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10 SRF operations 
10.1 Introduction 
This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on 
SRF spatial directions. Underlying these operations is the similarity transformation associated with two ORMs. 
Similarity transformations are treated first in 10.3. Then the general case of changing the representation of a 
position as a coordinate in one SRF to its representation as a coordinate in another SRF is specified in 10.4, 
followed by important special cases. The specification of a spatial direction in the context of an SRF is 
defined, and the general case of changing the representation of a spatial direction in one SRF to its 
representation in another SRF is specified (10.5). 
Euclidean distance in 2D and 3D object-space is specified in 10.6. Distance and azimuth on the surface of an 
oblate ellipsoid (or sphere) is specified in 10.7. Vertical offset is defined in 9.3. 

10.2 Notation and terminology  
An important category of spatial operations is changing spatial information represented in one SRF to spatial 
information represented in a second SRF. For this category of operations, the adjective “source” shall be used 
to refer to the first SRF, and the adjective “target” shall be used to refer to the second SRF. 
The notation in Table 10.1 is used throughout this clause. 

Table 10.1 — Notation 
Notation Description 

ORMS Source ORM 
ORMT Target ORM 
ORMR Reference ORM for a given spatial object 
HSR Reference transformation from ORMS to the reference ORMR 
HTR Reference transformation from ORMT to the reference ORMR 
HST Similarity transformation from the embedding of ORMS to ORMT 
SRFS Source SRF based on ORMS 
SRFT Target SRF based on ORMT 
SRFL The local tangent frame SRF at a coordinate (See 10.5.2) 
CSS CS of SRFS 

CST CS of SRFT 

SG  Generating function of CSS 
1

T
−G  Inverse generating function of CST 

Sc  Coordinate of a spatial position in SRFS 

Tc  Coordinate of a spatial position in SRFT 

Sn  Direction vector in SRFS (See 10.5.2) 

Tn  Direction vector in SRFT (See 10.5.2) 
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10.3 Operations on ORMs 

10.3.1 Introduction 
The similarity transformations HST between source/target pairs ORMS and ORMT underlie the coordinate 
operations in 10.4. Given a set of n ORMs there are n(n-1) such source and target ORM pairs. Instead of 
specifying the full set of similarity transformations, this International Standard reduces the requirement to 
specifying the reference transformation HSR from each object-fixed source ORMS to the reference ORMR for a 
given object. This subclause specifies the methods of expressing a similarity transformation HST in terms of 
the reference transformations for the source and target ORMs. The cases of ORMs for a single object are 
treated in 10.3.2. The more general cases in which ORMS and ORMT are ORMs for different objects are 
treated in 10.3.3. 

10.3.2 ORMs for a single object 
If ORMS is an object-fixed ORM, its reference transformation HSR may be specified as a seven-parameter 
transformation in the 3D case (see 7.3.2) and a by four-parameter transformation in the 2D case (see 7.3.3). 
The general form of HSR in the 3D case is given by Equation (7). The form in the 2D case is similar. As vector 
operations, they are in the form of a scaled invertible matrix multiplication followed by a vector addition. This 
form of vector operation is an invertible affine transformation. In the 3D case using the notation of Equation 
(5): 

 
( )SR SRSR

R S SR S

1
x x x x
y y y s y
z z z z

  ∆               = ≡ ∆ + + ∆                 ∆        
H T  

(7) 

NOTE   The processes by which ORMs for the Earth are established are based on physical measurements. These 
measurements are subject to error and therefore introduce various types of relative distortions between ORMs. Equation 
(7) is based on the assumption that positions in object-space are error free and the equation includes no compensation for 
these distortions.  

The reference transformation HTR from ORMT to ORMR is similarly specified. An important operation is the 
similarity transformation HST from ORMS to ORMT, when neither the source nor the target is necessarily the 
reference ORM. The HST transformation may be expressed as the composition of HSR  with 1

TR
−H  (the inverse 

of HTR) as in Equation (8) (see Figure 10.1): 
 1

ST TR SR
−

=H H H�  (8) 

 

Figure 10.1 — Composed transformations 
The inverse operation 1

TR
−H  is also an affine transformation: 

ORMS 

ORMR 

ORMT 

HTR-1
 HSR 

HST = HTR-1°HSR 
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 ∆    −    = ∆ +    + ∆ + ∆    ∆    
∆      = ∆ +   + ∆   ∆   

H T

T T

T

 

Because the matrix TRT  is a rotation matrix, its transpose 
TR
TT  is also its inverse 1

TR
−T . Its inverse is also the 

matrix RTT  corresponding to the reverse rotations of ORMT with respect to ORMR. In particular: 
   1

RT TR TR
−

= =T T TT  
and 

   ( )
-1
TR RT

TR
R RT R

1
1

x x x
y y y

s
z z z

  ∆           = ∆ +      + ∆       ∆      
H T . 

