ISO/IEC 29341-4-14:2011(E)

ISO/IEC 29341-4-14

Edition 2.0 2011-09

INTERNATIONAL
STANDARD

colour
inside

Information technology — UPnP device architecture —
Part 4-14: Audio Video Device Control Protocol — Level 2 — Scheduled Recording
Service

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2011 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this
publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office

3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

" Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

® |EC Just Published: www.iec.ch/online news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.

" Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.

® Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

IEC ISO/IEC 29341-4-14

Edition 2.0 2011-09

INTERNATIONAL
STANDARD

colour
inside

Information technology — UPnP device architecture —
Part 4-14: Audio Video Device Control Protocol — Level 2 — Scheduled Recording

Service

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION PRICE CODE X F

ICS 35.200 ISBN 978-2-88912-683-5

29341-4-14 © ISO/IEC:2011(E)

CONTENTS

N @ V=T VAT = T A=Y Lo B Yo o] o 1= 8
1 O 1 14 o Yo LU T) o 8
I N Lo = o] P 9
I O I - 1 = T 187 o 1= 9

1.2.2 Strings Embedded in Other Strings ..o 9

1.2.3 Extended Backus-Naur FOIM ..o e 10

I B B L= T g1V 2= To B D T L = T Y/ o =1 PP 10
1.3.1 Comma Separated Value (CSV) LiStS...ccoiiiiiiiiii e 11

1.4 Management of XML Namespaces in Standardized DCPScccooiviiiiiiiiiiiinennns 12
1.4.1 Namespace Prefix ReqUIremMeNntsccoviiiiiiiii e 14

1.4.2 Namespace Names, Namespace Versioning and Schema Versioning 15

1.4.3 Namespace Usage EXampleS....ccoviiiiiii e e e 17

1.5 Vendor-defined EXIENSIONSt 18
1.5.1 Vendor-defined ACtion NamMeES.......ciiiiiiii e ee e 18

1.5.2 Vendor-defined State Variable NamesS........ccocoiiiiiiiiiiiiiiceee 18

1.5.3 Vendor-defined XML Elements and attributes.............cocooveiiiiiiiiiicniiinennns 18

1.5.4 Vendor-defined Property Namesccoiiiiiiiiiii e 18

T = L= = 1= o o - 18
2 Service Modeling DefinitioNS. 22
A A ST =Y Y T = 1Y/ o 1= 22
2.2 Terms and ABDreviations ... 22
2.2. 1 ADDIEVIAtIONS . 22
A Y 00 1Tt 22

2.3 ScheduledRecording Service ArchiteCture........cocoviiiiiiiiiiii e 29
2.3.1 recordSChedUIE ... 29

A T8 = Yo o] o I - 1= 30

2.4 State Variables. ... 31
2.4.1 State Variable OVEIVIEW... ..ot 32

2.4.2 SO CAPADIITIES .oviiii e 32
2.4.3 SOrtLevelCapabilityu. i 32
2.4.4 StAteUPdatelD ...c.ceieiiiii e 33
2.4.5 LASTC AN ciuieiti i 33
246 A ARG TYPE PropertyList ..o 36
247 A ARG TYPE DataTVyPeID .ieuiiuiiiiiiiiiieiei i et ee e e e e e eans 36
2.4.8 A ARG TYPE ODbBJECHID ettt 36
2.4.9 A ARG _TYPE ObJECtIDLISt . cuitiiiiiiiiiii e eae 36
2.4.10 A ARG TYPE Propertylnfo...cccciiiiiiiiii e 36
2.4.11 A ARG _TYPE INUEX titiuitiitiiiiiiiie e e e et e e e et e et e e e e et e e et e eneaaenaen 37
2.4.12 A ARG TYPE COUNu ittt e e e eae 37
2.4.13 A ARG _TYPE SOMCIIEEIIA utvuitiieeiiteiiee e iee e eee e e e ee e e et eeneaaenne 37
2.4.14 A ARG TYPE RecordSchedulecooiiiiiiiiiiiii e 37
2.4.15 A ARG _TYPE RECOIATASK «ivuitiiuiiiitiiiiei i eee e e e e et e e e e aaeae 37
2.4.16 A_ ARG TYPE RecordSchedulePartscccocoiiiiiiiiiiiiiciceeeeeeae 38

2.5 Eventing and MOAerationoouiiiiiii e 39
2.8 AT ON S i e 40

29341-4-14 © ISO/IEC:2011(E)

2.6.1 GetSortCapabilitieS() «uveriieiiiiiie i 40
2.6.2 GEtPIrOPEIIYLIST() «ueueuitinitiie ettt et 41
2.6.3 GEtAIIOWEAVAIUES() tueniririiiiiiiie et e e et eenes 42
2.6.4 GetStateUpPdatelD() vuueeeeeeeeieeiieee e e et e e e e e e e e e 44
2.6.5 BrowseReCcOrdSChedUIES() . iuueieiiteiie i eae 44
2.6.6 BrowSERECOIATASKS() uueuteueuenitiatit ettt e e et e e it ee e 49
2.6.7 CreateRecOrdSChEAUIB() . .iie ittt 50
2.6.8 DeleteRecordSCREUIE() cucu et 53
2.6.9 GetRecordSChedUIB() oo 54
2.6.10 EnableRecordSChedule() ..o 55
2.6.11 DisableRecordSchedule() «iviiiriiiiiii e 56
2.6.12 DeleteRECOIATASK() teutrueuateneit ettt ettt et e et e et e e ae it eae e ennes 57
2.6.13 GEIRECOIATASK() ittt et e e 58
2.6.14 ENaDIERECOIATASK() «uerueuiteneiteiat ettt ettt e e e eeaaennes 59
2.6.15 DisableRECOIATASK() tuivirieiiiiiee et eenes 60
2.6.16 RESEIRECOIATASK() -uuttenitin ittt e eaes 61
2.6.17 GetRecordScheduleCoNTHCIS() vvueureieriiieiie i ee e 62
2.6.18 GetRecOordTaSKCONTHCIS() uvueuireuaeie ettt et e e aeaes 63
2.6.19 CommON Error COUES .vviiiiiiii e 64
2.7 State Diagram Of r€COrdTasK ..oiuiiiiiiiii i 66
2.7.1 A Full-Featured State Diagramc.oeeiiiiiiie e 66
2.7.2 A Minimal-Implementation State Diagramcccoviiiiiiiiiiiiiieieee e 71
2.7.3 recordTask State EXampleooiiiiiiii e 74
2.8 ScheduledRecording Service Priority Model.........cooiiiiiiiiiiie 75
2.8.1 Introduction of the ScheduledRecording Service Priority Model................. 75
2.8.2 Ordered Priority within Each Priority Levelocooviiiiiiiceen 76
2.8.3 Setting the Initial Priority Level of a recordSchedule........c.cooovviviiininnanne. 77

