ... 32

10.9 Collection of Projected Expanded Entities .. 33

10.10 Projected Expanded Entity ... 33

10.11 Collection of Entity References .. 33

10.12 Entity Reference ... 34

10.13 Property Value .. 34

10.14 Collection of Complex or Primitive Types ... 34

10.15 Complex or Primitive Type .. 34

10.16 Operation Result ... 34

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 74

10.17 Delta Response .. 35

10.18 Item in a Delta Response ... 35

10.19 $all Response ... 35

10.20 $crossjoin Response .. 35

11 Data Service Requests ... 36

11.1 Metadata Requests ... 36

11.1.1 Service Document Request ... 36

11.1.2 Metadata Document Request.. 36

11.1.3 Metadata Service Document Request .. 36

11.2 Requesting Data ... 36

11.2.1 Evaluating System Query Options .. 37

11.2.2 Requesting Individual Entities ... 37

11.2.3 Requesting Individual Properties .. 37
11.2.3.1 Requesting a Property's Raw Value using $value ... 38

11.2.4 Specifying Properties to Return .. 38
11.2.4.1 System Query Option $select ... 38

11.2.4.2 System Query Option $expand ... 39

11.2.4.2.1 Expand Options .. 39

11.2.5 Querying Collections ... 40
11.2.5.1 System Query Option $filter ... 40

11.2.5.1.1 Built-in Filter Operations ... 40
11.2.5.1.2 Built-in Query Functions ... 41
11.2.5.1.3 Parameter Aliases .. 43

11.2.5.2 System Query Option $orderby .. 43

11.2.5.3 System Query Option $top ... 44

11.2.5.4 System Query Option $skip ... 44

11.2.5.5 System Query Option $count ... 44

11.2.5.6 System Query Option $search ... 45

11.2.5.7 Server-Driven Paging ... 45

11.2.6 Requesting Related Entities .. 46

11.2.7 Requesting Entity References ... 46

11.2.8 Resolving an Entity-Id ... 46

11.2.9 Requesting the Number of Items in a Collection ... 47

11.2.10 System Query Option $format .. 47

11.3 Requesting Changes .. 48

11.3.1 Delta Links ... 48

11.3.2 Using Delta Links .. 48

11.4 Data Modification .. 49

11.4.1 Common Data Modification Semantics ... 49
11.4.1.1 Use of ETags for Avoiding Update Conflicts .. 49
11.4.1.2 Handling of DateTimeOffset Values .. 49

11.4.1.3 Handling of Properties Not Advertised in Metadata ... 49
11.4.1.4 Handling of Consistency Constraints ... 49
11.4.1.5 Returning Results from Data Modification Requests .. 50

11.4.2 Create an Entity ... 50
11.4.2.1 Link to Related Entities When Creating an Entity... 50

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 74

11.4.2.2 Create Related Entities When Creating an Entity .. 51

11.4.3 Update an Entity .. 51

11.4.4 Upsert an Entity ... 52

11.4.5 Delete an Entity ... 52

11.4.6 Modifying Relationships between Entities ... 53
11.4.6.1 Add a Reference to a Collection-Valued Navigation Property .. 53
11.4.6.2 Remove a Reference to an Entity .. 53
11.4.6.3 Change the Reference in a Single-Valued Navigation Property .. 53

11.4.7 Managing Media Entities ... 53
11.4.7.1 Creating a Media Entity .. 53
11.4.7.2 Editing a Media Entity Stream .. 54
11.4.7.3 Deleting a Media Entity .. 54

11.4.8 Managing Stream Properties ... 54
11.4.8.1 Editing Stream Values ... 54
11.4.8.2 Deleting Stream Values ... 54

11.4.9 Managing Values and Properties Directly ... 54
11.4.9.1 Update a Primitive Property ... 54
11.4.9.2 Set a Value to Null ... 55
11.4.9.3 Update a Complex Property ... 55
11.4.9.4 Update a Collection Property ... 55

11.5 Operations .. 55

11.5.1 Binding an Operation to a Resource ... 55

11.5.2 Advertising Available Operations within a Payload ... 56

11.5.3 Functions ... 56
11.5.3.1 Invoking a Function .. 56

11.5.3.1.1 Inline Parameter Syntax ... 57
11.5.3.2 Function overload resolution .. 57

11.5.4 Actions ... 58
11.5.4.1 Invoking an Action .. 58
11.5.4.2 Action Overload Resolution ... 58

11.6 Asynchronous Requests ... 59

11.7 Batch Requests .. 59

11.7.1 Batch Request Headers .. 59

11.7.2 Batch Request Body .. 60

11.7.3 Change Sets .. 62
11.7.3.1 Referencing New Entities in a Change Set .. 62

11.7.4 Responding to a Batch Request ... 63

11.7.5 Asynchronous Batch Requests ... 65

12 Security Considerations ... 67

12.1 Authentication ... 67

13 Conformance .. 68

13.1 OData Service Conformance Levels .. 68

13.1.1 OData Minimal Conformance Level .. 68

13.1.2 OData Intermediate Conformance Level ... 69

13.1.3 OData Advanced Conformance Level ... 70

13.2 Interoperable OData Clients ... 70

Appendix A. Acknowledgments ... 72

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 74

Appendix B. Revision History .. 73

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 74

1 Introduction
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines the core
semantics and the behavioral aspects of the protocol.
The [OData-URL] specification defines a set of rules for constructing URLs to identify the data and
metadata exposed by an OData service as well as a set of reserved URL query options.
The [OData-CSDL] specification defines an XML representation of the entity data model exposed by an
OData service.
The [OData-Atom] and [OData-JSON] documents specify the format of the resource representations that
are exchanged using OData.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[OData-ABNF] OData ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.

[OData-Atom] OData ATOM Format Version 4.0.
See link in "Related work" section on cover page.

[OData-CSDL] OData Version 4.0 Part 3: Common Schema Definition Language (CSDL).
See link in "Additional artifacts" section on cover page.

[OData-JSON] OData JSON Format Version 4.0.
See link in "Related work" section on cover page.

[OData-URL] OData Version 4.0 Part 2: URL Conventions.
See link in "Additional artifacts" section on cover page.

[OData-VocCap] OData Capabilities Vocabulary.
See link in "Additional artifacts" section on cover page.

[OData-VocCore] OData Core Vocabulary.
See link in "Additional artifacts" section on cover page.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types", RFC 2046, November, 1996. http://www.ietf.org/rfc/rfc2046.txt.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,
RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
and L. Stewart, “HTTP Authentication: Basic and Digest Access Authentication”,
RFC 2617, June 1999. http://www.ietf.org/rfc/rfc2617.txt.

[RFC3987] Duerst, M. and, M. Suignard, “Internationalized Resource Identifiers (IRIs)”, RFC
3987, January 2005. http://www.ietf.org/rfc/rfc3987.txt.

[RFC5023] Gregorio, J., Ed., and B. de hOra, Ed., “The Atom Publishing Protocol.”, RFC 5023,
October 2007. http://tools.ietf.org/html/rfc5023.

[RFC5789] Dusseault, L., and J. Snell, “Patch Method for HTTP”, RFC 5789, March 2010.
http://tools.ietf.org/html/rfc5789.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc3987.txt
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5789

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 74

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing”, RFC 7230, June 2014.
http://www.ietf.org/rfc/rfc7230.txt.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content”, RFC 7231, June 2014. http://www.ietf.org/rfc/rfc7231.txt.

[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests”, RFC 7232, June 2014. http://www.ietf.org/rfc/rfc7232.txt.

[RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240, June 2014.
http://www.ietf.org/rfc/rfc7240.txt.

1.3 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7240.txt

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 74

2 Overview
The OData Protocol is an application-level protocol for interacting with data via RESTful interfaces. The
protocol supports the description of data models and the editing and querying of data according to those
models. It provides facilities for:

 Metadata: a machine-readable description of the data model exposed by a particular data
provider.

 Data: sets of data entities and the relationships between them.
 Querying: requesting that the service perform a set of filtering and other transformations to its

data, then return the results.
 Editing: creating, updating, and deleting data.
 Operations: invoking custom logic
 Vocabularies: attaching custom semantics

The OData Protocol is different from other REST-based web service approaches in that it provides a
uniform way to describe both the data and the data model. This improves semantic interoperability
between systems and allows an ecosystem to emerge.
Towards that end, the OData Protocol follows these design principles:

 Prefer mechanisms that work on a variety of data stores. In particular, do not assume a relational
data model.

 Extensibility is important. Services should be able to support extended functionality without
breaking clients unaware of those extensions.

 Follow REST principles.
 OData should build incrementally. A very basic, compliant service should be easy to build, with

additional work necessary only to support additional capabilities.
 Keep it simple. Address the common cases and provide extensibility where necessary.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 74

3 Data Model
This section provides a high-level description of the Entity Data Model (EDM): the abstract data model
that is used to describe the data exposed by an OData service. An OData Metadata Document is a
representation of a service's data model exposed for client consumption.
The central concepts in the EDM are entities, relationships, entity sets, actions, and functions.
Entities are instances of entity types (e.g. Customer, Employee, etc.).
Entity types are named structured types with a key. They define the named properties and relationships
of an entity. Entity types may derive by single inheritance from other entity types.
The key of an entity type is formed from a subset of the primitive properties (e.g. CustomerId, OrderId,
LineId, etc.) of the entity type.
Complex types are keyless named structured types consisting of a set of properties. These are value
types whose instances cannot be referenced outside of their containing entity. Complex types are
commonly used as property values in an entity or as parameters to operations.
Properties declared as part of a structured type's definition are called declared properties. Instances of
structured types may contain additional undeclared dynamic properties. A dynamic property cannot have
the same name as a declared property. Entity or complex types which allow clients to persist additional
undeclared properties are called open types.
Relationships from one entity to another are represented as navigation properties. Navigation properties
are generally defined as part of an entity type, but can also appear on entity instances as undeclared
dynamic navigation properties. Each relationship has a cardinality.
Enumeration types are named primitive types whose values are named constants with underlying integer
values.
Type definitions are named primitive types with fixed facet values such as maximum length or precision.
Type definitions can be used in place of primitive typed properties, for example, within property
definitions.
Entity sets are named collections of entities (e.g. Customers is an entity set containing Customer
entities). An entity's key uniquely identifies the entity within an entity set. If multiple entity sets use the
same entity type, the same combination of key values can appear in more than one entity set and
identifies different entities, one per entity set where this key combination appears. Each of these entities
has a different entity-id. Entity sets provide entry points into the data model.
Operations allow the execution of custom logic on parts of a data model. Functions are operations that do
not have side effects and may support further composition, for example, with additional filter operations,
functions or an action. Actions are operations that allow side effects, such as data modification, and
cannot be further composed in order to avoid non-deterministic behavior. Actions and functions are either
bound to a type, enabling them to be called as members of an instance of that type, or unbound, in which
case they are called as static operations. Action imports and function imports enable unbound actions
and functions to be called from the service root.
Singletons are single entities which are accessed as children of the entity container.
An OData resource is anything in the model that can be addressed (an entity set, entity, property, or
operation).
Refer to [OData-CSDL] for more information on the OData entity data model.

3.1 Annotations

Model and instance elements can be decorated with Annotations.
Annotations can be used to specify an individual fact about an element, such as whether it is read-only, or
to define a common concept, such as a person or a movie.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 74

Applied annotations consist of a term (the namespace-qualified name of the annotation being applied), a
target (the model or instance element to which the term is applied), and a value. The value may be a
static value, or an expression that may contain a path to one or more properties of an annotated entity.
Annotation terms are defined in metadata and have a name and a type.
A set of related terms in a common namespace comprises a Vocabulary.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 74

4 Service Model
OData services are defined using a common data model. The service advertises its concrete data model
in a machine-readable form, allowing generic clients to interact with the service in a well-defined way.
An OData service exposes two well-defined resources that describe its data model; a service document
and a metadata document.
The service document lists entity sets, functions, and singletons that can be retrieved. Clients can use the
service document to navigate the model in a hypermedia-driven fashion.
The metadata document describes the types, sets, functions and actions understood by the OData
service. Clients can use the metadata document to understand how to query and interact with entities in
the service.
In addition to these two “fixed” resources an OData service consists of dynamic resources. The URLs for
many of these resources can be computed from the information in the metadata document.
See Requesting Data and Data Modification for details.

4.1 Entity-Ids and Entity References

Whereas entities within an entity set are uniquely identified by their key values, entities are also uniquely
identified by a durable, opaque, globally unique entity-id. The entity-id MUST be an IRI as defined in
[RFC3987] and MAY be expressed in payloads and URLs as a relative reference as appropriate. While
the client MUST be prepared to accept any IRI, services MUST use valid URIs in this version of the
specification since there is currently no lossless representation of an IRI in the OData-EntityId
header.
Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL as its
entity-id, but clients cannot assume the entity-id can be used to locate the entity unless the
Core.DereferenceableIDs term is applied to the entity container, nor can the client assume any
semantics from the structure of the entity-id. The canonical resource $entity provides a general
mechanism for resolving an entity-id into an entity representation.
Services that use the standard URL conventions for entity-ids annotate their entity container with the term
Core.ConventionalIDs, see [OData-VocCore].
Entity references refer to an entity using the entity's entity-id.

4.2 Read URLs and Edit URLs

The read URL of an entity is the URL that can be used to read the entity.
The edit URL of an entity is the URL that can be used to update or delete the entity.
The edit URL of a property is the edit URL of the entity with appended segment(s) containing the path to
the property.
Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL for
both the read URL and the edit URL of an entity, with a cast segment to the type of the entity appended to
the canonical URL if the type of the entity is derived from the declared type of the entity set. However,
clients cannot assume this convention and must use the links specified in the payload according to the
appropriate format as the two URLs may be different from one another, or one or both of them may differ
from convention.

4.3 Transient Entities

Transient entities are instances of an entity type that are “calculated on the fly” and only exist within a
single payload. They cannot be reread or updated and consequently possess neither a stable entity-id nor
a read URL or an update URL.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 74

5 Versioning
Versioning enables clients and services to evolve independently. OData defines semantics for both
protocol and data model versioning.

5.1 Protocol Versioning

OData requests and responses are versioned according to the OData-Version header.
OData clients include the OData-MaxVersion header in requests in order to specify the maximum
acceptable response version. Services respond with the maximum supported version that is less than or
equal to the requested OData-MaxVersion, using decimal comparison. The syntax of the OData-
Version and OData-MaxVersion header fields is specified in [OData-ABNF].
This version of the specification defines data service version value 4.0.

5.2 Model Versioning

The Data Model exposed by an OData Service defines a contract between the OData service and its
clients. Services are allowed to extend their model only to the degree that it does not break existing
clients. Breaking changes, such as removing properties or changing the type of existing properties,
require that a new service version is provided at a different service root URL for the new model.
The following Data Model additions are considered safe and do not require services to version their entry
point.

 Adding a property that is nullable or has a default value; if it has the same name as an existing
dynamic property, it must have the same type (or base type) as the existing dynamic property

 Adding a navigation property that is nullable or collection-valued; if it has the same name as an
existing dynamic navigation property, it must have the same type (or base type) as the existing
dynamic navigation property

 Adding a new entity type to the model
 Adding a new complex type to the model
 Adding a new entity set
 Adding a new singleton
 Adding an action, a function, an action import, or function import
 Adding an action parameter that is nullable
 Adding a type definition or enumeration
 Adding any annotation to a model element that does not need to be understood by the client in

order to correctly interact with the service
Clients SHOULD be prepared for services to make such incremental changes to their model. In particular,
clients should be prepared to receive properties and derived types not previously defined by the service.
Services SHOULD NOT change their data model depending on the authenticated user. If the data model
is user or user group dependent, all changes MUST be safe changes as defined in this section when
comparing the full model to the model visible to users with restricted authorizations.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 74

6 Extensibility
The OData protocol supports both user- and version-driven extensibility through a combination of
versioning, convention, and explicit extension points.

6.1 Query Option Extensibility

Query options within the request URL can control how a particular request is processed by the service.
OData-defined system query options are prefixed with "$". Services may support additional custom query
options not defined in the OData specification, but they MUST NOT begin with the "$" or "@" character.
OData services SHOULD NOT require any query options to be specified in a request. Services SHOULD
fail any request that contains query options that they do not understand and MUST fail any request that
contains unsupported OData query options defined in the version of this specification supported by the
service.
In many cases OData services return URLs to identify resources that are later requested by clients.
Where possible, interoperability is enhanced by providing all identifying information in the path portion of
the URL. However, clients should be prepared for such URLs to include custom query options and
propagate any such custom query options in future requests to the identified resource.

6.2 Payload Extensibility

OData supports extensibility in the payload, according to the specific format.
Regardless of the format, additional content MUST NOT be present if it needs to be understood by the
receiver in order to correctly interpret the payload according to the specified OData-Version header.
Thus, clients and services MUST be prepared to handle or safely ignore any content not specifically
defined in the version of the payload specified by the OData-Version header.

6.3 Action/Function Extensibility

Actions and Functions extend the set of operations that can be performed on or with a service or
resource. Actions can have side-effects. For example, Actions can be used to modify data or to invoke
custom operations. Functions MUST NOT have side-effects. Functions can be invoked from a URL that
addresses a resource or within an expression to a $filter or $orderby system query option.
Fully qualified action and function names include a namespace or alias prefix. The Edm, odata and geo
namespaces are reserved for the use of this specification.
An OData service MUST fail any request that contains actions or functions that it does not understand.

6.4 Vocabulary Extensibility

The set of annotations defined within a schema comprise a vocabulary. Shared vocabularies provide a
powerful extensibility point for OData.
Metadata annotations can be used to define additional characteristics or capabilities of a metadata
element, such as a service, entity type, property, function, action or parameter. For example, a metadata
annotation could define ranges of valid values for a particular property.
Instance annotations can be used to define additional information associated with a particular result,
entity, property, or error; for example whether a property is read-only for a particular instance.
Where annotations apply across all instances of a type, services are encouraged to specify the
annotation in metadata rather than repeating in each instance of the payload. Where the same annotation
is defined at both the metadata and instance level, the instance-level annotation overrides the one
specified at the metadata level.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 74

A service MUST NOT require the client to understand custom annotations in order to accurately interpret
a response.
OData defines a Core vocabulary with a set of basic terms describing behavioral aspects along with
terms that can be used in defining other vocabularies; see [OData-VocCore].

6.5 Header Field Extensibility

OData defines semantics around certain HTTP request and response headers. Services that support a
version of OData conform to the processing requirements for the headers defined by this specification for
that version.
Individual services may define custom headers. These headers MUST NOT begin with OData . Custom
headers SHOULD be optional when making requests to the service. A service MUST NOT require the
client to understand custom headers to accurately interpret the response.

6.6 Format Extensibility

An OData service MUST support at least one of [OData-JSON]ODataJSONRefOData-JSON or [OData-
Atom]OData-Atom, and MAY support additional formats for both request and response bodies.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 74

7 Formats
The client MAY request a particular response format through the Accept header, as specified in
[RFC7231], or through the system query option $format
In the case that both the Accept header and the $format query option are specified on a request, the
value specified in the $format query option MUST be used.
If the service does not support the requested format, it replies with a 406 Not Acceptable error
response.
Services SHOULD advertise their supported formats by annotating their entity container with the term
Capabilities.SupportedFormats, as defined in [OData-VocCap], listing all available formats and
combinations of supported format parameters.
See the format specifications ([OData-JSON]OData-JSON, [OData-Atom]OData-Atom) for details.
Client libraries MUST retain the order of objects within an array in JSON responses, and elements in
document order for ATOM and XML responses, including CSDL documents.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 74

8 Header Fields
OData defines semantics around the following request and response headers. Additional headers may be
specified, but have no unique semantics defined in OData.

8.1 Common Headers

The Content-Type, Content-Length, and OData-Version headers are common between
OData requests and responses.

8.1.1 Header Content-Type

As specified in [RFC7231], the format of an individual request or response body MUST be specified in the
Content-Type header of the request or response.
The specified format MAY include format parameters. Clients MUST be prepared for the service to return
custom format parameters not specified in OData. Custom format parameters MUST NOT start with
"odata" and services MUST NOT require generic OData consumers to understand custom format
parameters in order to correctly interpret the payload.
See the format-specific specifications ([OData-JSON], [OData-Atom]) for details.

8.1.2 Header Content-Encoding

As specified in [RFC7231], the Content-Encoding header field is used as a modifier to the media-type
(as indicated in the Content-Type). When present, its value indicates what additional content codings
have been applied to the entity-body.
A service MAY specify a list of acceptable content codings using an annotation with term
Capabilities.AcceptableEncodings, see [OData-VocCap].

8.1.3 Header Content-Language

As specified in [RFC7231], a request or response can include a Content-Language header to indicate
the natural language of the intended audience for the enclosed message body. OData does not add any
additional requirements over HTTP for including Content-Language. OData services can annotate
model elements whose content depends on the content language with the term
Core.IsLanguageDependent, see [OData-VocCore].

8.1.4 Header Content-Length

As specified in [RFC7230], a request or response SHOULD include a Content-Length header when
the message's length can be determined prior to being transferred. OData does not add any additional
requirements over HTTP for writing Content-Length.

8.1.5 Header OData-Version

OData clients SHOULD use the OData-Version header on a request to specify the version of the
protocol used to generate the request.
If present on a request, the service MUST interpret the request according to the rules defined in the
specified version of the protocol, or fail the request with a 4xx response code.
If not specified in a request, the service MUST assume the request is generated using the minimum of the
OData-MaxVersion, if specified, and the maximum version of the protocol that the service understands.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 74

OData services MUST include the OData-Version header on a response to specify the version of the
protocol used to generate the response. The client MUST interpret the response according to the rules
defined in the specified version of the protocol.
For more details, see Versioning.

8.2 Request Headers

In addition to the Common Headers, the client may specify any combination of the following request
headers.

8.2.1 Header Accept

As specified in [RFC7231], the client MAY specify the set of accepted formats with the Accept Header.
Services MUST reject formats that specify unknown or unsupported format parameters.
If a media type specified in the Accept header includes a charset format parameter and the request
also contains an Accept-Charset header, then the Accept-Charset header MUST be used.
If the media type specified in the Accept header does not include a charset format parameter, then the
Content-Type header of the response MUST NOT contain a charset format parameter.

8.2.2 Header Accept-Charset

As specified in. [RFC7231], the client MAY specify the set of accepted character sets with the Accept-
Charset header.

8.2.3 Header Accept-Language

As specified in [RFC7231], the client MAY specify the set of accepted natural languages with the
Accept-Language header.

8.2.4 Header If-Match

As specified in [RFC7232], a client MAY include an If-Match header in a request to GET, PUT, PATCH
or DELETE. The value of the If-Match request header MUST be an ETag value previously retrieved for
the entity, or "*" to match any value.
If an operation on an existing entity requires an ETag, (see Core.OptimisticConcurrency in [OData-

VocCore]) and the client does not specify an If-Match request header in a Data Modification Request
or in an Action Request bound to the entity, the service responds with a 428 Precondition
Required and MUST ensure that no observable change occurs as a result of the request.
If specified, the request MUST only be processed if the specified value matches the current ETag value of
the target entity, using the weak comparison function (see [RFC7230]). If the value does not match the
current ETag value of the entity for a Data Modification Request or Action Request, the service MUST
respond with 412 Precondition Failed and MUST ensure that no observable change occurs as a
result of the request. In the case of an upsert, if the addressed entity does not exist the provided ETag
value is considered not to match.
The client MAY include an If-Match header in a PUT or PATCH request in order to ensure that the
request is handled as an update and not an upsert.

8.2.5 Header If-None-Match

As specified in [RFC7232], a client MAY include an If-None-Match header in a request to GET, PUT,
PATCH or DELETE. The value of the If-None-Match request header MUST be an ETag value
previously retrieved for the entity, or "*".

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 74

If specified, the request MUST only be processed if the specified value does not match the current ETag
value of the entity, using the weak comparison function (see [RFC7230]). If the value matches the current
ETag value of the entity, then for a GET request, the service SHOULD respond with 304 Not
Modified, and for a Data Modification Request or Action Request, the service MUST respond with 412
Precondition Failed and MUST ensure that no observable change occurs as a result of the request.
An If-None-Match header with a value of "*" in a PUT or PATCH request results in an upsert request
being processed as an insert and not an update.

8.2.6 Header OData-Isolation

The OData-Isolation header specifies the isolation of the current request from external changes. The
only supported value for this header is snapshot.
If the service doesn’t support OData-Isolation:snapshot and this header was specified on the
request, the service MUST NOT process the request and MUST respond with 412 Precondition
Failed.
Snapshot isolation guarantees that all data returned for a request, including multiple requests within a
batch or results retrieved across multiple pages, will be consistent as of a single point in time. Only data
modifications made within the request (for example, by a data modification request within the same batch)
are visible. The effect is as if the request generates a "snapshot" of the committed data as it existed at the
start of the request.
The OData-Isolation header may be specified on a single or batch request. If it is specified on a
batch then the value is applied to all statements within the batch.
Next links returned within a snapshot return results within the same snapshot as the initial request; the
client is not required to repeat the header on each individual page request.
The OData-Isolation header has no effect on links other than the next link. Navigation links, read
links, and edit links return the current version of the data.
A service returns 410 Gone or 404 Not Found if a consumer tries to follow a next link referring to a snapshot
that is no longer available.

The syntax of the OData-Isolation header is specified in [OData-ABNF].
A service MAY specify the support for OData-Isolation:snapshot using an annotation with term
Capabilities.IsolationSupport, see [OData-VocCap].

8.2.7 Header OData-MaxVersion

Clients SHOULD specify an OData-MaxVersion request header.
If specified the service MUST generate a response with an OData-Version less than or equal to the
specified OData-MaxVersion.
If OData-MaxVersion is not specified, then the service SHOULD interpret the request as having an
OData-MaxVersion equal to the maximum version supported by the service.
For more details, see Versioning.

8.2.8 Header Prefer

The Prefer header, as defined in [RFC7240], allows clients to request certain behavior from the service.
The service MUST ignore preference values that are either not supported or not know by the service.
The value of the Prefer header is a comma-separated list of preferences. The following subsections
describe preferences whose meaning in OData is defined by this specification.
In response to a request containing a Prefer header, the service MAY return the Preference-
Applied Header.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 74

8.2.8.1 Preference odata.allow-entityreferences

The odata.allow-entityreferences preference indicates that the service is allowed to return entity
references in place of entities that have previously been returned, with at least the properties requested,
in the same response (for example, when serializing the expanded results of many-to-many
relationships). The service MUST NOT return entity references in place of requested entities if
odata.allow-entityreferences has not been specified in the request, unless explicitly defined by
other rules in this document. The syntax of the odata.allow-entityreferences preference is
specified in [OData-ABNF].
In the case the service applies the odata.allow-entityreferences preference it MUST include a
Preference-Applied response header containing the odata.allow-entityreferences
preference to indicate that entity references MAY be returned in place of entities that have previously
been returned.

8.2.8.2 Preference odata.callback

For scenarios in which links returned by the service are used by the client to poll for additional
information, the client can specify the odata.callback preference to request that the service notify the
client when data is available.
The odata.callback preference can be specified:

 when requesting asynchronous processing of a request with the respond-async preference, or

 on a GET request to a delta link.
The odata.callback preference MUST include the parameter url whose value is the URL of a
callback endpoint to be invoked by the OData service when data is available. The syntax of the
odata.callback preference is specified in [OData-ABNF].
For HTTP based callbacks, the OData service executes an HTTP GET request against the specified URL.
Services that support odata.callback SHOULD support notifying the client through HTTP. Services
can advertise callback support using the Capabilities.CallbackSupport annotation term defined in
[OData-VocCap].
If the service applies the odata.callback preference it MUST include the odata.callback
preference in the Preference-Applied response header.
When the odata.callback preference is applied to asynchronous requests, the OData service invokes
the callback endpoint once it has finished processing the request. The status monitor resource, returned
in the Location header of the previously returned 202 Accepted response, can then be used to
retrieve the results of the asynchronously executed request.
When the odata.callback preference is specified on a GET request to a delta link and there are no
changes available, the OData service returns a 202 Accepted response with a Location header
specifying the delta link to be used to check for future updates. The OData service then invokes the
specified callback endpoint once new changes become available.
Combining respond-async, odata.callback and odata.track-changes preferences on a GET
request to a delta-link might influence the response in a couple of ways.

 If the service processes the request synchronously, and no updates are available, then the
response is the same as if the respond-async hadn’t been specified and results in a response
as described above.

 If the service processes the request asynchronously, then it responds with a 202 Accepted
response specifying the URL to the status monitor resource as it would have with any other
asynchronous request. Once the service has finished processing the asynchronous request to the
delta link resource, if changes are available it invokes the specified callback endpoint. If no
changes are available, the service SHOULD wait to notify the client until changes are available.
Once notified, the client uses the status monitor resource from the Location header of the
previously returned 202 Accepted response to retrieve the results. In case no updates were

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 74

available after processing the initial request, the result will contain no updates and the client can
use the delta-link contained in the result to retrieve the updates that have since become available.

If the consumer specifies the same URL as callback endpoint in multiple requests, the service MAY
collate them into a single notification once additional data is available for any of the requests. However,
the consumer MUST be prepared to deal with receiving up to as many notifications as it requested.
Example 2: using a HTTP callback endpoint to receive notification

Prefer: odata.callback; url="http://myserver/notfication/token/12345"

8.2.8.3 Preference odata.continue-on-error

The odata.continue-on-error preference on a batch request is used to request that, upon
encountering a request within the batch that returns an error, the service return the error for that request
and continue processing additional requests within the batch. The syntax of the odata.continue-on-
error preference is specified in [OData-ABNF].
If not specified, upon encountering an error the service MUST return the error within the batch and stop
processing additional requests within the batch.
A service MAY specify the support for the odata.continue-on-error preference using an annotation
with term Capabilities.BatchContinueOnErrorSupported, see [OData-VocCap].

8.2.8.4 Preference odata.include-annotations

The odata.include-annotations preference in a request for data or metadata is used to specify the
set of annotations the client requests to be included, where applicable, in the response.
The value of the odata.include-annotations preference is a comma-separated list of namespaces
or namespace qualified term names to include or exclude, with "*" representing all. The full syntax of the
odata.include-annotations preference is defined in [OData-ABNF].
The most specific identifier always takes precedence. If the same identifier value is requested to both be
excluded and included the behavior is undefined; the service MAY return or omit the specified vocabulary
but MUST NOT raise an exception.

Example 3: a Prefer header requesting all annotations within a metadata document to be returned

Prefer: odata.include-annotations="*"

Example 4: a Prefer header requesting that no annotations are returned

Prefer: odata.include-annotations="-*"

Example 5: a Prefer header requesting that all annotations defined under the "display" namespace (recursively) be
returned

Prefer: odata.include-annotations="display.*"

Example 6: a Prefer header requesting that the annotation with the term name subject within the display
namespace be returned if applied

Prefer: odata.include-annotations="display.subject"

The odata.include-annotations preference is only a hint to the service. The service MAY ignore
the preference and is free to decide whether or not to return annotations not specified in the
odata.include-annotations preference.
In the case that the client has specified the odata.include-annotations preference in the request,
the service SHOULD include a Preference-Applied response header containing the
odata.include-annotations preference to specify the annotations actually included, where
applicable, in the response. This value may differ from the annotations requested in the Prefer header
of the request.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 74

8.2.8.5 Preference odata.maxpagesize

The odata.maxpagesize preference is used to request that each collection within the response contain
no more than the number of items specified as the positive integer value of this preference. The syntax of
the odata.maxpagesize preference is specified in [OData-ABNF].

Example 7: a request for customers and their orders would result in a response containing one collection with
customer entities and for every customer a separate collection with order entities. The client could specify
odata.maxpagesize=50 in order to request that each page of results contain a maximum of 50 customers, each
with a maximum of 50 orders.

If a collection within the result contains more than the specified odata.maxpagesize, the collection
SHOULD be a partial set of the results with a next link to the next page of results. The client MAY specify
a different value for this preference with every request following a next link.
In the example given above, the result page should include a next link for the customer collection, if there are more
than 50 customers, and additional next links for all returned orders collections with more than 50 entities.

If the client has specified the odata.maxpagesize preference in the request, and the service limits the
number of items in collections within the response through server-driven paging, the service MAY include
a Preference-Applied response header containing the odata.maxpagesize preference and the
maximum page size applied. This value may differ from the value requested by the client.

8.2.8.6 Preference odata.track-changes

The odata.track-changes preference is used to request that the service return a delta link that can
subsequently be used to obtain changes (deltas) to this result. The syntax of the odata.track-
changes preference is specified in [OData-ABNF].
For paged results, the preference MUST be specified on the initial request. Services MUST ignore the
odata.track-changes preference if applied to the next link.
The delta link MUST NOT be returned prior to the final page of results.
The service includes a Preference-Applied response header in the first page of the response
containing the odata.track-changes preference to signal that changes are being tracked.
A service MAY specify the support for the odata.track-changes preference using an annotation with
term Capabilities.ChangeTrackingSupport, see [OData-VocCap].

8.2.8.7 Preference return=representation and return=minimal

The return=representation and return=minimal preferences are defined in [RFC7240].
In OData, return=representation or return=minimal is defined for use with a POST, PUT, or
PATCH Data Modification Request other than to a stream property, or to an Action Request. Specifying a
preference of return=representation or return=minimal in a GET or DELETE request, or any
request to a stream property, SHOULD return a 4xx Client Error.
A preference of return=representation or return=minimal is allowed on an individual Data
Modification Request or Action Request within a batch, subject to the same restrictions, but SHOULD
return a 4xx Client Error if specified on the batch request itself.
A preference of return=minimal requests that the service invoke the request but does not return
content in the response. The service MAY apply this preference by returning 204 No Content in which
case it MAY include a Preference-Applied response header containing the return=minimal
preference.
A preference of return=representation requests that the service invokes the request and returns the
modified resource. The service MAY apply this preference by returning the representation of the
successfully modified resource in the body of the response, formatted according to the rules specified for
the requested format. In this case the service MAY include a Preference-Applied response header
containing the return=representation preference.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 74

8.2.8.8 Preference respond-async

The respond-async preference, as defined in [RFC7240], allows clients to request that the service
process the request asynchronously.
If the client has specified respond-async in the request, the service MAY process the request
asynchronously and return a 202 Accepted response.

The respond-async preference MAY be used for batch requests, but the service MUST ignore the
respond-async preference for individual requests within a batch request.
In the case that the service applies the respond-async preference it MUST include a Preference-
Applied response header containing the respond-async preference.
A service MAY specify the support for the respond-async preference using an annotation with term
Capabilities.AsynchronousRequestsSupported, see [OData-VocCap].

Example 8: a service receiving the following header might choose to respond

 asynchronously if the synchronous processing of the request will take longer than 10 seconds

 synchronously after 5 seconds

 asynchronously (ignoring the wait preference)

 synchronously after 15 seconds (ignoring respond-async preference and the wait preference)

Prefer: respond-async, wait=10

8.2.8.9 Preference wait

The wait preference, as defined in [RFC7240], is used to establish an upper bound on the length of
time, in seconds, the client is prepared to wait for the service to process the request synchronously once
it has been received.
If the respond-async preference is also specified, the client requests that the service respond
asynchronously after the specified length of time.
If the respond-async preference has not been specified, the service MAY interpret the wait as a
request to timeout after the specified period of time.

8.3 Response Headers

In addition to the Common Headers, the following response headers have defined meaning in OData.

8.3.1 Header ETag

A request that returns an individual resource MAY include an ETag header in the response. Services
MUST include this header in such a response if they require it to be specified when modifying the
resource.
The value specified in the ETag header may be specified in the If-Match or If-None-Match header of
a subsequent Data Modification Request or Action Request in order to apply optimistic concurrency in
updating, deleting, or invoking the action bound to the entity.
As OData allows multiple formats for representing the same structured information, services SHOULD
use weak ETags that only depend on the format-independent entity state is recommended. A strong
ETag MUST change whenever the representation of an entity changes, so it has to depend on the
Content-Type, the Content-Language, and potentially other characteristics of the response.
An ETag header MAY also be returned on a metadata document request or service document request to
allow the client subsequently to make a conditional request for the metadata or service document. Clients
can also compare the value of the ETag header returned from a metadata document request to the

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 74

metadata ETag returned in a response in order to verify the version of the metadata used to generate that
response.

8.3.2 Header Location

The Location header MUST be returned in the response from a Create Entity or Create Media Entity
request to specify the edit URL, or for read-only entities the read URL, of the created entity, and in
responses returning 202 Accepted to specify the URL that the client can use to request the status of an
asynchronous request.

8.3.3 Header OData-EntityId

A response to a create operation that returns 204 No Content MUST include an OData-EntityId
response header. The value of the header is the entity-id of the entity that was acted on by the request.
The syntax of the OData-EntityId preference is specified in [OData-ABNF].

8.3.4 Header Preference-Applied

In a response to a request that specifies a Prefer header, a service MAY include a Preference-
Applied header, as defined in [RFC7240], specifying how individual preferences within the request were
handled.
The value of the Preference-Applied header is a comma-separated list of preferences applied in the
response. For more information on the individual preferences, see the Prefer header.

8.3.5 Header Retry-After

A service MAY include a Retry-After header in 202 Accepted and in 3xx Redirect responses
The Retry-After header specifies the duration of time, in seconds, that the client is asked to wait
before retrying the request or issuing a request to the resource returned as the value of the Location
header.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 74

9 Common Response Status Codes
An OData service MAY respond to any request using any valid HTTP status code appropriate for the
request. A service SHOULD be as specific as possible in its choice of HTTP status codes.
The following represent the most common success response codes. In some cases, a service MAY
respond with a more specific success code.

9.1 Success Responses

The following response codes represent successful requests.

9.1.1 Response Code 200 OK

A request that does not create a resource returns 200 OK if it is completed successfully and the value of
the resource is not null. In this case, the response body MUST contain the value of the resource
specified in the request URL.

9.1.2 Response Code 201 Created

A Create Entity, Create Media Entity, Create Link or Invoke Action request that successfully creates a
resource returns 201 Created. In this case, the response body MUST contain the resource created.

9.1.3 Response Code 202 Accepted

202 Accepted indicates that the Data Service Request has been accepted and has not yet completed
executing asynchronously. The asynchronous handling of requests is specified in section 11.6, and in
section 11.7.5 for batch requests.

9.1.4 Response Code 204 No Content

A request returns 204 No Content if the requested resource has the null value, or if the service
applies a return=minimal preference. In this case, the response body MUST be empty.
As defined in [RFC7231], a Data Modification Request that responds with 204 No Content MUST
NOT include an ETag header unless the request's representation data was saved without any
transformation applied to the body (i.e., the resource's new representation data is identical to the
representation data received in the PUT request) and the ETag value reflects the new representation.

9.1.5 Response Code 3xx Redirection

As per [RFC7231], a 3xx Redirection indicates that further action needs to be taken by the client in
order to fulfill the request. In this case, the response SHOULD include a Location header, as
appropriate, with the URL from which the result can be obtained; it MAY include a Retry-After header.

9.1.6 Response Code 304 Not Modified

As per [RFC7231], a 304 Not Modified is returned when the client performs a GET request containing
an If-None-Match header and the content has not changed. In this case the response SHOULD NOT
include other headers in order to prevent inconsistencies between cached entity-bodies and updated
headers.
The service MUST ensure that no observable change has occurred to the state of the service as a result
of any request that returns a 304 Not Modified.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 74

9.2 Client Error Responses

Error codes in the 4xx range indicate a client error, such as a malformed request.
The service MUST ensure that no observable change has occurred to the state of the service as a result
of any request that returns an error status code.
In the case that a response body is defined for the error code, the body of the error is as defined for the
appropriate format.

9.2.1 Response Code 404 Not Found

404 Not Found indicates that the resource specified by the request URL does not exist. The response
body MAY provide additional information.

9.2.2 Response Code 405 Method Not Allowed

405 Method Not Allowed indicates that the resource specified by the request URL does not support
the request method. In this case the response MUST include an Allow header containing a list of valid
request methods for the requested resource as specified in [RFC7231].

9.2.3 Response Code 410 Gone

410 Gone indicates that the requested resource is no longer available. This can happen if a client has
waited too long to follow a delta link or a status-monitor-resource link, or a next link on a collection that
was requested with snapshot isolation.

9.2.4 Response Code 412 Precondition Failed

As specified in [RFC7230], 412 Precondition Failed indicates that the client has performed a
conditional request and the resource fails the condition. The service MUST ensure that no observable
change occurs as a result of the request.

9.3 Server Error Responses

As specified in [RFC7231], error codes in the 5xx range indicate service errors.

9.3.1 Response Code 501 Not Implemented

If the client requests functionality not implemented by the OData Service, the service MUST respond with
501 Not Implemented and the response body SHOULD describe the functionality not implemented.

9.4 In-Stream Errors

In the case that the service encounters an error after sending a success status to the client, the service
MUST generate an error within the payload, which may leave the response malformed. Clients MUST
treat the entire response as being in error.
This specification does not prescribe a particular format for generating errors within a payload.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 74

10 Context URL
The context URL describes the content of the payload. It consists of the canonical metadata document
URL and a fragment identifying the relevant portion of the metadata document.
Request payloads generally do not require context URLs as the type of the payload can generally be
determined from the request URL.
For details on how the context URL is used to describe a payload, see the relevant sections in the
particular format.
The following subsections describe how the context URL is constructed for each category of payload by
providing a context URL template. The context URL template uses the following terms:

 {context-url} is the canonical resource path to the $metadata document,

 {entity-set} is the name of an entity set or path to a containment navigation property,

 {entity} is the canonical URL for an entity,

 {singleton} is the canonical URL for a singleton entity,

 {select-list} is an optional parenthesized comma-separated list of selected properties,
functions and actions,

 {property-path} is the path to a structural property of the entity,

 {type-name} is a qualified type name,

 {/type-name} is an optional type-cast segment containing the qualified name of a derived type
prefixed with a forward slash.