The composite operation 1
ST TR SR

−

=H H H�  reduces to: 
 

( )
( )

1
ST TR SR

S S

SR
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TR
ST S

1
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z z
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y y
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−

            =                  
∆   + ∆   = ∆ +   + ∆   ∆   

H H H

T

�

 

(9) 

where: 

   
( )

ST RT SR

RT
TR

ST RT SR

,  and

1 .1
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y y y

s
z z z

=
∆ ∆ ∆          ∆ = ∆ + ∆     + ∆     ∆ ∆ ∆     

T T T

T
 

 
If the rotation parameters are equal, then STT  is the identity matrix, and if R Ts s∆ = ∆ , HST simplifies to a 
translation of the origin: 

   ST

S ST S

x x x
y y y
z z z

  ∆           = ∆ +             ∆      
H . 

Equation (8) and Figure 10.1 also apply to the 2D case. 
If the source ORMS is a time-dependent ORM for a spatial object, ORMS(t) shall denote the ORMS at time t, 
and ( )SR tH  shall denote the similarity transformation from the embedding of ORMS(t) to the embedding of the 
object-fixed reference ORMR. If the similarity transformation ( )SR tH  can be determined, it is a time-dependent 
affine transformation. For a fixed value of time t0, Equation (8) and Figure 10.1 generalize to 
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( ) ( )1
ST 0 TR SR 0t t−

=H H H� . The generalizations to a time-dependent target ORMT(t) are ( ) ( )1
ST 0 TR 0 SRt t−

=H H H�  
and ( ) ( ) ( )1

ST 0 TR 0 SR 0t t t−

=H H H�  for the ORMS static and time-dependent cases, respectively. 

EXAMPLE   ORMS(t) is the ORM EARTH_INERTIAL_J2000r0 at time t. ORMR is the Earth reference ORM 
WGS_1984. Because ORMS(t) and ORMR share the same embedding origin, the ( )SR tH  transformation is a (rotation) 
matrix multiplication operation (without vector addition). The matrix coefficients for selected values of t account for polar 
motion, Earth rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly 
by the International Earth Rotation Service (IERS) [IERS] (see 7.5.2). See Annex B for other examples of dynamic ORM 
reference transformations. 

10.3.3 Relating ORMs for different objects 
If a spatial object S exists in the space of another spatial object T, and if ORMR is the reference ORM for 
object T, and if the two objects are fixed with respect to each other, then HSR shall denote a similarity 
transformation from the embedding of ORMS to the embedding of ORMR. HSR is an affine transformation. If 
ORMT is an object-fixed ORM for the object T then HST is given by Equation (8). The time dependent 
generalizations of Equation (8), defined in 10.3.2, are also applicable to this case. 
EXAMPLE   ORMS is an ORM for the space shuttle (as a spatial object). ORMR is the Earth reference 
ORM WGS_1984. When in orbit at time t, ( )SR tH  transforms positions with respect to ORMS to positions with respect to 
ORM WGS_1984. 

If the object-space of S and the object-space of T do not share locations or are otherwise unrelated, a 
similarity transformation between ORMs for the respective object-spaces is not defined. An abstract object S 
and a physical object T is an important instance of this case (see 10.4.6). However, if HSR is an invertible 
affine transformation between ORMS and the reference ORM for T, then, given an object-fixed ORM for object 
T, ORMT, Equation (8) may be used to define an invertible affine transformation HST, from ORMS to ORMT. 

10.4 Operations to change spatial coordinates between SRFs 

10.4.1 Introduction 
Given a coordinate Sc  in a source SRF, SRFS, and a target SRF, SRFT, the change coordinate SRF 
operation22 computes the corresponding coordinate Tc  in SRFT. The general case of changing the spatial 
coordinate of a location from SRFS to SRFT is presented in formulations in 10.4.2 for time-independent (static) 
and time-dependent ORM relationships. The general case assumes that the source coordinate corresponds to 
a location that exists in both the source and target object spaces. 
In the general case, ORMS and ORMT may differ, and the coordinate systems, CSS and CST, may differ. The 
formulation simplifies in the special case23 for which ORMS = ORMT or, more generally, in the case for which 
the associated normal embeddings match. This case is presented in 10.4.3. In a further specialization of the 
ORMS = ORMT case, it is assumed that CSS and CST are geodetic and/or map projection CSs. These 
assumptions produce further simplifications (see 10.4.4). 

The case for which CSS = CST and ORMS and ORMT differ24 does not generally produce a computational 
simplification of the general case. However, when both the source and target SRFs are based on the CS 
LOCOCENTRIC_EUCLIDEAN_3D, a simplification is produced and is presented in 10.4.5. This case is 
important for operations on directions (10.5.4). 

                                                      
22 ISO 19111 defines this case as a coordinate operation. 
23 ISO 19111 defines this case as a coordinate conversion.  
24 ISO 19111 defines this case as a coordinate transformation. 
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An extension of the change SRF operation to the case of unrelated source and target object-spaces is 
presented in 10.4.6 for linear SRFs. In that case, the ORM transformation is only restricted to an invertible 
affine transformation.  