2.8.4 Sorting recordSchedule Instances Based on their Current Priority
Y=Y 1] o 79
2.9 Theory Of OPratiONt 79
P22 R 1 o4 o Yo [T3 § oY o P 79
2.9.2 Checking the Capabilities of a ScheduledRecording Service..................... 79
2.9.3 Adding a Scheduled Recording Entry to the Listcccoooviiiiiiiiii e, 90
2.9.4 Deleting a recordSChedUIEcvuiiriii i 102
2.9.5 Browsing recordSchedule and recordTask instancescccoceevvvennennen. 103
2.9.6 RAUNG SYSTEM L.iiiiiii e 108
2.9.7 Conflict Detection and ReSOIULIONc.oeiiiiiiiii e 109
3 XML Service DeSCHIPIION ...ttt et e 110
N 1 T P 118
Annex A (normative) Srs XML DOCUMENTuiiitii it e e e e aeenas 119
A.1 A ARG TYPE RecordSchedule AVDT XML Document........cccovvviiiiiininniennnnnnns 119
A.2 A ARG TYPE RecordTask AVDT XML DOCUMENT.......ocuviuniiiiiiiiiiieieieieeieenas 120
A.3 A ARG _TYPE RecordScheduleParts AVDT XML Document...........coceevvvvvininnnnns 120
Annex B (normative) AV Working Committee Extended Properties.........ccocoeviiiiiiniiiininanss 122
B.l BaASE PrO IS ittt e 122
2 00 A (2 o PP 122
2 00 0 1 1 = PP 122
B .l 3 ClaS S ittt s 123

B.1.4 additionNalStatUSINTO ...cvii i e 123

29341-4-14 © ISO/IEC:2011(E)

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10

B.11

B.12

B.Ll.5 CASREIEIENCE ittt e 124
o A T0] 41 VA = e oY= 1= 125
2 200t R o o 1 125
= N o [1] =Y o | o] 126
B.2.3 deSitedPriority @ Y PE vt e 128
(@011 o1VL N OF0] o} d o] I od o] o =] o =T 128
B.3.1 recordDestiNatioN ..ooiuirie it e 128
B.3.2 desiredRecOrdQuUAlILYouieieii i 130
Content ldentification Related Propertiescoooviiiiiiiii e 133
B.4.1 scheduledCDSODIECHID ..uiiuiuiriiiiie e e e 133
B.4.2 scheduledChannellDociiuiiiiii e e 134
B.4.3 scheduledStartDaleTime . ..ccuiuir it e e e e e reeaeaas 136
B.4.4 SCheduledDuUrationcuiuiiiiiiii e e 137
B.4.5 scheduledProgramCO0ecoiuiuiuii i 137
Matching Content Criteria Propertiesoouu e 138
B.5.1 MalChiNONAME ...ttt e e e 138
B.5.2 MAtChINGID ..euieiieii e e e 139
Matching Qualifying Criteria Propertiesccviiiiiiii i 140
B.6.1 matchingChannellD........cuiiiiiiiii i e eeeaas 140
B.6.2 matchingStartDate TIMERANGEcciuieii i eeeaas 142
B.6.3 matchingDuUratioNRaANGE.....iuiii i e eeaas 142
B.6.4 matchingRatingLIMILcciiiiii e ee e 143
B.6.5 MatChiNgEPISOUE Ty PO ottt e e aaas 145
Content Control ProPerties ... e 146
B.7.1 totalDesiredRECOIdTaSKS .ivuiuirir it 146
B.7.2 scheduledStartDate TimMEAdJUST ...vvueeieirii i e e eaas 146
B.7.3 scheduledDurationAd USTcuiriiiiiiie e 147
B.7.4 ACHVEPEIIOU. ... e e 147
B.7.5 dUrationLimit.....cieiiii i e 148
B.7.6 channelMigrationc..ouieiiiiiie e e e 149
B.7.7 HMEMIGratioN cov i 149
B.7.8 @llOWDUPD I CALES . e ittt e 150
Storage Related Properties. ..o 150
[0 S 0 A o Y=Y £ 1] (=T | =Y o o o L1 Yo P 150
Schedule State Properties e 152
B.9.1 SChEAUIE SO .. i e e 152
B.9.2 abnormalTasKSE XISt . .uuiuitiiiiie i e 153
SHALISTICS PO PO IES vttt e 153
B.10.1 currentRecordTasSKCOUNTiuiuit ittt et e e e e aaaas 154
B.10.2 totalCreatedReCOINITaSKS .ottt e e e e e e reeaeaas 154
B.10.3 totalCompletedRECOrdTaSKS ...cviiiiiii i e 154
LI Y S 1= =] = U e 0] o =] € == 155
B.11.1 recordScChedUlelDo e 155
B.11.2 recordedCDSODIECHIDuiiiei et 155
Task Content ldentification Propertiescoc.oeeiiiiiiiiiii e 156
B.12.1 taSKCDSODIECHID c.uitiiiiiiii it 156
B.12.2 taSKCRANNEIIDcuiiiiti i e 157
B.12.3 1aSKStArtDalTimME ouiuirieieiiie e e e e e eaas 158