The full grammar for the context URL is defined in [OData-ABNF].

10.1 Service Document

Context URL template:

{context-url}

The context URL of the service document is the metadata document URL of the service.
Example 9: resource URL and corresponding context URL

http://host/service/

http://host/service/$metadata

10.2 Collection of Entities

Context URL template:

{context-url}#{entity-set}

{context-url}#Collection({type-name})

If all entities in the collection are members of one entity set, its name is the context URL fragment.
Example 10: resource URL and corresponding context URL

http://host/service/Customers

http://host/service/$metadata#Customers

If the entities are contained, then entity-set is the top-level entity set followed by the path to the
containment navigation property of the containing entity.
Example 11: resource URL and corresponding context URL for contained entities

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 74

http://host/service/Orders(4711)/Items

http://host/service/$metadata#Orders(4711)/Items

If the entities in the response are not bound to a single entity set, such as from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity collection.

10.3 Entity

Context URL template:

{context-url}#{entity-set}/$entity

{context-url}#{type-name}

If a response or response part is a single entity of the declared type of an entity set, /$entity is
appended to the context URL.
Example 12: resource URL and corresponding context URL

http://host/service/Customers(1)

http://host/service/$metadata#Customers/$entity

If the entity is contained, then entity-set is the canonical URL for the containment navigation property
of the containing entity, e.g. Orders(4711)/Items.
Example 13: resource URL and corresponding context URL for contained entity

http://host/service/Orders(4711)/Items(1)

http://host/service/$metadata#Orders(4711)/Items/$entity

If the response is not bound to a single entity set, such as an entity returned from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity.

10.4 Singleton

Context URL template:

{context-url}#{singleton}

If a response or response part is a singleton, its name is the context URL fragment.
Example 14: resource URL and corresponding context URL

http://host/service/Contoso

http://host/service/$metadata#Contoso

10.5 Collection of Derived Entities

Context URL template:

{context-url}#{entity-set}{/type-name}

If an entity set consists exclusively of derived entities, a type-cast segment is added to the context URL.
Example 15: resource URL and corresponding context URL

http://host/service/Customers/Model.VipCustomer

http://host/service/$metadata#Customers/Model.VipCustomer

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 74

10.6 Derived Entity

Context URL template:

{context-url}#{entity-set}{/type-name}/$entity

If a response or response part is a single entity of a type derived from the declared type of an entity set, a
type-cast segment is appended to the entity set name.
Example 16: resource URL and corresponding context URL

http://host/service/Customers(2)/Model.VipCustomer

http://host/service/$metadata#Customers/Model.VipCustomer/$entity

10.7 Collection of Projected Entities

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#Collection({type-name}){select-list}

If a result contains only a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, navigation properties, functions, and actions is appended to the
{entity-set} after an optional type-cast segment, or the type of the entity collection if the response is
not bound to a single entity set. The shortcut * represents the list of all structural properties. Properties
defined on types derived from the declared type of the entity set (or type specified in the type-cast
segment if specified) are prefixed with the qualified name of the derived type as defined in [OData-
ABNF]OData-ABNF.
Example 17: resource URL and corresponding context URL

http://host/service/Customers?$select=Address,Orders

http://host/service/$metadata#Customers(Address,Orders)

10.8 Projected Entity

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}/$entity

{context-url}#{singleton}{select-list}

{context-url}#{type-name}{select-list}

If a single entity contains a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, navigation properties, functions, and actions is appended to the
{entity-set} after an optional type-cast segment and prior to appending /$entity. If the response is
not bound to a single entity set, the {select-list} is instead appended to the {type-name} of the
returned entity.
The shortcut * represents the list of all structural properties. Properties defined on types derived from the
type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the qualified
name of the derived type as defined in [OData-ABNF]OData-ABNF. Note that expanded properties are
implicitly selected.
Example 18: resource URL and corresponding context URL

http://host/service/Customers(1)?$select=Name,Rating

http://host/service/$metadata#Customers(Name,Rating)/$entity

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 74

10.9 Collection of Projected Expanded Entities

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#Collection({type-name}){select-list}

If a navigation property is explicitly selected, the parenthesized comma-separated list of properties
includes the name of the selected navigation property with no parenthesis. If a $expand contains a
nested $select, the navigation property appears suffixed with the parenthesized comma-separated list
of properties selected (or expanded, containing a $select) from the related entities. Additionally, if the
expansion is recursive for nested children, a plus sign (+) is infixed between the navigation property name
and the list of properties.
Example 19: resource URL and corresponding context URL

http://host/service/Customers$select=Name&$expand=Address/Country

http://host/service/$metadata#Customers(Name,Address/Country)

Example 20: resource URL and corresponding context URL

http://host/service/Employees/Sales.Manager?$select=DirectReports

 &$expand=DirectReports($select=FirstName,LastName;$levels=4)

http://host/service/$metadata

 #Employees/Sales.Manager(DirectReports,

 DirectReports+(FirstName,LastName))

10.10 Projected Expanded Entity

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}/$entity

{context-url}#{singleton}{select-list}

{context-url}#{type-name}{select-list}

If a single entity is expanded and projected (or contains a $expand with a $select expand option), the
parenthesized comma-separated list of selected properties includes the name of the expanded navigation
properties containing a nested $select, each suffixed with the parenthesized comma-separated list of
properties selected (or expanded with a nested $select) from the related entities.

Example 21: resource URL and corresponding context URL

http://host/service/Employees(1)/Sales.Manager?

 $expand=DirectReports($select=FirstName,LastName;$levels=4)

http://host/service/$metadata

 #Employees/Sales.Manager(DirectReports+(FirstName,LastName))/$entity

10.11 Collection of Entity References

Context URL template:

{context-url}#Collection($ref)

If a response is a collection of entity references, the context URL does not contain the type of the
referenced entities.
Example 22: resource URL and corresponding context URL for a collection of entity references

http://host/service/Customers('ALFKI')/Orders/$ref

http://host/service/$metadata#Collection($ref)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 74

10.12 Entity Reference

Context URL template:

{context-url}#$ref

If a response is a single entity reference, $ref is the context URL fragment.

Example 23: resource URL and corresponding context URL for a single entity reference

http://host/service/Orders(10643)/Customer/$ref

http://host/service/$metadata#$ref

10.13 Property Value

Context URL template:

{context-url}#{entity}/{property-path}{select-list}

If a response represents an individual property of an entity with a canonical URL, the context URL
specifies the canonical URL of the entity and the path to the structural property of that entity. The path
MUST include cast segments for properties defined on types derived from the expected type of the
previous segment.
Example 24: resource URL and corresponding context URL

http://host/service/Customers(1)/Addresses

http://host/service/$metadata#Customers(1)/Addresses

10.14 Collection of Complex or Primitive Types

Context URL template:

{context-url}#Collection({type-name}){select-list}

If a response is a collection of complex types or primitive types that do not represent an individual
property of an entity with a canonical URL, the context URL specifies the fully qualified type of the
collection.
Example 25: resource URL and corresponding context URL

http://host/service/TopFiveHobbies()

http://host/service/$metadata#Collection(Edm.String)

10.15 Complex or Primitive Type

Context URL template:

{context-url}#{type-name}{select-list}

If a response is a complex type or primitive type that does not represent an individual property of an entity
with a canonical URL, the context URL specifies the fully qualified type of the result.
Example 26: resource URL and corresponding context URL

http://host/service/MostPopularName()

http://host/service/$metadata#Edm.String

10.16 Operation Result

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#{entity-set}{/type-name}{select-list}/$entity

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 74

{context-url}#{entity}/{property-path}{select-list}

{context-url}#Collection({type-name}){select-list}

{context-url}#{type-name}{select-list}

If the response from an action or function is a collection of entities or a single entity that is a member of
an entity set, the context URL identifies the entity set. If the response from an action or function is a
property of a single entity, the context URL identifies the entity and property. Otherwise, the context URL
identifies the type returned by the operation. The context URL will correspond to one of the former
examples.
Example 27: resource URL and corresponding context URL

http://host/service/TopFiveCustomers{}

http://host/service/$metadata#Customers

10.17 Delta Response

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}/$delta

The context URL of a delta response is the same as the context URL of the root entity set, followed by
/$delta.

Example 28: resource URL and corresponding context URL

http://host/service/Customers?$deltaToken=1234

http://host/service/$metadata#Customers/$delta

10.18 Item in a Delta Response

Context URL templates:

{context-url}#{entity-set}/$deletedEntity

{context-url}#{entity-set}/$link

{context-url}#{entity-set}/$deletedLink

In addition to new or changed entities which have the canonical context URL for an entity a delta
response can contain deleted entities, new links, and deleted links. They are identified by the
corresponding context URL fragment. {entity-set} corresponds to the set of the deleted entity, or
source entity for an added or deleted link.

10.19 $all Response

Context URL template:

{context-url}#Collection(Edm.EntityType)

Responses to requests to the virtual collection $all (see [OData-URL]) use the built-in abstract entity
type. Each single entity in such a response has its individual context URL that identifies the entity set or
singleton.

10.20 $crossjoin Response

Context URL template:

{context-url}#Collection(Edm.ComplexType)

Responses to requests to the virtual collections $crossjoin(...) (see [OData-URL]) use the built-in
abstract complex type. Single instances in these responses do not have a context URL.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 74

11 Data Service Requests

11.1 Metadata Requests

An OData service is a self-describing service that exposes metadata defining the entity sets,
relationships, entity types, and operations.

11.1.1 Service Document Request

Service documents enable simple hypermedia-driven clients to enumerate and explore the resources
offered by the data service.
OData services MUST support returning a service document from the root URL of the service (the service
root).
The format of the service document is dependent upon the format selected. For example, in Atom the
service document is an AtomPub service document (as specified in [RFC5023]).

11.1.2 Metadata Document Request

An OData Metadata Document is a representation of the data model that describes the data and
operations exposed by an OData service.
[OData-CSDL] describes an XML representation for OData metadata documents and provides an XML
schema to validate their contents. The media type of the XML representation of an OData metadata
document is application/xml.
OData services MUST expose a metadata document that describes the data model exposed by the
service. The Metadata Document URL MUST be the root URL of the service with $metadata appended.
To retrieve this document the client issues a GET request to the metadata document URL.
If a request for metadata does not specify a format preference (via Accept header or $format) then the
XML representation MUST be returned.

11.1.3 Metadata Service Document Request

An OData Service MAY expose a Metadata Service. An OData Metadata Service is a representation of
the data model that describes the data and operations exposed by an OData service as an OData service
with a fixed (meta) data model.
A metadata service MUST use the schema defined in [OData-CSDL]. The root URL of the metadata
service is the metadata document URL of the service with a forward slash appended. To retrieve this
document the client issues a GET request to the metadata service root URL

11.2 Requesting Data

OData services support requests for data via HTTP GET requests.
The path of the URL specifies the target of the request (for example; the collection of entities, entity,
navigation property, structural property, or operation). Additional query operators, such as filter, sort,
page, and projection operations are specified through query options.
This section describes the types of data requests defined by OData. For complete details on the syntax
for building requests, see [OData-URL].
OData services are hypermedia driven services that return URLs to the client. If a client subsequently
requests the advertised resource and the URL has expired, then the service SHOULD respond with 410
Gone. If this is not feasible, the service MUST respond with 404 Not Found.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 74

The format of the returned data is dependent upon the request and the format specified by the client,
either in the Accept header or using the $format query option.

11.2.1 Evaluating System Query Options

OData defines a number of system query options that allow refining the request. The result of the request
MUST be as if the system query options were evaluated in the following order.
Prior to applying any server-driven paging:

 $search

 $filter

 $count

 $orderby

 $skip

 $top

After applying any server-driven paging:
 $expand

 $select

 $format

11.2.2 Requesting Individual Entities

To retrieve an individual entity, the client makes a GET request to the read URL of an entity.
The read URL can be obtained from a response payload containing that instance, for example as a self-
link in an [OData-Atom] payload. In addition, Services MAY support conventions for constructing a read
URL using the entity's key value(s), as described in [OData-URL].
The set of structural or navigation properties to return may be specified through $select or $expand
system query options.
Clients MUST be prepared to receive additional properties in an entity or complex type instance that are
not advertised in metadata, even for types not marked as open.
Properties that are not available, for example due to permissions, are not returned. In this case, the
Core.Permissions annotation, defined in [OData-VocCore] MUST be returned for the property with a
value of Core.Permission'None'.
If no entity exists with the key values specified in the request URL, the service responds with 404 Not
Found.

11.2.3 Requesting Individual Properties

To retrieve an individual property, the client issues a GET request to the property URL. The property URL
is the entity read URL with "/" and the property name appended.
For complex typed properties, the path can be further extended with the name of an individual property of
the complex type.
See [OData-URL] for details.
If the property is single-valued and has the null value, the service responds with 204 No Content.
If the property is not available, for example due to permissions, the service responds with 404 Not
Found.

 Example 29:

http://host/service/Products(1)/Name

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 74

11.2.3.1 Requesting a Property's Raw Value using $value

To retrieve the raw value of a primitive type property, the client sends a GET request to the property value
URL. See the [OData-URL] document for details.
The Content-Type of the response is determined using the Accept header and the $format system
query option.
The default format for single primitive values except Edm.Binary and the Edm.Geo types is
text/plain.
The default format for Edm.Geo types is text/plain using the WKT (well-known text) format, see rules
fullCollectionLiteral, fullLineStringLiteral, fullMultiPointLiteral,
fullMultiLineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and
fullPolygonLiteral in [OData-ABNF].
The default format for Edm.Binary is the format specified by the Core.MediaType annotation of this
property (see [OData-VocCore]) if this annotation is present. If not annotated, the format cannot be
predicted by the client.
A $value request for a property that is null results in a 204 No Content response.
If the property is not available, for example due to permissions, the service responds with 404 Not
Found.

Example 30:

http://host/service/Products(1)/Name/$value

11.2.4 Specifying Properties to Return

The $select and $expand system query options enable the client to specify the set of structural
properties and navigation properties to include in a response. The service MAY include additional
properties not specified in $select and $expand, including properties not defined in the metadata
document.

11.2.4.1 System Query Option $select

The $select system query option requests that the service return only the properties, dynamic
properties, actions and functions explicitly requested by the client. The service returns the specified
content, if available, along with any available expanded navigation properties, and MAY return additional
information.
The value of the $select query option is a comma-separated list of properties, qualified action names,
qualified function names, the star operator (*), or the star operator prefixed with the namespace or alias
of the schema in order to specify all operations defined in the schema.

Example 31: request only the Rating and ReleaseDate for the matching Products

http://host/service/Products?$select=Rating,ReleaseDate

It is also possible to request all structural properties, including any dynamic properties, using the star
operator. The star operator SHOULD NOT introduce navigation properties, actions or functions not
otherwise requested.
Example 32:

http://host/service/Products?$select=*

Properties of related entities can be specified by including the $select query option within the $expand.

Example 33:

http://host/service/Products?$expand=Category($select=Name)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 74

The properties specified in $select are in addition to any expanded navigation properties.

Example 34: these two requests are equivalent

http://host/service/Categories?$select=CategoryName&$expand=Products

http://host/service/Categories?$select=CategoryName,Products&$expand=Products

It is also possible to request all actions or functions available for each returned entity.
Example 35:

http://host/service/Products?$select=DemoService.*

If the $select query option is not specified, the service returns the full set of properties or a default set
of properties. The default set of properties MUST include all key properties.

If the service returns less than the full set of properties, either because the client specified a select or
because the service returned a subset of properties in the absence of a select, the context URL MUST
reflect the set of selected properties and expanded navigation properties.

11.2.4.2 System Query Option $expand

The $expand system query option indicates the related entities that MUST be represented inline. The
service MUST return the specified content, and MAY choose to return additional information.
The value of the $expand query option is a comma-separated list of navigation property names,
optionally followed by a /$ref path segment or a /$count path segment, and optionally a
parenthesized set of expand options (for filtering, sorting, selecting, paging, or expanding the related
entities).
For a full description of the syntax used when building requests, see [OData-URL].
Example 36: for each customer entity within the Customers entity set the value of all related Orders will be
represented inline

http://host/service.svc/Customers?$expand=Orders

Example 37: for each customer entity within the Customers entity set the references to the related Orders will be
represented inline

http://host/service.svc/Customers?$expand=Orders/$ref

11.2.4.2.1 Expand Options

The set of expanded entities can be further refined through the application of expand options, expressed
as a semicolon-separated list of system query options, enclosed in parentheses, see [OData-URL].
Allowed system query options are $filter, $select, $orderby, $skip, $top, $count, $search,
$expand, and $levels.

Example 38: for each customer entity within the Customers entity set, the value of those related Orders whose
Amount is greater than 100 will be represented inline

http://host/service.svc/Customers?$expand=Orders($filter=Amount gt 100)

Example 39: for each order within the Orders entity set, the following will be represented inline:

 The Items related to the Orders identified by the resource path section of the URL and the
products related to each order item.

 The Customer related to each order returned.

http://host/service.svc/Orders?$expand=Items($expand=Product),Customer

Example 40: for each customer entity in the Customers entity set, the value of all related InHouseStaff will be
represented inline if the entity is of type VipCustomer or a subtype of that. For entities that are not of type

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 74

VipCustomer, or any of its subtypes, that entity may be returned with no inline representation for the expanded
navigation property InHouseStaff (the service can always send more than requested)

http://host/service.svc/Customers?$expand=SampleModel.VipCustomer/InHouseStaff

11.2.4.2.1.1 Expand Option $levels

The $levels expand option can be used to specify the number of levels of recursion for a hierarchy in
which the related entity type is the same as, or can be cast to, the source entity type. The same expand
options are applied at each level of the hierarchy.
Services MAY support the symbolic value max in addition to numeric values. In that case they MUST
solve circular dependencies by injecting an entity reference somewhere in the circular dependency.
Clients using $levels=max MUST be prepared to handle entity references in cases were a circular
reference would occur otherwise.
Example 41: return each employee from the Employees entity set and, for each employee that is a manager, return
all direct reports, recursively to four levels

http://contoso.com/HR/Employees?$expand=Model.Manager/DirectReports($levels=4)

11.2.5 Querying Collections

OData services support querying collections of entities, complex type instances, and primitive values.
The target collection is specified through a URL, and query operations such as filter, sort, paging, and
projection are specified as system query options provided as query options. The names of all system
query options are prefixed with a dollar ($) character.
The same system query option MUST NOT be specified more than once for any resource.
An OData service MAY support some or all of the system query options defined. If a data service does
not support a system query option, it MUST fail any request that contains the unsupported option and
SHOULD return 501 Not Implemented.

11.2.5.1 System Query Option $filter

The $filter system query option restricts the set of items returned.

Example 42: return all Products whose Price is less than $10.00

http://host/service/Products?$filter=Price lt 10.00

The $count segment may be used within a $filter expression to limit the items returned based on
the exact count of related entities or items within a collection-valued property.
Example 43: return all Categories with less than 10 products

http://host/service/Categories?$filter=Products/$count lt 10

The value of the $filter option is a Boolean expression as defined in [OData-ABNF].

11.2.5.1.1 Built-in Filter Operations

OData supports a set of built-in filter operations, as described in this section. For a full description of the
syntax used when building requests, see [OData-URL].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 74

Operator Description Example

Comparison Operators

eq Equal Address/City eq 'Redmond'

ne Not equal Address/City ne 'London'

gt Greater than Price gt 20

ge Greater than or equal Price ge 10

lt Less than Price lt 20

le Less than or equal Price le 100

has Has flags Style has Sales.Color'Yellow'

Logical Operators

and Logical and Price le 200 and Price gt 3.5

or Logical or Price le 3.5 or Price gt 200

not Logical negation not endswith(Description,'milk')

Arithmetic Operators

add Addition Price add 5 gt 10

sub Subtraction Price sub 5 gt 10

mul Multiplication Price mul 2 gt 2000

div Division Price div 2 gt 4

mod Modulo Price mod 2 eq 0

Grouping Operators

() Precedence grouping (Price sub 5) gt 10

11.2.5.1.2 Built-in Query Functions

OData supports a set of built-in functions that can be used within $filter operations. The following
table lists the available functions. For a full description of the syntax used when building requests, see
[OData-URL].
OData does not define an ISNULL or COALESCE operator. Instead, there is a null literal that can be
used in comparisons.

Function Example

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 74

Function Example

String Functions

contains contains(CompanyName,'freds')

endswith endswith(CompanyName,'Futterkiste')

startswith startswith(CompanyName,'Alfr')

length length(CompanyName) eq 19

indexof indexof(CompanyName,'lfreds') eq 1

substring substring(CompanyName,1) eq 'lfreds Futterkiste'

tolower tolower(CompanyName) eq 'alfreds futterkiste'

toupper toupper(CompanyName) eq 'ALFREDS FUTTERKISTE'

trim trim(CompanyName) eq 'Alfreds Futterkiste'

concat concat(concat(City,', '), Country) eq 'Berlin, Germany'

Date Functions

year year(BirthDate) eq 0

month month(BirthDate) eq 12

day day(StartTime) eq 8

hour hour(StartTime) eq 1

minute minute(StartTime) eq 0

second second(StartTime) eq 0

fractionalseconds second(StartTime) eq 0

date date(StartTime) ne date(EndTime)

time time(StartTime) le StartOfDay

totaloffsetminutes totaloffsetminutes(StartTime) eq 60

now StartTime ge now()

mindatetime StartTime eq mindatetime()

maxdatetime EndTime eq maxdatetime()

Math Functions

round round(Freight) eq 32

floor floor(Freight) eq 32

ceiling ceiling(Freight) eq 33

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 74

Function Example

Type Functions

cast cast(ShipCountry,Edm.String)

isof isof(NorthwindModel.Order)

isof isof(ShipCountry,Edm.String)

Geo Functions

geo.distance geo.distance(CurrentPosition,TargetPosition)

geo.length geo.length(DirectRoute)

geo.intersects geo.intersects(Position,TargetArea)

11.2.5.1.3 Parameter Aliases

Parameter aliases can be used in place of literal values in function parameters or within a $filter or
$orderby expression. Parameters aliases are names beginning with an at sign (@).
Actual parameter values are specified as query options in the query part of the request URL. The query
option name is the name of the parameter alias, and the query option value is the value to be used for the
specified parameter alias.
Example 44: returns all employees whose Region property matches the string parameter value "WA"

http://host/service.svc/Employees?$filter=Region eq @p1&@p1='WA'

Parameter aliases allow the same value to be used multiple times in a request and may be used to
reference primitive values, complex, or collection values.
If a parameter alias is not given a value in the Query part of the request URL, the value MUST be
assumed to be null. A parameter alias can be used in multiple places within a request URL but its value
MUST NOT be specified more than once.

11.2.5.2 System Query Option $orderby

The $orderby System Query option specifies the order in which items are returned from the service.
The value of the $orderby System Query option contains a comma-separated list of expressions whose
primitive result values are used to sort the items. A special case of such an expression is a property path
terminating on a primitive property. A type cast using the qualified entity type name is required to order by
a property defined on a derived type.
The expression can include the suffix asc for ascending or desc for descending, separated from the
property name by one or more spaces. If asc or desc is not specified, the service MUST order by the
specified property in ascending order.
Null values come before non-null values when sorting in ascending order and after non-null values when
sorting in descending order.
Items are sorted by the result values of the first expression, and then items with the same value for the
first expression are sorted by the result value of the second expression, and so on.
Example 45: return all Products ordered by release date in ascending order, then by rating in descending order

http://host/service/Products?$orderby=ReleaseDate asc, Rating desc

Related entities may be ordered by specifying $orderby within the $expand clause.

Example 46: return all Categories, and their Products ordered according to release date and in descending order of
rating

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 74

http://host/service/Categories?

 $expand=Products($orderby=ReleaseDate asc, Rating desc)

$count may be used within a $orderby expression to order the returned items according to the exact
count of related entities or items within a collection-valued property.
Example 47: return all Categories ordered by the number of Products within each category

http://host/service/Cateoriges?$orderby=Products/$count

11.2.5.3 System Query Option $top

The $top system query option specifies a non-negative integer n that limits the number of items returned
from a collection. The service returns the number of available items up to but not greater than the
specified value n.
Example 48: return only the first five products of the Products entity set

http://host/service/Products?$top=5

If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable
ordering across requests that include $top.

11.2.5.4 System Query Option $skip

The $skip system query option specifies a non-negative integer n that excludes the first n items of the
queried collection from the result. The service returns items starting at position n+1.

Example 49: return products starting with the 6th product of the Products entity set

http://host/service/Products?$skip=5

Where $top and $skip are used together, $skip MUST be applied before $top, regardless of the
order in which they appear in the request.

Example 50: return the third through seventh products of the Products entity set

http://host/service/Products?$top=5&$skip=2

If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable
ordering across requests that include $skip.

11.2.5.5 System Query Option $count

The $count system query option with a value of true specifies that the total count of items within a
collection matching the request be returned along with the result.
Example 51: return, along with the results, the total number of products in the collection

http://host/service/Products?$count=true

The count of related entities can be requested by specifying the $count query option within the
$expand clause.

Example 52:

http://host/service/Categories?$expand=Products($count=true)

A $count query option with a value of false (or not specified) hints that the service SHOULD NOT
return a count.
The service returns an HTTP Status code of 400 Bad Request if a value other than true or false is
specified.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 74

The $count system query option ignores any $top, $skip, or $expand query options, and returns the
total count of results across all pages including only those results matching any specified $filter and
$search. Clients should be aware that the count returned inline may not exactly equal the actual number
of items returned, due to latency between calculating the count and enumerating the last value or due to
inexact calculations on the service.
How the count is encoded in the response body is dependent upon the selected format.

11.2.5.6 System Query Option $search

The $search system query option restricts the result to include only those entities matching the specified
search expression. The definition of what it means to match is dependent upon the implementation.
Example 53: return all Products that match the search term "bike"

http://host/service/Products?$search=bike

The search expression can contain phrases, enclosed in double-quotes.
Example 54: return all Products that match the phrase "mountain bike"

http://host/service/Products?$search="mountain bike"

The upper case keyword NOT restricts the set of entities to those that do not match the specified term.

Example 55: return all Products that do not match "clothing"

http://host/service/Products?$search=NOT clothing

Multiple terms within a search expression are separated by a space (implicit AND) or the upper-case
keyword AND, indicating that all such terms must be matched.

Example 56: return all Products that match both "mountain" and "bike"

http://host/service/Products?$search=mountain AND bike

The upper-case keyword OR is used to return entities that satisfy either the immediately preceding or
subsequent expression.
Example 57: return all Products that match either "mountain" or "bike"

http://host/service/Products?$search=mountain OR bike

Parentheses within the search expression group together multiple expressions.
Example 58: return all Products that match either "mountain" or "bike" and do not match clothing

http://host/service/Products?$search=(mountain OR bike) AND NOT clothing

The operations within a search expression MUST be evaluated in the following order: grouping operator,
NOT operator, AND operator, OR operator
If both $search and $filter are specified in the same request, only those entities satisfying both
criteria are returned.
The value of the $search option is a Boolean expression as defined in [OData-ABNF].

11.2.5.7 Server-Driven Paging

Responses that include only a partial set of the items identified by the request URL MUST contain a link
that allows retrieving the next partial set of items. This link is called a next link; its representation is
format-specific. The final partial set of items MUST NOT contain a next link.
The client can request a maximum page size through the odata.maxpagesize preference. The service
may apply this requested page size or implement a page size different than, or in the absence of, this
preference.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 74

OData clients MUST treat the URL of the next link as opaque, and MUST NOT append system query
options to the URL of a next link. Services may not allow a change of format on requests for subsequent
pages using the next link. Clients therefore SHOULD request the same format on subsequent page
requests using a compatible Accept header. OData services may use the reserved system query option
$skiptoken when building next links. Its content is opaque, service-specific, and must only follow the
rules for URL query parts.
OData clients MUST NOT use the system query option $skiptoken when constructing requests.

11.2.6 Requesting Related Entities

To request related entities according to a particular relationship, the client issues a GET request to the
source entity’s request URL, followed by a forward slash and the name of the navigation property
representing the relationship.
If the navigation property does not exist on the entity indicated by the request URL, the service returns
404 Not Found.
If the relationship terminates on a collection, the response MUST be the format-specific representation of
the collection of related entities. If no entities are related, the response is the format-specific
representation of an empty collection.
If the relationship terminates on a single entity, the response MUST be the format-specific representation
of the related single entity. If no entity is related, the service returns 204 No Content

Example 59: return the supplier of the product with ID=1 in the Products entity set

http://host/service/Products(1)/Supplier

11.2.7 Requesting Entity References

To request entity references in place of the actual entities, the client issues a GET request with /$ref
appended to the resource path.
If the resource path does not identify an entity or a collection of entities, the service returns 404 Not
Found.
If the resource path terminates on a collection, the response MUST be the format-specific representation
of a collection of entity references pointing to the related entities. If no entities are related, the response is
the format-specific representation of an empty collection.
If the resource path terminates on a single entity, the response MUST be the format-specific
representation of an entity reference pointing to the related single entity. If the resource path terminates
on a single entity and no such entity exists, the service returns 404 Not Found.

Example 60: collection with an entity reference for each Order related to the Product with ID=0

http://host/service/Products(0)/Orders/$ref

11.2.8 Resolving an Entity-Id

To resolve an entity-id, e.g. obtained in an entity reference, into a representation of the identified entity,
the client issues a GET request to the $entity resource which located at the URL $entity relative to
the service root. The entity-id MUST be specified using the system query option $id.

Example 61: return the entity representation for a given entity-id

http://host/service/$entity?$id=http://host/service/Products(0)

A type segment following the $entity resource casts the resource to the specified type. If the identified
entity is not of the specified type, or a type derived from the specified type, the service returns 404 Not
Found.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 74

After applying a type-cast segment to cast to a specific type, the system query options $select and
$expand can be specified in GET requests to the $entity resource.

Example 62: return the entity representation for a given entity-id and specify properties to return

http://host/service/$entity/Model.Customer?

 $id=http://host/service/Customers('ALFKI')

 &$select=CompanyName,ContactName&$expand=Orders

11.2.9 Requesting the Number of Items in a Collection

To request only the number of items of a collection of entities or items of a collection-valued property, the
client issues a GET request with /$count appended to the resource path of the collection.
On success, the response body MUST contain the exact count of items matching the request after
applying any $filter or $search system query options, formatted as a simple primitive integer value
with media type text/plain. The returned count MUST NOT be affected by $top, $skip, $orderby,
or $expand. Content negotiation using the Accept request header or the $format system query option
is not allowed with the path segment /$count.

Example 63: return the number of products in the Products entity set

http://host/service/Products/$count

Example 64: return the number of all products whose Price is less than $10.00

http://host/service/Products/$count?$filter=Price lt 10.00

The /$count segment can be used in combination with the $filter system query option.

Example 65: return all customers with more than five interests

http://host/service/Customers?$filter=Interests/$count gt 5

11.2.10 System Query Option $format

The $format system query option specifies the media type of the response.
The $format query option, if present in a request, MUST take precedence over the value(s) specified in
the Accept request header.
The value of the $format query option is a valid internet media type, optionally including parameters.
In addition, format-specific abbreviations may be used, see [OData-Atom] and [OData-JSON], but format
parameters MUST NOT be appended to the format abbreviations.
Example 66: the request

http://host/service/Orders?$format=application/json;odata.metadata=full

is equivalent to a request with an Accept header using the same media type; it requests the set of Order entities
represented using the JSON media type including full metadata, as specified in [OData-JSON].

Example 67: the request

http://host/service/Orders?$format=json

is equivalent to a request with the Accept header set to application/json; it requests the set of Order entities
represented using the JSON media type with minimal metadata, as specified in [OData-JSON].

The $format system query option MUST NOT be specified in batch requests as these always use the
media type multipart/mixed.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 74

In metadata document requests the values application/atom+xml, application/json, their
subtypes and parameterized variants as well as the format-specific abbreviations atom and json are
reserved for future versions of this specification.

11.3 Requesting Changes

Services advertise their change-tracking capabilities by annotating entity sets with the
Capabilities.ChangeTracking term defined in [OData-VocCap].
Clients request that the service track changes to a result by specifying the odata.track-changes
preference on a request. If supported for the request, the service includes a Preference-Applied
header in the response containing the odata.track-changes preference and includes a delta link on
the last page of results.

11.3.1 Delta Links

Delta links are opaque, service-generated links that the client uses to retrieve subsequent changes to a
result.
Delta links are based on a defining query that describes the set of results for which changes are being
tracked; for example, the request that generated the results containing the delta link. The delta link
encodes the collection of entities for which changes are being tracked, along with a starting point from
which to track changes.
If the defining query contains a $filter or $search, the response MUST include only changes to
entities matching the specified criteria. Added entities MUST be returned for entities that were added or
changed and now match the specified criteria, and deleted entities MUST be returned for entities that are
changed to no longer match the criteria of $filter or $search.
The delta link MUST NOT encode any client top or skip value, and SHOULD NOT encode a request for
an inline count.
If the defining query includes expanded relationships, the delta link MUST return changes, additions, or
deletions to the expanded entities, as well as added or deleted links to expanded entities.
Entities are considered changed if any of the structural properties have changed. Changes to related
entities and to streams are not considered a change to the entity containing the stream or navigation
property.
If the defining query contains a projection, the generated delta link SHOULD logically include the same
projection, such that the delta query only includes fields specified in the projection. Services MAY use the
projection to limit the entities returned to those that have changed within the selected fields, but the client
MUST be prepared to receive entities returned whether or not the field that changed was specified in the
projection.

11.3.2 Using Delta Links

The client requests changes by invoking the GET method on the delta link. The client MUST NOT attempt
to append system query options to the delta link. The Accept header MAY be used to specify the desired
response format.
The /$count segment can be appended to the path of a delta link in order to get just the number of
changes available. The count includes all added, changed, or deleted entities, as well as added or
deleted links.
The results of a request against the delta link may span multiple pages but MUST be ordered by the
service across all pages in such a way as to guarantee consistency when applied in order to the response
which contained the delta link.
Services SHOULD return only changed entities, but MAY return additional entities matching the defining
query for which the client will not see a change.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 74

In order to continue tracking changes beyond the current set, the client specifies odata.track-
changes on the initial request to the delta link but is not required to repeat it for subsequent pages. The
new delta link appears at the end of the last page of changes and MUST return all changes subsequent
to the last change of the previous delta link.
If no changes have occurred, the response is an empty collection that contains a delta link for subsequent
changes if requested. This delta link MAY be identical to the delta link resulting in the empty collection of
changes.
If the delta link is no longer valid, the service responds with 410 Gone, and SHOULD include the URL for
refetching the entire set in the Location header of the response.

11.4 Data Modification

Updatable OData services support Create, Update, and Delete operations for some or all exposed
entities. Additionally, Actions supported by a service can affect the state of the system.
A successfully completed Data Modification Request must not violate the integrity of the data.
The client may request whether content be returned from a Create, Update, or Delete request, or the
invocation of an Action, by specifying the return Prefer header.

11.4.1 Common Data Modification Semantics

Data Modification Requests share the following semantics.

11.4.1.1 Use of ETags for Avoiding Update Conflicts

If an ETag value is specified in an If-Match or If-None-Match header of a Data Modification Request
or Action Request, the operation MUST only be invoked if the if-match or if-none-match condition is
satisfied.
The ETag value specified in the if-match or if-none-match request header may be obtained from an
ETag header of a response for an individual entity, or may be included for an individual entity in a format-
specific manner.

11.4.1.2 Handling of DateTimeOffset Values

Services SHOULD preserve the offset of Edm.DateTimeOffset values, if possible. However, where the
underlying storage does not support offset services may be forced to normalize the value to some
common time zone (i.e. UTC) in which case the result would be returned with that time zone offset. If the
service normalizes values, it MUST fail evaluation of the query functions year, month, day, hour, and
time for literal values that are not stated in the time zone of the normalized values.

11.4.1.3 Handling of Properties Not Advertised in Metadata

Clients MUST be prepared to receive additional properties in an entity or complex type instance that are
not advertised in metadata, even for types not marked as open. By using PATCH when updating entities,
clients can ensure that such properties values are not lost if omitted from the update request.

11.4.1.4 Handling of Consistency Constraints

Services may impose cross-entity consistency constraints. Certain referential constraints, such as
requiring an entity to be created with related entities can be satisfied through creating or linking related
entities when creating the entity. Other constraints might require multiple changes to be specified together
in a single atomic change set.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 74

11.4.1.5 Returning Results from Data Modification Requests

Clients can request whether created or modified resources are returned from create, update, and upsert
operations using the return preference header. In the absence of such a header, services SHOULD
return the created or modified content unless the resource is a stream property value.
When returning content other than for an update to a media entity stream, services MUST return the
same content as a subsequent request to retrieve the same resource. For updating media entity streams,
the content of a non-empty response body MUST be the updated media entity.

11.4.2 Create an Entity

To create an entity in a collection, the client sends a POST request to that collection's URL. The POST
body MUST contain a single valid entity representation.
An entity may also be created as the result of an Upsert operation.
If the target URL for the collection is a navigation link, the new entity is automatically linked to the entity
containing the navigation link.
To create an open entity (an instance of an open type), additional property values beyond those specified
in the metadata MAY be sent in the request body. The service MUST treat these as dynamic properties
and add them to the created instance.
If the entity being created is not an open entity, additional property values beyond those specified in the
metadata SHOULD NOT be sent in the request body. The service MUST fail if unable to persist all
property values specified in the request.
Properties computed by the service (annotated with the term Core.Computed, see [OData-

VocCore]OData-VocCore) and properties that are tied to properties of the principal entity by a referential
constraint, can be omitted and MUST be ignored if included in the request.
Upon successful completion, the response MUST contain a Location header that contains the edit URL
or read URL of the created entity.
Upon successful completion the service MUST respond with either 201 Created, or 204 No Content
if the request included a return Prefer header with a value of return=minimal.

11.4.2.1 Link to Related Entities When Creating an Entity

To create a new entity with links to existing entities in a single request, the client includes the entity-ids of
the entities related through the corresponding navigation properties in the request body.
The representation for binding information is format-specific.
Example 68: using the JSON format the client can create a new manager entity with links to two existing employees
by applying the odata.bind annotation to the DirectReports navigation property

{

 "@odata.type":"#Northwind.Manager",

 "EmployeeID": 1,

 "DirectReports@odata.bind": [

 "http://host/service/Employees(5)",

 "http://host/service/Employees(6)"

]

}

Example 69: using the Atom format the client can create a new manager entity with links to two existing employees
by including a navigation link element for each employee in the Atom entry representing the manager

<entry>

 <id> http://host/service /Employees(1)</id>

 <title type="text" />

 <updated>2011-02-16T01:00:25Z</updated>

 <author><name /></author>

 <link rel="http://docs.oasis-open.org/odata/ns/related/DirectReports"

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 74

 href="http://host/service/Employees(5)"

 type="application/atom+xml;type=entry"

 title="Direct Reports" />

 <link rel="http://docs.oasis-open.org/odata/ns/related/DirectReports"

 href="http://host/service/Employees(6)"

 type="application/atom+xml;type=entry"

 title="Direct Reports" />

 <category term="NorthwindModel.Manager"

scheme="http://odata.org/scheme"/>

 <content type="application/xml">

 <metadata:properties>

 <data:EmployeeID>1</data:EmployeeID>

 </metadata:properties>

 </content>

</entry>

Upon successful completion of the operation, the service creates the requested entity and relates it to the
requested existing entities.
If the target URL for the collection the entity is created in and binding information provided in the POST
body contradicts the implicit binding information provided by the request URL, the request MUST fail and
the service respond with 400 Bad Request.
Upon failure of the operation, the service MUST NOT create the new entity. In particular, the service
MUST never create an entity in a partially-valid state (with the navigation property unset).

11.4.2.2 Create Related Entities When Creating an Entity

A request to create an entity that includes related entities, represented using the appropriate inline
representation, is referred to as a “deep insert”. Media entities, whose binary representation cannot be
represented inline, cannot be created within a deep insert.
If the inline representation contains a value for a computed property or dependent property of a referential
constraint, the service MUST ignore that value when creating the related entity.
On success, the service MUST create all entities and relate them. If the request included a return
Prefer header with a value of return=representation and is applied by the service, the response
MUST be expanded to at least the level that was present in the deep-insert request.
On failure, the service MUST NOT create any of the entities.

11.4.3 Update an Entity

Services SHOULD support PATCH as the preferred means of updating an entity. PATCH provides more
resiliency between clients and services by directly modifying only those values specified by the client.
The semantics of PATCH, as defined in [RFC5789], is to merge the content in the request payload with
the [entity’s] current state, applying the update only to those components specified in the request body.
Collection properties and primitive properties provided in the payload corresponding to updatable
properties MUST replace the value of the corresponding property in the entity or complex type. Missing
properties of the containing entity or complex property, including dynamic properties, MUST NOT be
directly altered unless as a side effect of changes resulting from the provided properties.
Services MAY additionally support PUT, but should be aware of the potential for data-loss in round-
tripping properties that the client may not know about in advance, such as open or added properties, or
properties not specified in metadata. Services that support PUT MUST replace all values of structural
properties with those specified in the request body. Missing non-key, updatable structural properties not
defined as dependent properties within a referential constraint MUST be set to their default values.
Omitting a non-nullable property with no service-generated or default value from a PUT request results in
a 400 Bad Request error. Missing dynamic structural properties MUST be removed or set to null.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 74

Updating a dependent property that is tied to a key property of the principal entity through a referential
constraint updates the relationship to point to the entity with the specified key value. If there is no such
entity, the update fails.
Updating a principle property that is tied to a dependent entity through a referential constraint on the
dependent entity updates the dependent property.
Key and other non-updatable properties, as well as dependent properties that are not tied to key
properties of the principal entity, can be omitted from the request. If the request contains a value for one
of these properties, the service MUST ignore that value when applying the update.
The service ignores entity id and entity type values in the payload when applying the update.
The entity MUST NOT contain related entities as inline content. It MAY contain binding information for
navigation properties. For single-valued navigation properties this replaces the relationship. For
collection-valued navigation properties this adds to the relationship.
If an update specifies both a binding to a single-valued navigation property and a dependent property that
is tied to a key property of the principal entity according to the same navigation property, then the
dependent property is ignored and the relationship is updated according to the value specified in the
binding.
If the entity being updated is open, then additional values for properties beyond those specified in the
metadata or returned in a previous request MAY be sent in the request body. The service MUST treat
these as dynamic properties.
If the entity being updated is not open, then additional values for properties beyond those specified in the
metadata or returned in a previous request SHOULD NOT be sent in the request body. The service
MUST fail if it is unable to persist all updatable property values specified in the request.
On success, the response MUST be a valid success response.