10.4.2 Change coordinate SRF operation 
SRFS and SRFT are two object-fixed SRFs for a spatial object and p is a point in object-space that is in the 
coordinate system domains for both SRFs. Sc  denotes the coordinate of p in SRFS, and Tc  denotes the 
coordinate of p in SRFT. The determination of Tc  as a function of Sc  is an operation on the SRF pair (SRFS, 
SRFT). The most general form of the operation is: 

 ( )-1
T T ST S S=c G H G c� �  (10) 

where: 

   
S S

ST S T

T T

 is the CS generating function of SRF , 
is the embedding transformation from ORM  to ORM , and

 is the CS generating function of SRF .

G
H
G

 

See Figure 10.2. CS generating and inverse generation functions are specified in Clause 5. 

 

Figure 10.2 — Change coordinate SRF operation 
Equation (10) is known as the Helmert transformation when HST is approximated with the Bursa-Wolfe 
equation (see Annex B). 
In the time-dependent case, Equation (10) may be generalized to: 
   ( ) ( ) ( )-1

T T ST S St t=c G H G c� � . 
EXAMPLE 1 If SRFS and SRFT are two celestiodetic SRFs for the same spatial object with different ellipsoid RDs, 
Equation (10) transforms the coordinate ( )hλ ϕ= S S SS , ,c  with respect to one oblate ellipsoid to ( )hλ ϕ= T T TT , ,c  with 
respect to the other oblate ellipsoid. 

NOTE   A transformation between two celestiodetic SRFs for the spatial object Earth is known as a horizontal datum 
shift. A number of numerical approximations developed to implement this operation have been published. Under the 

SRFS SRFT 

cS cT 

ORMS ORMT 

GS 

HST 

G -1T 

change cS to cT operation 
G -1T ° HST ° GS 
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assumption of zero rotations and no scale differences ( 1 2 3 0 and 0sω ω ω= = = ∆ = ), a widely used approximation25 to 
directly transform ( )hλ ϕ= S S SS , ,c  to ( )hλ ϕ= T T TT , ,c , is the standard Molodensky transformation formula [83502T] as 
follows: 

   
h h h

λ λ λ
ϕ ϕ ϕ

∆          = + ∆          ∆     T S

 

where: 

   

( )( )

( ) ( )( )
( )( ) ( )( )( )

( )( ) ( ) ( )

x y
R h

x y z
a R aR h

f R a b R b a
x y zh a a R f b a R

a

λ λλ ϕ ϕ
ϕ λ ϕ λ ϕ

ϕ ϕ ε ϕ ϕϕ
ϕ ϕ ϕ ϕ

ϕ λ ϕ λ ϕ
ϕ ϕ ϕ

−∆ + ∆∆ = +
 −∆ − ∆ + ∆   ∆ = + ∆   +    + ∆  

∆ + ∆ + ∆  ∆ =  − ∆ + ∆  
∆ =

N

2
N

N

N M

2
N N

sin cos
cos

sin cos sin sin cos
1 sin cos

sin cos
cos cos cos sin sin

sin
difference i

f∆ =
n ellipsoid major semi-axis from source to target

difference in ellipsoid flattening from source to target

 

The quantities ( ) ( )a b R Rε ϕ ϕ2
N M, , , , and  are defined in Table 5.6.  

Equation (10) is only defined for a value of Sc  in the CSS domain if its corresponding position belongs to the 
CST range. If -1

sD  is the domain of the inverse generating function 1
S
−G  and -1

TD  is the domain of the inverse 
generating function 1

T
−G , Equation (10) is only defined for Sc  in the set: 

 ( )( ) ( ){ }D D D D∩ ≡G H c H G c-1 -1 -1 -1 -1
S S ST T S S ST S S T in | ( )  in  (11) 

 
EXAMPLE 2 SRFS is SRF GEOCENTRIC_WGS_1984 and SRFT is an instance of SRFT MERCATOR, with ORM 
WGS_1984. Equation (10) is not defined for any Sc  that is on the z-axis of SRFS, because the z-axis is not contained in 
the set in Equation (11). 

SRFT may optionally specify a valid-region TV  and may optionally specify an extended-valid region TE  (see 
8.3.2.4). If TD  is the domain of the generating function TG , then T T TV E D⊆ ⊆ . If Equation (10) is defined for 

Sc , Tc  may be valid ( )VcT T is in , or extended valid ( )\E VcT T T is in  or neither. The set of Sc  coordinates for 
which Tc  is valid is: 
  ( )( )( ) ( ) ( ){ }D E D E∩ ≡G H G c H G c G-1 -1 -1

S S ST T T S S ST S S T T in | ( )  in  
where: 
  ( ) { }E D E−

≡G p G p-1 1
T T T T T in | ( ) in . 

In applications that functionally conform to an SRM profile, the domain of an SRF operation is restricted to the 
accuracy domain of the SRF as specified by that profile (see Clause 12). 

                                                      
25 Historically it was thought that these approximations would require less computation than direct conversion. The 
perceived computational advantage may have been overcome by technology advances. New efficient algorithms for 
converting celestiocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster 
transformations without the attendant loss of accuracy. 
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10.4.3 The matched normal embeddings case 
If both ORMs are the same23, or, more generally, if the corresponding parameters of the seven-parameter 
reference transformations of ORMS and ORMT match, STH  is the identity transformation. Consequently, 
Equation (10) simplifies to: 

 ( )-1
T T S S=c G G c� . (12) 

EXAMPLE 1 If SRFS is a celestiodetic SRF (see 8.4) and SRFT is the celestiocentric SRF for the same ORM 
(ORMS = ORMT), then -1

TG  is the identity and Equation (12) reduces to the geodetic generating function: ( )T S S=c G c . 