S A = 1o D LU = L0 o 158

29341-4-14 © ISO/IEC:2011(E)

B.12.5 taSKPrOgramMCOde .uuuuiuiiieiiit et e et e et e e e e e et e et e e e e et e e e 159

B.12.6 reCOrdQUAIITY ...uieenieiii e 159

B.13 Task Matched Content Criteria PropertiesS........cooviiiiiiiiii e 161

B.13.1 MatChedNAME. ... e 161

B.13.2 MAtCREAID cuiiiieiii et 162

B.14 Task Matched Qualifying Criteria Propertiescocoviiiiiiiiiiiiiiicci e 163

B.14.1 MatChedRAING . iuienit i e e e e 163

B.14.2 matchedRatiNO@ LY PO . uuie ettt 163

B.14.3 MatChedEDiSOUE T Y PO ittt iee ittt et e e e et ene e 163

B.15 Task Matched Content Control Properties......ccovviiiiiiiiiiiiiieeeeeee e 164

B.15.1 taskStartDate TIMEATUSE. ...t e e e e 164

B.15.2 taSKDUIatiONAGJUSTttt et 164

B.15.3 tasSkDUratioNLimit......cvuieeieiiiieii e e e e e e e e 164

B.15.4 taskDurationLimit@effectcoouiiuiiiii e 165

B.15.5 taskChannelMigrationoiuveeeiie e e e e e e 165

B.15.6 taSKTIMEMIGIation ...cuieee ettt ettt ettt et ee et e e ee e enas 165

B.16 Task State Properties ... 166

B.1B.1 1BSKSIA . uiuiniti it 166

B.17 ContentDirectory Service Imported PropertieS......cc.coviiiiiiiiiiiiiiiiceeeeens 175

Annex C (normative) AV Working Committee Class Definitions.............cccocoveiiiiiiiiiineenns 180

L A O = 11 o 11 - Y o 180

C.1.1 Relationships between Classes and Propertiesccooveiiiiiiiiiiiiininn. 181

C.1.2 recordScheduleParts PropertieS.....ccccciiiiiiiiiee e 182

C.1.3 recordSchedule Propertieso 186

C.1.4 recordTask PropertiesS. ..o e 190

C.2 Class DefiNitIONS ... e 192

(O B o o] =Y o3 G = - 1Y T O = 11 193

C.3.1 object.recordSchedule ClassS......oiuiiiiiiiiii e 194

C.3.2 0DbJect.recOordTask ClasSS. .. ittt e eas 207

Annex D (normative) EBNF Syntax Definitions ..o 209

D I R = o T 41 VS 1 - G 209

D.2 DaAte&LIME SYNMTAX .. ittt ettt ettt ea 209

D.3 Class NAME SYNEAX c.uiuiiitiiiii it e e e et e et e et e eaaenes 209
Annex E (informative) ScheduledRecording Service Relationship to ContentDirectory

Y Y= P 211

Annex F (informative) ScheduledRecording Service Relationship to EPGc.ceei. 212

Annex G (informative) AVDT EXaMPIES ..o e 213

G.1 A ARG _TYPE RecordSchedule AVDT EXamplecocoeviiiiiiiiiiiiiieieceieeeeeeeen 213

G.2 A ARG _TYPE RecordTask AVDT EXample. ..o e 228

G.3 A ARG _TYPE RecordScheduleParts AVDT EXample.....ccoovvviviiiiiiiiieiiiceenen, 244

Figure 1 — Creating a new recordSChedUuleiviuiiniiii e 29

Figure 2 — Capability CheCK. ... 30

Figure 3 — Browse reCordSCREdUIE. ... 30

Figure 4 — Delete a recordSChedUIE. e 30

Figure 5 — A Full-Featured State Diagram........cciiuiiiiiiic e e 67

Figure 6 — A Minimal-Implementation State Diagramccoeoviiiiiii it 72

29341-4-14 © ISO/IEC:2011(E)