11.4.4 Upsert an Entity

An upsert occurs when the client sends an update request to a valid URL that identifies a single entity
that does not exist. In this case the service MUST handle the request as a create entity request or fail the
request altogether.
Upserts are not supported against media entities or entities whose keys values are generated by the
service. Services MUST fail an update request to a URL that would identify such an entity and the entity
does not yet exist.
Key and other non-updatable properties, as well as dependent properties that are not tied to key
properties of the principal entity, MUST be ignored by the service in processing the Upsert request.
To ensure that an update request is not treated as an insert, the client MAY specify an If-Match header
in the update request. The service MUST NOT treat an update request containing an If-Match header
as an insert.
A PUT or PATCH request MUST NOT be treated as an update if an If-None-Match header is specified
with a value of "*".

11.4.5 Delete an Entity

A successful DELETE request to an entity's edit URL deletes the entity. The request body SHOULD be
empty. Singleton entities cannot be deleted.
On successful completion of the delete, the response MUST be 204 No Content and contain an empty
body.
Services MUST implicitly remove relations to and from an entity when deleting it; clients need not delete
the relations explicitly.
Services MAY implicitly delete or modify related entities if required by integrity constraints. If integrity
constraints are declared in $metadata using a ReferentialConstraint element, services MUST

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 74

modify affected related entities according to the declared integrity constraints, e.g. by deleting dependent
entities, or setting dependent properties to null or their default value.

11.4.6 Modifying Relationships between Entities

Relationships between entities are represented by navigation properties as described in Data Model. URL
conventions for navigation properties are described in [OData-URL].

11.4.6.1 Add a Reference to a Collection-Valued Navigation Property

A successful POST request to a navigation property's references collection adds a relationship to an
existing entity. The request body MUST contain a single entity reference that identifies the entity to be
added. See the appropriate format document for details.
On successful completion, the response MUST be 204 No Content and contain an empty body.

11.4.6.2 Remove a Reference to an Entity

A successful DELETE request to the URL that represents a reference to a related entity removes the
relationship to that entity.
For collection-valued navigation properties, the entity reference of the entity to be removed MUST be
specified using the $id query string option.
For single-valued navigation properties, the $id query string option MUST NOT be specified.
The DELETE request MUST NOT violate any integrity constraints in the data model.
On successful completion, the response MUST be 204 No Content and contain an empty body.

11.4.6.3 Change the Reference in a Single-Valued Navigation Property

A successful PUT request to a single-valued navigation property’s reference resource changes the related
entity. The request body MUST contain a single entity reference that identifies the existing entity to be
related. See the appropriate format document for details.
On successful completion, the response MUST be 204 No Content and contain an empty body.
Alternatively, a relationship MAY be updated as part of an update to the source entity by including the
required binding information for the new target entity. This binding information is format-specific, see
[OData-JSON] and [OData-Atom] for details.

11.4.7 Managing Media Entities

A media entity is an entity that represents an out-of-band stream, such as a photograph.
A media entity MUST have a source URL that can be used to read the media stream, and MAY have a
media edit URL that can be used to write to the media stream.
Because a media entity has both a media stream and standard entity properties special handling is
required.

11.4.7.1 Creating a Media Entity

A POST request to a media entity's entity set creates a new media entity. The request body MUST contain
the media value (for example, the photograph) whose media type MUST be specified in a Content-
Type header.
Upon successful completion, the response MUST contain a Location header that contains the edit URL
of the created entity.
Upon successful completion the service responds with either 201 Created, or 204 No Content if the
request included a return Prefer header with a value of return=minimal.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 74

11.4.7.2 Editing a Media Entity Stream

A successful PUT request to the media edit URL of a media entity changes the media stream of the entity.
If the entity includes an ETag value for the media stream, the client MUST include an If-Match header
with the ETag value.
The request body MUST contain the new media value for the entity whose media type MUST be specified
in a Content-Type header.
If the request to edit a media stream returns a non-empty response body, the response body MUST
contain the updated media entity.

11.4.7.3 Deleting a Media Entity

A successful DELETE request to the entity's edit URL or to the edit URL of its media resource deletes the
media entity as described in Delete an Entity.
Deleting a media entity also deletes the media associated with the entity.

11.4.8 Managing Stream Properties

An entity may have one or more stream properties. Stream properties are properties of type
Edm.Stream.
The values for stream properties do not appear in the entity payload. Instead, the values are read or
written through URLs.

11.4.8.1 Editing Stream Values

A successful PUT request to the edit URL of a stream property changes the media stream associated with
that property.
If the stream metadata includes an ETag value, the client SHOULD include an If-Match header with the
ETag value.
The request body MUST contain the new media value for the stream whose media type MUST be
specified in a Content-Type header. It may have a Content-Length of zero to set the stream data to
empty.
Stream properties MAY specify a list of acceptable media types using an annotation with term
Core.AcceptableMediaTypes, see [OData-VocCore].

11.4.8.2 Deleting Stream Values

A successful DELETE request to the edit URL of a stream property attempts to set the property to null and
results in an error if the property is non-nullable.
Attempting to request a stream property whose value is null results in 204 No Content.

11.4.9 Managing Values and Properties Directly

Values and properties can be explicitly addressed with URLs. The edit URL of a property is the edit URL
of the entity appended with the path segment(s) specifying the individual property. The edit URL allows
properties to be individually modified. See [OData-URL] for details on addressing.

11.4.9.1 Update a Primitive Property

A successful PUT request to the edit URL for a primitive property updates the value of the property. The
message body MUST contain the new value, formatted as a single property according to the specified
format.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 74

A successful PUT request to the edit URL for the raw value of a primitive property updates the property
with the raw value specified in the payload. The payload MUST be formatted as an appropriate content
type for the raw value of the property.
The same rules apply whether this is a regular property or a dynamic property.
Upon successful completion of the update, the response MUST be a valid update response.

11.4.9.2 Set a Value to Null

A successful DELETE request to the edit URL for a structural property, or to the edit URL of the raw value
of a primitive property, sets the property to null. The request body is ignored and should be empty.
A DELETE request to a non-nullable value MUST fail and the service respond with 400 Bad Request or
other appropriate error.
The same rules apply whether the target is the value of a regular property or the value of a dynamic
property. A missing dynamic property is defined to be the same as a dynamic property with value null.
All dynamic properties are nullable.
On success, the service MUST respond with 204 No Content and an empty body.
Updating a primitive property or a complex property with a null value also sets the property to null.

11.4.9.3 Update a Complex Property

A successful PATCH request to the edit URL for a complex typed property updates that property. The
request body MUST contain a single valid representation for the target complex type.
The service MUST directly modify only those properties of the complex type specified in the payload of
the PATCH request.
The service MAY additionally support clients sending a PUT request to a URL that specifies a complex
type. In this case, the service MUST replace the entire complex property with the values specified in the
request body and set all unspecified properties to their default value.
On success, the response MUST be a valid update response.

11.4.9.4 Update a Collection Property

A successful PUT request to the edit URL of a collection property updates that collection. The message
body MUST contain the desired new value, formatted as a collection property according to the specified
format.
The service MUST replace the entire value with the value supplied in the request body.
Since collection members have no individual identity, PATCH is not supported for collection properties.
On success, the response MUST be a valid update response.

11.5 Operations

Custom operations (Actions and Functions) are represented as Action, ActionImport, Function,
and FunctionImport elements in [OData-CSDL].

11.5.1 Binding an Operation to a Resource

Actions and Functions MAY be bound to an entity type, primitive type, complex type, or a collection. The
first parameter of a bound operation is the binding parameter.
The namespace- or alias-qualified name of a bound operation may be appended to any URL that
identifies a resource whose type matches, or is derived from, the type of the binding parameter. The
resource identified by that URL is used as the binding parameter value.

Example 70: the function MostRecentOrder can be bound to any URL that identifies a SampleModel.Customer

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 74

<Function Name="MostRecentOrder" ReturnType="SampleModel.Order"

 IsBound="true">

 <Parameter Name="customer" Type="SampleModel.Customer" />

</Function>

Example 71: invoking the MostRecentOrder function with the value of the binding parameter customer being the
entity identified by http://host/service/Customers(6)

http://host/service/Customers(6)/SampleModel.MostRecentOrder()

11.5.2 Advertising Available Operations within a Payload

Services MAY return the available actions and/or functions bound to a particular entity as part of the entity
representation within the payload. The representation of an action or function depends on the format. An
efficient format that assumes client knowledge of metadata SHOULD NOT include actions and functions
in the payload that are available on all instances and whose target URL can be computed via metadata
following standard conventions defined in [OData-URL].

Example 72: given a GET request to http://host/service/Customers('ALFKI'), the service might respond
with a Customer that includes the SampleEntities.MostRecentOrder function bound to the entity

{

 "@odata.context": ...,

 "#SampleEntities.MostRecentOrder": {

 "title": "Most Recent Order",

 "target": "Customers('ALFKI')/SampleEntities.MostRecentOrder()"

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 ...

}

11.5.3 Functions

Functions are operations exposed by an OData service that MUST return data and MUST have no
observable side effects.

11.5.3.1 Invoking a Function

To invoke a function bound to a resource, the client issues a GET request to a function URL. A function
URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified function name to a URL that identifies a resource whose type is the same
as, or derived from, the type of the binding parameter of the function. The value for the binding parameter
is the value of the resource identified by the URL prior to appending the function name, and additional
parameter values are specified using inline parameter syntax. If the function URL is obtained from a
previously returned entity representation, parameter aliases that are identical to the parameter name
preceded by an at (@) sign MUST be used. Clients MUST check if the obtained URL already contains a
query part and appropriately precede the parameters either with an ampersand (&) or a question mark
(?).
Functions can be used within $filter or $orderby system query options. Such functions can be
bound to a resource, as described above, or called directly by specifying the namespace- (or alias-)
qualified function name. Parameter values for functions within $filter or $orderby are specified
according to the inline parameter syntax.
To invoke a function through a function import the client issues a GET request to a URL identifying the
function import and passing parameter values using inline parameter syntax. The canonical URL for a
function import is the service root, followed by the name of the function import.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 74

Additional path segments and system query options may be appended to a URL or a path segment that
identifies a composable function (or function import) as appropriate for the type returned by the function
(or function import).
Services MAY support invoking a function or function import using a PUT, POST, PATCH or DELETE
requests where the target of the operation is the result of the function.

Example 73: add a new item to the list of items of the shopping cart returned by the composable MyShoppingCart
function import

POST http://host/service/MyShoppingCart()/Items

...

Parameter values passed to functions MUST be specified either as a URL literal (for primitive types) or as
a JSON formatted OData object (for complex types or collections of primitive types or complex types).
If a collection-valued function has no result for a given parameter value combination, the response is the
format-specific representation of an empty collection. If a single-valued function with a nullable return-type
has no result, the service returns 204 No Content.
If a single-valued function with a non-nullable return type has no result, the service returns 4xx. For
functions that return a single entity 404 Not Found is the appropriate response code.
For a composable function the processing is stopped when the function result requires a 4xx response,
and continues otherwise.
Function imports MUST NOT be used inside either the $filter or $orderby system query options.

11.5.3.1.1 Inline Parameter Syntax

Parameter values are specified inline by appending a comma-separated list of parameter values,
enclosed by parenthesis to the function name.
Each parameter value is represented as a name/value pair in the format Name=Value, where Name is the
name of the parameter to the function and Value is the parameter value.

Example 74: invoke a Sales.EmployeesByManager function which takes a single ManagerID parameter via the
function import EmployeesByManager

http://host/service/EmployeesByManager(ManagerID=3)

Example 75: return all Customers whose City property returns "Western" when passed to the
Sales.SalesRegion function

http://host/service/Customers?

 $filter=Sales.SalesRegion(City=$it/City) eq 'Western'

A parameter alias can be used in place of an inline parameter to a function call. The value for the alias is
specified as a separate query option using the name of the parameter alias.

Example 76: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager,
passing 3 for the ManagerID parameter

http://host/service/EmployeesByManager(ManagerID=@p1)?@p1=3

11.5.3.2 Function overload resolution

The same function name may be used multiple times within a schema, each with a different set of
parameters. For unbound overloads the combination of the function name and the unordered list of
parameter types and names MUST identify a particular function overload. For bound overloads the
combination of the function name, the binding parameter type, and the unordered set of names of the
non-binding parameters MUST identify a particular function overload.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 74

All unbound overloads MUST have the same return type. Also, all bound overloads with a given binding
parameter type MUST have the same return type.
If the function is bound and the binding parameter type is part of an inheritance hierarchy, the function
overload is selected based on the type of the URL segment preceding the function name. A type-cast
segment can be used to select a function defined on a particular type in the hierarchy, see [OData-URL].

11.5.4 Actions

Actions are operations exposed by an OData service that MAY have side effects when invoked. Actions
MAY return data but MUST NOT be further composed with additional path segments.

11.5.4.1 Invoking an Action

To invoke an action bound to a resource, the client issues a POST request to an action URL. An action
URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified action name to a URL that identifies a resource whose type is the same as,
or derives from, the type of the binding parameter of the action. The value for the binding parameter is the
value of the resource identified by the URL prior to appending the action name, and any non-binding
parameter values are passed in the request body according to the particular format.
To invoke an action through an action import, the client issues a POST request to a URL identifying the
action import. The canonical URL for an action import is the service root, followed by the name of the
action import. When invoking an action through an action import all parameter values MUST be passed in
the request body according to the particular format.
Any nullable parameter values not specified in the request MUST be assumed to have the null value.
If the action returns results the client SHOULD use content type negotiation to request the results in the
desired format, otherwise the default content type will be used.
To request processing of the action only if the binding parameter value, an entity or collection of entities,
is unmodified, the client includes the If-Match header with the latest known ETag value for the entity or
collection of entities. The ETag value for a collection as a whole is transported in the ETag header of a
collection response.
On success, the response is 201 Created for actions that create entities, 200 OK for actions that return
results or 204 No Content for action without a return type. The client can request whether any results
from the action be returned using the Prefer header.

Example 77: invoke the SampleEntities.CreateOrder action using /Customers('ALFKI') as the customer
(or binding parameter). The values 2 for the quantity parameter and BLACKFRIDAY for the discountCode
parameter are passed in the body of the request

POST http://host/service/Customers('ALFKI')/SampleEntities.CreateOrder

{

 "quantity": 2,

 "discountCode": "BLACKFRIDAY"

}

11.5.4.2 Action Overload Resolution

The same action name may be used multiple times within a schema provided there is at most one
unbound overload, and each bound overload specifies a different binding parameter type.
If the action is bound and the binding parameter type is part of an inheritance hierarchy, the action
overload is selected based on the type of the URL segment preceding the action name. A type-cast
segment can be used to select an action defined on a particular type in the hierarchy, see [OData-URL].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 74

11.6 Asynchronous Requests

A Prefer header with a respond-async preference allows clients to request that the service process a
Data Service Request asynchronously.
If the client has specified respond-async in the request, the service MAY process the request
asynchronously and return a 202 Accepted response. A service MUST NOT reply to a Data Service
Request with 202 Accepted if the request has not included the respond-async preference.
Responses that return 202 Accepted MUST have an empty response body and MUST include a
Location header pointing to a status monitor resource that represents the current state of the
asynchronous processing in addition to an optional Retry-After header indicating the time, in seconds,
the client should wait before querying the service for status.
A GET request to the status monitor resource again returns 202 Accepted response if the
asynchronous processing has not finished. This response MUST again include a Location header and
MAY include a Retry-After header to be used for a subsequent request. The Location header and
optional Retry-After header may or may not contain the same values as returned by the previous
request.
A GET request to the status monitor resource returns 200 OK once the asynchronous processing has
completed. This response MUST include a Content-Type header with value application/http and
a Content-Transfer-Encoding header with value binary as described in [RFC7230]. The response
body MUST enclose a single HTTP response which is the response to the initial Data Service Request.
A DELETE request sent to the status monitor resource requests that the asynchronous processing be
canceled. A 200 OK or a 204 No Content response indicates that the asynchronous processing has
been successfully canceled. A client can request that the DELETE should be executed asynchronously. A
202 Accepted response indicates that the cancellation is being processed asynchronously; the client
can use the returned Location header (which MUST be different from the status monitor resource of
the initial request) to query for the status of the cancellation. If a delete request is not supported by the
service, the service returns 405 Method Not Allowed.
After a successful DELETE request against the status monitor resource, any subsequent GET requests for
the same status monitor resource returns 404 Not Found.
If an asynchronous request is cancelled for reasons other than the consumers issuing a DELETE request
against the status monitor resource, a GET request to the status monitor resource returns 200 OK with a
response body containing a single HTTP response with a status code in the 5xx Server Error range
indicating that the operation was cancelled.
The service MUST ensure that no observable change has occurred as a result of a canceled request.
If the client waits too long to request the result of the asynchronous processing, the service responds with
a 410 Gone or 404 Not Found.
The status monitor resource URL MUST differ from any other resource URL.

11.7 Batch Requests

Batch requests allow grouping multiple operations into a single HTTP request payload. A batch request is
represented as a Multipart MIME v1.0 message [RFC2046], a standard format allowing the
representation of multiple parts, each of which may have a different content type (as described in [OData-
Atom] and [OData-JSON]), within a single request.

11.7.1 Batch Request Headers

Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service, located
at the URL $batch relative to the service root.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 74

The batch request MUST contain a Content-Type header specifying a content type of
multipart/mixed and a boundary specification as defined in [RFC2046] is defined in the Batch
Request Body section below.
Batch requests SHOULD contain the applicable OData-Version header.

Example 78:

POST /service/$batch HTTP/1.1

Host: odata.org

OData-Version: 4.0

OData-MaxVersion: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

<Batch Request Body>

11.7.2 Batch Request Body

The body of a batch request is made up of a series of individual requests and change sets, each
represented as a distinct MIME part (i.e. separated by the boundary defined in the Content-Type
header).
The service MUST process the requests within a batch request sequentially. Processing stops on the first
error unless the odata.continue-on-error preference is specified.
An individual request in the context of a batch request is a Data request, Data Modification request,
Action invocation request, or Function invocation request. A MIME part representing an individual request
MUST include a Content-Type header with value application/http and a Content-Transfer-
Encoding header with value binary.
Preambles and Epilogues in the MIME payload, as defined in [RFC2046], are valid but are assigned no
meaning and thus MUST be ignored by processors of batch requests.
The Request-URI of HTTP requests serialized within MIME part bodies can use one of the following three
formats:

 Absolute URI with schema, host, port, and absolute resource path.
Example 79:

GET https://host:1234/path/service/People(1) HTTP/1.1

 Absolute resource path and separate Host header.
Example 80:

GET /path/service/People(1) HTTP/1.1

Host: myserver.mydomain.org:1234

 Resource path relative to the batch request URI.
Example 81:

GET People(1) HTTP/1.1

Services MUST support all three formats.
Each MIME part body that represents a single request MUST NOT include:

 authentication or authorization related HTTP headers

 Expect, From, Max-Forwards, Range, or TE headers
Processors of batch requests MAY choose to disallow additional HTTP constructs in HTTP requests
serialized within MIME part bodies. For example, a processor may choose to disallow chunked encoding
to be used by such HTTP requests.
Example 82: a batch request that contains the following operations in the order listed

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 74

1. A query request

2. Change Set that contains the following requests:

 Insert entity (with Content-ID = 1)

 Update request (with Content-ID = 2)

3. A second query request

Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <>
brackets and OData-Version headers are omitted.

Note also that the two empty lines after the Host header of the GET request are necessary: the first is part of
the GET request header; the second is the empty body of the GET request, followed by a CRLF according to
[RFC2046].

POST /service/$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

Content-Length: ###

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding:binary

GET /service/Customers('ALFKI')

Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-

9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /service/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Customer>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding:binary

Content-ID: 2

PATCH /service/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/json

If-Match: xxxxx

Content-Length: ###

<JSON representation of Customer ALFKI>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 74

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding: binary

GET /service/Products HTTP/1.1

Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

11.7.3 Change Sets

A change set is an atomic unit of work consisting of an unordered group of one or more Data Modification
requests or Action invocation requests. Change sets MUST NOT contain any GET requests or other
change sets. The contents of a MIME part representing a change set MUST itself be a multipart MIME
document (see [RFC2046]) with one part for each operation that makes up the change set. Each part
representing an operation in the change set MUST include the same headers (Content-Type and
Content-Transfer-Encoding) and associated values as previously described for operations. In
addition each request within a change set MUST specify a Content-ID header with a value unique
within the batch request. The syntax of the Content-ID header is specified by rule content-id in
[OData-ABNF].

11.7.3.1 Referencing New Entities in a Change Set

Entities created by an Insert request within a change set can be referenced by subsequent requests
within the same change set in places where a resource path to an existing entity can be specified. The
temporary resource path for a newly inserted entity is the value of the Content-ID header prefixed with
a $ character. If $<Content-ID> is identical to the name of a top-level system resource ($batch,
$crossjoin, $all, $entity, $root, $id, $metadata, or other system resources defined
according to the OData-Version of the protocol specified in the request), then the reference to the top-
level system resource is used.
Example 83: a batch request that contains the following operations in the order listed:

A change set that contains the following requests:

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 74

 Insert a new entity (with Content-ID = 1)

 Insert a second new entity (references request with Content-ID = 1)

POST /service/$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-

9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /service/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Customer>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

POST $1/Orders HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Order>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

11.7.4 Responding to a Batch Request

Requests within a batch are evaluated according to the same semantics used when the request appears
outside the context of a batch.
The order of change sets and individual requests in a Batch request is significant. A service MUST
process the components of the Batch in the order received. The order of requests within a change set is
not significant; a service may process the requests within a change set in any order.
All operations in a change set represent a single change unit so a service MUST successfully process
and apply all the requests in the change set or else apply none of them. It is up to the service
implementation to define rollback semantics to undo any requests within a change set that may have
been applied before another request in that same change set failed and thereby apply this all-or-nothing
requirement. The service MAY execute the requests within a change set in any order and MAY return the
responses to the individual requests in any order. The service MUST include the Content-ID header in
each response with the same value that the client specified in the corresponding request, so clients can
correlate requests and responses.
If the set of request headers of a Batch request are valid (the Content-Type is set to
multipart/mixed, etc.) the service MUST return a 200 OK HTTP response code to indicate that the
request was accepted for processing, but the processing is yet to be completed. The requests within the
body of the batch may subsequently fail or be malformed; however, this enables batch implementations to
stream the results.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 74

If the service receives a Batch request with an invalid set of headers it MUST return a 4xx response
code and perform no further processing of the request.
A response to a batch request MUST contain a Content-Type header with value multipart/mixed.
Structurally, a batch response body MUST match one-to-one with the corresponding batch request body,
such that the same multipart MIME message structure defined for requests is used for responses. There
are three exceptions to this rule:

 When a request within a change set fails, the change set response is not represented using the
multipart/mixed media type. Instead, a single response, using the application/http
media type and a Content-Transfer-Encoding header with a value of binary, is returned
that applies to all requests in the change set and MUST be formatted according to the Error
Handling defined for the particular response format.

 When an error occurs processing a request and the odata.continue-on-error preference is
not specified, processing of the batch is terminated and the error response is the last part of the
multi-part response.

 Asynchronously processed batch requests can return interim results and end with a 202
Accepted as the last part of the multi-part response.

A response to an operation in a batch MUST be formatted exactly as it would have appeared outside of a
batch as described in Requesting Data or Invoking a Function, as appropriate.
Example 84: referencing the batch request example 82 above, assume all the requests except the final query request
succeed. In this case the response would be

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--b_243234_25424_ef_892u748

Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Customer('POIUY')

Content-Length: ###

<AtomPub representation of a new Customer entity>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 74

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

HTTP/1.1 204 No Content

Host: host

--cs_12u7hdkin252452345eknd_383673037--

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--b_243234_25424_ef_892u748--

11.7.5 Asynchronous Batch Requests

Batch requests may be executed asynchronously by including the respond-async preference in the
Prefer header. The service MUST ignore the respond-async preference for individual requests within a
batch.
After successful execution of the batch request the response to the batch request would be returned in
the body of a response to an interrogation request against the status monitor resource URL (see section
11.6 “Asynchronous Requests”).
A service MAY return interim results to an asynchronously executing batch. It does this by including a
202 Accepted response as the last part of the multi-part response. The client can use the monitor URL
returned in this 202 Accepted response to continue processing the batch response.
Since a change set is executed atomically, 202 Accepted MUST NOT be returned within a change set.

Example 85: referencing the example 82 above again, assume that when interrogating the monitor URL for the first
time only the first request in the batch finished processing and all the remaining requests except the final query
request succeed. In this case the responses would be

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 202 Accepted

Location: http://service-root/async-monitor

Retry-After: ###

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 74

--b_243234_25424_ef_892u748--

Client makes a second request using the returned monitor URL

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Customer('POIUY')

Content-Length: ###

<AtomPub representation of a new Customer entity>

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

HTTP/1.1 204 No Content

Host: host

--cs_12u7hdkin252452345eknd_383673037--

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--b_243234_25424_ef_892u748—

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 74

12 Security Considerations
This section is provided as a service to the application developers, information providers, and users of
OData version 4.0 giving some references to starting points for securing OData services as specified.
OData is a REST-full multi-format service that depends on other services and thus inherits both sides of
the coin, security enhancements and concerns alike from the latter.
For HTTP relevant security implications please cf. the relevant sections of [RFC7231] (9. Security
Considerations) and for the HTTP PATCH method [RFC5023] (5. Security Considerations) as starting
points.

12.1 Authentication

OData Services requiring authentication SHOULD consider supporting basic authentication as specified
in [RFC2617] over HTTPS for the highest level of interoperability with generic clients. They MAY support
other authentication methods.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 74

13 Conformance
OData is designed as a set of conventions that can be layered on top of existing standards to provide
common representations for common functionality. Not all services will support all of the conventions
defined in the protocol; services choose those conventions defined in OData as the representation to
expose that functionality appropriate for their scenarios.
To aid in client/server interoperability, this specification defines multiple levels of conformance for an
OData Service, as well as the minimal requirements for an OData Client to be interoperable across OData
services.

13.1 OData Service Conformance Levels

OData defines three levels of conformance for an OData Service.
Note: The conformance levels are design to correspond to different service scenarios. For example, a
service that publishes data compliant with one or more of the OData defined formats may comply with the
OData Minimal Conformance Level without supporting any additional functionality. A service that offers
more control over the data that the client retrieves may comply with the OData Intermediate Conformance
Level. Services that conform to the OData Advanced Conformance Level can expect to interoperate with
the most functionality against the broadest range of generic clients. Services can advertise their level of
conformance by the OData Conformance Level Annotation.
Services can advertise their level of conformance by annotating their entity container with the
Capabilities.ConformanceLevel annotation defined in [OData-VocCap].
Note: Services are encouraged to support as much additional functionality beyond their level of
conformance as is appropriate for their intended scenario.

13.1.1 OData Minimal Conformance Level

In order to conform to the OData Minimal conformance level, a service:
1. MUST publish a service document at the service root (section 11.1.1)
2. MUST return data according to at least one of the OData defined formats (section 7)
3. MUST support server-driven paging when returning partial results (section 11.2.5.7)
4. MUST return the appropriate OData-Version header (section 8.1.5)
5. MUST conform to the semantics the following headers, or fail the request

5.1. Accept (section 8.2.1)
5.2. OData-MaxVersion (section 8.2.7)

6. MUST follow OData guidelines for extensibility (section 6 and all subsections)
7. MUST successfully parse the request according to [OData-ABNF] for any supported system query

string options and either follow the specification or return 501 Not Implemented (section 9.3.1) for
any unsupported functionality (section 11.2.1)

8. MUST expose only data types defined in [OData-CSDL]
9. MUST NOT require clients to understand any metadata or instance annotations (section 6.4), custom

headers (section 6.5), or custom content (section 6.2) in the payload in order to correctly consume
the service

10. MUST NOT violate any OData update semantics (section 11.4 and all subsections)
11. MUST NOT violate any other OData-defined semantics
12. SHOULD support $expand (section 11.2.4.2)
13. MAY publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)

In addition, to be considered an Updatable OData Service, the service:
14. MUST include edit links (explicitly or implicitly) for all updatable or deletable resources according to

[OData-Atom] and [OData-JSON]

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 74

15. MUST support POST of new entities to insertable entity sets (section 11.4.1.5 and 11.4.2.1)
16. MUST support POST of new related entities to updatable navigation properties (section 11.4.6.1)
17. MUST support POST to $ref to add an existing entity to an updatable related collection (section

11.4.6.1)
18. MUST support PUT to $ref to set an existing single updatable related entity (section 11.4.6.3)
19. MUST support PATCH to all edit URLs for updatable resources (section 11.4.3)
20. MUST support DELETE to all edit URLs for deletable resources (section 11.4.5)
21. MUST support DELETE to $ref to remove an entity from an updatable navigation property (section

11.4.6.2)
22. MUST support if-match header in update/delete of any resources returned with an ETag (section

11.4.1.1)
23. MUST return a Location header with the edit URL or read URL of a created resource (section

11.4.1.5)
24. MUST include the OData-EntityId header in response to any POST/PATCH that returns 204 No

Content (Section 8.3.3)
25. MUST support Upserts (section 11.4.4)
26. SHOULD support PUT and PATCH to an individual primitive (section 11.4.9.1) or complex (section

11.4.9.3) property (respectively)
27. SHOULD support DELETE to set an individual property to null (section 11.4.9.2)
28. SHOULD support deep inserts (section 11.4.2.2)

13.1.2 OData Intermediate Conformance Level

In order to conform to the OData Intermediate Conformance Level, a service:
1. MUST conform to the OData Minimal Conformance Level
2. MUST successfully parse the [OData-ABNF] and either follow the specification or return 501 Not

Implemented for any unsupported functionality (section 9.3.1)
3. MUST support $select (section11.2.4.1)
4. MUST support casting to a derived type according to [OData-URL] if derived types are present in the

model
5. MUST support $top (section 11.2.5.3)
6. MUST support /$value on media entities (section 4.10. in [OData-URL]) and individual properties

(section 11.2.3.1)
7. MUST support $filter (section 11.2.5.1)

7.1. MUST support eq, ne filter operations on properties of entities in the requested entity set (section
11.2.5.1.1)

7.2. MUST support aliases in $filter expressions (section 11.2.5.1.3)
7.3. SHOULD support additional filter operations (section 11.2.5.1.1) and MUST return 501 Not

Implemented for any unsupported filter operations (section 9.3.1)
7.4. SHOULD support the canonical functions (section 11.2.5.1.2) and MUST return 501 Not

Implemented for any unsupported canonical functions (section 9.3.1)
7.5. SHOULD support $filter on expanded entities (section 11.2.4.2.1)

8. SHOULD publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)
9. SHOULD support the [OData-JSON] format
10. SHOULD consider supporting basic authentication as specified in [RFC2617] over HTTPS for the

highest level of interoperability with generic clients
11. SHOULD support the $search system query option (section 11.2.5.6)
12. SHOULD support the $skip system query option (section 11.2.5.4)
13. SHOULD support the $count system query option (section 11.2.5.5)
14. SHOULD support $expand (section 11.2.4.2)
15. SHOULD support the lambda operators any and all on navigation- and collection-valued properties

(section 5.1.1.5 in [OData-URL])

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 74

16. SHOULD support the /$count segment on navigation and collection properties (section 11.2.9)
17. SHOULD support $orderby asc and desc on individual properties (section 11.2.5.2)

13.1.3 OData Advanced Conformance Level

In order to conform to the OData Advanced Conformance Level, a service:
1. MUST conform to at least the OData Intermediate Conformance Level
2. MUST publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)
3. MUST support the [OData-JSON] format
4. MUST support the /$count segment on navigation and collection properties (section 11.2.9)
5. MUST support the lambda operators any and all on navigation- and collection-valued properties

(section 5.1.1.5 in [OData-URL])
6. MUST support the $skip system query option (section 11.2.5.4)
7. MUST support the $count system query option (section 11.2.5.5)
8. MUST support $orderby asc and desc on individual properties (section 11.2.5.2)
9. MUST support $expand (section 11.2.4.2)

9.1. MUST support returning references for expanded properties (section 11.2.4.2)
9.2. MUST support $filter on expanded entities (section 11.2.4.2.1)
9.3. MUST support cast segment in expand with derived types (section 11.2.4.2.1)
9.4. SHOULD support $orderby asc and desc on individual properties (section 11.2.4.2.1)
9.5. SHOULD support the $count system query option for expanded properties (section 11.2.4.2.1)
9.6. SHOULD support $top and $skip on expanded properties (section 11.2.4.2.1)
9.7. SHOULD support $search on expanded properties (section 11.2.4.2.1)
9.8. SHOULD support $levels for recursive expand (section 11.2.4.2.1.1)

10. MUST support the $search system query option (section 11.2.5.6)
11. MUST support batch requests (section11.7 and all subsections)
12. MUST support the resource path conventions defined in [OData-URL]
13. SHOULD support Asynchronous operations (section 8.2.8.8)
14. SHOULD support Delta change tracking (section 8.2.8.6)
15. SHOULD support cross-join queries defined in [OData-URL]
16. SHOULD support a conforming OData service interface over metadata (section 11.1.3)

13.2 Interoperable OData Clients

Interoperable OData Clients can expect to work with OData Services that comply with at least the OData
Minimal Conformance Level and implement the [OData-JSON] format. Clients that additionally support
[OData-Atom] can expect to interoperate with a broader range of OData Services.
To be generally interoperable, OData Clients
1. MUST specify the OData-MaxVersion header in requests (section 8.2.6)
2. MUST specify OData-Version (section 8.1.5) and Content-Type (section 8.1.1) in any request

with a payload
3. MUST be a conforming consumer of OData as defined in [OData-JSON]
4. MUST follow redirects (section 9.1.5)
5. MUST correctly handle next links (section 11.2.5.7)
6. MUST support instances returning properties and navigation properties not specified in metadata

(section 11.2)
7. MUST generate PATCH requests for updates, if the client supports updates (section 11.4.3)
8. SHOULD support basic authentication as specified in [RFC2617] over HTTPS
9. MAY request entity references in place of entities previously returned in the response (section 11.2.7)
10. MAY support deleted entities, link entities, deleted link entities in a delta response (section 11.3)
11. MAY support asynchronous responses (section 9.1.3)
12. MAY support odata.metadata=minimal in a JSON response (see [OData-JSON])

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 74

13. MAY support odata.streaming in a JSON response (see [OData-JSON])

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 74

Appendix A. Acknowledgments

The following individuals were members of the OASIS OData Technical Committee during the creation of
this specification and their contributions are gratefully acknowledged:

 Howard Abrams (CA Technologies)
 Ken Baclawski (Northeastern University)
 Jay Balunas (Red Hat)
 Mark Biamonte (Progress Software)
 Matthew Borges (SAP AG)
 Edmond Bourne (BlackBerry)
 Joseph Boyle (Planetwork, Inc.)
 Peter Brown (Individual)
 Antonio Campanile (Bank of America)
 Pablo Castro (Microsoft)
 Axel Conrad (BlackBerry)
 Robin Cover (OASIS)
 Erik de Voogd (SDL)
 Diane Downie (Citrix Systems)
 Stefan Drees (Individual)
 Patrick Durusau (Individual)
 Andrew Eisenberg (IBM)
 Chet Ensign (OASIS)
 Davina Erasmus (SDL)
 Colleen Evans (Microsoft)
 Senaka Fernando (WSO2)
 Brent Gross (IBM)
 Zhun Guo (Individual)
 Anila Kumar GVN (CA Technologies)
 Ralf Handl (SAP AG)
 Barbara Hartel (SAP AG)
 Hubert Heijkers (IBM)
 Jens Hüsken (SAP AG)
 Evan Ireland (SAP AG)

 Gershon Janssen (Individual)
 Ram Jeyaraman (Microsoft)
 Ted Jones (Red Hat)
 Diane Jordan (IBM)
 Stephan Klevenz (SAP AG)
 Gerald Krause (SAP AG)
 Nuno Linhares (SDL)
 Paul Lipton (CA Technologies)
 Susan Malaika (IBM)
 Ramanjaneyulu Malisetti (CA Technologies)
 Neil McEvoy (iFOSSF – International Free

and Open Source Solutions Foundation)
 Stan Mitranic (CA Technologies)
 Dale Moberg (Axway Software)
 Graham Moore (BrightstarDB Ltd.)
 Farrukh Najmi (Individual)
 Shishir Pardikar (Citrix Systems)
 Sanjay Patil (SAP AG)
 Nuccio Piscopo (iFOSSF – International Free

and Open Source Solutions Foundation)
 Michael Pizzo (Microsoft)
 Robert Richards (Mashery)
 Sumedha Rubasinghe (WSO2)
 James Snell (IBM)
 Jeffrey Turpin (Axway Software)
 John Willson (Individual)
 John Wilmes (Individual)
 Christopher Woodruff (Perficient, Inc.)
 Martin Zurmuehl (SAP AG)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 74

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-08-22 Michael Pizzo Translated Contribution to OASIS
format/template

Committee
Specification
Draft 01

2013-04-26 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Added Delta support, Asynchronous
processing, Upsert
Aligned and expanded Prefer header
preferences
Simplified data model
Defined rules and semantics around distributed
metadata
Fleshed out descriptions and examples and
addressed numerous editorial and technical
issues processed through the TC
Added Conformance section

Committee
Specification
Draft 02

2013-07-01 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Cleaned up action and function overloads and
binding, removed old-style function parameter
syntax
Improved asynchronous processing and added
callback notifications
Improved context URL (formerly: metadata
URL)
Improved handling of empty results
Improved description of rules for processing
PUT and POST requests, especially deep
inserts
Harmonized $count and $inlinecount

Committee
Specification 01

2013-07-30 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Committee
Specification
Draft 03

2013-10-03 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Improved description of type-cast rules

Committee
Specification 02

2013-11-04 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

OASIS
Specification

2014-02-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Errata 01 2014-07-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Minor changes and improvements

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 74

Errata 02 2014-10-29 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Repaired mechanical error in the editable
source

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 44

OData Version 4.0 Part 2: URL Conventions
Plus Errata 02

OASIS Standard incorporating Approved Errata 02

30 October 2014

Specification URIs
This version:

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-
v4.0-errata02-os-part2-url-conventions-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-
v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-
v4.0-errata02-os-part2-url-conventions-complete.pdf

Previous version:
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-
v4.0-errata01-os-part2-url-conventions-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-
v4.0-errata01-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-
v4.0-errata01-os-part2-url-conventions-complete.pdf

Latest version:
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC
Chairs:

Ralf Handl (ralf.handl@sap.com), SAP AG
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP AG
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
 List of Errata items. OData Version 4.0 Errata 02. Edited by Michael Pizzo, Ralf Handl, Martin

Zurmuehl, and Hubert Heijkers. 30 October 2014. OASIS Approved Errata. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html.

 OData Version 4.0 Part 1: Protocol Plus Errata 02. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved Errata 02.
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html.

 OData Version 4.0 Part 2: URL Conventions Plus Errata 02 (this document). Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part2-url-conventions/odata-v4.0-errata01-os-part2-url-conventions-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.doc
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 44

incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-
os-part2-url-conventions-complete.html.

 OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02.
Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-
csdl-complete.html.

 ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/.

 Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/.

 XML schemas: OData EDMX XML Schema and OData EDM XML Schema. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/schemas/.

 OData Metadata Service Entity Model: http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/models/.

 Change-marked (redlined) versions of OData Version 4.0 Part 1, Part 2, and Part 3. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/redlined/.

Related work:
This specification is related to:
 OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin

Zurmuehl. 24 February 2014. OASIS Standard. http://docs.oasis-
open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html.

 OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl.
Latest version. http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-
v4.0.html.

 OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte.
Latest version. http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-
v4.0.html.

Declared XML namespaces:

 http://docs.oasis-open.org/odata/ns/edmx
 http://docs.oasis-open.org/odata/ns/edm

Abstract:
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines a
set of recommended (but not required) rules for constructing URLs to identify the data and
metadata exposed by an OData service as well as a set of reserved URL query string operators.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.
TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/odata/ipr.php).