EXAMPLE 2 If SRFS is an induced surface celestiodetic SRF (see 8.4) and SRFT is the 3D celestiodetic SRF for the 
same ORM (ORMS = ORMT), Equation (12) changes ( )λ ϕ=S ,c  from a coordinate of CS type surface to ( )λ ϕ=T , ,0c  a 
coordinate of CS type 3D.  

If SRFT is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF 
(see 8.4), and SRFS is the induced zero height surface SRF, the promotion operation converts a surface 
coordinate Sc  in SRFS to a 3D coordinate in SRFT by setting the 1st and 2nd coordinate-components of Tc  to 
the 1st and 2nd coordinate-components of Sc  and setting the 3rd coordinate-component, ellipsoidal height, to 0. 
Coordinate promotion is a special case of Equation (12). Applicable SRFs include those based on SRFT 
CELESTIODETIC, PLANETODETIC, and all map projection SRFTs  
EXAMPLE 3 Reversing the roles of source and target SRFs in Example 2, if SRFS is a celestiodetic 3D SRF and SRFT 
is the (induced) surface celestiodetic SRF for the same ORM, Equation (12) is not defined for ( )hλ ϕ=S , ,c , unless 0h = . 
Equivalently, only coordinates of the form ( )λ ϕ=S , ,0c  belong to the set in Equation (11). Coordinates in SRFS that are 
not on the oblate ellipsoid (or sphere) RD instance surface, can be projected to the surface along a coordinate curve by 
setting 0h = . 

If SRFS is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF 
(see 8.4), and SRFT is the induced zero height surface SRF, the truncation operation converts a 3D 
coordinate Sc  in SRFS to a surface coordinate Tc , by setting the 1st and 2nd coordinate-components of Tc  to 
the 1st and 2nd coordinate-components of Sc . The point in object-space corresponding to Sc  and the point in 
object-space corresponding to Tc  are not the same point unless 0h = . Truncation, therefore, does not 
generally preserve location. 

10.4.4 Map projection SRF and celestiodetic SRF with matched normal embeddings case 

The CS generating function MPG  for a map projection SRF (or, respectively, an augmented map projection 
SRF) is implicitly defined (see 5.8.2 or, respectively, 5.8.6) by the composition of the generating function for 
the surface geodetic CS (respectively, the geodetic 3D CS) GDG  with the inverse mapping equations 

( )1 2,Q Q≡Q  (respectively, ( )1 2, ,Q Q h≡Q ) as: 
   MP GD=G G Q� . 
If SRFS and SRFT are map projection SRFs for the same object, and the corresponding seven parameters of 
their reference transformations match, then Equation (12) becomes: 

 ( ) ( ) ( )
( )

1
T , T T , S S S

1
T , T , S S S

GD GD

GD GD

−

−

=

=

c G Q G Q c
P G G Q c

� � �

� � �

 
(13) 

for: 
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S S

, S S

T T

T

: inverse mapping equations for SRF ,
: generating function for the surface geodetic (respectively, the geodetic 3D) CS for SRF ,
: inverse mapping equations for SRF ,
: mapping equations for SRF

GD

Q
G

Q
P T

, T T

,  and
: generating function for the surface geodetic (respectively, the geodetic 3D) CS for SRF .GDG

 

Furthermore, if ORMS = ORMT, then , S , TGD GD=G G  and Equation (13) simplifies to: 
 ( )T T S S=c P Q c� . (14) 

NOTE   If SRFS is a map projection SRF, and SRFT is the corresponding augmented map projection SRF based on the 
same ORM, then Equation (14) is equivalent to the promotion operation (see 10.4.3). 

If SRFT is a celestiodetic SRF and ORMT = ORMS, Equation (13) simplifies to: 
   ( )T S S=c Q c . 
Similarly, if SRFS is a celestiodetic SRF and ORMT = ORMS, Equation (13) simplifies to: 
   ( )T T S=c P c . 
10.4.5 Linear orthonormal 3D SRF to linear orthonormal 3D SRF cases 

The special case of source and target SRFs based on the CS LOCOCENTRIC_EUCLIDEAN_3D is important 
for the treatment of directions (see 10.5). Every linear orthonormal CS may be viewed as an instance of a CS 
LOCOCENTRIC_EUCLIDEAN_3D. If SRFS and SRFT are two SRFT LOCOCENTRIC_EUCLIDEAN_3D 
based SRFs (see Table 8.11), then the SRF pair operation on ( )u v w=cS , ,  is determined by substituting the 
CS LOCOCENTRIC_EUCLIDEAN_3D (see Table 5.9) generating function LE3DF  and its inverse 1

LE3D
−F  in 

Equation (10). If vectors , ,q r s  are the CS binding parameters for the SRFT 
LOCOCENTRIC_EUCLIDEAN_3D based SRF, LE3DF  may be expressed in the form of the affine 
transformation: 