Figure 7 — Class hierarchy for the ScheduledRecording Service.ccooceviiiiiniinenenenn, 181
Table 1-1 — EBNF OPOIatOrS ouiuiiiiiii ittt e e e et e et e et e e e e et e e e et e anaaaanns 10
BI= Lo} L= R O VA b q= 1 4] o1 = 11
Table 1-3 — Namespace DefinitioNS ... e 13
Table 1-4 — Schema-related INfOrmMation 14
Table 1-5 — Default Namespaces for the AV Specificationscocooiiiiiiiiinici e, 15
Table 2-1 — ADDIeVIAtIONS 22
Table 2-1 — PropertieS iN XML ... et 25
Table 2-2 — State Variables e 32
Table 2-3 — allowedValueList for the DataTypelD argumentccooviiiiiiiiieiiiienceeceeeeeen, 32
Table 2-4 — Allowed Elements in <StateEvent> Element............ccooiiiiiiiiiiiiiiiiiineen 34
Table 2-5 — Eventing and MoOderationoouiiiiiiiii e e e e e anenes 39
TADIE 256 — ACH ONS et 40
Table 2-7 — Arguments for GetSortCapabilitieS() «.eu e e 40
Table 2-8 — Error Codes for GetSortCapabilitieS() ... eeeeeririeriiiieie e ieie e eeaeeans 41
Table 2-9 — Arguments for GetPropPertyLiSt() ... i e e eeaneans 41
Table 2-10 — Error Codes for GetPropertyLiSt() . v e aeeans 42
Table 2-11 — Arguments for GetAllOWEdValUES() ...uuuieienieiiee e 42
Table 2-12 — Error Codes for GetAlloOWedValueS() ... vueiriiriiiiiiieieiei e 43
Table 2-13 — Arguments for GetStateUpdatelID () ..ovueeieienieii e 44
Table 2-14 — Error Codes for GetStateUpdatelID () uuuieenieiineiieiieiee e 44
Table 2-15 — Arguments for BrowseRecordSchedules() «.ouvie i 44
Table 2-16 — Error Codes for BrowseRecordSchedulesS() «.vvvvveieniiriiriiiiieie e 48
Table 2-17 — Arguments for BrowSERECOIdTASKS() «ovuvreneriineieeieeiieeeee e e eeeaeeneeneens 49
Table 2-18 — Error Codes for BrowSeReCOrdTaSKS() «vveeueeinreniiiieiieeieeieneeeeaeee e eneen 50
Table 2-19 — Arguments for CreateRecordSchedule() «.ooee i 51
Table 2-20 — Error Codes for CreateRecordSchedule() ..vvviiiiiiiiiiiiiieieeee e 53
Table 2-21 — Arguments for DeleteRecordSchedule()..coovevirieiiiiiiii e 54
Table 2-22 — Error Codes for DeleteRecordSchedule()...oovveveiiiiiiiiiieeceee e, 54
Table 2-23 — Arguments for GetRecordSchedule() .. .o 54
Table 2-24 — Error Codes for GetRecordSchedule() oo 55
Table 2-25 — Arguments for EnableRecordSchedule() ..voeuiiiiiieiiiie e 56
Table 2-26 — Error Codes for EnableRecordSchedule() ..oovveveiiiiiiiiiieeeee e 56
Table 2-27 — Arguments for DisableRecordSchedule() «.coee i 57
Table 2-28 — Error Codes for DisableRecordSchedule()ovvuviiiiiiiiiiiieiieie e 57
Table 2-29 — Arguments for DeleteRECOrdTaSK() «vvrerieiineeiieie e e e aeens 57
Table 2-30 — Error Codes for DeleteReCOrdTask() «uueieeeeeiineiieiieeee e e 58
Table 2-31 — Arguments for GEetRECOrdTaSK() . uuueeuieii i 58
Table 2-32 — Error Codes for GetReCOrdTasSK() ..uvuuiuiuniiieiiiiiiire e 59
Table 2-33 — Arguments for ENableReCOrdTasK (). ue i reeuiin e iieeeeie e e e e e e eeaeeneens 59
Table 2-34 — Error Codes for EnableRecordTask() .. .o veeeeiieiieiieiie e 60

Table 2-35 — Arguments for DisableRecordTask()o 60

29341-4-14 © ISO/IEC:2011(E)

Table 2-36 — Error Codes for DisableRecordTask() . .o veeuiieeiiiiiiieeeee e 61
Table 2-37 — Arguments for ReSetRECOIdTASK() «uuveeuireniiiiiia e 61
Table 2-38 — Error Codes for ReSEtRECOrATASK() «uvvueeririirieiieiieieieiteetveiene e eteeineaneanas 62
Table 2-39 — Arguments for GetRecordScheduleConflictS()..euiuveriiirieiiiiieii e, 62
Table 2-40 — Error Codes for GetRecordScheduleConflictS()....oveuverviriiriiiiiiii i 63
Table 2-41 — Arguments for GetRecordTaskCONTliCtS()..cuuuinreniuieniiie e 63
Table 2-42 — Error Codes for GetRecordTaskConflCtS() «vvvvvrrveeiniiiiiiiieieieeeee e 64
Table 2-43 — CommON ErTOr COUES ..uuiiniiii e ettt e enes 65
Table 2-44 — recordTask State TIMeliNe ..o e 75
Table 2-45 — Example 1: Fewer recordSchedule instances than the Number of

SUPPOIted Priority LEVEIS. ... e 76
Table 2-46 — Example 2: More recordSchedule instances than the Number of

SUPPOIEA Priority LEVEIS. ..o e 77
Table 2-47 — Existing recordSchedule PrioritieS ... e 78
Table 2-48 — desiredPriority Property Set t0 “RS-C ... 78
Table 2-49 — desiredPriority Property Set to “HIGHEST", “L1_HI", or “RS-A”" ..cooviiviiiiinennnns 78
Table 2-50 — desiredPriority Property Set to “LOWEST", “L3_LOW", or “RS-B”........cccvvenenn. 79
Table 2-51 — desiredPriority Property Set t0 “RS-Co 79
Table B.1 — Base Properties OVeIVIEWuiu ittt eens 122
Table B.2 — allowedValueList for the class Propertycccooooiiiiiiiiieee e 123
Table B.3 — Priority PrOPertiE s . e 125
Table B.4 — allowedValueList for the priority Propertyccooviiiiiiiiiiii e 125
Table B.5 — Primary allowedValuelList for the desiredPriority Property..........ccooeveeiininnnn. 126
Table B.6 — Additional allowedValuelList for the desiredPriority Propertyccocoeeveinnenss 127
Table B.7 — allowedValueList for the desiredPriority@type Property.......cccoceeiviiiiiiininnnnns 128
Table B.8 — Output Control Properties ... e e as 128
Table B.9 — desiredRecordQuality EXample 131
Table B.10 — allowedValuelList for the desiredRecordQuality Property........ccccooeeiiiininenss 132
Table B.11 — allowedValuelList for the desiredRecordQuality@type Property.................... 132
Table B.12 — Content Identification Related Propertiescooovviiiiiiiiiiiciceeeeceeeeen 133
Table B.13 — allowedValuelList for the scheduledChannellD@type Property 135
Table B.14 — Matching Content Criteria Properties.......c.coouiiiiiiiiiiiii e 138
Table B.15 — allowedValuelList for the matchingName@type Propertyccccoceevevininnnnns 139
Table B.16 — allowedValuelList for the matchingID@type Property.......cccoeeveeeviieiniiinnnnnnns 140
Table B.17 — Matching Qualifying Criteria Propertiesocovioiiiiiiiiiiiieeeeee 140
Table B.18 — allowedValuelList for the matchingRatingLimit Property Using the MPAA