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/ns/edmx
http://docs.oasis-open.org/odata/ns/edm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 44

Citation format:

When referencing this specification the following citation format should be used:
[OData-Part2]
OData Version 4.0 Part 2: URL Conventions Plus Errata 02. Edited by Michael Pizzo, Ralf Handl,
and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved Errata 02.
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-
v4.0-errata02-os-part2-url-conventions-complete.html. Latest version: http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 44

Notices

Copyright © OASIS Open 2014. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 44

Table of Contents

1 Introduction ... 8

1.1 Terminology .. 8

1.2 Normative References .. 8

1.3 Typographical Conventions .. 8

2 URL Components ... 10

3 Service Root URL ... 12

4 Resource Path .. 13

4.1 Addressing the Model for a Service .. 13

4.2 Addressing the Batch Endpoint for a Service ... 13

4.3 Addressing Entities ... 13

4.3.1 Canonical URL .. 15

4.3.2 Canonical URL for Contained Entities ... 16

4.3.3 URLs for Related Entities with Referential Constraints ... 16

4.3.4 Resolving an Entity-Id ... 16

4.4 Addressing References between Entities ... 16

4.5 Addressing Operations ... 17

4.5.1 Addressing Actions .. 17

4.5.2 Addressing Functions .. 17

4.6 Addressing a Property .. 18

4.7 Addressing a Property Value .. 18

4.8 Addressing the Count of a Collection ... 18

4.9 Addressing Derived Types .. 18

4.10 Addressing the Media Stream of a Media Entity .. 19

4.11 Addressing the Cross Join of Entity Sets ... 19

4.12 Addressing All Entities in a Service .. 20

5 Query Options .. 21

5.1 System Query Options .. 21

5.1.1 System Query Option $filter .. 21

5.1.1.1 Logical Operators ... 21
5.1.1.1.1 Equals .. 22
5.1.1.1.2 Not Equals.. 22
5.1.1.1.3 Greater Than .. 22
5.1.1.1.4 Greater Than or Equal ... 22
5.1.1.1.5 Less Than .. 22
5.1.1.1.6 Less Than or Equal .. 22
5.1.1.1.7 And ... 22
5.1.1.1.8 Or ... 22
5.1.1.1.9 Not ... 22
5.1.1.1.10 has ... 23

5.1.1.1.11 Logical Operator Examples .. 23
5.1.1.2 Arithmetic Operators .. 23

5.1.1.2.1 Addition .. 23
5.1.1.2.2 Subtraction ... 24
5.1.1.2.3 Negation ... 24

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 44

5.1.1.2.4 Multiplication .. 24
5.1.1.2.5 Division... 24
5.1.1.2.6 Modulo ... 24
5.1.1.2.7 Arithmetic Operator Examples ... 24

5.1.1.3 Grouping .. 25
5.1.1.4 Canonical Functions .. 25

5.1.1.4.1 contains ... 25

5.1.1.4.2 endswith ... 25

5.1.1.4.3 startswith .. 25

5.1.1.4.4 length ... 26

5.1.1.4.5 indexof ... 26

5.1.1.4.6 substring ... 26

5.1.1.4.7 tolower ... 26

5.1.1.4.8 toupper ... 27

5.1.1.4.9 trim ... 27

5.1.1.4.10 concat ... 27

5.1.1.4.11 year ... 27

5.1.1.4.12 month ... 28

5.1.1.4.13 day ... 28

5.1.1.4.14 hour ... 28

5.1.1.4.15 minute ... 29

5.1.1.4.16 second ... 29

5.1.1.4.17 fractionalseconds ... 29

5.1.1.4.18 date ... 29

5.1.1.4.19 time ... 29

5.1.1.4.20 totaloffsetminutes ... 30

5.1.1.4.21 now ... 30

5.1.1.4.22 maxdatetime .. 30

5.1.1.4.23 mindatetime .. 30

5.1.1.4.24 totalseconds .. 30

5.1.1.4.25 round ... 30

5.1.1.4.26 floor ... 31

5.1.1.4.27 ceiling ... 31

5.1.1.4.28 isof ... 31

5.1.1.4.29 cast ... 31

5.1.1.4.30 geo.distance .. 32

5.1.1.4.31 geo.intersects .. 32

5.1.1.4.32 geo.length .. 32

5.1.1.5 Lambda Operators ... 33
5.1.1.5.1 any ... 33

5.1.1.5.2 all ... 33

5.1.1.6 Literals ... 33
5.1.1.6.1 Primitive Literals ... 33
5.1.1.6.2 Complex and Collection Literals ... 33
5.1.1.6.3 null ... 34

5.1.1.6.4 $it ... 34

5.1.1.6.5 $root ... 34

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 44

5.1.1.7 Path Expressions ... 34
5.1.1.8 Parameter Aliases .. 35
5.1.1.9 Operator Precedence ... 35
5.1.1.10 Numeric Promotion .. 36

5.1.2 System Query Option $expand .. 36

5.1.3 System Query Option $select .. 38

5.1.4 System Query Option $orderby .. 40

5.1.5 System Query Options $top and $skip .. 40

5.1.6 System Query Option $count .. 40

5.1.7 System Query Option $search .. 40

5.1.7.1 Search Expressions ... 41

5.1.8 System Query Option $format .. 41

5.2 Custom Query Options ... 41

5.3 Parameter Aliases .. 41

6 Conformance .. 42

Appendix A. Acknowledgments ... 43

Appendix B. Revision History .. 44

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 44

1 Introduction
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines a set of
recommended (but not required) rules for constructing URLs to identify the data and metadata exposed
by an OData service as well as a set of reserved URL query string operators, which if accepted by an
OData service, MUST be implemented as required by this document.
The [OData-Atom] and [OData-JSON] documents specify the format of the resource representations that
are exchanged using OData and the [OData-Protocol] document describes the actions that can be
performed on the URLs (optionally constructed following the conventions defined in this document)
embedded in those representations.
Services are encouraged to follow the URL construction conventions defined in this specification when
possible as consistency promotes an ecosystem of reusable client components and libraries.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[OData-ABNF] OData ABNF Construction Rules Version 4.0.
See the link in "Additional artifacts" section on cover page.

[OData-Atom] OData ATOM Format Version 4.0.
See link in "Related work" section on cover page.

[OData-CSDL] OData Version 4.0 Part 3: Common Schema Definition Language (CSDL).
See link in "Additional artifacts" section on cover page.

[OData-JSON] OData JSON Format Version 4.0.
See link in "Related work" section on cover page.

[OData-Protocol] OData Version 4.0 Part 1: Protocol.
See link in "Additional artifacts" section on cover page.

[OData-VocCore] OData Core Vocabulary.
See link in "Additional artifacts" section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax”, STD 66, RFC 3986, January 2005.
http://www.ietf.org/rfc/rfc3986.txt.

[RFC5023] Gregorio, J., Ed., and B. de hOra, Ed., “The Atom Publishing Protocol.”, RFC
5023, October 2007. http://tools.ietf.org/html/rfc5023.

1.3 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc5023

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 44

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 44

2 URL Components
A URL used by an OData service has at most three significant parts: the service root URL, resource path
and query options. Additional URL constructs (such as a fragment) can be present in a URL used by an
OData service; however, this specification applies no further meaning to such additional constructs.
Example 2: OData URL broken down into its component parts:

http://host:port/path/SampleService.svc/Categories(1)/Products?$top=2&$orderby=Name

______________________________________/____________________/ __________________/

 | | |

 service root URL resource path query options

Mandated and suggested content of these three significant URL components used by an OData service
are covered in sequence in the three following chapters.
OData follows the URI syntax rules defined in [RFC3986] and in addition assigns special meaning to
several of the sub-delimiters defined by [RFC3986], so special care has to be taken regarding parsing
and percent-decoding.
[RFC3986] defines three steps for URL processing that MUST be performed before percent-decoding:
 Split undecoded URL into components scheme, hier-part, query, and fragment at first ":", then first

"?", and then first "#"

 Split undecoded hier-part into authority and path
 Split undecoded path into path segments at "/"

After applying these steps defined by RFC3986 the following steps MUST be performed:
 Split undecoded query at "&" into query options, and each query option at the first "=" into query

option name and query option value
 Percent-decode path segments, query option names, and query option values exactly once
 Interpret path segments, query option names, and query option values according to OData rules

The OData rules are defined in this document and the [OData-ABNF]. Note that the rules in [OData-
ABNF] assume that URIs and URI parts have been percent-encoding normalized as described in section
6.2.2.2 of [RFC3986] before applying the grammar to them, i.e. all characters in the unreserved set (see
rule unreserved in [OData-ABNF]) are plain literals and not percent-encoded. For characters outside
of the unreserved set that are significant to OData the ABNF rules explicitly state whether the percent-
encoded representation is treated identical to the plain literal representation. This is done to make the
input strings in the ABNF test cases more readable.
One of these rules is that single quotes within string literals are represented as two consecutive single
quotes.
Example 3: valid OData URLs:

http://host/service/People('O''Neil')

http://host/service/People(%27O%27%27Neil%27)

http://host/service/People%28%27O%27%27Neil%27%29

http://host/service/Categories('Smartphone%2FTablet')

Example 4: invalid OData URLs:

http://host/service/People('O'Neil')

http://host/service/People('O%27Neil')

http://host/service/Categories('Smartphone/Tablet')

The first and second examples are invalid because a single quote in a string literal must be represented
as two consecutive single quotes. The third example is invalid because forward slashes are interpreted as

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 44

path segment separators and Categories('Smartphone is not a valid OData path segment, nor is
Tablet').

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 44

3 Service Root URL
The service root URL identifies the root of an OData service. A GET request to this URL returns the
format-specific service document, see [OData-JSON] and [OData-Atom].
The service root URL always terminates in a forward slash.
The service document enables simple hypermedia-driven clients to enumerate and explore the resources
published by the OData service.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 44

4 Resource Path
The rules for resource path construction as defined in this section are optional. OData services SHOULD
follow the subsequently described URL path construction rules and are indeed encouraged to do so; as
such consistency promotes a rich ecosystem of reusable client components and libraries.
Services that do not follow the resource path conventions for entity container children are strongly
encouraged to document their resource paths by annotating entity container children with the term
Core.ResourcePath defined in [OData-VocCore]. The annotation value is the URL of the annotated
resource and may be relative to xml:base (if present), otherwise the request URL.
Resources exposed by an OData service are addressable by corresponding resource path URL
components to enable interaction of the client with that resource aspect.
To illustrate the concept, some examples for resources might be: customers, a single customer, orders
related to a single customer, and so forth. Examples of addressable aspects of these resources as
exposed by the data model might be: collections of entities, a single entity, properties, links, operations,
and so on.
An OData service MAY respond with 301 Moved Permanently or 307 Temporary Redirect from
the canonical URL to the actual URL.

4.1 Addressing the Model for a Service

OData services expose their entity model according to [OData-CSDL] at the metadata URL, formed by
appending $metadata to the service root URL.

Example 5: Metadata document URL

http://host/service/$metadata

OData services MAY expose their entity model as a service, according to [OData-CSDL], by appending a
trailing slash (/) to the metadata document URL.

Example 6: Metadata service root URL

http://host/service/$metadata/

4.2 Addressing the Batch Endpoint for a Service

OData services that support batch requests expose a batch URL formed by appending $batch to the
service root URL.
Example 7: batch URL

http://host/service/$batch

4.3 Addressing Entities

The basic rules for addressing a collection (of entities), a single entity within a collection, a singleton, as
well as a property of an entity are covered in the resourcePath syntax rule in [OData-ABNF].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 44

Below is a (non-normative) snippet from [OData-ABNF]:

resourcePath = entitySetName [collectionNavigation]

 / singleton [singleNavigation]

 / actionImportCall

 / entityColFunctionImportCall [collectionNavigation]

 / entityFunctionImportCall [singleNavigation]

 / complexColFunctionImportCall [collectionPath]

 / complexFunctionImportCall [complexPath]

 / primitiveColFunctionImportCall [collectionPath]

 / primitiveFunctionImportCall [singlePath]

 / crossjoin

 / '$all'

Since OData has a uniform composable URL syntax and associated rules there are many ways to
address a collection of entities, including, but not limited to:
 Via an entity set (see rule entitySetName in [OData-ABNF])

Example 8:

http://host/service/Products

 By navigating a collection-valued navigation property (see rule: entityColNavigationProperty)

 By invoking a function that returns a collection of entities (see rule: entityColFunctionCall)

Example 9: function with parameters in resource path

http://host/service/ProductsByCategoryId(categoryId=2)

 Example 10: function with parameters as query options

http://host/service/ProductsByColor(color=@color)?@color='red'

 By invoking an action that returns a collection of entities (see rule: actionCall)
Likewise there are many ways to address a single entity.
Sometimes a single entity can be accessed directly, for example by:
 Invoking a function that returns a single entity (see rule: entityFunctionCall)

 Invoking an action that returns a single entity (see rule: actionCall)

 Addressing a singleton
Example 11:

http://host/service/BestProductEverCreated

Often however a single entity is accessed by composing more path segments to a resourcePath that
identifies a collection of entities, for example by:
 Using an entity key to select a single entity (see rules: collectionNavigation and

keyPredicate)

Example 12:

http://host/service/Categories(1)

 Invoking an action bound to a collection of entities that returns a single entity (see rule:
boundOperation)

 Invoking an function bound to a collection of entities that returns a single entity (see rule:
boundOperation)

Example 13:

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 44

http://host/service/Products/Model.MostExpensive()

These rules are recursive, so it is possible to address a single entity via another single entity, a collection
via a single entity and even a collection via a collection; examples include, but are not limited to:
 By following a navigation from a single entity to another related entity (see rule:

entityNavigationProperty)

Example 14:

http://host/service/Products(1)/Supplier

 By invoking a function bound to a single entity that returns a single entity (see rule:
boundOperation)

Example 15:

http://host/service/Products(1)/Model.MostRecentOrder()

 By invoking an action bound to a single entity that returns a single entity (see rule:
boundOperation)

 By following a navigation from a single entity to a related collection of entities (see rule:
entityColNavigationProperty)

Example 16:

http://host/service/Categories(1)/Products

 By invoking a function bound to a single entity that returns a collection of entities (see rule:
boundOperation)

Example 17:

http://host/service/Categories(1)/Model.TopTenProducts()

 By invoking an action bound to a single entity that returns a collection of entities (see rule:
boundOperation)

 By invoking a function bound to a collection of entities that returns a collection of entities (see rule:
boundOperation)

Example 18:

http://host/service/Categories(1)/Products/Model.AllOrders()

 By invoking an action bound to a collection of entities that returns a collection of entities (see rule:
boundOperation)

Finally it is possible to compose path segments onto a resource path that identifies a primitive, complex
instance, collection of primitives or collection of complex instances and bind an action or function that
returns an entity or collections of entities.

4.3.1 Canonical URL

For OData services conformant with the addressing conventions in this section, the canonical form of an
absolute URL identifying a non-contained entity is formed by adding a single path segment to the service
root URL. The path segment is made up of the name of the entity set associated with the entity followed
by the key predicate identifying the entity within the collection. No type-cast segment is added to the
canonical URL, even if the entity is an instance of a type derived from the declared entity type of its entity
set.
Example 19: Non-canonical URL

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 44

http://host/service/Categories(1)/Products(1)

Example 20: Canonical URL for previous example:

http://host/service/Products(1)

4.3.2 Canonical URL for Contained Entities

For contained entities (i.e. related via a navigation property that specifies ContainsTarget="true",
see [OData-CSDL]) the canonical URL is the canonical URL of the containing entity followed by:
 A cast segment if the navigation property is defined on a type derived from the entity type declared

for the entity set,
 A path segment for the containment navigation property, and
 If the navigation property returns a collection, a key predicate that uniquely identifies the entity in that

collection.

4.3.3 URLs for Related Entities with Referential Constraints

If a navigation property leading to a related entity type has a partner navigation property that specifies a
referential constraint, then those key properties of the related entity that take part in the referential
constraint MAY be omitted from URLs.
Example 21: full key predicate of related entity

https://host/service/Orders(1)/Items(OrderID=1,ItemNo=2)

Example 22: shortened key predicate of related entity

https://host/service/Orders(1)/Items(2)

The two above examples are equivalent if the navigation property Items from Order to OrderItem has a partner
navigation property from OrderItem to Order with a referential constraint tying the value of the OrderID key
property of the OrderItem to the value of the ID property of the Order.

The shorter form that does not specify the constrained key parts redundantly is preferred. If the value of
the constrained key is redundantly specified then it MUST match the principal key value.

4.3.4 Resolving an Entity-Id

To resolve an entity-id into a representation of the identified entity, the client issues a GET request to the
$entity resource located at the URL $entity relative to the service root URL. The entity-id MUST be
specified using the system query option $id. The entity-id may be expressed as an absolute IRI or
relative to the service root URL.
Example 23: request the entity representation for an entity-id

http://host/service/$entity?$id=Products(0)

The semantics of $entity are covered in the [OData-Protocol] document.

4.4 Addressing References between Entities

OData services are based on a data model that supports relationships as first class constructs. For
example, an OData service could expose a collection of Products entities each of which are related to a
Category entity.
References between entities are addressable in OData just like entities themselves are (as described
above) by appending a navigation property name followed by /$ref to the entity URL.

Example 24: URL addressing the references between Categories(1) and Products

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 44

http://host/service/Categories(1)/Products/$ref

Resource paths addressing a single entity reference can be used in DELETE requests to unrelated two
entities. Resource paths addressing collection of references can be used in DELETE requests if they are
followed by the system query option $id identifying one of the entity references in the collection. The
entity-id specified by $id may be expressed absolute or relative to the request URL. For details see
[OData-Protocol].

Example 25: two ways of unrelating Categories(1) and Products(0)

DELETE http://host/service/Categories(1)/Products/$ref?$id=../../Products(0)

DELETE http://host/service/Products(0)/Category/$ref

4.5 Addressing Operations

4.5.1 Addressing Actions

The semantic rules for addressing and invoking actions are defined in the [OData-Protocol] document.
The grammar for addressing and invoking actions is defined by the following syntax grammar rules in
[OData-ABNF]:
 The actionImportCall syntax rule defines the grammar in the resourcePath for addressing

and invoking an action import directly from the service root.
 The boundActionCall syntax rule defines the grammar in the resourcePath for addressing and

invoking an action that is appended to a resourcePath that identifies some resources that can be
used as the binding parameter value when invoking the action.

 The boundOperation syntax rule (which encompasses the boundActionCall syntax rule), when
used by the resourcePath syntax rule, illustrates how a boundActionCall can be appended to
a resourcePath.

4.5.2 Addressing Functions

The semantic rules for addressing and invoking functions are defined in the [OData-Protocol] document.
The grammar for addressing and invoking functions is defined by a number syntax grammar rules in
[OData-ABNF], in particular:
 The function import call syntax rules complexFunctionImportCall,

complexColFunctionImportCall, entityFunctionImportCall,
entityColFunctionImportCall, primitiveFunctionImportCall, and
primitiveColFunctionImportCall define the grammar in the resourcePath for addressing
and providing parameters for a function import directly from the service root.

 The bound function call syntax rules boundComplexFunctionCall,
boundComplexColFunctionCall, boundEntityFunctionCall,
boundEntityColFunctionCall, boundPrimitiveFunctionCall and
boundPrimitiveColFunctionCall define the grammar in the resourcePath for addressing
and providing parameters for a function that is appended to a resourcePath that identifies some
resources that can be used as the binding parameter value when invoking the function.

 The boundOperation syntax rule (which encompasses the bound function call syntax rules), when
used by the resourcePath syntax rule, illustrates how a bound function call can be appended to a
resourcePath.

 The functionExpr and boundFunctionExpr syntax rules as used by the filter and orderby
syntax rules define the grammar for invoking functions to help filter and order resources identified by
the resourcePath of the URL.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 44

 The aliasAndValue syntax rule defines the grammar for providing function parameter values using
Parameter Alias Syntax, see [OData-Protocol].

4.6 Addressing a Property

To address an entity property clients append a path segment containing the property name to the URL of
the entity. If the property has a complex type value, properties of that value can be addressed by further
property name composition.

4.7 Addressing a Property Value

To address the raw value of a primitive property, clients append a path segment containing the string
$value to the property URL.
Properties of type Edm.Stream already return the raw value of the media stream and do not support
appending the $value segment.

4.8 Addressing the Count of a Collection

To address the raw value of the number of items in a collection, clients append /$count to the resource
path of the URL identifying the entity set or collection. The count is calculated after applying any
$filter or $search system query options to the collection. The returned count MUST NOT be affected
by $top, $skip, $orderby, or $expand.

Example 26: the number of related entities

http://host/service/Categories(1)/Products/$count

Example 27: the number of entities in an entity set

http://host/service/Products/$count

Example 28: entity count in a $filter expression. Note that the spaces around gt are for readability of the example
only; in real URLs they must be percent-encoded as %20.

http://host/service/Categories?$filter=Products/$count gt 0

Example 29: entity count in an $orderby expression

http://host/service/Categories?$orderby=Products/$count

4.9 Addressing Derived Types

Any resource path or path expression identifying a collection of entities or complex type instances can be
appended with a path segment containing the qualified name of a type derived from the declared type of
the collection. The result will be restricted to instances of the derived type and may be empty.
Any resource path or path expression identifying a single entity or complex type instance can be
appended with a path segment containing the qualified name of a type derived from the declared type of
the identified resource. If used in a resource path and the identified resource is not an instance of the
derived type, the request will result in a 404 Not Found response. If used in a path expression that is
part of a Boolean expression, the type cast will evaluate to null.

Example 30: entity set restricted to VipCustomer instances

http://host/service/Customers/Model.VipCustomer

Example 31: entity restricted to a VipCustomer instance, resulting in 404 Not Found if the customer with key 1 is
not a VipCustomer

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 44

http://host/service/Customers/Model.VipCustomer(1)

http://host/service/Customers(1)/Model.VipCustomer

Example 32: cast the complex property Address to its derived type DetailedAddress, then get a property of the
derived type

http://host/service/Customers(1)/Address/Model.DetailedAddress/Location

Example 33: filter expression with type cast; will evaluate to null for all non-VipCustomer instances and thus
return only instances of VipCustomer

http://host/service/Customers?

 $filter=Model.VipCustomer/PercentageOfVipPromotionProductsOrdered gt 80

Example 34: expand the single related Customer only if it is an instance of Model.VipCustomer. For to-many
relationships only Model.VipCustomer instances would be inlined,

http://host/service/Orders?$expand=Customer/Model.VipCustomer

4.10 Addressing the Media Stream of a Media Entity

To address the media stream represented by a media entity, clients append /$value to the resource
path of the media entity URL. Services may redirect from this canonical URL to the source URL of the
media stream.

Example 35: request the media stream for the picture with the key value Sunset4321299432:

http://host/service/Pictures('Sunset4321299432')/$value

4.11 Addressing the Cross Join of Entity Sets

In addition to querying related entities through navigation properties defined in the entity model of a
service, the cross join operator allows querying across unrelated entity sets.
The cross join is addressed by appending the path segment $crossjoin to the service root URL,
followed by the parenthesized comma-separated list of joined entity sets. It returns the Cartesian product
of all the specified entity sets, represented as a collection of instances of a virtual complex type. Each
instance consists of one non-nullable, single-valued navigation property per joined entity set. Each such
navigation property is named identical to the corresponding entity set, with a target type equal to the
declared entity type of the corresponding entity set.
The $filter and $orderby query options can be specified using properties of the entities in the
selected entity sets, prepended with the entity set as the navigation property name.
The $expand query option can be specified using the names of the selected entity sets as navigation
property names. If a selected entity set is not expanded, it MUST be represented using the read URL of
the related entity as a navigation link in the complex type instance.
The $count, $skip, and $top query options can also be used with no special semantics.

Example 36: if Sales had a structural property ProductID instead of a navigation property Product, a “cross join”
between Sales and Products could be addressed

http://host/service/$crossjoin(Products,Sales)?

 $filter=Products/ID eq Sales/ProductID

and would result in

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 44

{

"@odata.context":"http://host/service/$metadata#Collection(Edm.ComplexType)",

 "value":[

 {

 "Products@odata.navigationLink":"Products(0)",

 "Sales@odata.navigationLink":"Sales(42)",

 },

 {

 "Products@odata.navigationLink":"Products(0)",

 "Sales@odata.navigationLink":"Sales(57)",

 },

 ...

 {

 "Products@odata.navigationLink":"Products(99)",

 "Sales@odata.navigationLink":"Sales(21)",

 }

]

}

4.12 Addressing All Entities in a Service

The symbolic resource $all, located at the service root, identifies the collection of all entities in a
service, i.e. the union of all entity sets plus all singletons.
This symbolic resource is of type Collection(Edm.EntityType) and allows the $search system
query option plus all other query options applicable to collections of entities.
The $all resource can be appended with a path segment containing the qualified name of an entity type
in order to restrict the collections to entities of that type. Query options such as $select, $filter,
$expand and $orderby can be applied to this restricted set according to the specified type.

Example 37: all entities in a service that somehow match red

http://host/service/$all?$search=red

Example 38: all Customer entities in a service whose name contains red

http://host/service/$all/Model.Customer?$filter=contains(Name,'red')

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 44

5 Query Options
The query options part of an OData URL specifies three types of information: system query options,
custom query options, and parameter aliases. All OData services MUST follow the query string parsing
and construction rules defined in this section and its subsections.

5.1 System Query Options

System query options are query string parameters that control the amount and order of the data returned
for the resource identified by the URL. The names of all system query options are prefixed with a dollar
($) character.
For GET requests the following rules apply:

 Resource paths identifying a single entity, a complex type instance, a collection of entities, or a
collection of complex type instances allow $expand and $select.

 Resource paths identifying a collection allow $filter, $count, $orderby, $skip, and $top.

 Resource paths identifying a collection of entities allow $search.

 Resource paths ending in /$count allow $filter and $search.

 Resource paths not ending in /$count or /$batch allow $format.
For POST requests to an action URL the return type of the action determines the applicable system query
options that a service MAY support, following the same rules as GET requests.
POST requests to entity sets as well as all PUT and DELETE requests do not allow system query options.
An OData service may support some or all of the system query options defined. If a data service does not
support a system query option, it MUST reject any request that contains the unsupported option.
The same system query option MUST NOT be specified more than once for any resource.
The semantics of all system query options are defined in the [OData-Protocol] document.
The grammar and syntax rules for system query options are defined in [OData-ABNF].
Dynamic properties can be used in the same way as declared properties. If they are not defined on an
instance, they evaluate to null.

5.1.1 System Query Option $filter

The $filter system query option allows clients to filter a collection of resources that are addressed by a
request URL. The expression specified with $filter is evaluated for each resource in the collection,
and only items where the expression evaluates to true are included in the response. Resources for which
the expression evaluates to false or to null, or which reference properties that are unavailable due to
permissions, are omitted from the response.
The [OData-ABNF] filter syntax rule defines the formal grammar of the $filter query option.

5.1.1.1 Logical Operators

OData defines a set of logical operators that evaluate to true or false (i.e. a boolCommonExpr as defined
in [OData-ABNF]). Logical operators are typically used to filter a collection of resources.
Operands of collection, entity, and complex types are not supported in logical operators.
The syntax rules for the logical operators are defined in [OData-ABNF].
The six comparison operators can be used with all primitive values except Edm.Binary, Edm.Stream,
and the Edm.Geo types. Edm.Binary, Edm.Stream, and the Edm.Geo types can only be compared to
the null value using the eq and ne operators.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 44

5.1.1.1.1 Equals

The eq operator returns true if the left operand is equal to the right operand, otherwise it returns false.
The null value is equal to itself, and only to itself.

5.1.1.1.2 Not Equals

The ne operator returns true if the left operand is not equal to the right operand, otherwise it returns false.
The null value is not equal to any value but itself.

5.1.1.1.3 Greater Than

The gt operator returns true if the left operand is greater than the right operand, otherwise it returns false.
If any operand is null, the operator returns false.
For Boolean values true is greater than false.

5.1.1.1.4 Greater Than or Equal

The ge operator returns true if the left operand is greater than or equal to the right operand, otherwise it
returns false.
If only one operand is null, the operator returns false. If both operands are null, it returns true because
null is equal to itself.

5.1.1.1.5 Less Than

The lt operator returns true if the left operand is less than the right operand, otherwise it returns false.
If any operand is null, the operator returns false.

5.1.1.1.6 Less Than or Equal

The le operator returns true if the left operand is less than or equal to the right operand, otherwise it
returns false.
If only one operand is null, the operator returns false. If both operands are null, it returns true because
null is equal to itself.

5.1.1.1.7 And

The and operator returns true if both the left and right operands evaluate to true, otherwise it returns
false.
The null value is treated as unknown, so if one operand evaluates to null and the other operand to
false, the and operator returns false. All other combinations with null return null.

5.1.1.1.8 Or

The or operator returns false if both the left and right operands both evaluate to false, otherwise it returns
true.
The null value is treated as unknown, so if one operand evaluates to null and the other operand to
true, the or operator returns true. All other combinations with null return null.

5.1.1.1.9 Not

The not operator returns true if the operand returns false, otherwise it returns false.
The null value is treated as unknown, so not null returns null.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 44

5.1.1.1.10 has

The has operator returns true if the right hand operand is an enumeration value whose flag(s) are set
on the left operand.
The null value is treated as unknown, so if one operand evaluates to null, the has operator returns
null.

5.1.1.1.11 Logical Operator Examples

The following examples illustrate the use and semantics of each of the logical operators.

Example 39: all products with a Name equal to 'Milk'

http://host/service/Products?$filter=Name eq 'Milk'

Example 40: all products with a Name not equal to 'Milk'

http://host/service/Products?$filter=Name ne 'Milk'

Example 41: all products with a Name greater than 'Milk':

http://host/service/Products?$filter=Name gt 'Milk'

Example 42: all products with a Name greater than or equal to 'Milk':

http://host/service/Products?$filter=Name ge 'Milk'

Example 43: all products with a Name less than 'Milk':

http://host/service/Products?$filter=Name lt 'Milk'

Example 44: all products with a Name less than or equal to 'Milk':

http://host/service/Products?$filter=Name le 'Milk'

Example 45: all products with the Name 'Milk' that also have a Price less than 2.55:

http://host/service/Products?$filter=Name eq 'Milk' and Price lt 2.55

Example 46: all products that either have the Name 'Milk' or have a Price less than 2.55:

http://host/service/Products?$filter=Name eq 'Milk' or Price lt 2.55

Example 47: all products that do not have a Name that ends with 'ilk':

http://host/service/Products?$filter=not endswith(Name,'ilk')

Example 48: all products whose style value includes Yellow:

http://host/service/Products?$filter=style has Sales.Pattern'Yellow'

5.1.1.2 Arithmetic Operators

OData defines a set of arithmetic operators that require operands that evaluate to numeric types.
Arithmetic operators are typically used to filter a collection of resources. However services MAY allow
using arithmetic operators with the $orderby system query option.
If an operand of an arithmetic operator is null, the result is null.
The syntax rules for the arithmetic operators are defined in [OData-ABNF].

5.1.1.2.1 Addition

The add operator adds the left and right numeric operands.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 44

The add operator is also valid for the following time-related operands:

 DateTimeOffset add Duration results in a DateTimeOffset

 Duration add Duration results in a Duration

 Date add Duration results in a DateTimeOffset

5.1.1.2.2 Subtraction

The sub operator subtracts the right numeric operand from the left numeric operand.
The sub operator is also valid for the following time-related operands:

 DateTimeOffset sub Duration results in a DateTimeOffset

 Duration sub Duration results in a Duration

 DateTimeOffset sub DateTimeOffset results in a Duration

 Date sub Duration results in a DateTimeOffset

 Date sub Date results in a Duration

5.1.1.2.3 Negation

The negation operator, represented by a minus (-) sign, changes the sign of its numeric or Duration
operand.

5.1.1.2.4 Multiplication

The mul operator multiplies the left and right numeric operands.

5.1.1.2.5 Division

The div operator divides the left numeric operand by the right numeric operand. If the right operand is
zero and the left operand is neither of type Edm.Single nor Edm.Double, the request fails. If the left
operand is of type Edm.Single or Edm.Double, then positive div zero returns INF, negative div zero
returns -INF, and zero div zero returns NaN.

5.1.1.2.6 Modulo

The mod operator returns the remainder when the left integral operand is divided by the right integral
operand. If the right operand is negative, the sign of the result is the same as the sign of the left operand.
If the right operand is zero, the request fails.

5.1.1.2.7 Arithmetic Operator Examples

The following examples illustrate the use and semantics of each of the Arithmetic operators.
Example 49: all products with a Price of 2.55:

http://host/service/Products?$filter=Price add 2.45 eq 5.00

Example 50: all products with a Price of 2.55:

http://host/service/Products?$filter=Price sub 0.55 eq 2.00

Example 51: all products with a Price of 2.55:

http://host/service/Products?$filter=Price mul 2.0 eq 5.10

Example 52: all products with a Price of 2.55:

http://host/service/Products?$filter=Price div 2.55 eq 1

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 44

Example 53: all products with a Rating exactly divisible by 5:

http://host/service/Products?$filter=Rating mod 5 eq 0

5.1.1.3 Grouping

The Grouping operator (open and close parenthesis “()”) controls the evaluation order of an
expression. The Grouping operator returns the expression grouped inside the parenthesis.
Example 54: all products because 9 mod 3 is 0

http://host/service/Products?$filter=(4 add 5) mod (4 sub 1) eq 0

5.1.1.4 Canonical Functions

In addition to operators, a set of functions is also defined for use with the $filter or $orderby system
query options. The following sections describe the available functions. Note: ISNULL or COALESCE
operators are not defined. Instead, OData defines a null literal that can be used in comparisons.
If a parameter of a canonical function is null, the function returns null.
The syntax rules for all functions are defined in [OData-ABNF].

5.1.1.4.1 contains

The contains function has the following signature:

Edm.Boolean contains(Edm.String,Edm.String)

The contains function returns true if the second parameter string value is a substring of the first
parameter string value, otherwise it returns false. The containsMethodCallExpr syntax rule defines
how the contains function is invoked.

Example 55: all customers with a CompanyName that contains 'Alfreds'

http://host/service/Customers?$filter=contains(CompanyName,'Alfreds')

5.1.1.4.2 endswith

The endswith function has the following signature:

Edm.Boolean endswith(Edm.String,Edm.String)

The endswith function returns true if the first parameter string value ends with the second parameter
string value, otherwise it returns false. The endsWithMethodCallExpr syntax rule defines how the
endswith function is invoked.

Example 56: all customers with a CompanyName that ends with 'Futterkiste'

http://host/service/Customers?$filter=endswith(CompanyName,'Futterkiste')

5.1.1.4.3 startswith

The startswith function has the following signature:

Edm.Boolean startswith(Edm.String,Edm.String)

The startswith function returns true if the first parameter string value starts with the second
parameter string value, otherwise it returns false. The startsWithMethodCallExpr syntax rule
defines how the startswith function is invoked.

Example 57: all customers with a CompanyName that starts with 'Alfr'

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 44

http://host/service/Customers?$filter=startswith(CompanyName,'Alfr')

5.1.1.4.4 length

The length function has the following signature:

Edm.Int32 length(Edm.String)

The length function returns the number of characters in the parameter value. The
lengthMethodCallExpr syntax rule defines how the length function is invoked.

Example 58: all customers with a CompanyName that is 19 characters long

http://host/service/Customers?$filter=length(CompanyName) eq 19

5.1.1.4.5 indexof

The indexof function has the following signature:

Edm.Int32 indexof(Edm.String,Edm.String)

The indexof function returns the zero-based character position of the first occurrence of the second
parameter value in the first parameter value. The indexOfMethodCallExpr syntax rule defines how
the indexof function is invoked.

Example 59: all customers with a CompanyName containing 'lfreds' starting at the second character

http://host/service/Customers?$filter=indexof(CompanyName,'lfreds') eq 1

5.1.1.4.6 substring

The substring function has consists of two overloads, with the following signatures:

Edm.String substring(Edm.String,Edm.Int32)

Edm.String substring(Edm.String,Edm.Int32,Edm.Int32)

The two argument substring function returns a substring of the first parameter string value, starting at
the Nth character and finishing at the last character (where N is the second parameter integer value). The
three argument substring function returns a substring of the first parameter string value identified by
selecting M characters starting at the Nth character (where N is the second parameter integer value and
M is the third parameter integer value).
The substringMethodCallExpr syntax rule defines how the substring functions are invoked.

Example 60: all customers with a CompanyName of 'lfreds Futterkiste' once the first character has been
removed

http://host/service/Customers?

 $filter=substring(CompanyName, 1) eq 'lfreds Futterkiste'

Example 61: all customers with a CompanyName that has 'lf' as the second and third characters

http://host/service/Customers?$filter=substring(CompanyName,1,2) eq 'lf'

5.1.1.4.7 tolower

The tolower function has the following signature:

Edm.String tolower(Edm.String)

The tolower function returns the input parameter string value with all uppercase characters converted to
lowercase according to Unicode rules. The toLowerMethodCallExpr syntax rule defines how the
tolower function is invoked.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 44

Example 62: all customers with a CompanyName that equals 'alfreds futterkiste' once any uppercase
characters have been converted to lowercase

http://host/service/Customers?

 $filter=tolower(CompanyName) eq 'alfreds futterkiste'

5.1.1.4.8 toupper

The toupper function has the following signature:

Edm.String toupper(Edm.String)

The toupper function returns the input parameter string value with all lowercase characters converted to
uppercase according to Unicode rules. The toUpperMethodCallExpr syntax rule defines how the
toupper function is invoked.

Example 63: all customers with a CompanyName that equals 'ALFREDS FUTTERKISTE' once any lowercase
characters have been converted to uppercase

http://host/service/Customers?

 $filter=toupper(CompanyName) eq 'ALFREDS FUTTERKISTE'

5.1.1.4.9 trim

The trim function has the following signature:

Edm.String trim(Edm.String)

The trim function returns the input parameter string value with all leading and trailing whitespace
characters, according to Unicode rules, removed. The trimMethodCallExpr syntax rule defines how
the trim function is invoked.

Example 64: all customers with a CompanyName without leading or trailing whitespace characters

http://host/service/Customers?$filter=trim(CompanyName) eq CompanyName

5.1.1.4.10 concat

The concat function has the following signature:

Edm.String concat(Edm.String,Edm.String)

The concat function returns a string that appends the second input parameter string value to the first.
The concatMethodCallExpr syntax rule defines how the concat function is invoked.

Example 65: all customers from Berlin, Germany

http://host/service/Customers?

 $filter=concat(concat(City,', '), Country) eq 'Berlin, Germany'

5.1.1.4.11 year

The year function has the following signatures:

Edm.Int32 year(Edm.Date)

Edm.Int32 year(Edm.DateTimeOffset)

The year function returns the year component of the Date or DateTimeOffset parameter value,
evaluated in the time zone of the DateTimeOffset parameter value. The yearMethodCallExpr
syntax rule defines how the year function is invoked.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 44

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize
the values to some common time zone (i.e. UTC) MUST fail evaluation of the year function for literal
Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 66: all employees born in 1971

http://host/service/Employees?$filter=year(BirthDate) eq 1971

5.1.1.4.12 month

The month function has the following signatures:

Edm.Int32 month(Edm.Date)

Edm.Int32 month(Edm.DateTimeOffset)

The month function returns the month component of the Date or DateTimeOffset parameter value,
evaluated in the time zone of the DateTimeOffset parameter value. The monthMethodCallExpr
syntax rule defines how the month function is invoked.
Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize
the values to some common time zone (i.e. UTC) MUST fail evaluation of the month function for literal
Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 67: all employees born in May

http://host/service/Employees?$filter=month(BirthDate) eq 5

5.1.1.4.13 day

The day function has the following signatures:

Edm.Int32 day(Edm.Date)

Edm.Int32 day(Edm.DateTimeOffset)

The day function returns the day component Date or DateTimeOffset parameter value, evaluated in
the time zone of the DateTimeOffset parameter value. The dayMethodCallExpr syntax rule defines
how the day function is invoked.
Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize
the values to some common time zone (i.e. UTC) MUST fail evaluation of the day function for literal
Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 68: all employees born on the 8th day of a month

http://host/service/Employees?$filter=day(BirthDate) eq 8

5.1.1.4.14 hour

The hour function has the following signatures:

Edm.Int32 hour(Edm.DateTimeOffset)

Edm.Int32 hour(Edm.TimeOfDay)

The hour function returns the hour component of the DateTimeOffset or TimeOfDay parameter
value, evaluated in the time zone of the DateTimeOffset parameter value. The
hourMethodCallExpr syntax rule defines how the hour function is invoked.
Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize
the values to some common time zone (i.e. UTC) MUST fail evaluation of the hour function for literal
Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 69: all employees born in the 4th hour of a day

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 44

http://host/service/Employees?$filter=hour(BirthDate) eq 4

5.1.1.4.15 minute

The minute function has the following signatures:

Edm.Int32 minute(Edm.DateTimeOffset)

Edm.Int32 minute(Edm.TimeOfDay)

The minute function returns the minute component of the DateTimeOffset or TimeOfDay parameter
value, evaluated in the time zone of the DateTimeOffset parameter value. The
minuteMethodCallExpr syntax rule defines how the minute function is invoked.

Example 70: all employees born in the 40th minute of any hour on any day

http://host/service/Employees?$filter=minute(BirthDate) eq 40

5.1.1.4.16 second

The second function has the following signatures:

Edm.Int32 second(Edm.DateTimeOffset)

Edm.Int32 second(Edm.TimeOfDay)

The second function returns the second component (without the fractional part) of the DateTimeOffset
or TimeOfDay parameter value. The secondMethodCallExpr syntax rule defines how the second
function is invoked.
Example 71: all employees born in the 40th second of any minute of any hour on any day

http://host/service/Employees?$filter=second(BirthDate) eq 40

5.1.1.4.17 fractionalseconds

The fractionalseconds function has the following signatures:

Edm.Decimal fractionalseconds(Edm.DateTimeOffset)

Edm.Decimal fractionalseconds(Edm.TimeOfDay)

The fractionalseconds function returns the fractional seconds component of the DateTimeOffset
or TimeOfDay parameter value as a non-negative decimal value less than 1. The
fractionalsecondsMethodCallExpr syntax rule defines how the fractionalseconds function is
invoked.
Example 72: all employees born less than 100 milliseconds after a full second of any minute of any hour on any day

http://host/service/Employees?$filter=fractionalseconds(BirthDate) lt 0.1

5.1.1.4.18 date

The date function has the following signature:

Edm.Date date(Edm.DateTimeOffset)

The date function returns the date part of the DateTimeOffset parameter value, evaluated in the time
zone of the DateTimeOffset parameter value.