   

( )LE3D LE3D

1 1 1

2 2 2

3 3 3

u

v

w

u v w

r s t

u r v s w t

r s t

  =    
= + + +

          = + + +               
= +

F c F

q r s t

q

q R c

 

where: 

   
( )

1 1 1

2 2 2

3 3 3

, and

.
r s t

r s t

r s t

= ×
  =    

t r s

R
 

The inverse generating function is expressed as: 

   1
LE3D

T
u u

v v

w w

−

            = −                  
F R q  

where: T  is the transpose of .R R  
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If vectors S S S T T T, , , , , and q r s q r s  are the CS binding parameters for SRFS and SRFT respectively (see Table 
8.11), then substituting the expression in Equation (9) for HST, Equation (10) specializes to: 

 ( )
( )( )

( )
( )

( )
( )

1
T LE3D, T ST LE3D, S S

T ST S S S T

SR SR
T ST S T T ST S S

TR TR
ST

T

T T1 1 .
1 1

x
s s

y
s s

z

−=
= + −

    + ∆ + ∆  = + − +     + ∆ + ∆     

c F H F c
R H q R c q

R T q q R T R c

� �

 
(15) 

In the case that the corresponding seven parameters of the reference transformations of ORMS and ORMT 
match, Equation (12) specializes to Equation (16): 

 
 ( )

( )
1

T LE3D, T LE3D, S S
T T
T S T T S S

−=

= − +

c F F c
R q q R R c

� . 
(16) 

 
10.4.6 Changing abstract space linear SRF coordinates to a linear SRF in the space of another object 
Engineering designs and other abstract models are often intended for realization in the physical world.  
EXAMPLE   A building plan is designed in the source SRFS, an abstract space LOCAL_SPACE_RECTANGULAR_3D 
SRF. A terrestrial site survey establishes the origin of the target SRTT, a LOCAL_TANGENT_SPACE_EUCLIDEAN SRF. 
Source coordinates are identified to target coordinates by: ( ) ( )( )x y z s x y z= + ∆T T T S S S, , 1 , ,  where ( )1 s+ ∆  is a scale 
factor. 

More generally, abstract models are scaled, rotated, or otherwise transformed by an invertible matrix 3x3 W 
before a source coordinate is identified to a target coordinate.  In many application domains, this similarity 
transformation is in the form: 

 
T S

x x x
y y k y
z z z

∆

∆

∆

          = +               
W  

where (1 )k s= + ∆  is the scale factor and ( )x y z∆ ∆ ∆  is the translation displacement vector and W  is a 
rotation matrix. In the computer graphics application domain this transformation is often represented in matrix 
4x4 form: 

 
11 12 13

11 12 13
21 22 23

21 22 23
31 32 33

31 32 33
T S

, where .

1 0 0 0 1 1

x a a a x x a a ay a a a y y a a a kz a a a z z a a a

∆

∆

∆

                   = =                         
W  

This identification that the transformation makes between source and target coordinates may be viewed as a 
change coordinate SRF operation from Sc  in SRFS, an abstract space LOCAL_SPACE_RECTANGULAR_3D 
SRF, to a coordinate Tc  in SRFT, a physical world LOCOCENTRIC_EUCLIDEAN_3D  SRF. 

In the notation of 10.4.5:  
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   ( )
( )

S S S S

T T T T T

, and
.

=

= +

G c R c
G c q R c  

Define an invertible affine transformation STH  as ( )ST T T= +H v q R Wv  (see 10.3.3). Substitute this STH  in 
Equation (10) and simplify: 
 ( )

( )( )
( )

-1
T T ST S S

T ST S S T

T T T S S T

S S

T

T

=

= −

= + −

=

c G H G c
R H R c q
R q R WR c q
WR c

� �

 

(17) 

This illustrates that the identification T S S=c WR c  may be viewed as a change coordinate SRF operation. 

NOTE   Equation (17) illustrates that digital graphic composite pattern modelling techniques such as SceneGraph trees 
that use scale and rotation matrices W together with translation operations at each tree node are special cases of Equation 
(10). See also 10.5.4 Example 2. 

10.5 Spatial directions and change SRF operations on directions 

10.5.1 Introduction 
In 3D position-space, a direction is unambiguously specified by a unit vector. The direction specified is 
translation independent. This is illustrated by lines through points in a given direction n (see A.7.1.1 
Example 1). All such lines are parallel. This translation invariance carries over to the coordinate-space of a 
linear CS, but not to other CSs with vector space structure. In particular, an augmented map projection 
inherits the vector space structure of 3D Euclidean coordinate-space, but the “up pointing” vector n = (0, 0, 1) 
points in different spatial directions (in position-space) depending on the map coordinate location from which n 
is viewed.  

 

Figure 10.3 — Coordinate-space and position-space directions compared 
In Figure 10.3, distinct position points p and q on the ellipsoid surface are projected to augmented map 
coordinates (s, t, 0) and (u, v, 0). Starting at these map coordinates, the coordinates one unit away in direction 
n are (s, t, 1) and (u, v, 1) respectively. In an augmented map projection, these coordinates correspond to the 
position-space points p' and q'. The direction from p to p' is not the same as the direction from q to q'. It is 
noted in 5.8.6.2 that augmented map projections are not vertically conformal, therefore angular relationships 
of spatial directions are generally not preserved by augmented map projections.  