Rating System (matchingRatingLimit@type = “MPAA.ORG”) tiuiiiiiiiiiiiii e 143
Table B.19 — allowedValuelList for the matchingRatingLimit Property Using the RIAA

Rating System (matchingRatingLimit@type = “RIAA.ORG”) ..iiriiiiiiiiiiiieeeeceee e 144
Table B.20 — allowedValuelList for the matchingRatingLimit Property Using the ESRB

Rating System (matchingRatingLimit@type = “ESRB.ORG") .ciuiiiiriiiiiiiiiieiieiveeneene e 144

Table B.21 — allowedValuelList for the matchingRatingLimit Property Using the
TVGUIDELINES Rating System (matchingRatingLimit@type = “TVGUIDELINES.ORG")144

Table B.22 — allowedValuelList for the matchingRatingLimit@type Property.............c....c... 145

Table B.23 — allowedValuelList for the matchingEpisodeType Propertycocovvvveviiiinnnnns 145

29341-4-14 © ISO/IEC:2011(E)

Table B.24 — Content CoNtrol PropertieS. ... oo 146
Table B.25 — allowedValuelList for the durationLimit@effect Propertycoooviiiiiiiiinenis 149
Table B.26 — Storage Related Properties ..o 150
Table B.27 — Schedule State Properti€s ..o i ee e 152
Table B.28 — allowedValuelList for the scheduleState Propertyc.ccoocoviiiiiniinininiininnnn, 152
Table B.29 — allowedValuelList for the scheduleState@currentErrors Property.................. 153
Table B.30 — StatiStiCS PrOPertieS . ..t 153
Table B.31 — Task General PropPerties . o.ovu it e e e aeenas 155
Table B.32 — Task Content Identification Properties.........coooviiiiiiiniiiiiee e 156
Table B.33 — recordQuality EXamPleo 160
Table B.34 — allowedValuelList for the recordQuality Propertycocooceiiiiiiiiiiiiiinieinieenns 161
Table B.35 — Task Matched Content Criteria Propertiesc.coeovveiiiiiiiiiii i eeeens 161
Table B.36 — Task Matched Qualifying Criteria Properties.......c.coovviiiiiiiiiiniiieeeee, 163
Table B.37 — Task Matched Content Control Propertiescccoviiiiiiiiiiieeeen 164
Table B.38 — State Related Properties ... 166
Table B.39 — allowedValuelList for the taskState Propertycccoooveiiiiiiiiiiiii i 167
Table B.40 — allowedValuelList for the taskState Propertyccoooveiviiiiiiiiniiniieieieeeeen, 167
Table B.41 — allowedValuelList for the taskState@phase Propertycoooveeiiiiiiiiiiininnenss 169
Table B.42 — allowedValuelList for the taskState @xxx Propertiesccoceeeviiviiiiiiieiinnnnns 173
Table C.1 — Class Properties Overview for recordScheduleParts usageccccvvvvevennnns 183
Table C.2 — Class Properties Overview for recordSchedule usageccocoviviieiiininnnn, 187
Table C.3 — Class Properties Overview for recordTask USAgecevvvveniiiiniiiiiiiiiieiaaenns 191
Table C.4 — object Base Class Propertiesc.cui it 193
Table C.5 — object.recordSchedule Base Class PropertieS.......cccovveeiviiiniiiiiiiiieiniienenenns 194
Table C.6 — object.recordSchedule.direct Class Propertiescooveeiviiiiiiiiniiniineceeeen, 196
Table C.7 — object.recordSchedule.direct.manual Class Propertiesccccoooveieiiininnenss 197
Table C.8 — object.recordSchedule.direct.cdsEPG Class Properties.........cccocovvveviininnnnns 198
Table C.9 — object.recordSchedule.direct.cdsNonEPG Class Properties..........ccccvevvevennenns 201
Table C.10 — object.recordSchedule.direct.programCode Class Properties....................... 202
Table C.11 — object.recordSchedule.query Class Propertiesccooioviiiiiiiiiiiiniiiieeens 203
Table C.12 — object.recordSchedule.query.contentName Class Properties................c..ee. 205
Table C.13 — object.recordSchedule.query.contentlD Class Properties.........ccocovvvvivinnenns 206

Table C.14 — object.recordTask Base Class Properties.......ccocovvviiiiiiiiiiiiiieeeeee 208

29341-4-14 © ISO/IEC:2011(E)

INFORMATION TECHNOLOGY -
UPNP DEVICE ARCHITECTURE -

Part 4-14: Audio Video Device Control Protocol -
Level 2 — Scheduled Recording Service

FOREWORD

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards. Their preparation is entrusted to technical committees; any ISO and
IEC member body interested in the subject dealt with may participate in this preparatory work. International
governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC and ISO member bodies.

4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for
the way in which they are used or for any misinterpretation by any end user.

5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent possible in their national and regional publications.
Any divergence between any ISO/IEC publication and the corresponding national or regional publication
should be clearly indicated in the latter.

6) 1SO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for
any equipment declared to be in conformity with an ISO/IEC publication.

7) All users should ensure that they have the latest edition of this publication.

8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts
and members of their technical committees and IEC or ISO member bodies for any personal injury, property
damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees)
and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC,
ISO or ISO/IEC publications.

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 29341-4-14 was prepared by UPnP Forum Steering
committee?, was adopted, under the fast track procedure, by subcommittee 25:
Interconnection of information technology equipment, of ISO/IEC joint technical committee 1:
Information technology.

This International Standard replaces ISO/IEC 29341-4-14, first edition, published in 2008, and
constitutes a technical revision.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title
Information technology — UPnP device architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting
results may be obtained from the address given on the second title page.