5.1.1.4.19 time

The time function has the following signature:

Edm.TimeOfDay time(Edm.DateTimeOffset)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 44

The time function returns the time part of the DateTimeOffset parameter value, evaluated in the time
zone of the DateTimeOffset parameter value.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize
the values to some common time zone (i.e. UTC) MUST fail evaluation of the time function for literal
Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

5.1.1.4.20 totaloffsetminutes

The totaloffsetminutes function has the following signature:

Edm.Int32 totaloffsetminutes(Edm.DateTimeOffset)

The totaloffsetminutes function returns the signed number of minutes in the time zone offset part of
the DateTimeOffset parameter value, evaluated in the time zone of the DateTimeOffset parameter
value.

5.1.1.4.21 now

The now function has the following signature:

Edm.DateTimeOffset now()

The now function returns the current point in time (date and time with time zone) as a DateTimeOffset
value.
Services are free to choose the time zone for the current point, e.g. UTC. Services that are unable to
preserve the offset of Edm.DateTimeOffset values and instead normalize the values to some common
time zone SHOULD return a value in the normalized time zone (i.e., UTC).

5.1.1.4.22 maxdatetime

The maxdatetime function has the following signature:

Edm.DateTimeOffset maxdatetime()

The maxdatetime function returns the latest possible point in time as a DateTimeOffset value.

5.1.1.4.23 mindatetime

The mindatetime function has the following signature:

Edm.DateTimeOffset mindatetime()

The mindatetime function returns the earliest possible point in time as a DateTimeOffset value.

5.1.1.4.24 totalseconds

The totalseconds function has the following signature:

Edm.Decimal totalseconds(Edm.Duration)

The totalseconds function returns the duration of the value in total seconds, including fractional
seconds.

5.1.1.4.25 round

The round function has the following signatures

Edm.Double round(Edm.Double)

Edm.Decimal round(Edm.Decimal)

The round function rounds the input numeric parameter to the nearest numeric value with no decimal
component. The mid-point between two integers is rounded away from zero, i.e. 0.5 is rounded to 1 and

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 44

-0.5 is rounded to -1. The roundMethodCallExpr syntax rule defines how the round function is
invoked.
Example 73: all orders with freight costs that round to 32

http://host/service/Orders?$filter=round(Freight) eq 32

5.1.1.4.26 floor

The floor function has the following signatures

Edm.Double floor(Edm.Double)

Edm.Decimal floor(Edm.Decimal)

The floor function rounds the input numeric parameter down to the nearest numeric value with no
decimal component. The floorMethodCallExpr syntax rule defines how the floor function is
invoked.
Example 74: all orders with freight costs that round down to 32

http://host/service/Orders?$filter=floor(Freight) eq 32

5.1.1.4.27 ceiling

The ceiling function has the following signatures

Edm.Double ceiling(Edm.Double)

Edm.Decimal ceiling(Edm.Decimal)

The ceiling function rounds the input numeric parameter up to the nearest numeric value with no
decimal component. The ceilingMethodCallExpr syntax rule defines how the ceiling function is
invoked.
Example 75: all orders with freight costs that round up to 32

http://host/service/Orders?$filter=ceiling(Freight) eq 32

5.1.1.4.28 isof

The isof function has the following signatures

Edm.Boolean isof(type)

Edm.Boolean isof(expression,type)

The single parameter isof function returns true if the current instance is assignable to the type
specified, according to the assignment rules for the cast function, otherwise it returns false.
The two parameter isof function returns true if the object referred to by the expression is assignable to
the type specified, according to the same rules, otherwise it returns false.
The isofExpr syntax rule defines how the isof function is invoked.

Example 76: orders that are also BigOrders

http://host/service/Orders?$filter=isof(NorthwindModel.BigOrder)

http://host/service/Orders?$filter=isof($it,NorthwindModel.BigOrder)

Example 77: orders of a customer that is a VIPCustomer

http://host/service/Orders?$filter=isof(Customer,NorthwindModel.VIPCustomer)

5.1.1.4.29 cast

The cast function has the following signatures:

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 44

type cast(type)

type cast(expression,type)

The single parameter cast function returns the current instance cast to the type specified. The two-
parameter cast function returns the object referred to by the expression cast to the type specified.
The cast function follows these assignment rules:

 The null value can be cast to any type.

 Primitive types are cast to Edm.String or a type definition based on it by using the literal
representation used in payloads, and WKT (well-known text) format for Geo types, see rules
fullCollectionLiteral, fullLineStringLiteral, fullMultiPointLiteral,
fullMultiLineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and
fullPolygonLiteral in [OData-ABNF]. The cast fails if the target type specifies an insufficient
MaxLength.

 Numeric primitive types are cast to each other with appropriate rounding. The cast fails if the integer
part doesn't fit into target type.

 Edm.DateTimeOffset, Edm.Duration, and Edm.TimeOfDay values can be cast to the same
type with a different precision with appropriate rounding.

 Structured types are assignable to their type or a direct or indirect base type.
 Collections are cast item by item.
 Services MAY support structural casting of entities and complex type instances to a derived type, or

arbitrary structured type, by assigning values of identically named properties and casting them
recursively. The cast fails if one of the property-value casts fails or the target type contains non-
nullable properties that have not been assigned a value.

The cast function is optional for primitive values (first four rules) and up-casts (fifth rule).
If the cast fails the cast function returns null.

5.1.1.4.30 geo.distance

The geo.distance function has the following signatures:

Edm.Double geo.distance(Edm.GeographyPoint,Edm.GeographyPoint)

Edm.Double geo.distance(Edm.GeometryPoint,Edm.GeometryPoint)

The geo.distance function returns the shortest distance between the two points in the coordinate
reference system signified by the two points’ SRIDs.

5.1.1.4.31 geo.intersects

The geo.intersects function has the following signatures:

Edm.Boolean geo.intersects(Edm.GeographyPoint,Edm.GeographyPolygon)

Edm.Boolean geo.intersects(Edm.GeometryPoint,Edm.GeometryPolygon)

The geo.intersects function returns true if the specified point lies within the interior or on the
boundary of the specified polygon, otherwise it returns false.

5.1.1.4.32 geo.length

The geo.length function has the following signatures:

Edm.Double geo.length(Edm.GeographyLineString)

Edm.Double geo.length(Edm.GeometryLineString)

The geo.length function returns the total length of its line string parameter in the coordinate reference
system signified by its SRID.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 44

5.1.1.5 Lambda Operators

OData defines two operators that evaluate a Boolean expression on a collection. Both must be
prepended with a navigation path that identifies a collection. The argument of a lambda operator is a
lambda variable name followed by a colon (:) and a Boolean expression that uses the lambda variable
name to refer to properties of the related entities identified by the navigation path.

5.1.1.5.1 any

The any operator applies a Boolean expression to each member of a collection and returns true if the
expression is true for any member of the collection, otherwise it returns false. The any operator
without an argument returns true if the collection is not empty.

Example 78: all Orders that have any Items with a Quantity greater than 100

http://host/service/Orders?$filter=Items/any(d:d/Quantity gt 100)

5.1.1.5.2 all

The all operator applies a Boolean expression to each member of a collection and returns true if the
expression is true for all members of the collection, otherwise it returns false.

Example 79: all Orders that have only Items with a Quantity greater than 100

http://host/service/Orders?$filter=Items/all(d:d/Quantity gt 100)

5.1.1.6 Literals

5.1.1.6.1 Primitive Literals

Primitive literals can appear in the resource path as key property values, and in the query part, for
example, as operands in $filter expressions. They are represented according to the
primitiveLiteral rule in [OData-ABNF].

Example 80: expressions using primitive literals

NullValue eq null

TrueValue eq true

FalseValue eq false

Custom.Base64UrlDecode(binary'T0RhdGE') eq 'OData'

IntegerValue lt -128

DoubleValue ge 0.31415926535897931e1

SingleValue eq INF

DecimalValue eq 34.95

StringValue eq 'Say Hello,then go'

DateValue eq 2012-12-03

DateTimeOffsetValue eq 2012-12-03T07:16:23Z

DurationValue eq duration'P12DT23H59M59.999999999999S'

TimeOfDayValue eq 07:59:59.999

GuidValue eq 01234567-89ab-cdef-0123-456789abcdef

Int64Value eq 0

ColorEnumValue eq Sales.Pattern'Yellow',

geo.distance(Location,geography'SRID=0;Point(142.1 64.1)')

5.1.1.6.2 Complex and Collection Literals

Complex literals and collection literals in URLs are represented as JSON objects and arrays according to
the arrayOrObject rule in [OData-ABNF]. Such literals MUST NOT appear in the path portion of the
URL but can be passed to bound functions and function imports in path segments by using parameter
aliases.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 44

Note that the special characters {, }, [,], and " MUST be percent-encoded in URLs although some
browsers will accept and pass them on unencoded.
Example 81: collection of string literals

http://host/service/ProductsByColor?colors=["red","green"]

5.1.1.6.3 null

The null literal can be used to compare a value to null, or to pass a null value to a function.

5.1.1.6.4 $it

The $it literal can be used in expressions to refer to the current instance of the collection identified by
the resource path. It can be used to compare properties of related entities to properties of the current
instance in expressions within lambda operators, for example in $filter and $orderby expressions on
collections of primitive types, or in $filter expressions nested within $expand. It can also be used as a
path prefix to invoke a bound function on the current instance within an expression.

Example 82: email addresses ending with .com assuming EmailAddresses is a collection of strings

http://host/service/Customers(1)/EmailAddresses?$filter=endswith($it,'.com')

Example 83: customers along with their orders that shipped to the same city as the customer's address. The nested
filter expression is evaluated in the context of Orders; $it allows referring to values in the outer context of
Customers.

http://host/service/Customers?

 $expand=Orders($filter=$it/Address/City eq ShipTo/City)

Example 84: products with at least 10 positive reviews. Model.PositiveReviews is a function bound to
Model.Product returning a collection of reviews.

http://host/service/Products?$filter=$it/Model.PositiveReviews()/$count ge 10

5.1.1.6.5 $root

The $root literal can be used in expressions to refer to resources of the same service. It can be used as
a single-valued expression or within complex or collection literals.

Example 85: all employees with the same last name as employee A1235

http://host/service/Employees?

 $filter=LastName eq $root/Employees('A1245')/LastName

Example 86: products ordered by a set of customers, where the set of customers is passed as a JSON array
containing the resource paths from $root to each customer.

http://host/service/ProductsOrderedBy(Customers=@c)?

 @c=[$root/Customers('ALFKI'),$root/Customers('BLAUS')]

5.1.1.7 Path Expressions

Properties and navigation properties of the entity type of the set of resources that are addressed by the
request URL can be used as operands or function parameters, as shown in the preceding examples.
Properties of complex properties can be used via the same syntax as in resource paths, i.e. by specifying
the name of a complex property, followed by a forward slash (/) and the name of a property of the
complex property, and so on,

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 44

Properties and navigation properties of entities related with a target cardinality 0..1 or 1 can be used by
specifying the navigation property, followed by a forward slash (/) and the name of a property of the
related entity, and so on.
If a complex property is null, or no entity is related (in case of target cardinality 0..1), its value, and the
values of its components, are treated as null.

Example 87: similar behavior whether HeadquarterAddress is a nullable complex type or a nullable navigation
property

Companies(1)/HeadquarterAddress/Street

To access properties of derived types, the property name MUST be prefixed with the qualified name of
the derived type on which the property is defined, followed by a forward slash (/), see addressing derived
types. If the current instance is not of the specified derived type, the path expression returns null.

5.1.1.8 Parameter Aliases

Parameter aliases can be used within $filter or $orderby in place of expressions that evaluate to a
primitive value, a complex value, or a collection of primitive or complex values. Parameter names start
with the at sign (@) and can be used in more than one place in the expression. The value for the
parameter alias is supplied in a query option with the same name as the parameter.
Example 88:

http://host/service/Movies?$filter=contains(@word,Title)&@word='Black'

Example 89:

http://host/service/Movies?$filter=Title eq @title&@title='Wizard of Oz'

5.1.1.9 Operator Precedence

OData services MUST use the following operator precedence for supported operators when evaluating
$filter and $orderby expressions. Operators are listed by category in order of precedence from
highest to lowest. Operators in the same category have equal precedence:

Group Operator Description ABNF Expression

Grouping () Precedence grouping parenExpr

boolParenExpr

Primary / Navigation firstMemberExpr

memberExpr

 has Enumeration Flags hasExpr

 xxx() Method Call methodCallExpr

boolMethodCallExpr

functionExpr

Unary - Negation negateExpr

 not Logical Negation notExpr

 cast() Type Casting castExpr

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 44

Group Operator Description ABNF Expression

Multiplicative mul Multiplication mulExpr

 div Division divExpr

 mod Modulo modExpr

Additive add Addition addExpr

 sub Subtraction subExpr

Relational gt Greater Than gtExpr

 ge Greater than or Equal geExpr

 lt Less Than ltExpr

 le Less than or Equal leExpr

 isof Type Testing isofExpr

Equality eq Equal eqExpr

 ne Not Equal neExpr

Conditional AND and Logical And andExpr

Conditional OR or Logical Or orExpr

5.1.1.10 Numeric Promotion

Services MAY support numeric promotion for arithmetic operations or when comparing two operands of
comparable types by applying the following rules, in order:
 If either operand is Edm.Double, the other operand is converted to type Edm.Double.

 Otherwise, if either operand is Edm.Single, the other operand is converted to type Edm.Single.

 Otherwise, if either operand is of type Edm.Decimal, the other operand is converted to
Edm.Decimal.

 Otherwise, if either operand is Edm.Int64, the other operand is converted to type Edm.Int64.

 Otherwise, if either operand is Edm.Int32, the other operand is converted to type Edm.Int32.

 Otherwise, if either operand is Edm.Int16, the other operand is converted to type Edm.Int16.
Each of these promotions uses the same semantics as a castExpression to promote an operand to
the target type.
If the result of an arithmetic operation does not fit into the type determined by the above rules, the next-
wider type is used in the above order, with Edm.Double considered widest.
OData does not define an implicit conversion between string and numeric types.

5.1.2 System Query Option $expand

The $expand system query option specifies the related resources to be included in line with retrieved
resources.
What follows is a (non-normative) snippet from [OData-ABNF] that describes the syntax of $expand:

expand = '$expand' EQ expandItem *(COMMA expandItem)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 44

expandItem = STAR [ref / OPEN levels CLOSE]

 / expandPath

 [ref [OPEN expandRefOption

 *(SEMI expandRefOption) CLOSE]

 / count [OPEN expandCountOption

 *(SEMI expandCountOption) CLOSE]

 / OPEN expandOption

 *(SEMI expandOption) CLOSE

]

expandPath = [(qualifiedEntityTypeName

 / qualifiedComplexTypeName

) "/"]

 *((complexProperty / complexColProperty) "/"

 [qualifiedComplexTypeName "/"])

 navigationProperty

 ["/" qualifiedEntityTypeName]

expandCountOption = filter

 / search

expandRefOption = expandCountOption

 / orderby

 / skip

 / top

 / inlinecount

expandOption = expandRefOption

 / select

 / expand

 / levels

Each expandItem is evaluated relative to the entity containing the navigation property being expanded.
A type cast using the qualifiedEntityTypeName to a type containing the property is required in order
to expand a navigation property defined on a derived type.
An arbitrary number of single- or collection-valued complex properties, optionally followed by a type cast,
allow drilling into complex properties.
The navigationProperty segment MUST identify a navigation property defined on the entity type of
the request, the derived entity type specified in the type cast, or the last complex type identified by the
complex property path.
Example 90: expand a navigation property of an entity type

http://host/service/Products?$expand=Category

Example 91: expand a navigation property of a complex type

http://host/service/Customers?$expand=Addresses/Country

A navigation property MUST NOT appear in more than one expandItem.
Query options can be applied to the expanded navigation property by appending a semicolon-separated
list of query options, enclosed in parentheses, to the navigation property name. Allowed system query
options are $filter, $select, $orderby, $skip, $top, $count, $search, and $expand.

Example 92: all categories and for each category all related products with a discontinued date equal to null

http://host/service/Categories?

 $expand=Products($filter=DiscontinuedDate eq null)

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 44

The $count segment can be appended to the navigation property name or type-cast segment following
the navigation property name to return just the count of the related entities. The $filter and $search
system query options can be used to limit the number or related entities included in the count.
To retrieve entity references instead of the related entities, append /$ref to the navigation property
name or type-cast segment following a navigation property name.
Example 93: all categories and for each category the references of all related products

http://host/service/Categories?$expand=Products/$ref

Example 94: all categories and for each category the references of all related products of the derived type
Sales.PremierProduct

http://host/service/Categories?$expand=Products/Sales.PremierProduct/$ref

Example 95: all categories and for each category the references of all related premier products with a current
promotion equal to null

http://host/service/Categories?

 $expand=Products/Sales.PremierProduct/$ref($filter=CurrentPromotion eq null)

Cyclic navigation properties (whose target type is identical or can be cast to its source type) can be
recursively expanded using the special $levels option. The value of the $levels option is either a
positive integer to specify the number of levels to expand, or the literal string max to specify the maximum
expansion level supported by that service.
Example 96: all employees with their manager, manager's manager, and manager's manager's manager

http://host/service/Employees?$expand=Model.Manager/DirectReports($levels=3)

It is also possible to expand all declared and dynamic navigation properties using a star (*). To retrieve
references to all related entities use */$ref, and to expand all related entities with a certain distance use
the star operator with the $levels option. The star operator can be combined with explicitly named
navigation properties, which take precedence over the star operator.

Example 97: expand Supplier and include references for all other related entities

http://host/service/Categories?$expand=*/$ref,Supplier

Example 98: expand all related entities and their related entities

http://host/service/Categories?$expand=*($levels=2)

5.1.3 System Query Option $select

The $select system query option allows clients to requests a specific set of properties for each entity or
complex type.
The $select query option is often used in conjunction with the $expand system query option, to define
the extent of the resource graph to return ($expand) and then specify a subset of properties for each
resource in the graph ($select). Expanded navigation properties MUST be returned, even if they are not
specified as a selectItem.
What follows is a (non-normative) snippet from [OData-ABNF] showing the syntax of $select:

select = '$select' EQ selectItem *(COMMA selectItem)

selectItem = STAR

 / allOperationsInSchema

 / [(qualifiedEntityTypeName

 / qualifiedComplexTypeName

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 44

) "/"]

 (selectProperty

 / qualifiedActionName

 / qualifiedFunctionName

)

selectProperty = primitiveProperty

 / primitiveColProperty

 / navigationProperty

 / selectPath ["/" selectProperty]

selectPath = (complexProperty / complexColProperty)

 ["/" qualifiedComplexTypeName]

The $select system query option is interpreted relative to the entity type or complex type of the
resources identified by the resource path section of the URL. Each selectItem in the $select clause
indicates that the response MUST include the declared or dynamic properties, actions and functions
identified by that selectItem. The simplest form of a selectItem explicitly requests a property defined
on the entity type of the resources identified by the resource path section of the URL.
Example 99: rating and release date of all products

http://host/service/Products?$select=Rating,ReleaseDate

It is also possible to request all declared and dynamic structural properties using a star (*).

Example 100: all structural properties of all products

http://host/service/Products?$select=*

If the selectItem is not defined for the type of the resource, and that type is defined as open, then the
property is treated as null for all instances on which it is not defined.
If the selectItem is not defined for the type of the resource, and that type is not defined as open, then
the request is considered malformed.
If the selectItem is a navigation property then the corresponding navigation link is represented in the
response. If the navigation property also appears in an $expand query option then it is additionally
represented as inline content. This inline content can itself be restricted with a nested $select query
option, see section 5.1.1.10.
Example 101: name and description of all products, plus name of expanded category

http://host/service/Products?

 $select=Name,Description&$expand=Category($select=Name)

The selectItem MUST be prefixed with a qualifiedEntityTypeName or
qualifiedComplexTypeName in order to select a property defined on a type derived from the type of
the resource segment.
A selectItem that is a complex type or collection of complex type can be followed by a forward slash,
an optional type cast segment, and the name of a property of the complex type (and so on for nested
complex types).

Example 102: the AccountRepresentative property of any supplier that is of the derived type
Namespace.PreferredSupplier, together with the Street property of the complex property Address, and the
Location property of the derived complex type Namespace.AddressWithLocation

http://host/service/Suppliers?

 $select=Namespace.PreferredSupplier/AccountRepresentative,

 Address/Street,

 Address/Namespace.AddressWithLocation/Location

Any structural property, non-expanded navigation property, or operation not requested as a selectItem
(explicitly or via a star) SHOULD be omitted from the response.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 44

If any selectItem (including a star) is specified, actions and functions SHOULD be omitted unless
explicitly requested using a qualifiedActionName, a qualifiedFunctionName or the
allOperationsInSchema.
If an action or function is requested as a selectItem, either explicitly by using a
qualifiedActionName or qualifiedFunctionName cause, or implicitly by using
allOperationsInSchema, then the service includes information about how to invoke that operation for
each entity identified by the last path segment in the request URL for which the operation can be bound.
If an action or function is requested in a selectItem using a qualifiedActionName or a
qualifiedFunctionName and that operation cannot be bound to the entities requested, the service
MUST ignore the selectItem.

Example 103: the ID property, the ActionName action defined in Model and all actions and functions defined in the
Model2 for each product if those actions and functions can be bound to that product

http://host/service/Products?$select=ID,Model.ActionName,Model2.*

When multiple selectItems exist in a select clause, then the total set of properties, open properties,
navigation properties, actions and functions to be returned is equal to the union of the set of those
identified by each selectItem.
If a selectItem is a path expression requesting a component of a complex property and the complex
property is null on an instance, then the component is treated as null as well.

5.1.4 System Query Option $orderby

The $orderby system query option allows clients to request resources in a particular order.
The semantics of $orderby are covered in the [OData-Protocol] document.
The [OData-ABNF] orderby syntax rule defines the formal grammar of the $orderby query option.

5.1.5 System Query Options $top and $skip

The $top system query option requests the number of items in the queried collection to be included in
the result. The $skip query option requests the number of items in the queried collection that are to be
skipped and not included in the result. A client can request a particular page of items by combining $top
and $skip.
The semantics of $top and $skip are covered in the [OData-Protocol] document. The [OData-ABNF]
top and skip syntax rules define the formal grammar of the $top and $skip query options
respectively.

5.1.6 System Query Option $count

The $count system query option allows clients to request a count of the matching resources included
with the resources in the response. The $count query option has a Boolean value of true or false.
The semantics of $count is covered in the [OData-Protocol] document.

5.1.7 System Query Option $search

The $search system query option allows clients to request entities matching a free-text search
expression.
The $search query option can be applied to a URL representing a collection of entities to return all
matching entities within the collection. Applying the $search query option to the $all resource requests
all matching entities in the service.
If both $search and $filter are applied to the same request, the results include only those entities
that match both criteria.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 44

The [OData-ABNF] search syntax rule defines the formal grammar of the $search query option.

Example 104: all products that are blue or green. It is up to the service to decide what makes a product blue or green.

http://host/service/Products?$search=blue OR green

5.1.7.1 Search Expressions

Search expressions are used within the $search system query option to request entities matching the
specified expression.
Terms can be any single word to be matched within the expression.
Terms enclosed in double-quotes comprise a phrase.
Each individual term or phrase comprises a Boolean expression that returns true if the term or phrase is
matched, otherwise false. The semantics of what is considered a match is dependent upon the service.
Expressions enclosed in parenthesis comprise a group expression.
The search expression can contain any number of terms, phrases, or group expressions, along with the
case-sensitive keywords NOT, AND, and OR, evaluated in that order.
Expressions prefaced with NOT evaluate to true if the expression is not matched, otherwise false.
Two expressions not enclosed in quotes and separated by a space are equivalent to the same two
expressions separated by the AND keyword. Such expressions evaluate to true if both of the
expressions evaluate to true, otherwise false.
Expressions separated by an OR evaluate to true if either of the expressions evaluate to true,
otherwise false.
The [OData-ABNF] searchExpr syntax rule defines the formal grammar of the search expression.

5.1.8 System Query Option $format

The $format system query option allows clients to request a response in a particular format and is
useful for clients without access to request headers for standard content-type negotiation. Where present
$format takes precedence over standard content-type negotiation.
The semantics of $format is covered in the [OData-Protocol] document.
The [OData-ABNF] format syntax rule define the formal grammar of the $format query option.

5.2 Custom Query Options

Custom query options provide an extensible mechanism for service-specific information to be placed in a
URL query string. A custom query option is any query option of the form shown by the rule
customQueryOption in [OData-ABNF].
Custom query options MUST NOT begin with a $ or @ character.

Example 105: service-specific custom query option debug-mode

http://host/service/Products?debug-mode=true

5.3 Parameter Aliases

Parameter aliases can be used in place of literal values in function parameters or within a $filter or
$orderby expression.
Parameter aliases MUST start with an @ character.
The semantics of parameter aliases are covered in [OData-Protocol].
The [OData-ABNF] rule aliasAndValue defines the formal grammar for passing parameter aliases as
query options.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 44

6 Conformance
The conformance requirements for OData clients and services are described in [OData-Protocol].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 44

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part2-url-conventions-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 44

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-08-22 Michael Pizzo Translated Contribution to OASIS
format/template

Committee
Specification
Draft 01

2013-04-26 Ralf Handl
Michael Pizzo
Martin Zurmuehl

Added Full-Text Search, modified expand
syntax, expand options, crosstabs,
enumerations
Fleshed out descriptions and examples and
addressed numerous editorial and technical
issues processed through the TC
Added Conformance section

Committee
Specification
Draft 02

2013-07-01 Ralf Handl
Michael Pizzo
Martin Zurmuehl

Described which query options are applicable
to which resource types and HTTP methods
Simplified URL syntax
Extended expand with a STAR operator
Added special resources for cross-service
search, cross joins, resolution of entity-ids
Described handling of null values, division by
zero, and overflow in arithmetic operations
Added filtering for collections of complex and
primitive types

Committee
Specification
01

2013-07-30 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Committee
Specification
Draft 03

2013-10-03 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Accessing properties of derived types
Examples for primitive literals
Precedence of has operator

Committee
Specification
02

2013-11-04 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

OASIS
Specification

2014-02-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Errata 01 2014-07-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Minor changes and improvements

Errata 02 2014-10-29 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Repaired mechanical error in the editable
source

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 85

OData Version 4.0 Part 3: Common
Schema Definition Language (CSDL)
Plus Errata 02

OASIS Standard incorporating Approved Errata 02

30 October 2014

Specification URIs
This version:

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-
os-part3-csdl-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-
os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-
os-part3-csdl-complete.pdf

Previous version:
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-
os-part3-csdl-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-
os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-
os-part3-csdl-complete.pdf

Latest version:
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC
Chairs:

Ralf Handl (ralf.handl@sap.com), SAP AG
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft

Editors:
Mike Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP AG
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
 List of Errata items. OData Version 4.0 Errata 02. Edited by Michael Pizzo, Ralf Handl, Martin

Zurmuehl, and Hubert Heijkers. 30 October 2014. OASIS Approved Errata. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html.

 OData Version 4.0 Part 1: Protocol Plus Errata 02. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved Errata 02.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part3-csdl/odata-v4.0-errata01-os-part3-csdl-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.doc
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 85

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html.

 OData Version 4.0 Part 2: URL Conventions Plus Errata 02. Edited by Michael Pizzo, Ralf
Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved
Errata 02. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-
conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html.

 OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02 (this
document). Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014.
OASIS Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-
csdl-complete.html.

 ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/.

 Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/.

 XML schemas: OData EDMX XML Schema and OData EDM XML Schema. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/schemas/.

 OData Metadata Service Entity Model: http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/models/.

 Change-marked (redlined) versions of OData Version 4.0 Part 1, Part 2, and Part 3. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/redlined/.

Related work:
This specification is related to:
 OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin

Zurmuehl. 24 February 2014. OASIS Standard. http://docs.oasis-
open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html.

 OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl.
Latest version. http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-
v4.0.html.

 OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte.
Latest version. http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-
v4.0.html.

Declared XML namespaces:

 http://docs.oasis-open.org/odata/ns/edmx
 http://docs.oasis-open.org/odata/ns/edm

Abstract:
OData services are described by an Entity Data Model (EDM). The Common Schema Definition
Language (CSDL) defines an XML representation of the entity data model exposed by an OData
service.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.
TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/ns/edmx
http://docs.oasis-open.org/odata/ns/edm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 85

Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:
[OData-Part3]
OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02. Edited
by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard
incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-
complete.html. Latest version: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-
csdl.html.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 85

Notices

Copyright © OASIS Open 2014. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 85

Table of Contents

1 Introduction ... 10

1.1 Terminology .. 10

1.2 Normative References .. 10

1.3 Typographical Conventions .. 11

2 CSDL Namespaces .. 12

2.1 Namespace EDMX ... 12

2.2 Namespace EDM .. 12

2.3 XML Schema Definitions .. 12

2.4 XML Document Order ... 13

3 Entity Model Wrapper ... 14

3.1 Element edmx:Edmx .. 14

3.1.1 Attribute Version ... 14

3.2 Element edmx:DataServices ... 14

3.3 Element edmx:Reference ... 14

3.3.1 Attribute Uri .. 15

3.4 Element edmx:Include .. 15

3.4.1 Attribute Namespace ... 15

3.4.2 Attribute Alias ... 15

3.5 Element edmx:IncludeAnnotations .. 16

3.5.1 Attribute TermNamespace .. 16

3.5.2 Attribute Qualifier ... 16

3.5.3 Attribute TargetNamespace .. 17

4 Common Characteristics of Entity Models ... 18

4.1 Nominal Types .. 18

4.2 Structured Types .. 18

4.3 Structural Properties ... 18

4.4 Primitive Types ... 18

4.5 Built-In Abstract Types .. 20

4.6 Annotations ... 20

5 Schema .. 21

5.1 Element edm:Schema .. 21

5.1.1 Attribute Namespace ... 21

5.1.2 Attribute Alias ... 21

6 Structural Property.. 22

6.1 Element edm:Property .. 22

6.1.1 Attribute Name ... 22

6.1.2 Attribute Type ... 22

6.2 Property Facets .. 22

6.2.1 Attribute Nullable ... 22

6.2.2 Attribute MaxLength ... 23

6.2.3 Attribute Precision ... 23

6.2.4 Attribute Scale ... 23

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 85

6.2.5 Attribute Unicode ... 24

6.2.6 Attribute SRID ... 24

6.2.7 Attribute DefaultValue .. 24

7 Navigation Property .. 25

7.1 Element edm:NavigationProperty .. 25

7.1.1 Attribute Name ... 25

7.1.2 Attribute Type ... 25

7.1.3 Attribute Nullable ... 25

7.1.4 Attribute Partner ... 26

7.1.5 Attribute ContainsTarget .. 26

7.2 Element edm:ReferentialConstraint ... 27

7.2.1 Attribute Property ... 27

7.2.2 Attribute ReferencedProperty ... 27

7.3 Element edm:OnDelete .. 27

7.3.1 Attribute Action ... 27

8 Entity Type .. 29

8.1 Element edm:EntityType ... 29

8.1.1 Attribute Name ... 29

8.1.2 Attribute BaseType ... 29

8.1.3 Attribute Abstract ... 30

8.1.4 Attribute OpenType ... 30

8.1.5 Attribute HasStream ... 30

8.2 Element edm:Key... 30

8.3 Element edm:PropertyRef ... 31

8.3.1 Attribute Name ... 31

8.3.2 Attribute Alias ... 32

9 Complex Type .. 33

9.1 Element edm:ComplexType ... 33

9.1.1 Attribute Name ... 33

9.1.2 Attribute BaseType ... 33

9.1.3 Attribute Abstract ... 33

9.1.4 Attribute OpenType ... 34

10 Enumeration Type .. 35

10.1 Element edm:EnumType .. 35

10.1.1 Attribute Name ... 35

10.1.2 Attribute UnderlyingType .. 35

10.1.3 Attribute IsFlags ... 35

10.2 Element edm:Member .. 35

10.2.1 Attribute Name ... 35

10.2.2 Attribute Value ... 36

11 Type Definition .. 37

11.1 Element edm:TypeDefinition ... 37

11.1.1 Attribute Name ... 37

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 85

11.1.2 Attribute UnderlyingType .. 37

11.1.3 Type Definition Facets ... 37

12 Action and Function .. 38

12.1 Element edm:Action .. 38

12.1.1 Attribute Name ... 38

12.1.1.1 Action Overload Rules ... 38

12.1.2 Attribute IsBound ... 38

12.1.3 Attribute EntitySetPath .. 38

12.2 Element edm:Function .. 39

12.2.1 Attribute Name ... 39

12.2.1.1 Function Overload Rules ... 39

12.2.2 Attribute IsBound ... 39

12.2.3 Attribute IsComposable .. 39

12.2.4 Attribute EntitySetPath .. 40

12.3 Element edm:ReturnType ... 40

12.3.1 Attribute Type ... 40

12.3.2 Attribute Nullable ... 40

12.4 Element edm:Parameter ... 40

12.4.1 Attribute Name ... 40

12.4.2 Attribute Type ... 41

12.4.3 Attribute Nullable ... 41

12.4.4 Parameter Facets .. 41

13 Entity Container .. 42

13.1 Element edm:EntityContainer .. 43

13.1.1 Attribute Name ... 43

13.1.2 Attribute Extends ... 43

13.2 Element edm:EntitySet ... 43

13.2.1 Attribute Name ... 43

13.2.2 Attribute EntityType .. 43

13.2.3 Attribute IncludeInServiceDocument .. 43

13.3 Element edm:Singleton ... 44

13.3.1 Attribute Name ... 44

13.3.2 Attribute Type ... 44

13.4 Element edm:NavigationPropertyBinding ... 44

13.4.1 Attribute Path ... 44

13.4.2 Attribute Target ... 44

13.5 Element edm:ActionImport ... 45

13.5.1 Attribute Name ... 45

13.5.2 Attribute Action ... 45

13.5.3 Attribute EntitySet ... 45

13.6 Element edm:FunctionImport ... 45

13.6.1 Attribute Name ... 45

13.6.2 Attribute Function ... 45

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 85

13.6.3 Attribute EntitySet ... 45

13.6.4 Attribute IncludeInServiceDocument .. 46

14 Vocabulary and Annotation .. 47

14.1 Element edm:Term .. 48

14.1.1 Attribute Name ... 48

14.1.2 Attribute Type ... 48

14.1.3 Attribute BaseTerm ... 48

14.1.4 Attribute DefaultValue .. 48

14.1.5 Attribute AppliesTo ... 48

14.1.6 Term Facets .. 48

14.2 Element edm:Annotations ... 49

14.2.1 Attribute Target ... 49

14.2.2 Attribute Qualifier ... 50

14.3 Element edm:Annotation ... 50

14.3.1 Attribute Term ... 51

14.3.2 Attribute Qualifier ... 51

14.4 Constant Expressions ... 51

14.4.1 Expression edm:Binary .. 51

14.4.2 Expression edm:Bool .. 51

14.4.3 Expression edm:Date .. 52

14.4.4 Expression edm:DateTimeOffset ... 52

14.4.5 Expression edm:Decimal .. 52

14.4.6 Expression edm:Duration .. 53

14.4.7 Expression edm:EnumMember ... 53

14.4.8 Expression edm:Float .. 53

14.4.9 Expression edm:Guid .. 53

14.4.10 Expression edm:Int .. 54

14.4.11 Expression edm:String .. 54

14.4.12 Expression edm:TimeOfDay ... 54

14.5 Dynamic Expressions ... 54

14.5.1 Comparison and Logical Operators .. 55

14.5.2 Expression edm:AnnotationPath ... 55

14.5.3 Expression edm:Apply .. 56

14.5.3.1 Attribute Function ... 56

14.5.3.1.1 Function odata.concat ... 56

14.5.3.1.2 Function odata.fillUriTemplate ... 56

14.5.3.1.3 Function odata.uriEncode .. 57

14.5.4 Expression edm:Cast .. 57

14.5.4.1 Attribute Type .. 57

14.5.5 Expression edm:Collection ... 57

14.5.6 Expression edm:If ... 58

14.5.7 Expression edm:IsOf .. 58

14.5.7.1 Attribute Type .. 58

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 85

14.5.8 Expression edm:LabeledElement ... 59

14.5.8.1 Attribute Name .. 59

14.5.9 Expression edm:LabeledElementReference ... 59

14.5.10 Expression edm:Null .. 59

14.5.11 Expression edm:NavigationPropertyPath ... 60

14.5.12 Expression edm:Path .. 60

14.5.13 Expression edm:PropertyPath ... 61

14.5.14 Expression edm:Record .. 62

14.5.14.1 Attribute Type .. 63

14.5.14.2 Element edm:PropertyValue .. 63

14.5.14.2.1 Attribute Property .. 63

14.5.15 Expression edm:UrlRef .. 63

15 Metadata Service Schema ... 64

15.1 Entity Model Wrapper ... 65

15.2 Schema ... 66

15.3 Types .. 67

15.4 Properties.. 68

15.5 Actions and Functions .. 71

15.6 Entity Container .. 72

15.7 Terms and Annotations ... 74

16 CSDL Examples ... 77

16.1 Products and Categories Example ... 77

16.2 Annotations for Products and Categories Example .. 79

17 Attribute Values .. 80

17.1 Namespace ... 80

17.2 SimpleIdentifier ... 80

17.3 QualifiedName .. 80

17.4 TypeName .. 80

17.5 TargetPath .. 80

17.6 Boolean ... 81

18 Conformance .. 82

Appendix A. Acknowledgments ... 83

Appendix B. Revision History .. 84

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 85

1 Introduction
OData services are described in terms of an Entity Data Model (EDM). The Common Schema Definition
Language (CSDL) defines an XML representation of the entity data model exposed by an OData service.
CSDL is articulated in the Extensible Markup Language (XML) 1.1 (Second Edition) [XML-1.1] with
further building blocks from the W3C XML Schema Definition Language (XSD) 1.1 as described in
[XML-Schema-1] and [XML-Schema-2].

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[EPSG] European Petroleum Survey Group (EPSG). http://www.epsg.org/.
[OData-ABNF] OData ABNF Construction Rules Version 4.0.

See link in “Additional artifacts” section on cover page.
[OData-Atom] OData ATOM Format Version 4.0.

See link in “Related work” section on cover page.
[OData-EDM] OData EDM XML Schema.

See link in “Additional artifacts” section on cover page.
[OData-EDMX] OData EDMX XML Schema.

See link in “Additional artifacts” section on cover page.
[OData-JSON] OData JSON Format Version 4.0.

See link in “Related work” section on cover page.
[OData-Meta] OData Metadata Service Schema.

See link in “Additional artifacts” section on cover page.
[OData-Protocol] OData Version 4.0 Part 1: Protocol.

See link in “Additional artifacts” section on cover page.
[OData-URL] OData Version 4.0 Part 2: URL Conventions.

See link in “Additional artifacts” section on cover page.
[OData-VocCore] OData Core Vocabulary.

See link in “Additional artifacts” section on cover page.
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP

14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and D. Orchard, “URI

Template”, RFC 6570, March 2012. http://tools.ietf.org/html/rfc6570.
[XML-1.1] Extensible Markup Language (XML) 1.1 (Second Edition), F. Yergeau, E. Maler,

J. Cowan, T. Bray, C. M. Sperberg-McQueen, J. Paoli, Editors, W3C
Recommendation, 16 August 2006,
http://www.w3.org/TR/2006/REC-xml11-20060816.
Latest version available at http://www.w3.org/TR/xml11/.

[XML-Base] XML Base (Second Edition) , J. Marsh, R. Tobin, Editors, W3C
Recommendation, 28 January 2009,
http://www.w3.org/TR/2009/REC-xmlbase-20090128/.
Latest version available at http://www.w3.org/TR/xmlbase/.

[XML-Schema-1] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, D. Beech,
M. Maloney, C. M. Sperberg-McQueen, H. S. Thompson, S. Gao, N.
Mendelsohn, Editors, W3C Recommendation, 5 April 2012,

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.epsg.org/
http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc6570
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/xmlbase/

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 85

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.
Latest version available at http://www.w3.org/TR/xmlschema11-1/.

[XML-Schema-2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D.
Peterson, S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, P. V. Biron, A.
Malhotra, Editors, W3C Recommendation, 5 April 2012,
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.
Latest version available at http://www.w3.org/TR/xmlschema11-2/.

1.3 Typographical Conventions

Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 85

2 CSDL Namespaces
In addition to the default XML namespace, the elements and attributes used to describe the entity model
of an OData service are defined in one of the following namespaces. An XML document using these
namespaces and having an edmx:Edmx root element will be called a CSDL document.

2.1 Namespace EDMX

Elements and attributes associated with the top-level wrapper that contains the CSDL used to define the
entity model for an OData Service are qualified with the Entity Data Model for Data Services Packaging
namespace:

 http://docs.oasis-open.org/odata/ns/edmx

Prior versions of OData used the following namespace for EDMX:
 EDMX version 1.0: http://schemas.microsoft.com/ado/2007/06/edmx

They are non-normative for this specification.
In this specification the namespace prefix edmx is used to represent the Entity Data Model for Data
Services Packaging namespace, however the prefix name is not prescriptive.