(s, t, 0) coordinate-space 

position-space 
 p 

 p' q' 

q 

(s, t, 1) (u, v, 1) 

(u, v, 0) 
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A linear CS will not preserve angular relationships between directions unless the CS is also orthonormal. In an 
SRF based on a linear orthonormal CS, the translation invariant vector space structure of the abstract CS 
carries over to the spatial CS because the underlying normal embedding preserves angles and distances. 
The coordinate-space of a curvilinear CS does not have a linear vector space structure so there is no natural 
way to specify a translation invariant direction with curvilinear coordinates. An SRF based on a curvilinear CS 
requires a uniform method for associating a unique linear orthonormal CS based SRF to each coordinate in 
the interior of the CS domain. This association is defined in 10.5.2. 

10.5.2 Specification of direction 

In this International Standard, a direction in a 3D orthogonal26 SRFS is expressed as a combination of a unit 
vector and a reference coordinate. The unit vector is in a 3D linear orthonormal SRF, denoted by SRFL. If 
SRFS is curvilinear, SRFL is uniquely defined for each reference coordinate using the unit tangent vectors to 
the coordinate-component curves at the reference coordinate. These vectors are used as SRF parameters for 
SRFT LOCOCENTRIC_EUCLIDEAN_3D with ORMS to specify SRFL. SRFL is termed the local tangent frame 
at the reference coordinate. 
The same definition is applicable if SRFS is linear. In the linear case, SRFL at reference coordinate (0, 0, 0) 
coincides with SRFS as a spatial CS. Also in the linear case, the unit vector representing the direction is 
independent of the reference coordinate used. The linear case includes SRFs that are based on SRFTs 
CELESTIOCENTRIC, LOCAL_TANGENT_SPACE_EUCLIDEAN, LOCOCENTRIC_EUCLIDEAN_3D, and 
LOCAL_SPACE_RECTANGULAR_3D.  
Given a coordinate c = (u0, v0, w0) in the interior of the domain of a 3D orthogonal SRFS, the local tangent 
frame at coordinate c, SRFL, is the SRF specified by the SRFT LOCOCENTRIC_EUCLIDEAN_3D with ORMS 
and the following SRF parameters: 

 ( )0 0 0

1

1

2

2

, , ,

, and

u v w=

=

=

q G
vr v
vs v

 

(18) 

where: 

  

( )
( )

1
1

2
2

st
1 0 0 0

nd
2 0 0 0

0

0

d ,d
d ,d
 is the 1  coordinate-component curve at , , , and
 is the 2  coordinate-component curve at , , .

u u

v v

u

v

u v w

u v w

=

=

 =   
 =   

Cv

Cv

C

C

 

 
The vectors r and s are termed the local tangent vectors at c. Coordinate-component curves are defined in 
5.5.3.  
NOTE 1 The tangent vector to the 3rd coordinate-curve at (u0, v0, w0) points in the same direction as the vector 
= ×t r s  because of the coordinate-component ordering restriction specified in 5.6.4. 

A direction in an orthogonal CS based SRFS shall be comprised of: 
a) a coordinate c in the interior of the CS domain of SRFS, and 
b) a unit vector n in the local tangent frame at c. 

                                                      
26 All of the 3D SRFTs in this International Standard are based on orthogonal CSs. 
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The coordinate c is termed the reference coordinate of the direction and its corresponding position is termed 
the reference position for the direction. The vector n is termed the direction vector at c.  
NOTE 2 The local tangent frame at a coordinate is an instance of the SRFT LOCOCENTRIC_EUCLIDEAN_3D that 
provides a vector space setting for vector operations on direction vectors at c. 

EXAMPLE 1 If SRFS is a LOCOCENTRIC_EUCLIDEAN_3D SRF with SRF parameters q, r and s, and c is an SRFS 
reference coordinate, then local tangent vectors at c are equal to the SRF parameters r and s. If c = (0,0,0), then SRFL = 
SRFS. 

EXAMPLE 2 SRFS is an EQUATORIAL_INERTIAL SRF. This SRF is based on the EQUATORIAL_SPHERICAL CS. If 
( )0 0 0, ,λ θ ρ=c  is a reference coordinate, then the local tangent vectors at c are: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 2

1 2

1
1 0 0 0 0 0 0

0 0 0 0 0 0

1
0 0

1

2
2 0 0 0 0 0

00

00

 and 

where:
d d cos cos , cos sin , sind d

cos sin , cos cos , 0 ,

sin , cos , 0 ,

d d cos cos , cos sin , sind d

λ λλ λ

θ θθ θ

ρ θ λ ρ θ λ ρ θλ λ
ρ θ λ ρ θ λ

λ λ

ρ θ λ ρ θ λ ρ θθ θ

==

==

= =

   = =      
= −
= −
   = =      

= −

v vr s
v v

Cv

v
v

Cv

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 0 0 0 0 0 0 0

2
0 0 0 0 0

2

sin cos , sin sin , cos ,  and

sin cos , sin sin , cos .