1 UPnP Forum Steering committee, UPnP Forum, 3855 SW 153" Drive, Beaverton, Oregon 97006 USA. See also
“Introduction”.

29341-4-14 © ISO/IEC:2011(E)

IMPORTANT - The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

-8- 29341-4-14 © ISO/IEC:2011(E)

1 Overview and Scope

This service definition is compliant with the UPnP Device Architecture version 1.0. It defines
a service type referred to herein as ScheduledRecording service.

1.1 Introduction

The ScheduledRecording service is a UPnP service that allows control points to schedule the
recording of content. Generally, this content is broadcast content, but this specification does
not limit itself to broadcast content. This service type enables the following functions:

e Create a recordSchedule so that it is added to the list of recordSchedule instances. Each
recordSchedule describes user-level recording instructions for the ScheduledRecording
service.

e Browse a list of recordSchedule instances stored by the ScheduledRecording service.

e Delete a recordSchedule so that it is removed from the list of recordSchedule instances.

e Browse a list of recordTask instances, stored by the ScheduledRecording service. The
ScheduledRecording service may create zero or more recordTask instances for each
recordSchedule. A recordTask represents a discrete recording operation of a
recordSchedule.

e Enable or disable individual recordTask instances.

e Enable or disable a recordSchedule.

e Receive notifications indicating change of recordSchedule or recordTask list.

The ScheduledRecording service does not require a dependency on any UPnP services other
than a co-located ContentDirectory service, which provides the following functions:

e A ContentDirectory service provides channel line-up to allow users to find recordable
channels. A control point may use this metadata when creating a recordSchedule on a
ScheduledRecording service.

e A ContentDirectory service may provide Electronic Program Guide (EPG) features to
allow users to find recordable content. A control point may use this metadata when
creating a recordSchedule on a ScheduledRecording service.

e Contents recorded by the ScheduledRecording service may be exposed by a
ContentDirectory service.

The architectural relationship among the different concepts, defined by the
ScheduledRecording service can be summarized as follows: A ScheduledRecording service
owns a flat (that is: non-nested) list of recordSchedule instances, meaning that the
ScheduledRecording service may create, destroy, or change recordSchedule instances. A
recordSchedule represents user-level instructions to perform recording operations. Generally,
a user constructs his instructions to a ScheduledRecording service via a control point that
invokes UPnP actions that affect the list of recordSchedule instances. In all cases, the
ScheduledRecording service MUST be able to describe discrete recording operations for a
recordSchedule through a list of associated recordTask instances. A recordTask can only
exist with a recordSchedule (that is: never orphaned). Thus when a recordTask is created by
the ScheduledRecording service, its lifetime depends on its parent recordSchedule. An
individual recordTask can be selectively enabled or disabled.

This service template does not address:

e Implementations where the ScheduledRecording service and its associated
ContentDirectory service are not co-located in the same device.

29341-4-14 © ISO/IEC:2011(E) -9-

1.2 Notation

e In this document, features are described as Required, Recommended, or Optional as
follows:

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL" in this specification are to
be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED — The definition or behavior is prohibited by this specification. Opposite of
REQUIRED.

CONDITIONALLY REQUIRED — The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL — The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements
over protocol and application features and behavior that affect the interoperability and
security of implementations. When these words are not capitalized, they are meant in
their natural-language sense.

e Strings that are to be taken literally are enclosed in “double quotes”.
e Words that are emphasized are printed in italic.

e Keywords that are defined by the UPnP AV Working Committee are printed using the
forum character style.

e Keywords that are defined by the UPnP Device Architecture specification are printed
using the arch character style [DEVICE].

e A double colon delimiter, “:”, signifies a hierarchical parent-child (parent::child)
relationship between the two objects separated by the double colon. This delimiter is used
in multiple contexts, for example: Service::Action(), Action()::Argument,
parentProperty::childProperty.

1.2.1 Data Types

This specification uses data type definitions from two different sources. The UPnP Device
Architecture defined data types are used to define state variable and action argument data
types [DEVICE]. The XML Schema namespace is used to define property data types [XML
SCHEMA-2].

For UPnP Device Architecture defined boolean data types, it is strongly RECOMMENDED to
use the value “0” for false, and the value “1" for true. However, when used as input
arguments, the values “false”, “no”, “true”, “yes” may also be encountered and MUST be
accepted. Nevertheless, it is strongly RECOMMENDED that all boolean state variables and
output arguments be represented as “0” and “1”".

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value
“0” for false, and the value “1” for true. However, when used as input properties, the values
“false”, “true” may also be encountered and MUST be accepted. Nevertheless, it is strongly

RECOMMENDED that all Boolean properties be represented as “0” and “1”.

1.2.2 Strings Embedded in Other Strings

Some string variables and arguments described in this document contain substrings that
MUST be independently identifiable and extractable for other processing. This requires the
definition of appropriate substring delimiters and an escaping mechanism so that these
delimiters can also appear as ordinary characters in the string and/or its independent
substrings. This document uses embedded strings in two contexts — Comma Separated Value

- 10 - 29341-4-14 © ISO/IEC:2011(E)

(CSV) lists (see Clause 1.3.1, “Comma Separated Value (CSV) Lists”) and property values in
search criteria strings. Escaping conventions use the backslash character, “\" (character code
U+005C), as follows:

a) Backslash (*\") is represented as “\\” in both contexts.

b) Comma (") is
1) represented as “\,” in individual substring entries in CSV lists
2) not escaped in search strings

c) Double quote (*"") is

1) not escaped in CSV lists

2) not escaped in search strings when it appears as the start or end delimiter of a
property value

3) represented as “\"” in search strings when it appears as a character that is part of the
property value

1.2.3 Extended Backus-Naur Form

Extended Backus-Naur Form is used in this document for a formal syntax description of
certain constructs. The usage here is according to the reference [EBNF].