2.2 Namespace EDM

Elements and attributes that define the entity model exposed by the OData Service are qualified with the
Entity Data Model namespace:

 http://docs.oasis-open.org/odata/ns/edm

Prior versions of CSDL used the following namespaces for EDM:
 CSDL version 1.0: http://schemas.microsoft.com/ado/2006/04/edm

 CSDL version 1.1: http://schemas.microsoft.com/ado/2007/05/edm

 CSDL version 1.2: http://schemas.microsoft.com/ado/2008/01/edm

 CSDL version 2.0: http://schemas.microsoft.com/ado/2008/09/edm

 CSDL version 3.0: http://schemas.microsoft.com/ado/2009/11/edm
They are non-normative for this specification.

In this specification the namespace prefix edm is used to represent the Entity Data Model namespace,
however the prefix name is not prescriptive.

2.3 XML Schema Definitions

This specification contains normative XML schemas for the EDMX and EDM namespaces; see
[OData-EDMX] and [OData-EDM].
These XML schemas only define the shape of a well-formed CSDL document, but are not descriptive
enough to define what a correct CSDL document MUST be in every imaginable use case. This
specification document defines additional rules that correct CSDL documents MUST fulfill. In case of
doubt on what makes a CSDL document correct the rules defined in this specification document take
precedence.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 85

2.4 XML Document Order

Client libraries MUST retain the document order of XML elements for CSDL documents because for some
elements the order of child elements is significant. This includes, but is not limited to, members of
enumeration types and items within a collection-valued annotation.
OData does not impose any ordering constraints on XML attributes within XML elements.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 85

3 Entity Model Wrapper
An OData service exposes a single entity model. This model may be distributed over several schemas,
and these schemas may be distributed over several physical locations. The entity model wrapper
provides a single point of access to these parts by including them directly or referencing their physical
locations.
A service is defined by a single CSDL document which can be accessed by sending a GET request to
<serviceRoot>/$metadata. This document is called the metadata document. It may reference other
CSDL documents.
The metadata document contains a single entity container that defines the resources exposed by this
service. This entity container MAY extend an entity container defined in referenced documents.
The model of the service consists of all CSDL constructs used in its entity containers.

3.1 Element edmx:Edmx

A CSDL document MUST contain a root edmx:Edmx element. This element MUST contain a single direct
child edmx:DataServices element. In addition to the data services element, the Edmx element contains
zero or more edmx:Reference elements.

Example 2:

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:DataServices>

 ...

 </edmx:DataServices>

</edmx:Edmx>

3.1.1 Attribute Version

The edmx:Edmx element MUST provide the value 4.0 for the Version attribute. It specifies the version
of the EDMX wrapper defined by this version of the specification.

3.2 Element edmx:DataServices

The edmx:DataServices element MUST contain one or more edm:Schema elements which define the
schemas exposed by the OData service.

3.3 Element edmx:Reference

The edmx:Reference element specifies external CSDL documents referenced by the referencing
document. The child elements edmx:Include and edmx:IncludeAnnotations specify which parts of
the referenced document are available for use in the referencing document. The edmx:Reference
element MUST contain at least one edmx:Include or edmx:IncludeAnnotations child element.
The edmx:Reference element contains zero or more edm:Annotation elements.
The scope of a CSDL document is the document itself and all schemas included from directly referenced
documents. All entity types, complex types and other named elements in scope (that is, defined in the
document itself or a schema of a directly referenced document) can be accessed from a referencing
document by their namespace-qualified names.
Referencing another document may alter the model defined by the referencing document. For instance, if
a referenced document defines an entity type derived from an entity type in the referencing document,
then an entity set of the service defined by the referencing document may return entities of the derived

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 85

type. This is identical to the behavior if the derived type had been defined directly in the referencing
document.
Note: referencing documents is not recursive. Only named elements defined in directly referenced
documents can be used within the schema. However, those elements may in turn include elements
defined in schemas referenced by their defining schema.
Example 3: to reference entity models containing definitions of vocabulary terms

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="http://vocabs.odata.org/capabilities/v1">

 <edmx:Include Namespace="Org.OData.Capabilities.V1" />

 </edmx:Reference>

 <edmx:Reference Uri="http://vocabs.odata.org/display/v1">

 <edmx:Include Alias="UI" Namespace="org.example.Display" />

 </edmx:Reference>

 <edmx:DataServices>...</edmx:DataServices>

</edmx:Edmx>

3.3.1 Attribute Uri

The edmx:Reference element MUST specify a Uri attribute. The Uri attribute uniquely identifies a
model, so two references MUST NOT specify the same URI. The value of the Uri attribute SHOULD be
a URL that locates a CSDL document describing the referenced model. If the URI is not dereferencable it
SHOULD identify a well-known schema. The value of the Uri attribute MAY be an absolute or relative
URI; relative URIs are relative to the xml:base attribute, see [XML-Base].

3.4 Element edmx:Include

The edmx:Reference element contains zero or more edmx:Include elements that specify the
schemas to include from the target document.

3.4.1 Attribute Namespace

The edmx:Include element MUST provide a Namespace value for the Namespace attribute. The value
MUST match the namespace of a schema defined in the referenced CSDL document. The same
namespace MUST NOT be included more than once, even if it is declared in more than one referenced
document.

3.4.2 Attribute Alias

An edmx:Include element MAY define a SimpleIdentifier value for the Alias attribute. The Alias
attribute defines an alias for the specified Namespace that can be used in qualified names instead of the
namespace. It only provides a more convenient notation. Every model element that can be used via an
alias-qualified name can alternatively also be used via its full namespace-qualified name. An alias allows
a short string to be substituted for a long namespace. For instance, an alias of display might be
assigned to the namespace org.example.vocabularies.display. An alias-qualified name is
resolved to a fully qualified name by examining aliases on edmx:Include and edm:Schema elements
within the same document.
Aliases are document-global, so edmx:Include and edm:Schema elements within a document MUST
NOT assign the same alias to different namespaces and MUST NOT specify an alias with the same name
as an in-scope namespace.
The Alias attribute MUST NOT use the reserved values Edm, odata, System, or Transient.
An alias is only valid within the document in which it is declared; a referencing document has to define its
own aliases with the edmx:Include element.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 85

3.5 Element edmx:IncludeAnnotations

The edmx:Reference element contains zero or more edmx:IncludeAnnotations elements that
specify the annotations to include from the target document. If no edmx:IncludeAnnotations element
is specified, a client MAY ignore all annotations in the referenced document that are not explicitly used in
an edm:Path expression of the referencing document.

Example 4: reference documents that contain annotations

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="http://odata.org/ann/b">

 <edmx:IncludeAnnotations TermNamespace="org.example.validation" />

 <edmx:IncludeAnnotations TermNamespace="org.example.display"

 Qualifier="Tablet" />

 <edmx:IncludeAnnotations TermNamespace="org.example.hcm"

 TargetNamespace="com.contoso.Sales" />

 <edmx:IncludeAnnotations TermNamespace="org.example.hcm"

 Qualifier="Tablet"

 TargetNamespace="com.contoso.Person" />

 </edmx:Reference>

 <edmx:DataServices>...</edmx:DataServices>

</edmx:Edmx>

The following annotations from http://odata.org/ann/b are included:

 Annotations that use a term from the org.example.validation namespace, and

 Annotations that use a term from the org.example.display namespace and specify a
Tablet qualifier and

 Annotations that apply a term from the org.example.hcm namespace to an element of the
com.contoso.Sales namepace and

 Annotations that apply a term from the org.example.hcm namespace to an element of the
com.contoso.Person namepace and specify a Tablet qualifier.

3.5.1 Attribute TermNamespace

An edmx:IncludeAnnotations element MUST provide a Namespace value for the TermNamespace
attribute.
The edmx:IncludeAnnotations element will import the set of annotations that apply terms defined in
the schema identified by the TermNamespace value. The TermNamespace attribute also provides
consumers insight about what namespaces are used in the annotations document. If there are no
edmx:IncludeAnnotations elements that have a term namespace of interest to the consumer, the
consumer can opt not to download the document.

3.5.2 Attribute Qualifier

An edmx:IncludeAnnotations element MAY specify a SimpleIdentifier for the Qualifier attribute.
A qualifier is used to apply an annotation to a subset of consumers. For instance, a service author might
want to supply a different set of annotations for various device form factors.
If Qualifier is specified, only those annotations applying terms from the specified TermNamespace
with the specified Qualifier (applied to an element of the TargetNamespace, if present) SHOULD be
imported. If Qualifier is not specified, all annotations within the referenced document from the
specified TermNamespace (taking into account the TargetNamespace, if present) SHOULD be
imported.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 85

The Qualifier attribute also provides consumers insight about what qualifiers are used in the
annotations document. If the consumer is not interested in that particular qualifier, the consumer can opt
not to download the document.

3.5.3 Attribute TargetNamespace

An edmx:IncludeAnnotations element MAY specify a Namespace value for the TargetNamespace
attribute.
If TargetNamespace is specified, only those annotations which apply a term from the specified
TermNamespace to an element of the TargetNamespace (with the specified Qualifier, if present)
SHOULD be imported. If TargetNamespace is not specified, all annotations within the referenced
document from the specified TermNamespace (taking into account the Qualifier, if present) SHOULD
be imported.
The TargetNamespace attribute also provides consumers insight about what namespaces are used in
the annotations document. If there are no target elements that have a namespace of interest to the
consumer, the consumer can opt not to download the document.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 85

4 Common Characteristics of Entity Models

4.1 Nominal Types

A nominal type has a name that MUST be a SimpleIdentifier. Nominal types are referenced using their
QualifiedName. The qualified type name MUST be unique within a model as it facilitates references to the
element from other parts of the model.
When referring to nominal types, the reference MUST use one of the following:

 Namespace-qualified name
 Alias-qualified name

Example 5:

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

 Namespace="org.example"

 Alias="sales">

 <ComplexType Name="Address">...</ComplexType>

</Schema>

The two ways of referring to the nominal type Address are:

 the fully qualified name org.example.Address can be used in any namespace

 an alias could be specified in any namespace and used in an alias-qualified name, e.g.
sales.Address

4.2 Structured Types

Structured types are composed of other model elements. Structured types are common in entity models
as the means of representing entities and structured properties in an OData service. Entity types and
complex types are both structured types.

4.3 Structural Properties

A structural property is a property (of a structural type) that has one of the following types:
 Primitive type
 Complex type
 Enumeration type
 A collection of one of the above

4.4 Primitive Types

Structured types are composed of other structured types and primitive types. OData defines the following
primitive types:

Type Meaning

Edm.Binary Binary data

Edm.Boolean Binary-valued logic

Edm.Byte Unsigned 8-bit integer

Edm.Date Date without a time-zone offset

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 85

Type Meaning

Edm.DateTimeOffset Date and time with a time-zone offset, no leap seconds

Edm.Decimal Numeric values with fixed precision and scale

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits)

Edm.Duration Signed duration in days, hours, minutes, and (sub)seconds

Edm.Guid 16-byte (128-bit) unique identifier

Edm.Int16 Signed 16-bit integer

Edm.Int32 Signed 32-bit integer

Edm.Int64 Signed 64-bit integer

Edm.SByte Signed 8-bit integer

Edm.Single IEEE 754 binary32 floating-point number (6-9 decimal digits)

Edm.Stream Binary data stream

Edm.String Sequence of UTF-8 characters

Edm.TimeOfDay Clock time 00:00-23:59:59.999999999999

Edm.Geography Abstract base type for all Geography types

Edm.GeographyPoint A point in a round-earth coordinate system

Edm.GeographyLineString Line string in a round-earth coordinate system

Edm.GeographyPolygon Polygon in a round-earth coordinate system

Edm.GeographyMultiPoint Collection of points in a round-earth coordinate system

Edm.GeographyMultiLineString Collection of line strings in a round-earth coordinate system

Edm.GeographyMultiPolygon Collection of polygons in a round-earth coordinate system

Edm.GeographyCollection Collection of arbitrary Geography values

Edm.Geometry Abstract base type for all Geometry types

Edm.GeometryPoint Point in a flat-earth coordinate system

Edm.GeometryLineString Line string in a flat-earth coordinate system

Edm.GeometryPolygon Polygon in a flat-earth coordinate system

Edm.GeometryMultiPoint Collection of points in a flat-earth coordinate system

Edm.GeometryMultiLineString Collection of line strings in a flat-earth coordinate system

Edm.GeometryMultiPolygon Collection of polygons in a flat-earth coordinate system

Edm.GeometryCollection Collection of arbitrary Geometry values

Edm.Date and Edm.DateTimeOffset follow [XML-Schema-2] and use the proleptic Gregorian
calendar, allowing the year 0000 and negative years.
Edm.Stream is a primitive type that can be used as a property of an entity type or complex type, the
underlying type for a type definition, or the binding parameter or return type of a function or action.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 85

Edm.Stream, or a type definition whose underlying type is Edm.Stream, cannot be used in collections
or for non-binding parameters to functions or actions.
Some of these types allow facet attributes, defined in section 6.2.
See rule primitiveLiteral in [OData-ABNF] for the representation of primitive type values in URLs,
and [OData-Atom] and [OData-JSON] for the representation in requests and responses.

4.5 Built-In Abstract Types

The following built-in abstract types can be used within a model:
 Edm.PrimitiveType

 Edm.ComplexType

 Edm.EntityType

Conceptually, these are the abstract base types for primitive types (including type definitions and
enumeration types), complex types, and entity types, respectively, and can be used anywhere a
corresponding concrete type can be used, except:

 Edm.EntityType
o cannot be used as the type of a singleton in an entity container because it doesn’t define

a structure, which defeats the purpose of a singleton.
o cannot be used as the type of an entity set because all entities in an entity set must have

the same key fields to uniquely identify them within the set.
o cannot be the base type of an entity type or complex type.

 Edm.ComplexType
o cannot be the base type of an entity type or complex type.

 Edm.PrimitiveType
o cannot be used as the type of a key property of an entity type.
o cannot be used as the underlying type of a type definition or enumeration type.

 Collection(Edm.PrimitiveType) and Collection(Edm.ComplexType)
o cannot be used as the type of a property.
o cannot be used as the return type of a function.

Vocabulary terms can, in addition, use
 Edm.AnnotationPath

 Edm.PropertyPath

 Edm.NavigationPropertyPath

as the type of a primitive term, or the type of a property of a complex type that is exclusively used as the
type of a term.

4.6 Annotations

Many parts of the model can be annotated with additional information using the edm:Annotation
element.
A model element MUST NOT specify more than one annotation for a given combination of Term and
Qualifier attributes.
Vocabulary annotations can be specified as a child of the model element being annotated or as a child of
an edm:Annotations element that targets the model element.
Refer to Vocabulary Annotations for details on which model elements support vocabulary annotations.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 85

5 Schema
One or more schemas describe the entity model exposed by an OData service. The schema acts as a
namespace for elements of the entity model such as entity types, complex types, enumerations and
terms.

5.1 Element edm:Schema

The edm:Schema element contains one or more of the following elements:

 edm:Action

 edm:Annotations

 edm:Annotation

 edm:ComplexType

 edm:EntityContainer

 edm:EntityType

 edm:EnumType

 edm:Function

 edm:Term

 edm:TypeDefinition

Values of the Name attribute MUST be unique across all direct child elements of a schema, with the sole
exception of overloads for an action and overloads for a function. The names are local to the schema;
they need not be unique within a document.

5.1.1 Attribute Namespace

A schema is identified by a namespace. All edm:Schema elements MUST have a namespace defined
through a Namespace attribute which MUST be unique within the document, and SHOULD be globally
unique. A schema cannot span more than one document.
The schema’s namespace is combined with the name of elements in the entity model to create unique
qualified names, so identifiers that are used to name types MUST be unique within a namespace to
prevent ambiguity. See Nominal Types for more detail.
The Namespace attribute MUST NOT use the reserved values Edm, odata, System, or Transient.

5.1.2 Attribute Alias

A schema MAY define an alias by providing a SimpleIdentifier value for the Alias attribute. An alias
allows nominal types to be qualified with a short string rather than a long namespace.
Aliases are document-global, so all edmx:Include and edm:Schema elements within a document
MUST specify different values for the Alias attribute. Aliases defined by an edm:Schema element can
be used throughout the containing document and are not restricted to the schema that defines them.
The Alias attribute MUST NOT use the reserved values Edm, odata, System, or Transient.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 85

6 Structural Property
Structured Types are composed of zero or more structural properties (represented as edm:Property
elements) and navigation properties (represented as edm:NavigationProperty elements).

Example 6: complex type with two properties

<ComplexType Name="Measurement">

 <Property Name="Dimension" Type="Edm.String" Nullable="false" MaxLength="50"

 DefaultValue="Unspecified" />

 <Property Name="Length" Type="Edm.Decimal" Nullable="false" Precision="18"

 Scale="2" />

</ComplexType>

Open entity types and open complex types allow properties to be added dynamically to instances of the
open type.

6.1 Element edm:Property

The edm:Property element defines a structural property.

Example 7: property that can have zero or more strings as its value

<Property Name="Units" Type="Collection(Edm.String)" />

A property MUST specify a unique name as well as a type and zero or more facets. Facets are attributes
that modify or constrain the acceptable values for a property value.

6.1.1 Attribute Name

The edm:Property element MUST include a Name attribute whose value is a SimpleIdentifier used
when referencing, serializing or deserializing the property.
The name of the structural property MUST be unique within the set of structural and navigation properties
of the containing structured type and any of its base types.

6.1.2 Attribute Type

The edm:Property element MUST include a Type attribute. The value of the Type attribute MUST be
the QualifiedName of a primitive type, complex type, or enumeration type in scope, or a collection of one
of these types.

6.2 Property Facets

Property facets allow a model to provide additional constraints or data about the value of structural
properties. Facets are expressed as attributes on the property element.
Facets apply to the type referenced in the element where the facet attribute is declared. If the type is a
collection, the facets apply to the type of elements in the collection.

Example 8: Precision facet applied to the DateTimeOffset type

<Property Name="SuggestedTimes" Type="Collection(Edm.DateTimeOffset)"

 Precision="6" />

6.2.1 Attribute Nullable

The edm:Property element MAY contain the Nullable attribute whose Boolean value specifies
whether a value is required for the property.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 85

If no value is specified for a property whose Type attribute does not specify a collection, the Nullable
attribute defaults to true.
If the edm:Property element contains a Type attribute that specifies a collection, the property MUST
always exist, but the collection MAY be empty. In this case, the Nullable attribute applies to members
of the collection and specifies whether the collection can contain null values.

6.2.2 Attribute MaxLength

A binary, stream or string property MAY define a positive integer value for the MaxLength facet attribute.
The value of this attribute specifies the maximum length of the value of the property on a type instance.
Instead of an integer value the constant max MAY be specified as a shorthand for the maximum length
supported for the type by the service.
If no value is specified, the property has unspecified length.

6.2.3 Attribute Precision

A datetime-with-offset, decimal, duration, or time-of-day property MAY define a value for the Precision
attribute.
For a decimal property the value of this attribute specifies the maximum number of digits allowed in the
property’s value; it MUST be a positive integer. If no value is specified, the decimal property has
unspecified precision.
For a temporal property the value of this attribute specifies the number of decimal places allowed in the
seconds portion of the property’s value; it MUST be a non-negative integer between zero and twelve. If
no value is specified, the temporal property has a precision of zero.
Note: service designers SHOULD be aware that some clients are unable to support a precision greater
than 29 for decimal properties and 7 for temporal properties. Client developers MUST be aware of the
potential for data loss when round-tripping values of greater precision. Updating via PATCH and
exclusively specifying modified properties will reduce the risk for unintended data loss.

6.2.4 Attribute Scale

A decimal property MAY define a non-negative integer value or variable for the Scale attribute.
This attribute specifies the maximum number of digits allowed to the right of the decimal point.
The value variable means that the number of digits to the right of the decimal point may vary from zero
to the value of the Precision attribute minus one. At least one digit is required to the left of the decimal
point.
An integer value means that the number of digits to the right of the decimal point may vary from zero to
the value of the Scale attribute, and the number of digits to the left of the decimal point may vary from one
to the value of the Precision attribute minus the value of the Scale attribute.
The value of the Scale attribute MUST be less than or equal to the value of the Precision attribute. If
no value is specified, the Scale facet defaults to zero.

Example 9: Precision and Scale facets applied to the Decimal type.
Allowed values: 1.23, 0.23, 3.14 and 0.7, not allowed values: 123, 12.3.

<Property Name="Amount" Type="Edm.Decimal" Precision="3" Scale="2" />

Example 10: Precision and Scale facets applied incorrectly to the Decimal type.
This is not allowed because .23 is not allowed anymore and 0.23 needs a Precision of 3.

<Property Name="Amount" Type="Edm.Decimal" Precision="2" Scale="2" />

Example 11: Precision and a variable Scale applied to the Decimal type.
Allowed values: 1.23, 0.23, 0.7, 123 and 12.3, not allowed would be: 12.34, 1234 and 123.4 due to the limited
precision.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 85

<Property Name="Amount" Type="Edm.Decimal" Precision="3" Scale="variable" />

6.2.5 Attribute Unicode

A string property MAY define a Boolean value for the Unicode attribute.
A true value assigned to this attribute indicates that the value of the property is encoded with Unicode. A
false value assigned to this attribute indicates that the value of the property is encoded with ASCII.
If no value is specified, the Unicode facet defaults to true.

6.2.6 Attribute SRID

A geometry or geography property MAY define a value for the SRID attribute. The value of this attribute
identifies which spatial reference system is applied to values of the property on type instances.
The value of the SRID attribute MUST be a non-negative integer or the special value variable. If no
value is specified, the attribute defaults to 0 for Geometry types or 4326 for Geography types.
The valid values of the SRID attribute and their meanings are as defined by the European Petroleum
Survey Group [EPSG].

6.2.7 Attribute DefaultValue

A primitive or enumeration property MAY define a value for the DefaultValue attribute. The value of
this attribute determines the value of the property if the property is not explicitly represented in an
annotation or the body of a POST or PUT request.
Default values of type Edm.String MUST be represented according to the XML escaping rules for
character data in attribute values. Values of other primitive types MUST be represented according to the
appropriate alternative in the primitiveValue rule defined in [OData-ABNF], i.e. Edm.Binary as
binaryValue, Edm.Boolean as booleanValue etc.
If no value is specified, the client SHOULD NOT assume a default value.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 85

7 Navigation Property

7.1 Element edm:NavigationProperty

A navigation property allows navigation to related entities.
Example 12: the Product entity type has a navigation property to a Category, which has a navigation link back to one
or more products

<EntityType Name="Product">

 ...

 <NavigationProperty Name="Category" Type="Self.Category" Nullable="false"

 Partner="Products" />

 <NavigationProperty Name="Supplier" Type="Self.Supplier" />

</EntityType>

<EntityType Name="Category">

 ...

 <NavigationProperty Name="Products" Type="Collection(Self.Product)"

 Partner="Category" />

</EntityType>

7.1.1 Attribute Name

The edm:NavigationProperty element MUST include a Name attribute whose value is a
SimpleIdentifier that is used when navigating from the structured type that declares the navigation
property to the related entity type.
The name of the navigation property MUST be unique within the set of structural and navigation
properties of the containing structured type and any of its base types.

7.1.2 Attribute Type

The edm:NavigationProperty element MUST include a Type attribute. The value of the type attribute
MUST resolve to an entity type or a collection of an entity type declared in the same document or a
document referenced with an edmx:Reference element, or the abstract type Edm.EntityType.
If the value is an entity type name, there can be at most one related entity. If it is a collection, an arbitrary
number of entities can be related.
The related entities MUST be of the specified entity type or one of its subtypes.

7.1.3 Attribute Nullable

The edm:NavigationProperty element MAY contain the Nullable attribute whose Boolean value
specifies whether a navigation target is required for the navigation property.
If no value is specified for a navigation property whose Type attribute does not specify a collection, the
Nullable attribute defaults to true. The value true (or the absence of the Nullable attribute)
indicates that no navigation target is required. The value false indicates that a navigation target is
required for the navigation property on instances of the containing type.
A navigation property whose Type attribute specifies a collection MUST NOT specify a value for the
Nullable attribute as the collection always exists, it may just be empty.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 85

7.1.4 Attribute Partner

A navigation property of an entity type MAY specify a navigation property path value for the Partner
attribute.
This attribute MUST NOT be specified for navigation properties of complex types.
If specified, the value of this attribute MUST be a path from the entity type specified in the Type attribute
to a navigation property defined on that type or a derived type. The path may traverse complex types,
including derived complex types, but MUST NOT traverse any navigation properties. The type of the
partner navigation property MUST be the containing entity type of the current navigation property or one
of its parent entity types.
If the Partner attribute identifies a single-valued navigation property, the partner navigation property
MUST lead back to the source entity from all related entities. If the Partner attribute identifies a multi-
valued navigation property, the source entity MUST be part of that collection.
If no partner navigation property is specified, no assumptions can be made as to whether one of the
navigation properties on the target type will lead back to the source entity.
If a partner navigation property is specified, this partner navigation property MUST either specify the
current navigation property as its partner to define a bi-directional relationship or it MUST NOT specify a
partner attribute. The latter can occur if the partner navigation property is defined on a complex type or
the current navigation property is defined on a type derived from the type of the partner navigation
property.

7.1.5 Attribute ContainsTarget

A navigation property MAY assign a Boolean value to the ContainsTarget attribute. If no value is
assigned to the ContainsTarget attribute, the attribute defaults to false. If the value of the
ContainsTarget attribute is true, the navigation property is called a containment navigation property.
Containment navigation properties define an implicit entity set for each instance of its declaring entity
type. This implicit entity set is identified by the read URL of the navigation property for that entity.
Entities of the entity type that declares the navigation property, either directly or indirectly via a property of
complex type, contain the entities referenced by the containment navigation property. The canonical URL
for contained entities is the canonical URL of the containing entity, followed by the path segment of the
navigation property and the key of the contained entity, see [OData-URL].
As items in a collection of complex types do not have a canonical URL, complex types declaring a
containment navigation property, either directly or indirectly via a property of complex type, MUST NOT
be used as the type of a collection-valued property.
An entity cannot be referenced by more than one containment relationship, and cannot both belong to an
entity set declared within the entity container and be referenced by a containment relationship.
Containment navigation properties MUST NOT be specified as the last path segment in the Path
attribute of a navigation property binding. When a containment navigation property navigates between
entity types in the same inheritance hierarchy, the containment is called recursive.
Containment navigation properties MAY specify a Partner attribute. If the containment is recursive, the
partner navigation property MUST be nullable and specify a single entity type. If the containment is not
recursive, the partner navigation property MUST NOT be nullable.
An entity type hierarchy MUST NOT contain more than one navigation property with a Partner attribute
referencing a containment relationship.
Note: without a partner attribute, there is no reliable way for a client to determine which entity contains a
given contained entity. This may lead to problems for clients if the contained entity can also be reached
via a non-containment navigation path.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 85

7.2 Element edm:ReferentialConstraint

A navigation property whose Type attribute specifies a single entity type MAY define one or more
referential constraints. A referential constraint asserts that the dependent property (the property defined
on the dependent entity containing the navigation property) MUST have the same value as the principal
property (the referenced property defined on the principal entity that is the target of the navigation).
The type of the dependent property MUST match the type of the principal property. If the navigation
property on which the referential constraint is defined or the principal property is nullable, then the
dependent property MUST be nullable. If both the navigation property and the principal property are not
nullable, then the dependent property MUST be marked with the Nullable="false" attribute value.

Example 13: the category must exist for a product in that category to exist, and the CategoryID of the product is
identical to the ID of the category

<EntityType Name="Product">

 ...

 <Property Name="CategoryID" Type="Edm.String" Nullable="false"/>

 <NavigationProperty Name="Category" Type="Self.Category" Nullable="false">

 <ReferentialConstraint Property="CategoryID" ReferencedProperty="ID" />

 </NavigationProperty>

</EntityType>

7.2.1 Attribute Property

A referential constraint MUST specify a value for the Property attribute. The Property attribute
specifies the property that takes part in the referential constraint on the dependent entity type. Its value
MUST be a path expression resolving to a primitive property of the dependent entity type itself or to a
primitive property of a complex property (recursively) of the dependent entity type. The names of the
properties in the path are joined together by forward slashes.

7.2.2 Attribute ReferencedProperty

A referential constraint MUST specify a value for the ReferencedProperty attribute. The
ReferencedProperty attribute specifies the corresponding property of the principal entity type. Its
value MUST be a path expression resolving to a primitive property of the principal entity type itself or to a
primitive property of a complex property (recursively) of the principal entity type that MUST have the same
data type as the property of the dependent entity type.

7.3 Element edm:OnDelete

A navigation property MAY define one edm:OnDelete element. It describes the action the service will
take on related entities when the entity on which the navigation property is defined is deleted.
Example 14: deletion of a category implies deletion of the related products in that category

<EntityType Name="Category">

 ...

 <NavigationProperty Name="Products" Type="Collection(Self.Product)">

 <OnDelete Action="Cascade" />

 </NavigationProperty>

</EntityType>

7.3.1 Attribute Action

The edm:OnDelete element MUST include the Action attribute with one of the following values:

 Cascade, meaning the related entities will be deleted if the source entity is deleted,

 None, meaning a DELETE request on a source entity with related entities will fail,

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 85

 SetNull, meaning all properties of related entities that are tied to properties of the source entity
via a referential constraint and that do not participate in other referential constraints will be set to
null,

 SetDefault, meaning all properties of related entities that are tied to properties of the source
entity via a referential constraint and that do not participate in other referential constraints will be
set to their default value.

If no edm:OnDelete element is present, the action taken by the service is not predictable by the client
and could vary per entity.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 85

8 Entity Type
Entity types are nominal structured types with a key that consists of one or more references to structural
properties. An entity type is the template for an entity: any uniquely identifiable record such as a customer
or order.
An edm.Key child element MAY be specified if the entity type does not specify a base type that already
has a key declared. The key consists of one or more references to structural properties of the entity type.
An entity type can define two types of properties. A structural property is a named reference to a primitive,
complex, or enumeration type, or a collection of primitive, complex, or enumeration types. A navigation
property is a named reference to another entity type or collection of entity types.
All properties MUST have a unique name within an entity type. Properties MUST NOT have the same
name as the declaring entity type. They MAY have the same name as one of the direct or indirect base
types or derived types.
An open entity type allows properties to be dynamically added to instances of the type.
Example 15: a simple entity type

<EntityType Name="Employee">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="FirstName" Type="Edm.String" Nullable="false" />

 <Property Name="LastName" Type="Edm.String" Nullable="false" />

 <NavigationProperty Name="Manager" Type="Model.Manager" />

</EntityType>

Example 16: a derived entity type based on the previous example

<EntityType Name="Manager" BaseType="Model.Employee">

 <Property Name="AnnualBudget" Type="Edm.Decimal" />

 <NavigationProperty Name="Employees" Type="Collection(Model.Employee)" />

</EntityType>

Note: the derived type has the same name as one of the properties of its base type.

8.1 Element edm:EntityType

The edm:EntityType element represents an entity type in the entity model. It contains zero or more
edm:Property and edm:NavigationProperty elements describing the properties if the entity type.
It MAY contain one edm:Key element.

8.1.1 Attribute Name

The edm:EntityType element MUST include a Name attribute whose value is a SimpleIdentifier. The
name MUST be unique within its namespace.

8.1.2 Attribute BaseType

An entity type can inherit from another entity type by specifying the QualifiedName of the base entity type
as the value for the BaseType attribute.
An entity type inherits the key as well as structural and navigation properties declared on the entity type’s
base type.
An entity type MUST NOT introduce an inheritance cycle via the base type attribute.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 85

8.1.3 Attribute Abstract

An entity type MAY indicate that it cannot be instantiated by providing a Boolean value of true to the
Abstract attribute. If not specified, the Abstract attribute defaults to false.
If Abstract is false, the entity type MUST define a key or derive from a base type with a defined key.
An abstract entity type MUST NOT inherit from a non-abstract entity type.

8.1.4 Attribute OpenType

An entity type MAY indicate that it is open by providing a value of true for the OpenType attribute. An
open type allows clients to add properties dynamically to instances of the type by specifying uniquely
named values in the payload used to insert or update an instance of the type.
If not specified, the value of the OpenType attribute defaults to false.
An entity type derived from an open entity type MUST NOT provide a value of false for the OpenType
attribute.
Note: structural and navigation properties MAY be returned by the service on instances of any structured
type, whether or not the type is marked as open. Clients MUST always be prepared to deal with additional
properties on instances of any structured type, see [OData-Protocol].

8.1.5 Attribute HasStream

An entity type that does not specify a BaseType attribute MAY specify a Boolean value for the
HasStream attribute.
A value of true specifies that the entity type is a media entity. Media entities are entities that represent a
media stream, such as a photo. For more information on media entities see [OData-Protocol].
If no value is provided for the HasStream attribute, and no BaseType attribute is specified, the value of
the HasStream attribute is set to false.
The value of the the HasStream attribute is inherited by all derived types.
Entity types that specify HasStream="true" MAY specify a list of acceptable media types using an
annotation with term Core.AcceptableMediaTypes, see [OData-VocCore].

8.2 Element edm:Key

An entity is uniquely identified within an entity set by its key. An entity type that is not abstract MUST
either contain exactly one edm:Key element or inherit its key from its base type. An abstract entity type
MAY define a key if it doesn’t inherit one.
An entity type’s key refers to the set of properties that uniquely identify an instance of the entity type
within an entity set.
The edm:Key element MUST contain at least one edm:PropertyRef element. An edm:PropertyRef
element references an edm:Property. The properties that compose the key MUST be non-nullable and
typed with an enumeration type, one of the following primitive types, or a type definition based on one of
these primitive types:

 Edm.Boolean

 Edm.Byte

 Edm.Date

 Edm.DateTimeOffset

 Edm.Decimal

 Edm.Duration

 Edm.Guid

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 85

 Edm.Int16

 Edm.Int32

 Edm.Int64

 Edm.SByte

 Edm.String

 Edm.TimeOfDay

The properties that make up a primary key MAY be language-dependent, but their values MUST be
unique across all languages and the entity ids (defined in [OData-Protocol]) MUST be language
independent.
Example 17: entity type with a simple key

<EntityType Name="Category">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

</EntityType>

Example 18: entity type with a simple key referencing a property of a complex type

<EntityType Name="Category">

 <Key>

 <PropertyRef Name="Info/ID" Alias="EntityInfoID" />

 </Key>

 <Property Name="Info" Type="Sales.EntityInfo" Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

</EntityType>

<ComplexType Name="EntityInfo">

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Created" Type="Edm.DateTimeOffset" />

</ComplexType>

Example 19: entity type with a composite key

<EntityType Name="OrderLine">

 <Key>

 <PropertyRef Name="OrderID" />

 <PropertyRef Name="LineNumber" />

 </Key>

 <Property Name="OrderID" Type="Edm.Int32" Nullable="false" />

 <Property Name="LineNumber" Type="Edm.Int32" Nullable="false" />

</EntityType>

8.3 Element edm:PropertyRef

The edm:PropertyRef element provides an edm:Key with a reference to a property.

8.3.1 Attribute Name

The edm:PropertyRef element MUST specify a value for the Name attribute which MUST be a path
expression resolving to a primitive property of the entity type itself or to a primitive property of a complex
property (recursively) of the entity type. The names of the properties in the path are joined together by
forward slashes.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 85

8.3.2 Attribute Alias

If the property identified by the Name attribute is a member of a complex type, the edm:PropertyRef
element MUST specify the Alias attribute.
The value of the Alias attribute MUST be a SimpleIdentifier and MUST be unique within the set of
aliases, structural and navigation properties of the containing entity type and any of its base types.
The Alias attribute MUST NOT be defined if the key property is not a member of a complex type.
For keys that are members of complex types, the alias MUST be used in the key predicate of URLs
instead of the value assigned to the Name attribute. The alias MUST NOT be used in the query part.

Example 20 (based on example 18): requests to an entity set Categories of type Category must use the alias

http://host/service/Categories(EntityInfoID=1)

Example 21 (based on example 18): in a query part the value assigned to the name attribute must be used

http://example.org/OData.svc/Categories?$filter=Info/ID le 100

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 85

9 Complex Type
Complex types are keyless nominal structured types. The lack of a key means that complex types cannot
be referenced, created, updated or deleted independently of an entity type. Complex types allow entity
models to group properties into common structures.
A complex type can define two types of properties. A structural property is a named reference to a
primitive, complex, or enumeration type, or a collection of primitive, complex, or enumeration types. A
navigation property is a named reference to an entity type or a collection of entity types.
All properties MUST have a unique name within a complex type. Properties MUST NOT have the same
name as the declaring complex type. They MAY have the same name as one of the direct or indirect base
types or derived types.
An open complex type allows properties to be dynamically added to instances of the type.
Example 22: a complex type used by two entity types

<ComplexType Name="Dimensions">

 <Property Name="Height" Nullable="false" Type="Edm.Decimal" />

 <Property Name="Weight" Nullable="false" Type="Edm.Decimal" />

 <Property Name="Length" Nullable="false" Type="Edm.Decimal" />

</ComplexType>

<EntityType Name="Product">

 ...

 <Property Name="ProductDimensions" Type="Self.Dimensions" />

 <Property Name="ShippingDimensions" Type="Self.Dimensions" />

</EntityType>

<EntityType Name="ShipmentBox">

 ...

 <Property Name="Dimensions" Type="Self.Dimensions" />

</EntityType>

9.1 Element edm:ComplexType

The edm:ComplexType element represents a complex type in an entity model. It contains zero or more
edm:Property and edm:NavigationProperty elements describing properties of the complex type.

9.1.1 Attribute Name

The edm:ComplexType element MUST include a Name attribute whose value is a SimpleIdentifier. The
value identifies the complex type and MUST be unique within its namespace.

9.1.2 Attribute BaseType

A complex type can inherit from another complex type by specifying the QualifiedName of the base
complex type as the value for the BaseType attribute.
A complex type inherits the properties declared on the complex type’s base type.
A complex type MUST NOT introduce an inheritance cycle via the base type attribute.

9.1.3 Attribute Abstract

A complex type MAY indicate that it cannot be instantiated by providing a Boolean value of true to the
Abstract attribute.
If not specified, the Abstract attribute defaults to false.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 85

9.1.4 Attribute OpenType

A complex type MAY indicate that it is open by providing a value of true for the OpenType attribute. An
open type allows clients to add properties dynamically to instances of the type by specifying uniquely
named values in the payload used to insert or update an instance of the type.
If not specified, the OpenType attribute defaults to false.
A complex type derived from an open complex type MUST NOT provide a value of false for the
OpenType attribute.
Note: structural and navigation properties MAY be returned by the service on instances of any structured
type, whether or not the type is marked as open. Clients MUST always be prepared to deal with additional
properties on instances of any structured type, see [OData-Protocol].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 85

10 Enumeration Type
Enumeration types are nominal types that represent a series of related values. Enumeration types expose
these related values as members of the enumeration.
The IsFlags attribute indicates that more than one member may be selected at a time.

Example 23: a simple flags-enabled enumeration

<EnumType Name="FileAccess" UnderlyingType="Edm.Int32" IsFlags="true">

 <Member Name="Read" Value="1" />

 <Member Name="Write" Value="2" />

 <Member Name="Create" Value="4" />

 <Member Name="Delete" Value="8" />

</EnumType>

10.1 Element edm:EnumType

The edm:EnumType element represents an enumeration type in an entity model.
The enumeration type element contains one or more child edm:Member elements defining the members
of the enumeration type.

10.1.1 Attribute Name

The edm:EnumType element MUST include a Name attribute whose value is a SimpleIdentifier. The value
identifies the enumeration type and MUST be unique within its namespace.

10.1.2 Attribute UnderlyingType

An enumeration type MAY include an UnderlyingType attribute to specify an underlying type whose
value MUST be one of Edm.Byte, Edm.SByte, Edm.Int16, Edm.Int32, or Edm.Int64. If the
UnderlyingType attribute is not specified, Edm.Int32 is used as the underlying type.

10.1.3 Attribute IsFlags

An enumeration type MAY specify a Boolean value for the IsFlags attribute. A value of true indicates
that the enumeration type allows multiple members to be selected simultaneously.
If no value is specified for this attribute, its value defaults to false.

10.2 Element edm:Member

The edm:Member element defines the discrete options for the enumeration type .

Example 24: an enumeration type with three discrete members

<EnumType Name="ShippingMethod">

 <Member Name="FirstClass" />

 <Member Name="TwoDay" />

 <Member Name="Overnight" />

</EnumType>

10.2.1 Attribute Name

Each edm:Member element MUST include a Name attribute whose value is a SimpleIdentifier. The
enumeration type MUST NOT declare two members with the same name.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 85

10.2.2 Attribute Value

The value of an enumeration member allows instances to be sorted by a property that has an
enumeration member for its value.
If the IsFlags attribute has a value of false, either all members MUST specify an integer value for the
Value attribute, or all members MUST NOT specify a value for the Value attribute. If no values are
specified, the members are assigned consecutive integer values in the order of their appearance, starting
with zero for the first member. Client libraries MUST preserve elements in document order.
If the IsFlags attribute has a value of true, a non-negative integer value MUST be specified for the
Value attribute. A combined value is equivalent to the bitwise OR of the discrete values.
The value MUST be a valid value for the UnderlyingType of the enumeration type.

Example 25: FirstClass has a value of 0, TwoDay a value of 1, and Overnight a value of 2.

<EnumType Name="ShippingMethod">

 <Member Name="FirstClass" />

 <Member Name="TwoDay" />

 <Member Name="Overnight" />

</EnumType>

Example 26: pattern values can be combined, and some combined values have explicit names

<EnumType Name="Pattern" UnderlyingType="Edm.Int32" IsFlags="true">

 <Member Name="Plain" Value="0" />

 <Member Name="Red" Value="1" />

 <Member Name="Blue" Value="2" />

 <Member Name="Yellow" Value="4" />

 <Member Name="Solid" Value="8" />

 <Member Name="Striped" Value="16" />

 <Member Name="SolidRed" Value="9" />

 <Member Name="SolidBlue" Value="10" />

 <Member Name="SolidYellow" Value="12" />

 <Member Name="RedBlueStriped" Value="19" />

 <Member Name="RedYellowStriped" Value="21" />

 <Member Name="BlueYellowStriped" Value="22" />

</EnumType>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 85

11 Type Definition

11.1 Element edm:TypeDefinition

A type definition defines a specialization of one of the primitive types.
Type definitions can be used wherever a primitive type is used (other than as the underlying type in a new
type definition), and are type-comparable with their underlying types and any type definitions defined
using the same underlying type.