ρ θ λ ρ θ λ ρ θ

θ λ θ λ θ

−
= − −v

v

 

EXAMPLE 3 SRFS is a CELESTIODETIC SRF. This SRF is based on the GEODETIC CS. If ( )hλ ϕ= 0 0 0, ,c  is a 
reference coordinate, then the local tangent vectors at c are: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )λ λ ϕ λ ϕ λ ϕ= − = − −0 0 0 0 0 0 0sin , cos , 0 , and sin cos , sin sin , cos .r s  
The vector ( )0 0 0 0 0cos cos , sin cos , sin .λ ϕ λ ϕ ϕ= × =t r s   

In this example, SRFL is an LOCAL_TANGENT_SPACE_EUCLIDEAN SRF with SRF parameters 
0 0 F F 0, , 0, 0, andλ λ ϕ ϕ α= = = = =x y h . 

EXAMPLE 4 SRFS is based on a conformal map projection CS. If ( )0 0 0, ,u v h=c  is a reference coordinate, and ( )hλ ϕ0 0 0, ,  
is the corresponding celestiodetic coordinate, then the local tangent vectors at c are: 

( )
( )

( )

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

sin cos cos sin sin , cos cos sin sin sin , cos sin ,  and
sin sin cos sin cos , cos sin sin sin cos , cos cos

where:
,   the convergence of the meridian.

λ γ λ ϕ γ λ γ λ ϕ γ ϕ γ
λ γ λ ϕ γ λ γ λ ϕ γ ϕ γ

γ γ λ ϕ

= − + + −

= − − −

=

r

s  

In this example, SRFL is an LOCAL_TANGENT_SPACE_EUCLIDEAN SRF with SRF parameters 
λ λ ϕ ϕ α γ= = = = =0 0 0 F F 0, , , 0, andx y h . 

10.5.3 Changing the reference coordinate of a direction 
Given a direction represented with direction vector n1 at c1, the same direction may be represented at another 
reference coordinate c2 in the same SRF, with direction vector n2. The direction vector n2 is computed as: 
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( )
( ) ( )

2 2 1 1

,1 ,1 ,1

,2 ,2 ,2

,3 ,3 ,3

2 2

,1 ,2 ,3

,1 ,2 ,3 ,1 ,2 ,3

T

T

where: for 1, 2,

,

the transpose of ,
,  and

 and  are the local tangent vectors at .

i i i

i i i i

i i i

i i i i i i

i i i i i i i i i

i
r s t
r s t
r s t

t t t

r r r s s s

=
=

  =    
=
= × =
= =

n R R n

R

R R
t r s

r s c

 

(19) 

 
The local tangent vectors are computed as in Equation (18). Equation (19) is derived from Equation (16) by 
dropping the translation term since directions are translation invariant. 

If the SRF is based on a linear CS, then the matrix 2 1
TR R  in Equation (19) is the identity matrix and n1 = n2. 

This implies that in an SRF based on a linear orthonormal CS, a direction vector is independent of the 
reference coordinate. Thus, Equation (19) is only of interest in the case of a curvilinear SRF. 

10.5.4 Changing the SRF representation of a direction 
Given a direction represented with direction vector nS at cS in SRFS, the same direction may be represented at 
reference coordinate cT, with direction vector nT in SRFT. If HST is the similarity transformation from ORMS to 
ORMT and TST is the matrix in the last term in Equation (15), then the direction vector nT is computed as: 

 

 

( )
( ) ( )

T T ST S S

,1 ,1 ,1

,2 ,2 ,2

,3 ,3 ,3

T T

,1 ,2 ,3

,1 ,2 ,3 ,1 ,2 ,3

T

T

where: for S or T,

,

the transpose of ,
,  and

 and  are the local tangent vectors at

i i i

i i i i

i i i

i i i i i i

i i i i i i i i

i
r s t
r s t
r s t

t t t

r r r s s s

=
=

  =    
=
= × =
= =

n R T R n

R

R R
t r s

r s  .ic

 

(20) 

 
Equation (20) is derived from Equation (15) by dropping the translation term since directions are translation 
invariant and dropping the scale factor ( ) ( )SR TR1 1s s+ ∆ + ∆ since nT is a unit vector. 

EXAMPLE 1 SRFS is SRF GEODETIC_WGS_1984 and SRFT is SRF GEOCENTRIC_WGS_1984. With SRFS 
reference coordinate ( ) ( )λ ϕ= = − π + πS , , 0 77 180, 38,88 180, 0c , the Washington monument, an obelisk, points 
approximately in the direction ( )S 0, 0, 1=n  at cS. In this example, ORMS = ORMT so that TST is the identity matrix, and 
because SRFT is based on SRFT CELESTIOCENTRIC, TR  is also the identity matrix. Consequently Equation (20) 
reduces to: 

  
S,1 S,1 S,1

T S S S,2 S,2 S,2 S

S,3 S,3 S,3

0
0 .
1

r s t

r s t

r s t

    = = =      
n R n t  

Then using the expression in 10.5.2 Example 3 for t:  
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( )

( ) ( ) ( ) ( ) ( )( )
( )

λ ϕ λ ϕ ϕ=

= − π π − π π π

= −

S 0 0 0 0 0cos cos sin cos sin
cos 77 180 cos 38,88 180 sin 77 180 cos 38,88 180 sin 38,88 180
0,175 115 92 0,758 510 36 0,627 69136 .

t

 

So that the direction vector in SRF GEOCENTRIC_WGS_1984 is ( )T 0,175 115 92 0,758 510 36 0,627 69136= −n . 