1.2.3.1 Typographic conventions for EBNF

Non-terminal symbols are unquoted sequences of characters from the set of English upper
and lower case letters, the digits “0” through “9”, and the hyphen (“-"). Character sequences
between "single quotes"® are terminal strings and MUST appear literally in valid strings.
Character sequences between (*comment delimiters*) are English language definitions
or supplementary explanations of their associated symbols. White space in the EBNF is used
to separate elements of the EBNF, not to represent white space in valid strings. White space
usage in valid strings is described explicitly in the EBNF. Finally, the EBNF uses the following

operators:

Table 1-1 — EBNF Operators

Operator Semantics

tI= definition — the non-terminal symbol on the left is defined by one or more alternative
sequences of terminals and/or non-terminals to its right.

| alternative separator — separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

null repetition — means the expression to its left MAY occur zero or more times.

+ non-null repetition — means the expression to its left MUST occur at least once and MAY
occur more times.

optional — the expression between the brackets is optional.

grouping — groups the expressions between the parentheses.

- character range — represents all characters between the left and right character operands
inclusively.

1.3 Derived Data Types

This clause defines a derived data type that is represented as a string data type with special
syntax. This specification uses string data type definitions that originate from two different
sources. The UPnP Device Architecture defined string data type is used to define state
variable and action argument string data types. The XML Schema namespace is used to
define property xsd:string data types. The following definition applies to both string data

types.

29341-4-14 © ISO/IEC:2011(E) -11-

1.31 Comma Separated Value (CSV) Lists

The UPnP AV services use state variables, action arguments and properties that represent
lists — or one-dimensional arrays — of values. The UPnP Device Architecture, Version 1.0
[DEVICE], does not provide for either an array type or a list type, so a list type is defined here.
Lists MAY either be homogeneous (all values are the same type) or heterogeneous (values of
different types are allowed). Lists MAY also consist of repeated occurrences of homogeneous
or heterogeneous subsequences, all of which have the same syntax and semantics (same
number of values, same value types and in the same order). The data type of a
homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of the
individual values. The data type of a heterogeneous list is also string or xsd:string and
denoted by CSV (X, vy, z), where x, y and z are the types of the individual values. If the
number of values in the heterogeneous list is too large to show each type individually, that
variable type is represented as CSV (heterogeneous), and the variable description includes
additional information as to the expected sequence of values appearing in the list and their
corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({x, y, z}), where x, y and z are the types of the individual values in the
subsequence and the subsequence MAY be repeated zero or more times.

e A list is represented as a string type (for state variables and action arguments) or
xsd:string type (for properties).
e Commas separate values within a list.

e Integer values are represented in CSVs with the same syntax as the integer data type
specified in [DEVICE] (that is: optional leading sign, optional leading zeroes, numeric US-
ASCII)

e Boolean values are represented in state variable and action argument CSVs as either “0”
for false or “1” for true. These values are a subset of the defined boolean data type

e Boolean values are represented in property CSVs as either “0” for false or “1” for true.
These values are a subset of the defined Boolean data type values specified in [XML
SCHEMA-2]: 0, false, 1, true.

e Escaping conventions for the comma and backslash characters are defined in Clause
1.2.2, “Strings Embedded in Other Strings”.

e White space before, after, or interior to any numeric data type is not allowed.

e White space before, after, or interior to any other data type is part of the value.

Table 1-2 — CSV Examples

Type refinement of Value Comments
string

CSV (string) or “+artist,-date” List of 2 property sort

CSV (xsd:string) criteria.

CSV (int) or “1,-5,006,0,+7" List of 5 integers.

CSV (xsd:integer)

CSV (boolean) or “0,1,1,0” List of 4 booleans

CSV (xsd:Boolean)

CSV (string) or “Smith\, Fred,Jones\, Davey” List of 2 names,

CSV (xsd:string) “Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2) or | “-29837, string with leading blanks,0” Note that the second value

CSV (xsd:int, is “ string with leading

xsd:string, blanks”

xsd:unsignedShort)

CSV (i4) or “3, 4" lllegal CSV. White space

CSV (xsd:int) is not allowed as part of

an integer value.

CSV (string) or List of 3 empty string
CSV (xsd:string) values

-12 - 29341-4-14 © ISO/IEC:2011(E)

Type refinement of Value Comments
string
CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified number

of people and associated
attributes. Each person is
described by 3 elements:
a name string, a
department string and
years-of-service ui2 or a
name xsd:string, a
department xsd:string and
years-of-service
xsd:unsignedShort.

1.4 Management of XML Namespaces in Standardized DCPs

UPnP specifications make extensive use of XML namespaces. This allows separate DCPs,
and even separate components of an individual DCP, to be designed independently and still
avoid name collisions when they share XML documents. Every name in an XML document
belongs to exactly one namespace. In documents, XML names appear in one of two forms:
qualified or unqualified. An unqualified name (or no-colon-name) contains no colon (*“:")
characters. An unqualified name belongs to the document’s default namespace. A qualified
name is two no-colon-names separated by one colon character. The no-colon-name before
the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace
prefix). Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document
is not the name of the namespace. The namespace name is, or should be, globally unique. It
has a single definition that is accessible to anyone who uses the namespace. It has the same
meaning anywhere that it is used, both inside and outside XML documents. The namespace
prefix, however, in formal XML usage, is defined only in an XML document. It must be locally
unique to the document. Any valid XML no-colon-name may be used. And, in formal XML
usage, no two XML documents are ever required to use the same namespace prefix to refer
to the same namespace. The creation and use of the namespace prefix was standardized by
the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand
replacement for the full URI name of a namespace in individual documents.