11.1.1 Attribute Name

The edm:TypeDefinition element MUST include a Name attribute whose value is a SimpleIdentifier.
The name identifies the type definition and MUST be unique within its namespace.

11.1.2 Attribute UnderlyingType

The edm:TypeDefinition element MUST provide the QualifiedName of a primitive type as the value of
the UnderlyingType attribute. This type MUST NOT be another type definition.

11.1.3 Type Definition Facets

The edm:TypeDefinition element MAY specify facets applicable to the underlying type: MaxLength,
Unicode, Precision, Scale, or SRID.
Additional facets appropriate for the underlying type MAY be specified when the type definition is used
but the facets specified in the type definition MUST NOT be re-specified.
Annotations MAY be applied to a type definition, and are considered applied wherever the type definition
is used. The use of a type definition MUST NOT specify an annotation specified in the type definition.
Where type definitions are used, the type definition is returned in place of the primitive type wherever the
type is specified in a response.
Example 27:

<TypeDefinition Name="Length" UnderlyingType="Edm.Int32">

 <Annotation Term="Org.OData.Measurements.V1.Unit"

 String="Centimeters" />

</TypeDefinition>

<TypeDefinition Name="Weight" UnderlyingType="Edm.Int32">

 <Annotation Term="Org.OData.Measurements.V1.Unit"

 String="Kilograms" />

</TypeDefinition>

<ComplexType Name="Size">

 <Property Name="Height" Type="Self.Length" />

 <Property Name="Weight" Type="Self.Weight" />

</ComplexType>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 85

12 Action and Function

12.1 Element edm:Action

The edm:Action element represents an action in an entity model.
Actions MAY have observable side effects and MAY return a single instance or a collection of instances
of any type. Actions cannot be composed with additional path segments.
The action MAY specify a return type using the edm:ReturnType element. The return type must be a
primitive, entity or complex type, or a collection of primitive, entity or complex types.
The action may also define zero or more edm:Parameter elements to be used during the execution of
the action.

12.1.1 Attribute Name

The edm:Action element MUST include a Name attribute whose value is a SimpleIdentifier.

12.1.1.1 Action Overload Rules

Bound actions support overloading (multiple actions having the same name within the same namespace)
by binding parameter type. The combination of action name and the binding parameter type MUST be
unique within a namespace.
Unbound actions do not support overloads. The names of all unbound actions MUST be unique within a
namespace.
An unbound action MAY have the same name as a bound action.

12.1.2 Attribute IsBound

An action element MAY specify a Boolean value for the IsBound attribute.
Actions whose IsBound attribute is false or not specified are considered unbound. Unbound actions
are invoked through an action import.
Actions whose IsBound attribute is true are considered bound. Bound actions are invoked by
appending a segment containing the qualified action name to a segment of the appropriate binding
parameter type within the resource path. Bound actions MUST contain at least one edm:Parameter
element, and the first parameter is the binding parameter. The binding parameter can be of any type, and
it MAY be nullable.

12.1.3 Attribute EntitySetPath

Bound actions that return an entity or a collection of entities MAY specify a value for the EntitySetPath
attribute if determination of the entity set for the return type is contingent on the binding parameter.
The value for the EntitySetPath attribute consists of a series of segments joined together with forward
slashes.
The first segment of the entity set path MUST be the name of the binding parameter. The remaining
segments of the entity set path MUST represent navigation segments or type casts.
A navigation segment names the SimpleIdentifier of the navigation property to be traversed. A type cast
segment names the QualifiedName of the entity type that should be returned from the type cast.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 85

12.2 Element edm:Function

The edm:Function element represents a function in an entity model.
Functions MUST NOT have observable side effects and MUST return a single instance or a collection of
instances of any type. Functions MAY be composable.
The function MUST specify a return type using the edm:ReturnType element. The return type must be a
primitive, entity or complex type, or a collection of primitive, entity or complex types.
The function may also define zero or more edm:Parameter elements to be used during the execution of
the function.

12.2.1 Attribute Name

The edm:Function element MUST include a Name attribute whose value is a SimpleIdentifier.

12.2.1.1 Function Overload Rules

Bound functions support overloading (multiple functions having the same name within the same
namespace) subject to the following rules:

 The combination of function name, binding parameter type, and unordered set of non-binding
parameter names MUST be unique within a namespace.

 The combination of function name, binding parameter type, and ordered set of parameter types
MUST be unique within a namespace.

 All bound functions with the same function name and binding parameter type within a namespace
MUST specify the same return type.

Unbound functions support overloading subject to the following rules:
 The combination of function name and unordered set of parameter names MUST be unique

within a namespace.
 The combination of function name and ordered set of parameter types MUST be unique within a

namespace.
 All unbound functions with the same function name within a namespace MUST specify the same

return type.
An unbound function MAY have the same name as a bound function.
Note that type definitions can be used to disambiguate overloads for both bound and unbound functions,
even if they specify the same underlying type.

12.2.2 Attribute IsBound

A function element MAY specify a Boolean value for the IsBound attribute.
Functions whose IsBound attribute is false or not specified are considered unbound. Unbound
functions are invoked as static functions within a filter or orderby expression, or from the entity container
through a function import.
Functions whose IsBound attribute is true are considered bound. Bound functions are invoked by
appending a segment containing the qualified function name to a segment of the appropriate binding
parameter type within a resource path, filter, or orderby expression. Bound functions MUST contain at
least one edm:Parameter element, and the first parameter is the binding parameter. The binding
parameter can be of any type, and it MAY be nullable.

12.2.3 Attribute IsComposable

A function element MAY specify a Boolean value for the IsComposable attribute. If no value is specified
for the IsComposable attribute, the value defaults to false.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 85

Functions whose IsComposable attribute is true are considered composable. A composable function
can be invoked with additional path segments or system query options appended to the path that
identifies the composable function as appropriate for the type returned by the composable function.

12.2.4 Attribute EntitySetPath

Bound functions that return an entity or a collection of entities MAY specify a value for the
EntitySetPath attribute if determination of the entity set for the return type is contingent on the binding
parameter.
The value for the EntitySetPath attribute consists of a series of segments joined together with forward
slashes.
The first segment of the entity set path MUST be the name of the binding parameter. The remaining
segments of the entity set path MUST represent navigation segments or type casts.
A navigation segment names the SimpleIdentifier of the navigation property to be traversed. A type cast
segment names the QualifiedName of the entity type that should be returned from the type cast.

12.3 Element edm:ReturnType

The attributes MaxLength, Precision, Scale, and SRID can be used to specify the facets of the return
type, as appropriate. If the facet attributes are not specified, their values are considered unspecified.

12.3.1 Attribute Type

The Type attribute specifies the type of the result returned by the function or action.

12.3.2 Attribute Nullable

A return type MAY specify a Boolean value for the Nullable attribute. If not specified, the Nullable
attribute defaults to true.
If the return type has a Type attribute that does not specify a collection, the value of true means that the
action or function may return a single null value. A value of false means that the action or function will
never return a null value and instead fail with an error response if it cannot compute a result.
If the return type has a Type attribute that specifies a collection, the result will always exist, but the
collection MAY be empty. In this case, the Nullable attribute applies to members of the collection and
specifies whether the collection can contain null values.

12.4 Element edm:Parameter

The edm:Parameter element allows one or more parameters to be passed to a function or action.

Example 28: a function returning the top-selling products for a given year. In this case the year must be specified as a
parameter of the function with the edm:Parameter element.

<Function Name="TopSellingProducts">

 <Parameter Name="Year" Type="Edm.Decimal" Precision="4" Scale="0" />

 <ReturnType Type="Collection(Model.Product)" />

</Function>

12.4.1 Attribute Name

The edm:Parameter element MUST include a Name attribute whose value is a SimpleIdentifier. The
parameter name MUST be unique within its parent element.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 85

12.4.2 Attribute Type

The edm:Parameter element MUST include the Type attribute whose value is a TypeName indicating
the type of value that can be passed to the parameter.

12.4.3 Attribute Nullable

A parameter whose Type attribute does not specify a collection MAY specify a Boolean value for the
Nullable attribute. If not specified, the Nullable attribute defaults to true.
The value of true means that the parameter accepts a null value.

12.4.4 Parameter Facets

An edm:Parameter element MAY specify values for the MaxLength, Precision, Scale, or SRID
attributes. The descriptions of these facets and their implications are covered in section 6.2.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 85

13 Entity Container
Each metadata document used to describe an OData service MUST define exactly one entity container.
Entity containers define the entity sets, singletons, function and action imports exposed by the service.
An entity set allows access to entity type instances. Simple entity models frequently have one entity set
per entity type.
Example 29: one entity set per entity type

<EntitySet Name="Products" EntityType="Self.Product" />

<EntitySet Name="Categories" EntityType="Self.Category" />

Other entity models may expose multiple entity sets per type.
Example 30: three entity sets referring to the two entity types

<EntitySet Name="StandardCustomers" EntityType="Self.Customer">

 <NavigationPropertyBinding Path="Orders" Target="Orders" />

</EntitySet>

<EntitySet Name="PreferredCustomers" EntityType="Self.Customer">

 <NavigationPropertyBinding Path="Orders" Target="Orders" />

</EntitySet>

<EntitySet Name="Orders" EntityType="Self.Order" />

There are separate entity sets for standard customers and preferred customers, but only one entity set for orders.
The entity sets for standard customers and preferred customers both have navigation property bindings to the orders
entity set, but the orders entity set does not have a navigation property binding for the Customer navigation property,
since it could lead to either set of customers.

An entity set can expose instances of the specified entity type as well as any entity type inherited from the
specified entity type.
A singleton allows addressing a single entity directly from the entity container without having to know its
key, and without requiring an entity set.
A function import or an action import is used to expose a function or action defined in an entity model as a
top level resource.
Example 31: function import returning the top ten revenue-generating products for a given fiscal year

<FunctionImport Name="TopSellingProducts"

 Function="Model.TopSellingProducts"

 EntitySet="Products" />

Example 32: An entity container aggregates entity sets, singletons, action imports, and function imports.

<EntityContainer Name="DemoService">

 <EntitySet Name="Products" EntityType="Self.Product">

 <NavigationPropertyBinding Path="Category"

 Target="Self.DemoService.Categories" />

 <NavigationPropertyBinding Path="Supplier"

 Target="Self.DemoService.Suppliers" />

 </EntitySet>

 <EntitySet Name="Categories" EntityType="Self.Category">

 <NavigationPropertyBinding Path="Products"

 Target="Self.DemoService.Products" />

 </EntitySet>

 <EntitySet Name="Suppliers" EntityType="Self.Supplier">

 <NavigationPropertyBinding Path="Products"

 Target="Self.DemoService.Products" />

 </EntitySet>

 <Singleton Name="Contoso" Type="Self.Supplier" />

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 85

 <ActionImport Name="LeaveRequestApproval" Action="Self.Approval" />

 <FunctionImport Name="ProductsByRating" Function="Self.ProductsByRating"

 EntitySet="Products" />

</EntityContainer>

13.1 Element edm:EntityContainer

The edm:EntityContainer element represents an entity container in an entity model. It corresponds
to a virtual or physical data store and contains one or more edm:EntitySet, edm:Singleton,
edm:ActionImport, or edm:FunctionImport elements. Entity set, singleton, action import, and
function import names MUST be unique within an entity container.

13.1.1 Attribute Name

The edm:EntityContainer element MUST provide a unique SimpleIdentifier value for the Name
attribute.

13.1.2 Attribute Extends

The edm:EntityContainer element MAY include an Extends attribute whose value is the QualifiedName
of an entity container in scope. All children of the “base” entity container specified in the Extends
attribute are added to the “extending” entity container that has the Extends attribute.

Example 33: the entity container Extending will contain all child elements that it defines itself, plus all child elements
of the Base entity container located in SomeOtherSchema

<EntityContainer Name="Extending" Extends="SomeOtherSchema.Base">

 ...

</EntityContainer>

13.2 Element edm:EntitySet

The edm:EntitySet element represents an entity set in an entity model.

13.2.1 Attribute Name

The edm:EntitySet element MUST include a Name attribute whose value is a SimpleIdentifier.

13.2.2 Attribute EntityType

The edm:EntitySet element MUST include an EntityType attribute whose value is the
QualifiedName of an entity type in scope. Each entity type in the model may have zero or more entity sets
that reference the entity type.
An entity set MUST contain only instances of the entity type specified by the EntityType attribute or its
subtypes. The entity type named by the EntityType attribute MAY be abstract but MUST have a key
defined.

13.2.3 Attribute IncludeInServiceDocument

The edm:EntitySet element MAY include the IncludeInServiceDocument attribute whose
Boolean value indicates whether the entity set is advertised in the service document.
If no value is specified for this attribute, its value defaults to true.
Entity sets that cannot be queried without specifying additional query options SHOULD specify the value
false for this attribute.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 85

13.3 Element edm:Singleton

The edm:Singleton element represents a single entity in an entity model, called a singleton.

13.3.1 Attribute Name

The edm:Singleton element MUST include a Name attribute whose value is a SimpleIdentifier.

13.3.2 Attribute Type

The edm:Singleton element MUST include a Type attribute whose value is the QualifiedName of an
entity type in scope. Each entity type in the model may be used in zero or more edm:Singleton
elements.
A singleton MUST reference an instance of the entity type specified by the Type attribute.

13.4 Element edm:NavigationPropertyBinding

An entity set or a singleton SHOULD contain an edm:NavigationPropertyBinding element for each
navigation property of its entity type, including navigation properties defined on complex typed properties.
If omitted, clients MUST assume that the target entity set or singleton can vary per related entity.

13.4.1 Attribute Path

A navigation property binding MUST name a navigation property of the entity set’s, singleton's, or
containment navigation property's entity type or one of its subtypes in the Path attribute. If the navigation
property is defined on a subtype, the path attribute MUST contain the QualifiedName of the subtype,
followed by a forward slash, followed by the navigation property name. If the navigation property is
defined on a complex type used in the definition of the entity set’s entity type, the path attribute MUST
contain a forward-slash separated list of complex property names and qualified type names that describe
the path leading to the navigation property.
The path can traverse one or more containment navigation properties but the last segment MUST be a
non-containment navigation property and there MUST NOT be any non-containment navigation
properties prior to the final segment.
A navigation property MUST NOT be named in more than one navigation property binding; navigation
property bindings are only used when all related entities are known to come from a single entity set.

13.4.2 Attribute Target

A navigation property binding MUST specify a SimpleIdentifier or TargetPath value for the Target
attribute that specifies the entity set, singleton, or containment navigation property that contains the
related instance(s) targeted by the navigation property specified in the Path attribute.
If the value of the Target attribute is a SimpleIdentifier, it MUST resolve to an entity set or singleton
defined in the same entity container as the enclosing element.
If the value of the Target attribute is a TargetPath, it MUST resolve to an entity set, singleton, or
containment navigation property in scope. The path can traverse containment navigation properties or
complex properties before ending in a containment navigation property, but there MUST not be any non-
containment navigation properties prior to the final segment.

Example 34: for an entity set in the same container as the enclosing entity set Categories

<EntitySet Name="Categories" EntityType="Self.Category">

 <NavigationPropertyBinding Path="Products"

 Target="SomeSet" />

</EntitySet>

Example 35: for an entity set in any container in scope

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 85

<EntitySet Name="Categories" EntityType="Self.Category">

 <NavigationPropertyBinding Path="Products"

 Target="SomeModel.SomeContainer/SomeSet" />

</EntitySet>

13.5 Element edm:ActionImport

The edm:ActionImport element allows exposing an unbound action as a top-level element in an entity
container. Action imports are never advertised in the service document.

13.5.1 Attribute Name

The edm:ActionImport element MUST include a Name attribute whose value is a SimpleIdentifier. It
MAY be identical to the last segment of the QualifiedName used to specify the Action attribute value.

13.5.2 Attribute Action

The edm:ActionImport element MUST include a QualifiedName value for the Action attribute which
MUST resolve to the name of an unbound edm:Action element in scope.

13.5.3 Attribute EntitySet

If the return type of the action specified in the Action attribute is an entity or a collection of entities, a
SimpleIdentifier or TargetPath value MAY be specified for the EntitySet attribute that names the entity
set to which the returned entities belong. If a SimpleIdentifier is specified, it MUST resolve to an entity set
defined in the same entity container. If a TargetPath is specified, it MUST resolve to an entity set in
scope.
If the return type is not an entity or a collection of entities, a value MUST NOT be defined for the
EntitySet attribute.

13.6 Element edm:FunctionImport

The edm:FunctionImport element allows exposing an unbound function as a top-level element in an
entity container. All unbound overloads of an imported function can be invoked from the entity container.

13.6.1 Attribute Name

The edm:FunctionImport element MUST include a Name attribute whose value is a SimpleIdentifier. It
MAY be identical to the last segment of the QualifiedName used to specify the Function attribute value.

13.6.2 Attribute Function

The edm:FunctionImport element MUST include the Function attribute whose value MUST be a
QualifiedName that resolves to the name of an unbound edm:Function element in scope.

13.6.3 Attribute EntitySet

If the return type of the function specified in the Function attribute is an entity or a collection of entities,
a SimpleIdentifier or TargetPath value MAY be defined for the EntitySet attribute that names the entity
set to which the returned entities belong. If a SimpleIdentifier is specified, it MUST resolve to an entity set
defined in the same entity container. If a TargetPath is specified, it MUST resolve to an entity set in
scope.
If the return type is not an entity or a collection of entities, a value MUST NOT be defined for the
EntitySet attribute.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 85

13.6.4 Attribute IncludeInServiceDocument

The edm:FunctionImport for a parameterless function MAY include the
IncludeInServiceDocument attribute whose Boolean value indicates whether the function import is
advertised in the service document.
If no value is specified for this attribute, its value defaults to false.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 85

14 Vocabulary and Annotation
Vocabularies and annotations provide the ability to annotate metadata as well as instance data, and
define a powerful extensibility point for OData. An annotation applies a term to a model element and
defines how to calculate a value for the applied term.
Metadata annotations can be used to define additional characteristics or capabilities of a metadata
element, such as a service, entity type, property, function, action or parameter. For example, a metadata
annotation may define ranges of valid values for a particular property. Metadata annotations are applied
in CSDL documents describing or referencing an entity model.
Instance annotations can be used to define additional information associated with a particular result,
entity, property, or error; for example, whether a property is read-only for a particular instance. Where the
same annotation is defined at both the metadata and instance level, the instance-level annotation
overrides the annotation specified at the metadata level. Instance annotations appear in the actual
payload as described in [OData-Atom] and [OData-JSON]. Annotations that apply across instances
should be specified as metadata annotations.
A vocabulary is a namespace containing a set of terms where each term is a named metadata extension.
Anyone can define a vocabulary (a set of terms) that is scenario-specific or company-specific; more
commonly used terms can be published as shared vocabularies such as the OData Core vocabulary
[OData-VocCore].
A term can be used:

 To extend model elements and type instances with additional information.
 To map instances of annotated structured types to an interface defined by the term type; i.e.

annotations allow viewing instances of a structured type as instances of a differently structured
type specified by the applied term.

A service SHOULD NOT require a client to interpret annotations.

Example 36: the Product entity type is extended with a DisplayName by a metadata annotation that binds the term
DisplayName to the value of the property Name. The Product entity type also includes an annotation that allows its
instances to be viewed as instances of the type specified by the term SearchResult

<EntityType Name="Product">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Nullable="false" Type="Edm.Int32" />

 <Property Name="Name" Type="Edm.String" />

 <Property Name="Description" Type="Edm.String" />

 ...

 <Annotation Term="UI.DisplayName" Path="Name" />

 <Annotation Term="SearchVocabulary.SearchResult">

 <Record>

 <PropertyValue Property="Title" Path="Name" />

 <PropertyValue Property="Abstract" Path="Description" />

 <PropertyValue Property="Url">

 <Apply Function="odata.concat">

 <String>Products(</String>

 <Path>ID</Path>

 <String>)</String>

 </Apply>

 </PropertyValue>

 </Record>

 </Annotation>

</EntityType>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 85

14.1 Element edm:Term

The edm:Term element defines a term in a vocabulary.
A term allows annotating a CSDL element or OData resource representation with additional data.

14.1.1 Attribute Name

The edm:Term element MUST include a Name attribute whose value is a SimpleIdentifier.

14.1.2 Attribute Type

The edm:Term element MUST include a Type attribute whose value is a TypeName. It indicates what
type of value must be returned by the expression contained in an annotation using the term.

14.1.3 Attribute BaseTerm

The edm:Term element MAY provide a QualifiedName value for the BaseTerm attribute. The value of
the BaseTerm attribute MUST be the name of a term in scope. When applying a term with a base term,
the base term MUST also be applied with the same qualifier, and so on until a term without a base term is
reached.

14.1.4 Attribute DefaultValue

A edm:Term element whose Type attribute specifies a primitive or enumeration type MAY define a value
for the DefaultValue attribute. The value of this attribute determines the value of the term when applied
in an edm:Annotation without providing an expression.
Default values of type Edm.String MUST be represented according to the XML escaping rules for
character data in attribute values. Values of other primitive types MUST be represented according to the
appropriate alternative in the primitiveValue rule defined in [OData-ABNF], i.e. Edm.Binary as
binaryValue, Edm.Boolean as booleanValue etc.
If no value is specified, the DefaultValue attribute defaults to null.

14.1.5 Attribute AppliesTo

The edm:Term element MAY define a value for the AppliesTo attribute. The value of this attribute is a
whitespace-separated list of CSDL element names that this term is intended to be applied to. If no value
is supplied, the term is not intended to be restricted in its application. As the intended usage may evolve
over time, clients SHOULD be prepared for any annotation to be applied to any element.

Example 37: the IsURI term can be applied to properties and terms that are of type Edm.String (the Core.Tag
type and the two Core terms are defined in [OData-VocCore])

<Term Name="IsURI" Type="Core.Tag" DefaultValue="true"

 AppliesTo="Property">

 <Annotation Term="Core.Description">

 <String>

 Properties and terms annotated with this term MUST contain a valid URI

 </String>

 </Annotation>

 <Annotation Term="Core.RequiresType" String="Edm.String" />

</Term>

14.1.6 Term Facets

The edm:Term element MAY specify values for the Nullable, DefaultValue, MaxLength,
Precision, Scale, or SRID attributes. These facets and their implications are described in section 6.2.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 85

14.2 Element edm:Annotations

The edm:Annotations element is used to apply a group of annotations to a single model element. It
MUST contain at least one edm:Annotation element.

14.2.1 Attribute Target

The edm:Annotations element MUST include a Target attribute whose value is a path expression
that MUST resolve to a model element in the entity model.
External targeting is only possible for EDM elements that are uniquely identified within their parent, and
all their ancestor elements are uniquely identified within their parent:

 edm:ActionImport

 edm:ComplexType

 edm:EntityContainer

 edm:EntitySet

 edm:EntityType

 edm:EnumType

 edm:FunctionImport

 edm:Member

 edm:NavigationProperty

 edm:Property

 edm:Singleton

 edm:Term

 edm:TypeDefinition

These are the direct children of a schema with a unique name (i.e. except actions and functions whose
overloads to not possess a natural identifier), and all direct children of an entity container. The
edm:Schema element and most of the not uniquely identifiable EDM elements can still be annotated
using an inline edm:Annotation element.
External targeting is possible for actions, functions, and their parameters, in which case the annotation
applies to all overloads of the action or function or all parameters of that name across all overloads.
External targeting of individual action or function overloads is not possible.
External targeting is also possible for properties and navigation properties of singletons or entities in a
particular entity set. These annotations override annotations on the properties or navigation properties
targeted via the declaring structured type.
The allowed path expressions are:

 QualifiedName of schema child

 QualifiedName of schema child followed by a forward slash and name of child element
 QualifiedName of an entity container followed by a segment containing a singleton or entity set

name and zero or more property, navigation property, or type cast segments

Example 38: Target expressions

MySchema.MyEntityType

MySchema.MyEntityType/MyProperty

MySchema.MyEntityType/MyNavigationProperty

MySchema.MyComplexType

MySchema.MyComplexType/MyProperty

MySchema.MyComplexType/MyNavigationProperty

MySchema.MyEnumType

MySchema.MyEnumType/MyMember

MySchema.MyTypeDefinition

MySchema.MyTerm

MySchema.MyEntityContainer

MySchema.MyEntityContainer/MyEntitySet

MySchema.MyEntityContainer/MySingleton

MySchema.MyEntityContainer/MyActionImport

MySchema.MyEntityContainer/MyFunctionImport

MySchema.MyAction

MySchema.MyFunction

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 85

MySchema.MyFunction/MyParameter

MySchema.MyEntityContainer/MyEntitySet/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MyNavigationProperty

MySchema.MyEntityContainer/MyEntitySet/MySchema.MyEntityType/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MySchema.MyEntityType/MyNavProperty

MySchema.MyEntityContainer/MyEntitySet/MyComplexProperty/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MyComplexProperty/MyNavigationProperty

MySchema.MyEntityContainer/MySingleton/MyComplexProperty/MyNavigationProperty

14.2.2 Attribute Qualifier

An edm:Annotations element MAY provide a SimpleIdentifier value for the Qualifier attribute.
The Qualifier attribute allows annotation authors a means of conditionally applying an annotation.

Example 39: annotations should only be applied to tablet devices

<Annotations Target="Self.Person" Qualifier="Tablet">

 ...

</Annotations>

14.3 Element edm:Annotation

The edm:Annotation element represents a single annotation. An annotation applies a term to a model
element and defines how to calculate a value for the term application. The following model elements MAY
be annotated with a term:

 edm:Action

 edm:ActionImport

 edm:Annotation

 edm:Apply

 edm:Cast

 edm:ComplexType

 edm:EntityContainer

 edm:EntitySet

 edm:EntityType

 edm:EnumType

 edm:Function

 edm:FunctionImport

 edm:If

 edm:IsOf

 edm:LabeledElement

 edm:Member

 edm:NavigationProperty

 edm:Null

 edm:OnDelete

 edm:Parameter

 edm:Property

 edm:PropertyValue

 edm:Record

 edm:ReferentialConstraint

 edm:ReturnType

 edm:Schema

 edm:Singleton

 edm:Term

 edm:TypeDefinition

 edm:UrlRef

 edmx:Reference

 all Comparison and Logical Operators
An edm:Annotation element can be used as a child of the model element it annotates, or as the child
of an edm:Annotations element that targets the model element to be annotated.
An edm:Annotation element MAY contain a constant expression or dynamic expression in either
attribute or element notation. If no expression is specified for a term with a primitive type, the annotation
evaluates to the default value of the term definition. If no expression is specified for a term with a complex
type, the annotation evaluates to a complex instance with default values for all properties is used. If no
expression is specified for a collection-valued term, the annotation evaluates to an empty collection.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 85

If an entity type or complex type is annotated with a term that itself has a structured type, an instance of
the annotated type may be viewed as an “instance” of the term, and the qualified term name may be used
as a term-cast segment in path expressions.

14.3.1 Attribute Term

An annotation element MUST provide a QualifiedName value for the Term attribute. The value of the
Term attribute MUST be the name of a term in scope. The target of the annotation MUST comply with
any AppliesTo constraint.

14.3.2 Attribute Qualifier

An annotation element MAY provide a SimpleIdentifier value for the Qualifier attribute.
The qualifier attribute allows annotation authors a means of conditionally applying an annotation.
Example 40: annotation should only be applied to tablet devices

<Annotation Term="org.example.display.DisplayName" Path="FirstName"

 Qualifier="Tablet" />

Annotation elements that are children of an edm:Annotations element MUST NOT provide a value for
the qualifier attribute if the parent edm:Annotations element provides a value for the qualifier attribute.

14.4 Constant Expressions

Constant expressions allow assigning a constant value to an applied term. The constant expressions
support element and attribute notation.
Example 41: two annotations intended as user interface hints

<EntitySet Name="Products" EntityType="Self.Product">

 <Annotation Term="org.example.display.DisplayName"

 String="Product Catalog" />

</EntitySet>

<EntitySet Name="Suppliers" EntityType="Self.Supplier">

 <Annotation Term="org.example.display.DisplayName">

 <String>Supplier Directory</String>

 </Annotation>

</EntitySet>

14.4.1 Expression edm:Binary

The edm:Binary expression evaluates to a primitive binary value. A binary expression MUST be
assigned a value conforming to the rule binaryValue in [OData-ABNF].
The binary expression MAY be provided using element notation or attribute notation.
Example 42: base64url-encoded binary value (OData)

<Annotation Term="org.example.display.Thumbnail" Binary="T0RhdGE" />

<Annotation Term="org.example.display.Thumbnail">

 <Binary>T0RhdGE</Binary>

</Annotation>

14.4.2 Expression edm:Bool

The edm:Bool expression evaluates to a primitive Boolean value. A Boolean expression MUST be
assigned a Boolean value.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 85

The Boolean expression MAY be provided using element notation or attribute notation.
Example 43:

<Annotation Term="org.example.display.ReadOnly" Bool="true" />

<Annotation Term="org.example.display.ReadOnly">

 <Bool>true</Bool>

</Annotation>

14.4.3 Expression edm:Date

The edm:Date expression evaluates to a primitive date value. A date expression MUST be assigned a
value of type xs:date, see [XML-Schema-2], section 3.3.9. The value MUST also conform to rule
dateValue in [OData-ABNF], i.e. it MUST NOT contain a time-zone offset.
The date expression MAY be provided using element notation or attribute notation.
Example 44:

<Annotation Term="org.example.vCard.birthDay" Date="2000-01-01" />

<Annotation Term="org.example.vCard.birthDay">

 <Date>2000-01-01</Date>

</Annotation>

14.4.4 Expression edm:DateTimeOffset

The edm:DateTimeOffset expression evaluates to a primitive date/time value with a time-zone offset.
A date/time expression MUST be assigned a value of type xs:dateTimeStamp, see [XML-Schema-2],
section 3.4.28. The value MUST also conform to rule dateTimeOffsetValue in [OData-ABNF], i.e. it
MUST NOT contain an end-of-day fragment (24:00:00).
The date/time expression MAY be provided using element notation or attribute notation.

Example 45:

<Annotation Term="org.example.display.LastUpdated"

 DateTimeOffset="2000-01-01T16:00:00.000Z" />

<Annotation Term="org.example.display.LastUpdated">

 <DateTimeOffset>2000-01-01T16:00:00.000-09:00</DateTimeOffset>

</Annotation>

14.4.5 Expression edm:Decimal

The edm:Decimal expression evaluates to a primitive decimal value. A decimal expression MUST be
assigned a value conforming to the rule decimalValue in [OData-ABNF].
The decimal expression MAY be provided using element notation or attribute notation.
Example 46:

<Annotation Term="org.example.display.Width" Decimal="3.14" />

<Annotation Term="org.example.display.Width">

 <Decimal>3.14</Decimal>

</Annotation>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.w3.org/TR/xmlschema11-2/#date
http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 85

14.4.6 Expression edm:Duration

The edm:Duration expression evaluates to a primitive duration value. A duration expression MUST be
assigned a value of type xs:dayTimeDuration, see [XML-Schema-2], section 3.4.27.
The duration expression MAY be provided using element notation or attribute notation.
Example 47:

<Annotation Term="org.example.task.duration" Duration="P7D" />

<Annotation Term="org.example.task.duration">

 <Duration>P11D23H59M59.999999999999S</Duration>

</Annotation>

14.4.7 Expression edm:EnumMember

The edm:EnumMember expression references a member of an enumeration type. An enumeration
member expression MUST be assigned a value that consists of the qualified name of the enumeration
type, followed by a forward slash and the name of the enumeration member. If the enumeration type
specifies an IsFlags attribute with value true, the expression MAY also be assigned a whitespace-
separated list of values. Each of these values MUST resolve to the name of a member of the enumeration
type of the specified term.
The enumeration member expression MAY be provided using element notation or attribute notation.
Example 48: single value

<Annotation Term="org.example.HasPattern"

 EnumMember="org.example.Pattern/Red" />

<Annotation Term="org.example.HasPattern">

 <EnumMember>org.example.Pattern/Red</EnumMember>

</Annotation>

Example 49: combined value for IsFlags enumeration type

<Annotation Term="org.example.HasPattern"

 EnumMember="org.example.Pattern/Red org.example.Pattern/Striped" />

<Annotation Term="org.example.HasPattern">

 <EnumMember>org.example.Pattern/Red org.example.Pattern/Striped</EnumMember>

</Annotation>

14.4.8 Expression edm:Float

The edm:Float expression evaluates to a primitive floating point (or double) value. A float expression
MUST be assigned a value conforming to the rule doubleValue in [OData-ABNF].
The float expression MAY be provided using element notation or attribute notation.
Example 50:

<Annotation Term="org.example.display.Width" Float="3.14" />

<Annotation Term="org.example.display.Width">

 <Float>3.14</Float>

</Annotation>

14.4.9 Expression edm:Guid

The edm:Guid expression evaluates to a primitive 32-character string value. A guid expression MUST be
assigned a value conforming to the rule guidValue in [OData-ABNF].

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 85

The guid expression MAY be provided using element notation or attribute notation.

Example 51:

<Annotation Term="org.example.display.Id"

 Guid="21EC2020-3AEA-1069-A2DD-08002B30309D" />

<Annotation Term="org.example.display.Id">

 <Guid>21EC2020-3AEA-1069-A2DD-08002B30309D</Guid>

</Annotation>

14.4.10 Expression edm:Int

The edm:Int expression evaluates to a primitive integer value. An integer MUST be assigned a value
conforming to the rule int64Value in [OData-ABNF].
The integer expression MAY be provided using element notation or attribute notation.
Example 52:

<Annotation Term="org.example.display.Width" Int="42" />

<Annotation Term="org.example.display.Width">

 <Int>42</Int>

</Annotation>

14.4.11 Expression edm:String

The edm:String expression evaluates to a primitive string value. A string expression MUST be
assigned a value of the type xs:string, see [XML-Schema-2], section 3.3.1.
The string expression MAY be provided using element notation or attribute notation.
Example 53:

<Annotation Term="org.example.display.DisplayName" String="Product Catalog" />

<Annotation Term="org.example.display.DisplayName">

 <String>Product Catalog</String>

</Annotation>

14.4.12 Expression edm:TimeOfDay

The edm:TimeOfDay expression evaluates to a primitive time value. A time-of-day expression MUST be
assigned a value conforming to the rule timeOfDayValue in [OData-ABNF].
The time-of-day expression MAY be provided using element notation or attribute notation.
Example 54:

<Annotation Term="org.example.display.EndTime" TimeOfDay="21:45:00" />

<Annotation Term="org.example.display.EndTime">

 <TimeOfDay>21:45:00</TimeOfDay>

</Annotation>

14.5 Dynamic Expressions

Dynamic expressions allow assigning a calculated value to an applied term. The dynamic expressions
edm:AnnotationPath, edm:NavigationPropertyPath, edm:Path, edm:PropertyPath, and
edm:UrlRef expressions support element and attribute notation, all other dynamic expressions only
support element notation.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

http://www.w3.org/TR/xmlschema11-2/#string

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 85

14.5.1 Comparison and Logical Operators

The following EDM elements allow service authors to supply a dynamic conditional expression which
evaluates to a value of type Edm.Boolean. They MAY be combined and they MAY be used anywhere
instead of an edm:Bool expression.

Element Description Example

Logical Operators

edm:And Logical and <And><Path>IsMale</Path><Path>IsMarried</Path></And>

edm:Or Logical or <Or><Path>IsMale</Path><Path>IsMarried</Path></Or>

edm:Not Logical negation <Not><Path>IsMale</Path></Not>

Comparison Operators

edm:Eq Equal <Eq><Null/><Path>IsMale</Path></Eq>

edm:Ne Not equal <Ne><Null/><Path>IsMale</Path></Ne>

edm:Gt Greater than <Gt><Path>Price</Path><Int>20</Int></Gt>

edm:Ge Greater than or equal <Ge><Path>Price</Path><Int>10</Int></Ge>

edm:Lt Less than <Lt><Path>Price</Path><Int>20</Int></Lt>

edm:Le Less than or equal <Le><Path>Price</Path><Int>100</Int></Le>

The edm:And and edm:Or elements require two child expressions that evaluate to Boolean values. The
edm:Not elements requires a single child expression that evaluates to a Boolean value. For details on
null handling for comparison operators see [OData-URL].
The other elements representing the comparison operators require two child expressions that evaluate to
comparable values.

14.5.2 Expression edm:AnnotationPath

The edm:AnnotationPath expression provides a value for terms or term properties that specify the
built-in abstract type Edm.AnnotationPath. It uses the same syntax and rules as the edm:Path
expression, with the added restriction that the last path segment MUST be a term cast with optional
qualifier in the context of the preceding path part.
In contrast to the edm:Path expression the value of the edm:AnnotationPath expression is the path
itself, not the value of the annotation identified by the path. This is useful for terms that reuse or refer to
other terms.
The edm:AnnotationPath expression MAY be provided using element notation or attribute notation.

Example 55:

<Annotation Term="UI.ReferenceFacet"

 AnnotationPath="Product/Supplier/@UI.LineItem" />

<Annotation Term="UI.CollectionFacet" Qualifier="Contacts">

 <Collection>

 <AnnotationPath>Supplier/@Communication.Contact</AnnotationPath>

 <AnnotationPath>Customer/@Communication.Contact</AnnotationPath>

 </Collection>

</Annotation>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 85

14.5.3 Expression edm:Apply

The edm:Apply expression enables a value to be obtained by applying a client-side function. The Apply
expression MUST contain at least one expression. The expressions contained within the Apply
expression are used as parameters to the function. The edm:Apply expression MUST be written with
element notation.

14.5.3.1 Attribute Function

The edm:Apply expression MUST include a Function attribute whose value is a QualifiedName
specifying the name of the client-side function to apply.
OData defines the following canonical functions. Services MAY support additional functions that MUST be
qualified with a namespace or alias other than odata. Function names qualified with odata are reserved
for this specification and its future versions.

14.5.3.1.1 Function odata.concat

The odata.concat standard client-side function takes two or more expressions as arguments. Each
argument MUST evaluate to a primitive or enumeration type. It returns a value of type Edm.String that
is the concatenation of the literal representations of the results of the argument expressions. Values of
primitive types other than Edm.String are represented according to the appropriate alternative in the
primitiveValue rule of [OData-ABNF], i.e. Edm.Binary as binaryValue, Edm.Boolean as
booleanValue etc.

Example 56:

<Annotation Term="org.example.display.DisplayName">

 <Apply Function="odata.concat">

 <String>Product: </String>

 <Path>ProductName</Path>

 <String> (</String>

 <Path>Available/Quantity</Path>

 <String> </String>

 <Path>Available/Unit</Path>

 <String> available)</String>

 </Apply>

</Annotation>

ProductName is of type String, Quantity in complex type Available is of type Decimal, and Unit in
Available is of type enumeration, so the result of the Path expression is represented as the member name of the
enumeration value.

14.5.3.1.2 Function odata.fillUriTemplate

The odata.fillUriTemplate standard client-side function takes two or more expressions as
arguments and returns a value of type Edm.String.
The first argument MUST be of type Edm.String and specifies a URI template according to [RFC6570],
the other arguments MUST be edm:LabeledElement expressions. Each edm:LabeledElement
expression specifies the template parameter name in its Name attribute and evaluates to the template
parameter value.
[RFC6570] defines three kinds of template parameters: simple values, lists of values, and key-value
maps.
Simple values are represented as edm:LabeledElement expressions that evaluate to a single primitive
value. The literal representation of this value according to [OData-ABNF] is used to fill the corresponding
template parameter.
Lists of values are represented as edm:LabeledElement expressions that evaluate to a collection of
primitive values.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 85

Key-value maps are represented as edm:LabeledElement expressions that evaluate to a collection of
complex types with two properties that are used in lexicographic order. The first property is used as key,
the second property as value.

Example 57: assuming there are no special characters in values of the NameOfMovieGenre property

<Apply Function="odata.fillUriTemplate">

 <String>http://host/service/Genres('{genreName}')</String>

 <LabeledElement Name="genreName" Path="NameOfMovieGenre" />

</Apply>

14.5.3.1.3 Function odata.uriEncode

The odata.uriEncode standard client-side function takes one argument of primitive type and returns
the URL-encoded OData literal that can be used as a key value in OData URLs or in the query part of
OData URLs. Note: string literals are surrounded by single quotes.
Example 58:

<Apply Function="odata.fillUriTemplate">

 <String>http://host/service/Genres({genreName})</String>

 <LabeledElement Name="genreName">

 <Apply Function="odata.uriEncode" >

 <Path>NameOfMovieGenre</Path>

 </Apply>

 </LabeledElement>

</Apply>

14.5.4 Expression edm:Cast

The edm:Cast expression casts the value obtained from its single child expression to the specified type.
The cast expression follows the same rules as the cast canonical function defined in [OData-URL].
The cast expression MUST specify a Type attribute and contain exactly one expression.
The cast expression MUST be written with element notation.
Example 59:

<Annotation Term="org.example.display.Threshold">

 <Cast Type="Edm.Decimal">

 <Path>Average</Path>

 </Cast>

</Annotation>

14.5.4.1 Attribute Type

The edm:Cast expression MUST specify a Type attribute whose value is a TypeName in scope.
If the specified type is a primitive type, the facet attributes MaxLength, Precision, Scale, and SRID
MAY be specified if applicable to the specified primitive type. If the facet attributes are not specified, their
values are considered unspecified.