The case of changing an abstract space linear SRF direction vector nS to a direction vector nT in a linear SRF 
in the space of another object is based on Equation (17). In the notation of 10.4.6:  

  T S S
1

=n WR n
W

. (21) 

 
Since a direction vector is a unit vector, division by the determinant cancels any scaling by matrix W. RS is a 
rotation matrix and therefore its determinant is 1. 
EXAMPLE 2 In ISO/IEC 18023-1 (see I18023-1), if an instance of the class <DRM Geometry Model Instance> has a 
component of class <DRM World Transformation>, that component specifies an invertible matrix W and a coordinate c in 
the <DRM Environment Root> SRF. If cS and nS are a reference coordinate and a direction vector in an associated 
LOCAL_SPACE_RECTANGULAR_3D <DRM Geometry Model>, and SRFT is the local tangent frame at c, then Equation 
(17) and Equation (21) may be used to compute cT and nT, respectively. The methods of 10.4.3 may be used to further 
change cT from SRFT to the <DRM Environment Root> SRF. This procedure to change <DRM Geometry Model> 
coordinates and directions to the environment root SRF is termed "model instancing".  

10.6 Euclidean distance 
This International Standard supports an operation to return the Euclidean distance between two object-space 
locations using the coordinates of those locations in an SRF. 
If c1 and c2 are two coordinates in an SRF, and if G is the generating function of the CS of the SRF, the 
Euclidean distance dE between the corresponding points in object-space is given by: 
  ( ) ( ) ( )( )d d=c c G c G cE 1 2 1 2, ,  
where d is the Euclidean metric. 
10.7 Geodesic distance and azimuth on an oblate ellipsoid 

10.7.1 Introduction 

This International Standard supports the geodesic distance and azimuth operations for SRFs that have 
ellipsoidal height designated as the vertical coordinate-component (see 8.4). These SRFs include those based 
on SRFT CELESTIODETIC, PLANETODETIC, and all map projection SRFTs. 
The zero vertical coordinate-component surface for such an SRF is an oblate ellipsoid. Two distinct points on 
the surface of the oblate ellipsoid are connected by a surface curve called a geodesic as defined in A.7.3. The 
distance along the curve between the two points is called the geodesic distance. At each point, the angle 
between the geodesic and the meridian at the point as defined in 5.8.3.4 is the azimuth at the point with 
respect to the other point. The operations to return the geodesic distance and azimuths given the surface 
coordinates of the points are supported in the API. 
10.7.2 Geodesic distance 

For an oblate ellipsoid, a geodesic does not, in general, lie completely in any single plane [RAPP1] [RAPP2]. If 
(λ1, ϕ1) and (λ2, ϕ2) are the surface celestiodetic coordinates of two points lying on the oblate ellipsoid, dG((λ1, 
ϕ1), (λ2, ϕ2)) denotes the geodesic distance between the points.  On a sphere, the value of dG ((λ1, ϕ1), (λ2, ϕ2)) 
may be computed using the methods of spherical trigonometry. However, in the general case of an oblate 
ellipsoid, closed form solutions typically involve elliptic integrals that usually require numerical approximation.  
Solutions may also be approximated using a variety of techniques including iterative algorithms and/or 
numerical methods for systems of differential equations (see [RAPP2]).  
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In the general case, two surface coordinates c1 and c2 are converted to celestiodetic coordinates using the 
operations defined in 10.4.4. In particular, in the case of a map projection SRF, if Q denotes the inverse 
mapping equations for the SRF, then: 
   ( ) ( )( )G G 1 2, .d d= Q c Q c  

NOTE   The development of approximation equations for Gd  has been the subject of much research. There are 
approximation formulas for the short distance case where Gd  ≤ 200 km, for the medium distance case where Gd  ≤ 1000 
km and for the long lines case where the points are antipodal or near antipodal. Two points on the oblate ellipsoid are 
exactly antipodal when |(λ2 - λ1)| = π and ϕ1 = -ϕ2. There are also special cases when ϕ ϕ=1 2 . A thorough exposition of 
geodesic distance approximations is given in [RAPP1] [RAPP2]. 

10.7.3 Geodetic azimuth 

Geodetic azimuth is defined in 5.8.3.4. On a sphere, a geodesic between two points is an arc of a great circle 
and the problem of computing the angles of a spherical triangle can be solved in closed form. In the general 
case of an oblate ellipsoid, the problem of computing the angles of an elliptical triangle does not have a closed 
solution. Several different approximations are commonly used. 
NOTE   Some algorithms are designed to compute both the geodesic distance and the azimuths associated with two 
points.  
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