14.5.5 Expression edm:Collection

The edm:Collection expression enables a value to be obtained from zero or more child expressions.
The value calculated by the collection expression is the collection of the values calculated by each of the
child expressions.
The collection expression contains zero or more child expressions. The values of the child expressions
MUST all be type compatible.
The collection expression MUST be written with element notation.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 85

Example 60:

<Annotation Term="org.example.seo.SeoTerms">

 <Collection>

 <String>Product</String>

 <String>Supplier</String>

 <String>Customer</String>

 </Collection>

</Annotation>

14.5.6 Expression edm:If

The edm:If expression enables a value to be obtained by evaluating a conditional expression. It MUST
contain exactly three child elements with dynamic or static expressions. There is one exception to this
rule: if and only if the edm:If expression is a direct child of edm:Collection element the third child
element MAY be omitted (this can be used to conditionally add an element to a collection).
The first child element is the conditional expression and MUST evaluate to a Boolean result, e.g. the
comparison and logical operators can be used.
The second and third child elements are the expressions, which are evaluated conditionally. The result
MUST be type compatible with the type expected by the surrounding element or expression.
If the first expression evaluates to true, the second child element MUST be evaluated and its value
MUST be returned as the result of the edm:If expression. If the conditional expression evaluates to
false and a third child element is present, it MUST be evaluated and its value MUST be returned as the
result of the edm:If expression. If no third child element is present, nothing is added to the collection.
The edm:If expression MUST be written with element notation, as shown in the following example.

Example 61:

<Annotation Term="org.example.person.Gender">

 <If>

 <Path>IsFemale</Path>

 <String>Female</String>

 <String>Male</String>

 </If>

</Annotation>

14.5.7 Expression edm:IsOf

The edm:IsOf expression evaluates a child expression and returns a Boolean value indicating whether
the child expression returns the specified type.
An edm:IsOf expression MUST specify a Type attribute and contain exactly one child expression. The
edm:IsOf expression MUST return true if the child expression returns a type that is compatible with the
type named in the Type attribute. The edm:IsOf expression MUST return false if the child expression
returns a type that is not compatible with the type named in the Type attribute.
The edm:IsOf expression MUST be written with element notation.

Example 62:

<Annotation Term="Self.IsPreferredCustomer">

 <IsOf Type="Self.PreferredCustomer">

 <Path>Customer</Path>

 </IsOf>

</Annotation>

14.5.7.1 Attribute Type

The edm:IsOf expression MUST specify a Type attribute whose value is a TypeName in scope.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 85

If the specified type is a primitive type, the facet attributes MaxLength, Precision, Scale, and SRID
MAY be specified if applicable to the specified primitive type. If the facet attributes are not specified, their
values are considered unspecified.

14.5.8 Expression edm:LabeledElement

The edm:LabeledElement expression assigns a name to a child expression. The value of the child
expression can then be reused elsewhere with an edm:LabeledElementReference expression.
A labeled-element expression MUST contain exactly one child expression written either in attribute
notation or element notation. The value of the child expression is passed through the labeled-element
expression.
A labeled-element expression MUST be written with element notation.
Example 63:

<Annotation Term="org.example.display.DisplayName">

 <LabeledElement Name="CustomerFirstName" Path="FirstName" />

</Annotation>

<Annotation Term="org.example.display.DisplayName">

 <LabeledElement Name="CustomerFirstName">

 <Path>FirstName</Path>

 </LabeledElement>

</Annotation>

14.5.8.1 Attribute Name

An edm:LabeledElement expression MUST provide a SimpleIdentifier value for the Name attribute that
is unique within the schema containing the expression.

14.5.9 Expression edm:LabeledElementReference

The edm:LabeledElementReference expression returns the value of an edm:LabeledElement
expression.
The labeled-element reference expression MUST contain the QualifiedName name of a labeled element
expression in scope.
The labeled-element reference expression MUST be written with element notation.
Example 64:

<Annotation Term="org.example.display.DisplayName">

 <LabeledElementReference>Model.CustomerFirstName</LabeledElementReference>

</Annotation>

14.5.10 Expression edm:Null

The edm:Null expression returns an untyped null value. The null expression MUST NOT contain any
other elements or expressions.
The null expression MUST be written with element notation.
Example 65:

<Annotation Term="org.example.display.DisplayName">

 <Null/>

</Annotation>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 85

14.5.11 Expression edm:NavigationPropertyPath

The edm:NavigationPropertyPath expression provides a value for terms or term properties that
specify the built-in abstract type Edm.NavigationPropertyPath. It uses the same syntax and rules as
the edm:Path expression with the following exceptions:

 The NavigationPropertyPath expression may traverse multiple collection-valued structural or
navigation properties

 The last path segment MUST resolve to a navigation property in the context of the preceding path
part, or to a term cast where the term MUST be of type Edm.EntityType, a concrete entity type or a
collection of Edm.EntityType or concrete entity type.

In contrast to the edm:Path expression, the value of the edm:NavigationPropertyPath expression
is the path itself, not the target instance(s) of the navigation property identified by the path.
The edm:NavigationPropertyPath expression MAY be provided using element notation or attribute
notation.
Example 66:

<Annotation Term="UI.HyperLink" NavigationPropertyPath="Supplier" />

<Annotation Term="Capabilities.UpdateRestrictions">

 <Record>

 <PropertyValue Property="NonUpdatableNavigationProperties">

 <Collection>

 <NavigationPropertyPath>Supplier</NavigationPropertyPath>

 <NavigationPropertyPath>Category</NavigationPropertyPath>

 </Collection>

 </PropertyValue>

 </Record>

</Annotation>

14.5.12 Expression edm:Path

The edm:Path expression enables a value to be obtained by traversing an object graph. It can be used
in annotations that target entity containers, entity sets, entity types, complex types, navigation properties
of structured types, and properties of structured types.
The value assigned to the path expression MUST be composed of zero or more path segments joined
together by forward slashes (/).
If a path segment is a QualifiedName, it represents a type cast, and the segment MUST be the name of a
type in scope. If the instance identified by the preceding path part cannot be cast to the specified type, the
path expression evaluates to the null value.
If a path segment starts with an at (@) character, it represents a term cast. The at (@) character MUST be
followed by a QualifiedName that MAY be followed by a hash (#) character and a SimpleIdentifier. The
QualifiedName preceding the hash character MUST resolve to a term that is in scope, the SimpleIdentifier
following the hash sign is interpreted as a Qualifier for the term. If the instance identified by the preceding
path part has been annotated with that term (and if present, with that qualifier), the term cast evaluates to
the value of that annotation, otherwise it evaluates to the null value. Three special terms are implicitly
“annotated” for media entities and stream properties:

 odata.mediaEditLink

 odata.mediaReadLink

 odata.mediaContentType

If a path segment is a SimpleIdentifier, it MUST be the name of a structural property or a navigation
property of the instance identified by the preceding path part.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 85

When used within an edm:Path expression, a path may contain at most one segment representing a
multi-valued structural or navigation property. The result of the expression is the collection of instances
resulting from applying the remaining path to each instance in the multi-valued property.
A path may terminate in a $count segment if the previous segment is multi-valued, in which case the
path evaluates to the number of elements identified by the preceding segment.
If a path segment starts with a navigation property followed by an at (@) character, then the at (@)
character MUST be followed by a QualifiedName that MAY be followed by a hash (#) character and a
SimpleIdentifier. The QualifiedName preceding the hash character MUST resolve to a term that is in
scope, the SimpleIdentifier following the hash sign is interpreted as a Qualifier for the term. If the
navigation property has been annotated with that term (and if present, with that qualifier), the path
segment evaluates to the value of that annotation, otherwise it evaluates to the null value.
Annotations MAY be embedded within their target, or embedded within an edm:Annotations element
that specifies the annotation target with a path expression in its Target attribute. The latter situation is
referred to as targeting in the remainder of this section.
For annotations embedded within or targeting an entity container, the path expression is evaluated
starting at the entity container, i.e. an empty path resolves to the entity container, and non-empty path
values MUST start with the name of a container child (entity set, function import, action import, or
singleton). The subsequent segments follow the rules for path expressions targeting the corresponding
child element.
For annotations embedded within or targeting an entity set or a singleton, the path expression is
evaluated starting at the entity set, i.e. an empty path resolves to the entity set, and non-empty paths
MUST follow the rules for annotations targeting the declared entity type of the entity set or singleton.
For annotations embedded within or targeting an entity type or complex type, the path expression is
evaluated starting at the type, i.e. an empty path resolves to the type, and the first segment of a non-
empty path MUST be a property or navigation property of the type, a type cast, or a term cast.
For annotations embedded within a property of an entity type or complex type, the path expression is
evaluated starting at the directly enclosing type. This allows e.g. specifying the value of an annotation on
one property to be calculated from values of other properties of the same type. An empty path resolves to
the enclosing type, and non-empty paths MUST follow the rules for annotations targeting the directly
enclosing type.
For annotations targeting a property of an entity type or complex type, the path expression is evaluated
starting at the outermost entity type or complex type named in the Target of the enclosing
edm:Annotations element, i.e. an empty path resolves to the outermost type, and the first segment of
a non-empty path MUST be a property or navigation property of the outermost type, a type cast, or a term
cast.
A path expression MAY be provided using element notation or attribute notation.
Example 67:

<Annotation Term="org.example.display.DisplayName" Path="FirstName" />

<Annotation Term="org.example.display.DisplayName">

 <Path>@vCard.Address#work/FullName</Path>

</Annotation>

14.5.13 Expression edm:PropertyPath

The edm:PropertyPath expression provides a value for terms or term properties that specify the built-
in abstract type Edm.PropertyPath. It uses the same syntax and rules as the edm:Path expression,
with the following exceptions:
 The PropertyPath expression may traverse multiple collection-valued structural or navigation

properties

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 85

 The last path segment MUST resolve either to a structural property in the context of the preceding
path part, or to a term cast where the term MUST be of type Edm.ComplexType,
Edm.PrimitiveType, a complex type, an enumeration type, a concrete primitive type, a type
definition, or a collection of one of these types.

In contrast to the edm:Path expression, the value of the edm:PropertyPath expression is the path
itself, not the value of the property identified by the path.
The edm:PropertyPath MAY be provided using either element notation or attribute notation.

Example 68:

<Annotation Term="UI.RefreshOnChangeOf" PropertyPath="ChangedAt" />

<Annotation Term="Capabilities.UpdateRestrictions">

 <Record>

 <PropertyValue Property="NonUpdatableProperties">

 <Collection>

 <PropertyPath>CreatedAt</PropertyPath>

 <PropertyPath>ChangedAt</PropertyPath>

 </Collection>

 </PropertyValue>

 </Record>

</Annotation>

14.5.14 Expression edm:Record

The edm:Record expression enables a new entity type or complex type instance to be constructed.
A record expression contains zero or more edm:PropertyValue elements. For each single-valued
structural or navigation property of the record construct’s type that is neither nullable nor specifies a
default value an edm:PropertyValue child element MUST be provided. The only exception is if the
record expression is the direct child of an edm:Annotation element for a term that has a base term
whose type is structured and directly or indirectly inherits from the type of its base term. In this case,
property values that already have been specified in the annotation for the base term or its base term etc.
need not be specified again.
For collection-valued properties the absence of an edm:PropertyValue child element is equivalent to
specifying a child element with an empty collection as its value.
A record expression MUST be written with element notation, as shown in the following example.
Example 69: record with two structural and two navigation properties

<Annotation Term="org.example.person.Employee">

 <Record>

 <PropertyValue Property="GivenName" Path="FirstName" />

 <PropertyValue Property="Surname" Path="LastName" />

 <PropertyValue Property="Manager" Path="DirectSupervisor" />

 <PropertyValue Property="CostCenter">

 <UrlRef>

 <Apply Function="odata.fillUriTemplate">

 <String>http://host/anotherservice/CostCenters('{ccid}')</String>

 <LabeledElement Name="ccid" Path="CostCenterID" />

 </Apply>

 </UrlRef>

 </PropertyValue>

 </Record>

</Annotation>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 85

14.5.14.1 Attribute Type

A record expression MAY specify a QualifiedName value for the Type attribute that MUST resolve to an
entity type or complex type in scope. If no value is specified for the type attribute, the type is derived from
the expression’s context.

14.5.14.2 Element edm:PropertyValue

The edm:PropertyValue element supplies a value to a property on the type instantiated by an
edm:Record expression. The value is obtained by evaluating an expression.
The PropertyValue element MUST contain exactly one expression. The edm:PropertyValue
expression MAY be provided using element notation or attribute notation.

14.5.14.2.1 Attribute Property

The PropertyValue element MUST assign a SimpleIdentifier value to the Property attribute. The
value of the property attribute MUST resolve to a property of the type of the enclosing edm:Record
expression.

14.5.15 Expression edm:UrlRef

The edm:UrlRef expression enables a value to be obtained by sending a GET request to the value of
the UrlRef expression.
The edm:UrlRef element MUST contain exactly one expression of type Edm.String. The
edm:UrlRef expression MAY be provided using element notation or attribute notation.
The URL may be relative or absolute; relative URIs are relative to the xml:base attribute, see

[XML-Base].
The response body of the GET request MUST be returned as the result of the edm:UrlRef expression.
The result of the edm:UrlRef expression MUST be type compatible with the type expected by the
surrounding element or expression.
Example 70:

<Annotation Term="Vocab.Supplier">

 <UrlRef>

 <Apply Function="odata.fillUriTemplate">

 <String>http://host/service/Suppliers({suppID})</String>

 <LabeledElement Name="suppID">

 <Apply Function="odata.uriEncode">

 <Path>SupplierId</Path>

 </Apply>

 </LabeledElement>

 </Apply>

 </UrlRef>

</Annotation>

<Annotation Term="Core.LongDescription">

 <UrlRef><String>http://host/wiki/HowToUse</String></UrlRef>

</Annotation>

<Annotation Term="Core.LongDescription" UrlRef="http://host/wiki/HowToUse" />

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 85

15 Metadata Service Schema
The Metadata Service is a representation of the entity model of an OData service as an OData service
with a fixed (meta) data model. The Metadata Service provides convenient access to the entity model of a
service, i.e. all CSDL constructs used in its entity containers.
With ~/ as an abbreviation for the service root URL, the Metadata Service root URL is ~/$metadata/,
i.e. the canonical URL of the metadata document of the underlying service with a forward slash
appended, and a GET request to ~/$metadata/$metadata returns the CSDL document of the
Metadata Service itself, defined in [OData-Meta].
The following sections describe the schema of the Metadata Service.
Example 71: service document of Metadata Service

GET ~/$metadata/

would return

{

 "@odata.context":"~/$metadata/$metadata",

 "value":[

 { "name":"References" ,"url":"References" },

 { "name":"Schemata" ,"url":"Schemata" },

 { "name":"Types" ,"url":"Types" },

 { "name":"Properties" ,"url":"Properties" },

 { "name":"NavigationProperties" ,"url":"NavigationProperties" },

 { "name":"EnumTypeMembers" ,"url":"EnumTypeMembers" },

 { "name":"Actions" ,"url":"Actions" },

 { "name":"Functions" ,"url":"Functions" },

 { "name":"Terms" ,"url":"Terms" },

 { "name":"Annotations" ,"url":"Annotations" },

 { "name":"EntityContainer" ,"url":"EntityContainer",

 "kind":"Singleton" },

 { "name":"EntitySets" ,"url":"EntitySets" },

 { "name":"Singletons" ,"url":"Singletons" },

 { "name":"NavigationPropertyBindings","url":"NavigationPropertyBindings"},

 { "name":"ActionImports" ,"url":"ActionImports" },

 { "name":"FunctionImports" ,"url":"FunctionImports" }

]

}

Note: all examples in this chapter use ~/ as an abbreviation for the service root URL.
Note: ~/$metadata/$metadata is not a typo, it is the metadata URL of the Metadata Service for the
service with root URL ~/.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 85

15.1 Entity Model Wrapper

The Metadata Service provides convenient access to the entity model of a service, i.e. all CSDL
constructs used in its entity container. This model may be distributed over several schemas, and these
schemas may be distributed over several physical locations, bound together via the entity model wrapper.
This document structure is represented in the metadata service as an entity type Reference and two
complex types Include and IncludeAnnotations.

Legend: boxes without a stereotype represent entity types; boxes with stereotype ≪complex≫ represent complex
types. Compositions represent complex properties; associations represent navigation properties. Arrows indicate
navigation properties without a partner; associations without arrows are bidirectional. No cardinality means 1.

A reference is identified by its Uri property, which is the absolute value of the Uri attribute after
resolving a relative value against the xml:base attribute.

Example 72: for the Products and Categories example the request

GET ~/$metadata/References?$expand=Include/Schema($select=Namespace)

would return

{

 "@odata.context":

 "~/$metadata/$metadata#References(.,Include/Schema(Namespace))",

 "value":[

 {

 "Uri":"http://tinyurl.com/Org-OData-Core",

 "Include":[

 { "Alias":"Core", "Schema":{ "Namespace":"Org.OData.Core.V1" } }

],

 "IncludeAnnotations":[]

 },{

 "Uri":"http://tinyurl.com/Org-OData-Measures-V1",

 "Include":[

 { "Alias":"UoM", "Schema":{ "Namespace":"Org.OData.Measures.V1" } }

],

 "IncludeAnnotations":[]

 }

]

}

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 85

15.2 Schema

The model of the service consists of all CSDL constructs used in its entity container. Each model
construct is defined in a schema:

A schema is identified by its Namespace property. If it defines an alias, direct key access using the alias
instead of the namespace redirects to the schema with this alias.
Example 73: for the Products and Categories example the request

GET ~/$metadata/Schemata

would return

{

 "@odata.context":"~/$metadata#Schemata",

"value":[

 {

 "Namespace":"ODataDemo", "Alias":null

 },{

 "Namespace":"Org.OData.Core.V1", "Alias":"Core"

 },{

 "Namespace":"Org.OData.Measures.V1", "Alias":"UoM"

 },{

 "Namespace":"Edm", "Alias":null

 }

]

}

Example 74: redirecting from alias to schema

GET ~/$metadata/Schemata('Core')

would return

{

 "@odata.context":"~/$metadata#Schemata/@entity",

"Namespace":"Org.OData.Core.V1",

"Alias":"Core"

}

All schemata used in the model are listed in this entity set, independently of whether they are defined
directly in the metadata document or included via a reference.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 85

15.3 Types

Types form an inheritance hierarchy

A type is identified by its QualifiedName property, which is the Namespace of the defining schema,
followed by a dot (.) and the Name of the type. There is only one entity set Types for all types. Type cast
segments can be used to access specialized types.
Only those built-in primitive types that are actually used in the model appear in the Types entity set.
Enumeration type members are identified by their Fullname property, which is the QualifiedName of
the enumeration type, followed by a forward slash (/) and the Name of the member.

Example 75: single type by name, and all entity types

GET ~/$metadata/Types('ODataDemo.Product')

GET ~/$metadata/Types/Meta.EntityType

Example 76: all types

GET ~/$metadata/Types

would return

{

 "@odata.context":"~/$metadata/$metadata#Types",

 "value":[{

 "@odata.type":"Meta.EntityType",

 "QualifiedName":"ODataDemo.Product", "Name":"Product",

 "Key":[{"PropertyPath":"ID","Alias":null}],

 "Abstract":false, "OpenType":false, "HasStream":true

 },{

 "@odata.type":"Meta.EntityType",

 "QualifiedName":"ODataDemo.Category", "Name":"Category",

 "Key":[{"PropertyPath":"ID","Alias":null}],

 "Abstract":false, "OpenType":false, "HasStream":false

 },{

 "@odata.type":"Meta.EntityType",

 "QualifiedName":"ODataDemo.Supplier", "Name":"Supplier",

 "Key":[{"PropertyPath":"ID","Alias":null}],

 "Abstract":false, "OpenType":false, "HasStream":false

 },{

 "@odata.type":"Meta.EntityType",

 "QualifiedName":"ODataDemo.Country", "Name":"Country",

 "Key":[{"PropertyPath":"Code","Alias":null}],

 "Abstract":false, "OpenType":false, "HasStream":false

 },{

 "@odata.type":"Meta.ComplexType",

 "QualifiedName":"ODataDemo.Address", "Name":"Address",

 "Abstract":false, "OpenType":false

 },{

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 85

 "@odata.type":"Meta.ComplexType",

 "QualifiedName":"Core.OptimisticConcurrency",

 "Name":"OptimisticConcurrency",

 "Abstract":false, "OpenType":false

 },{

 "@odata.type":"Meta.PrimitiveType",

 "QualifiedName":"Edm.Date", "Name":"Date"

 },{

 "@odata.type":"Meta.PrimitiveType",

 "QualifiedName":"Edm.Decimal", "Name":"Decimal"

 },{

 "@odata.type":"Meta.PrimitiveType",

 "QualifiedName":"Edm.Int32", "Name":"Int32"

 },{

 "@odata.type":"Meta.PrimitiveType",

 "QualifiedName":"Edm.String", "Name":"String"

 },{

 "@odata.type":"Meta.PrimitiveType",

 "QualifiedName":"Edm.PropertyPath", "Name":"PropertyPath"

 },{

 "@odata.type":"Meta.EntityType",

 "QualifiedName":"Edm.EntityType", "Name":"EntityType", "Key":[],

 "Abstract":true, "OpenType":false, "HasStream":false }

]

}

15.4 Properties

Structural properties and navigation properties are represented as

This model is intentionally simplified. It closely resembles the XML schema and makes querying easy as it
e.g. allows expanding the Type for all structural properties. A structured type is only related to properties
it directly declares, not to properties it inherits from ancestor types. All inherited and directly declared
properties or navigation properties can be requested with the bound functions Meta.AllProperties
and Meta.AllNavigationProperties.
Structural properties and navigation properties are identified by their Fullname property, which is the
QualifiedName of the containing entity type or complex type, followed by a forward slash (/) and the
Name of the property or navigation property.

Example 77: single property or navigation property by name

GET ~/$metadata/Properties('ODataDemo.Product%2FID')

GET ~/$metadata/NavigationProperties('ODataDemo.Category%2FProducts')

Example 78: all properties with type

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 85

GET ~/$metadata/Properties?$expand=Type($select=QualifiedName)

would return

{

 "@odata.context":"~/$metadata/$metadata#Properties(*,Type(QualifiedName))",

 "value":[

 {

 "Fullname":"ODataDemo.Product/ID", "Name":"ID",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Product/Description", "Name":"Description",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Product/ReleaseDate", "Name":"ReleaseDate",

 "Nullable":true, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.Date"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Product/DiscontinuedDate",

 "Name":"DiscontinuedDate",

 "Nullable":true, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.Date"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Product/Rating", "Name":"Rating",

 "Nullable":true, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.Int32"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Product/Currency", "Name":"Currency",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[{"Name":"MaxLength","Value":"3"}]

 },{

 "Fullname":"ODataDemo.Category/ID", "Name":"ID",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.Int32"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Category/Name", "Name":"Name",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Supplier/ID", "Name":"ID",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Supplier/Name", "Name":"Name",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Supplier/Address", "Name":"Address",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"ODataDemo.Address"},

 "Facets":[]

 },{

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 85

 "@odata.type":"Meta.PrimitiveProperty",

 "Fullname":"ODataDemo.Supplier/Concurrency", "Name":"Concurrency",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.Int32"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Country/Code", "Name":"Code",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[{"Name":"MaxLength","Value":"2"}]

 },{

 "Fullname":"ODataDemo.Country/Name", "Name":"Name",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Address/Street", "Name":"Street",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Address/City", "Name":"City",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Address/State", "Name":"State",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Address/ZipCode", "Name":"ZipCode",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"ODataDemo.Address/CountryName", "Name":"CountryName",

 "Nullable":false, "IsCollection":false,

 "Type":{"QualifiedName":"Edm.String"},

 "Facets":[]

 },{

 "Fullname":"Core.OptimisticConcurrency/ETagDependsOn",

 "Name":"ETagDependsOn",

 "Nullable":false, "IsCollection":true,

 "Type":{"QualifiedName":"Edm.PropertyPath"},

 "Facets":[]

 }

]

}

Example 79: all navigation properties with type and partner

GET ~/$metadata/NavigationProperties?

 $expand=Type($select=QualifiedName),Partner($select=Name)

would return

{

"@odata.context":"~/$metadata/$metadata#NavigationProperties(Type(QualifiedNam

e),Partner(Name))",

 {

 "Fullname":"ODataDemo.Product/Category", "Name":"Category",

 "Nullable":false, "ContainsTarget":false,

 "OnDelete":null,

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 85

 "ReferentialConstraints":[],

 "IsCollection":false,

 "Type":{ "QualifiedName":"ODataDemo.Category" },

 "Partner":{ "Name":"Product" }

 },{

 "Fullname":"ODataDemo.Product/Supplier", "Name":"Supplier",

 "Nullable":false, "ContainsTarget":false,

 "OnDelete":null,

 "ReferentialConstraints":[],

 "IsCollection":false,

 "Type":{ "QualifiedName":"ODataDemo.Supplier" },

 "Partner":{ "Name":"Products" }

 },{

 "Fullname":"ODataDemo.Category/Products", "Name":"Products",

 "Nullable":false, "ContainsTarget":false,

 "OnDelete":{ "Action":"Cascade", "Annotations":[] },

 "ReferentialConstraints":[],

 "IsCollection":true,

 "Type":{ "QualifiedName":"ODataDemo.Product" },

 "Partner":{ "Name":"Category" }

 },{

 "Fullname":"ODataDemo.Supplier/Products", "Name":"Products",

 "Nullable":false, "ContainsTarget":false,

 "OnDelete":null,

 "ReferentialConstraints":[],

 "IsCollection":true,

 "Type":{ "QualifiedName":"ODataDemo.Product" },

 "Partner":{ "Name":"Supplier" }

 },{

 "Fullname":"ODataDemo.Address/Country", "Name":"Country",

 "Nullable":false, "ContainsTarget":false,

 "OnDelete":null,

 "ReferentialConstraints":[

 {

 "Property":"CountryName", "ReferencedProperty":"Name",

 "Annotations":[]

 }

],

 "IsCollection":false,

 "Type":{ "QualifiedName":"ODataDemo.Product" },

 "Partner":{ "Name":"Supplier" }

 }

]

}

15.5 Actions and Functions

Actions and functions are represented as

Actions and functions are identified by their QualifiedName property, which is the Namespace of the
containing schema, followed by a dot (.) and the Name of the action or function.

Example 80:

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 85

GET ~/$metadata/Actions('SampleModel.Approval')

GET ~/$metadata/Functions('ODataDemo.ProductsByRating')

Example 81: all functions

GET ~/$metadata/Functions?

 $expand=Overloads/Parameters/Type($select=QualifiedName)

would return

{

 "@odata.context":

"~/$metadata/$metadata#Functions(*,Overloads/Parameters/Type(QualifiedName))",

 "value":[

 {

 "QualifiedName":"ODataDemo.ProductsByRating",

 "Name":"ProductsByRating",

 "Overloads":[

 {

 "IsBound":false, "IsComposable":false,

 "ReturnType":{

 "IsCollection":true, "Nullable":false, "Facets":[],

 "Type":{"QualifiedName":"ODataDemo.Product"}

 },

 "Parameters":[

 {

 "Name":"Rating", "IsBinding":false,

 "Nullable":true,

 "IsCollection":false, "Facets":[],

 "Type":{"QualifiedName":"Edm.Int32"}

 }

]

 }

]

 }

]

}

15.6 Entity Container

Entity container constructs are represented as

An entity container is identified by its QualifiedName property, which is the Namespace of the
containing schema, followed by a dot (.) and the Name of the entity container. As there is exactly one
entity container per service, it is a singleton.
Example 82:

GET ~/$metadata/EntityContainer

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 85

Direct children of an entity container are identified by their Fullname property, which is the
QualifiedName of the entity container, followed by a forward slash (/) and the Name of the child.

Example 83:

GET ~/$metadata/EntitySets('ODataDemo.DemoService%2FCategories')

A navigation property binding is identified by its Fullname property, which is the Fullname of the source
entity set or singleton, followed by a forward slash (/) and the Path of the navigation property binding.

Example 84:

GET ~/$metadata/NavigationPropertyBindings(

 'ODataDemo.DemoService%2FCategories%2FProducts')

Example 85: all containers with direct children

GET ~/$metadata/EntityContainer?$expand=*

would return

{

 "@odata.context":"~/$metadata/$metadata#EntityContainer",

 "value":[

 {

 "QualifiedName":"ODataDemo.DemoService",

 "Name":"DemoService",

 "EntitySets":[

 {

 "Fullname":"ODataDemo.DemoService/Products", "Name":"Products",

 "IncludeInServiceDocument":true

 },{

 "Fullname":"ODataDemo.DemoService/Suppliers", "Name":"Suppliers",

 "IncludeInServiceDocument":true

 },{

 "Fullname":"ODataDemo.DemoService/Categories", "Name":"Categories",

 "IncludeInServiceDocument":true

 },{

 "Fullname":"ODataDemo.DemoService/Countries", "Name":"Countries",

 "IncludeInServiceDocument":true

 }

],

 "Singletons":[

 {

 "QualifiedName":"ODataDemo.DemoService/Contoso", "Name":"Contoso"

 }],

 "ActionImports":[],

 "FunctionImports":[

 {

 "QualifiedName":"ODataDemo.DemoService/ProductsByRating",

 "Name":"ProductsByRating",

 "IncludeInServiceDocument":false

 }

]

 }

]

}

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 85

15.7 Terms and Annotations

Terms and annotations based on these terms are represented as

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 85

A term is identified by its QualifiedName property, which is the Namespace of the containing schema,
followed by a dot (.) and the Name of the term.

Example 86:

GET ~/$metadata/Terms?$expand=Type($select=QualifiedName)

would return

{

 "@odata.context":"~/$metadata/$metadata#Terms(Type(QualifiedName))",

 "value":[

 {

 "QualifiedName":"Core.Description", "Name":"Description",

 "DefaultValue":null, "IsCollection":false,

 "Type":{ "QualifiedName":"Edm.String" }

 },{

 "QualifiedName":"Core.OptimisticConcurrency",

 "Name":"OptimisticConcurrency",

 "DefaultValue":null, "IsCollection":true,

 "Type":{ "QualifiedName":"Edm.PropertyPath" }

 }

]

}

Annotations can be stated in CSDL in two ways: inline as child elements of the annotated element, or
externally as children of an edm:Annotations element that targets the model element to be annotated.
The external form is only possible for model elements that can be uniquely identified by a target path
expression, and these model elements are represented in the Metadata Service as entity types, while all
model elements that cannot be targeted are represented as complex types.
Consequently annotations that can only be stated with the inline form are represented with the complex
type Edm.Metadata.InlineAnnotation, while annotations that can be stated externally are
represented with the entity type Edm.Metadata.Annotation, whether they are stated inline or
externally in the metadata document or referenced CSDL documents. If the example metadata document
in Example 88 would reference the CSDL document in Example 89, all its annotations would also be
members of the Annotations entity set of the Metadata Service for Example 88.
These annotations are identified by the combination of their target, term, and qualifier. The Fullname of
an annotation is the Fullname of the target, followed by an at (@) sign and the QualifiedName of the
term, and for non-empty qualifiers followed by a hash (#) sign and the qualifier.

Example 87:

GET ~/$metadata/Annotations

would return

{

 "@odata.context":"~/$metadata/$metadata#Annotations",

 "value":[

 {

 "Fullname":"ODataDemo.Product/Description@Core.IsLanguageDependent",

 "Qualifier":null,

 "Value":{ "@odata.type":"Meta.ConstantExpression","Value":true }

 },

 {

 "Fullname":"ODataDemo.Product/Price@UoM.ISOCurrency",

 "Qualifier":null,

 "Value":{ "@odata.type":"Meta.Path","Value":"Currency" }

 },

 {

 "Fullname":"ODataDemo.Category/Name@Core.IsLanguageDependent",

 "Qualifier":null,

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 85

 "Value":{ "@odata.type":"Meta.Constant","Value":true }

 },

 {

 "Fullname":"ODataDemo.DemoService/Suppliers@Core.OptimisticConcurrency",

 "Qualifier":null,

 "Value":{

 "@odata.type":"Meta.Collection",

 "Items":[

 {

 "@odata.type":"Meta.PropertyPath",

 "Value":"Concurrency"

 }

]

 }

 }

]

}

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 85

16 CSDL Examples
Following are two basic examples of valid EDM models as represented in CSDL. These examples
demonstrate many of the topics covered above.

16.1 Products and Categories Example

Example 88:

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml">

 <edmx:Include Namespace="Org.OData.Core.V1" Alias="Core" />

</edmx:Reference>

 <edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml">

 <edmx:Include Alias="UoM" Namespace="Org.OData.Measures.V1" />

</edmx:Reference>

 <edmx:DataServices>

 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

 Namespace="ODataDemo">

 <EntityType Name="Product" HasStream="true">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Description" Type="Edm.String" >

 <Annotation Term="Core.IsLanguageDependent" />

 </Property>

 <Property Name="ReleaseDate" Type="Edm.Date" />

 <Property Name="DiscontinuedDate" Type="Edm.Date" />

 <Property Name="Rating" Type="Edm.Int32" />

 <Property Name="Price" Type="Edm.Decimal">

 <Annotation Term="UoM.ISOCurrency" Path="Currency" />

 </Property>

 <Property Name="Currency" Type="Edm.String" MaxLength="3" />

 <NavigationProperty Name="Category" Type="ODataDemo.Category"

 Nullable="false" Partner="Products" />

 <NavigationProperty Name="Supplier" Type="ODataDemo.Supplier"

 Partner="Products" />

 </EntityType>

 <EntityType Name="Category">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Name" Type="Edm.String">

 <Annotation Term="Core.IsLanguageDependent" />

 </Property>

 <NavigationProperty Name="Products" Partner="Category"

 Type="Collection(ODataDemo.Product)">

 <OnDelete Action="Cascade" />

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 85

 </NavigationProperty>

 </EntityType>

 <EntityType Name="Supplier">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

 <Property Name="Address" Type="ODataDemo.Address" Nullable="false" />

 <Property Name="Concurrency" Type="Edm.Int32" Nullable="false" />

 <NavigationProperty Name="Products" Partner="Supplier"

 Type="Collection(ODataDemo.Product)" />

 </EntityType>

 <EntityType Name="Country">

 <Key>

 <PropertyRef Name="Code" />

 </Key>

 <Property Name="Code" Type="Edm.String" MaxLength="2"

 Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

 </EntityType>

 <ComplexType Name="Address">

 <Property Name="Street" Type="Edm.String" />

 <Property Name="City" Type="Edm.String" />

 <Property Name="State" Type="Edm.String" />

 <Property Name="ZipCode" Type="Edm.String" />

 <Property Name="CountryName" Type="Edm.String" />

 <NavigationProperty Name="Country" Type="ODataDemo.Country">

 <ReferentialConstraint Property="CountryName"

 ReferencedProperty="Name" />

 </NavigationProperty>

 </ComplexType>

 <Function Name="ProductsByRating">

 <Parameter Name="Rating" Type="Edm.Int32" />

 <ReturnType Type="Collection(ODataDemo.Product)" />

 </Function>

 <EntityContainer Name="DemoService">

 <EntitySet Name="Products" EntityType="ODataDemo.Product">

 <NavigationPropertyBinding Path="Category" Target="Categories" />

 </EntitySet>

 <EntitySet Name="Categories" EntityType="ODataDemo.Category">

 <NavigationPropertyBinding Path="Products" Target="Products" />

 </EntitySet>

 <EntitySet Name="Suppliers" EntityType="ODataDemo.Supplier">

 <NavigationPropertyBinding Path="Products" Target="Products" />

 <NavigationPropertyBinding Path="Address/Country"

 Target="Countries" />

 <Annotation Term="Core.OptimisticConcurrency">

 <Collection>

 <PropertyPath>Concurrency</PropertyPath>

 </Collection>

 </Annotation>

 </EntitySet>

 <Singleton Name="Contoso" Type="Self.Supplier">

 <NavigationPropertyBinding Path="Products" Target="Products" />

 </Singleton>

 <EntitySet Name="Countries" EntityType="ODataDemo.Country" />

 <FunctionImport Name="ProductsByRating" EntitySet="Products"

 Function="ODataDemo.ProductsByRating" />

 </EntityContainer>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 85

16.2 Annotations for Products and Categories Example

Example 89:

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="http://host/service/$metadata">

 <edmx:Include Namespace="ODataDemo" />

 </edmx:Reference>

 <edmx:Reference Uri="http://somewhere/Vocabulary/V1">

 <edmx:Include Alias="Vocabulary1" Namespace="Some.Vocabulary.V1" />

</edmx:Reference>

<edmx:DataServices>

 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

 Namespace="Annotations">

 <Annotations Target="ODataDemo.Supplier">

 <Annotation Term="Vocabulary1.EMail">

 <Null />

 </Annotation>

 <Annotation Term="Vocabulary1.AccountID" Path="ID" />

 <Annotation Term="Vocabulary1.Title" String="Supplier Info" />

 <Annotation Term="Vocabulary1.DisplayName">

 <Apply Function="odata.concat">

 <Path>Name</Path>

 <String> in </String>

 <Path>Address/CountryName</Path>

 </Apply>

 </Annotation>

 </Annotations>

 <Annotations Target="ODataDemo.Product">

 <Annotation Term="Vocabulary1.Tags">

 <Collection>

 <String>MasterData</String>

 </Collection>

 </Annotation>

 </Annotations>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 85

17 Attribute Values

17.1 Namespace

A Namespace is a character sequence of type edm:TNamespaceName, see [OData-EDM].
Non-normatively speaking it is a dot-separated sequence of SimpleIdentifiers with a maximum length of
511 Unicode characters.

17.2 SimpleIdentifier

A SimpleIdentifier is a character sequence of type edm:TSimpleIdentifier, see [OData-EDM]:
<xs:simpleType name="TSimpleIdentifier">

 <xs:restriction base="xs:NCName">

 <xs:maxLength value="128" />

 <xs:pattern

 value="[\p{L}\p{Nl}_][\p{L}\p{Nl}\p{Nd}\p{Mn}\p{Mc}\p{Pc}\p{Cf}]{0,}"

 />

 </xs:restriction>

</xs:simpleType>

Non-normatively speaking it starts with a letter or underscore, followed by at most 127 letters,
underscores or digits.

17.3 QualifiedName

For model elements that are direct children of a schema: the namespace or alias of the schema that
defines the model element, followed by a dot and the name of the model element, see rule
qualifiedTypeName in [OData-ABNF].
For built-in primitive types: the name of the type, prefixed with Edm followed by a dot.

17.4 TypeName

The QualifiedName of a built-in primitive or abstract type, a type definition, complex type, enumeration
type, or entity type, or a collection of one of these types, see rule qualifiedTypeName in
[OData-ABNF].
The type must be in scope, i.e. the type MUST be defined in the Edm namespace or it MUST be defined
in the schema identified by the namespace or alias portion of the qualified name, and the identified
schema MUST be defined in the same CSDL document or included from a directly referenced document.

17.5 TargetPath

Target paths are used in attributes of CSDL elements to refer to other CSDL elements or their nested
child elements.
The allowed path expressions are:

 The QualifiedName of an entity container, followed by a forward slash and the name of a
container child element

 The target path of a container child followed by a forward slash and one or more forward-slash
separated property, navigation property, or type cast segments

Example 90: Target expressions

MySchema.MyEntityContainer/MyEntitySet

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 85

MySchema.MyEntityContainer/MySingleton

MySchema.MyEntityContainer/MyEntitySet/MyContainmentNavigationProperty

MySchema.MyEntityContainer/MyEntitySet/My.EntityType/MyContainmentNavProperty

MySchema.MyEntityContainer/MySingleton/MyComplexProperty/MyContainmentNavProp

17.6 Boolean

One of the literals true or false.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 85

18 Conformance
Conforming services MUST follow all rules of this specification document for the types, sets, functions,
actions, containers and annotations they expose.
Conforming clients MUST be prepared to consume a model that uses any or all of the constructs defined
in this specification, including custom annotations, and MUST ignore any elements or attributes not
defined in this version of the specification.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 85

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 85

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-08-22 Michael Pizzo Translated Contribution to OASIS
format/template

Committee
Specification
Draft 01

2013-04-26 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Simplified annotations, relationships, added
containment, singletons
Added Type Definitions, Edm.Date,
Edm.TimeOfDay, Edm.Duration datatypes.
Retired Edm.DateTime, Edm.Time.
Enhanced ComplexType support
Expanded Service Document
Fleshed out descriptions and examples and
addressed numerous editorial and technical
issues processed through the TC
Added Conformance section

Committee
Specification
Draft 02

2013-07-01 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Restricted services to exactly one entity
container
Simplified function and action overloads
Rounded off annotaitons
Fleshed out containment
Simplified rules for implicit enum member
values
Clarified intention of Partner and
NavigationPropertyBinding
Simplified and completed CSDL for Metadata
Service, added description of behavior

Committee
Specification 01

2013-07-30 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Committee
Specification
Draft 03

2013-10-03 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Changed function overload resolution rules
Improved path expressions for annotations

Committee
Specification 02

2013-11-04 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

OASIS
Specification

2014-02-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Errata 01 2014-07-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Minor changes and improvements

Errata 02 2014-10-29 Michael Pizzo,
Ralf Handl,

Repaired mechanical error in the editable

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

odata-v4.0-errata02-os-part3-csdl-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 85 of 85

Martin Zurmuehl source

ISO/IEC 20802-1:2016(E)

© ISO/IEC 2016 – All rights reserved

ISO/IEC 20802-1:2016(E)

ICS 35.100.70
Price based on 203 pages

© ISO/IEC 2016 – All rights reserved