All AV object properties are represented in XML by element and attribute names, therefore,
all property names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is
convenient in specification text to refer to namespaces using a namespace prefix. Therefore,
this specification declares a “standard” prefix for all XML namespaces used herein. In
addition, this specification expands the scope where these prefixes have meaning, beyond a
single XML document, to all of its text, XML examples, and certain string-valued properties.
This expansion of scope does not supercede XML rules for usage in documents, it only
augments and complements them in important contexts that are out-of-scope for the XML
specifications. For example, action arguments which refer to CDS properties, such as the
SearchCriteria argument of the Search() action or the Filter argument of the Browse() action,
MUST use the predefined namespace prefixes when referring to CDS properties (“upnp:”,
“dc:”, etc).

All of the namespaces used in this specification are listed in the Tables “Namespace
Definitions” and “Schema-related Information”. For each such namespace, Table 1-3,
“Namespace Definitions” gives a brief description of it, its name (a URI) and its defined
“standard” prefix name. Some namespaces included in these tables are not directly used or
referenced in this document. They are included for completeness to accommodate those
situations where this specification is used in conjunction with other UPnP specifications to
construct a complete system of devices and services. For example, since the Scheduled
Recording Service depends on and refers to the Content Directory Service, the predefined
“srs:” namespace prefix is included. The individual specifications in such collections all use

29341-4-14 © ISO/IEC:2011(E) - 13-

the same standard prefix. The standard prefixes are also used in Table 1-4, “Schema-related
Information”, to cross-reference additional namespace information. This second table
includes each namespace’s valid XML document root element(s) (if any), its schema file
name, versioning information (to be discussed in more detail below), and a link to the entry in
Clause 1.6, “References” for its associated schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3.
The schemas are designed to support these definitions for both human understanding and as
test tools. However, limitations of the XML Schema language itself make it difficult for the
UPnP-defined schemas to accurately represent all details of the namespace definitions. As a
result, the schemas will validate many XML documents that are not valid according to the
specifications.

The Working Committee expects to continue refining these schemas after specification
release to reduce the number of documents that are validated by the schemas while violating
the specifications, but the schemas will still be informative, supporting documents. Some

schemas might become normative in future versions of the specifications.

Table 1-3 — Namespace Definitions

Standar Normative
d Name- Definition
space Document
Prefix Namespace Name Namespace Description Reference
AV Working Committee defined namespaces
av urn:schemas-upnp-org:av:av Common data types for use in AV | [AV-XSD]
schemas
avs urn:schemas-upnp-org:av:avs Common structures for use in AV | [AVS-XSD]
schemas
avdt urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]
avt-event |urn:schemas-upnp-org:metadata-1- Evented LastChange state [AVT]
O/AVT/ variable for AVTransport
cds- urn:schemas-upnp-org:av:.cds-event Evented LastChange state [CDS]
event variable for ContentDirectory
didl-lite urn:schemas-upnp-org:metadata-1- Structure and metadata for [CDS]
0/DIDL-Lite/ ContentDirectory
rcs-event [urn:schemas-upnp-org:metadata-1- Evented LastChange state [RCS]
0/RCS/ variable for RenderingControl
srs urn:schemas-upnp-org:av:srs Metadata and structure for [SRS]
ScheduledRecording
srs-event | urn:schemas-upnp-org:av:srs-event Evented LastChange state [SRS]
variable for ScheduledRecording
upnp urn:schemas-upnp-org:metadata-1- Metadata for ContentDirectory [CDS]
O/upnp/
Externally defined namespaces
dc http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]
xsd http://www.w3.0rg/2001/XMLSchema | XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]
XSi http://www.w3.0rg/2001/XMLSchema- | XML Schema Instance Document |Clauses 2.6 & 3.2.7
instance schema of [XML SCHEMA-
1]
xml http://www.w3.0rg/XML/1998/namespa | The “xml:” Namespace [XML-NS]
ce

- 14 -

Table 1-4 — Schema-related Information

29341-4-14 © ISO/IEC:2011(E)

Standar
d Name- Relative URI and
space File Name &
Prefix e Form 1, Form 2, Form3 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

av av-vn-yyyymmdd.xsd n/a [AV-XSD]
av-vn.xsd
av.xsd

avs avs-vn-yyyymmdd.xsd <Capabilities> [AVS-XSD]
avs-vn.xsd <Features>
avs.xsd <stateVariableValuePairs>

avdt avdt-vn-yyyymmdd.xsd <AVDT> [AVDT]
avdt-vn.xsd
avdt.xsd

avt-event | avt-event-vn-yyyymmdd.xsd <Event> [AVT-EVENT-XSD]
avt-event-vn.xsd
avt-event.xsd

cds- cds-event-vn-yyyymmdd.xsd <StateEvent> [CDS-EVENT-XSD]

event cds-event-vn.xsd
cds-event.xsd

didl-lite | didl-lite-vn-yyyymmdd.xsd <DIDL-Lite> [DIDL-LITE-XSD]
didl-lite-vn.xsd
didl-lite.xsd

rcs-event | rcs-event-vn-yyyymmdd.xsd <Event> [RCS-EVENT-XSD]
rcs-event-vn.xsd
rcs-event.xsd

Srs srs-vn-yyyymmdd.xsd <srs> [SRS-XSD]
srs-vn.xsd
srs.xsd

srs-event |srs-event-vn-yyyymmdd.xsd <StateEvent> [SRS-EVENT-XSD]
srs-event-vn.xsd
srs-event.xsd

upnp upnp-vn-yyyymmdd.xsd n/a [UPNP-XSD]
upnp-vn.xsd
upnp.xsd

Externally Defined Namespaces

dc Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd |[DC-XSD]

xsd n/a <schema> [XMLSCHEMA-

XSD]

Xsi n/a n/a

xml n/a [XML-XSD]

a Absolute URIs are generated by prefixing the relative URIs with "http://www.upnp.org/schemas/av/".

1.4.1

Namespace Prefix Requirements

There are many occurrences in this specification of string data types that contain XML names
(property names). These XML names in strings will not be processed under namespace-
aware conditions. Therefore, all occurrences in instance documents of XML names in strings

29341-4-14 © ISO/IEC:2011(E) - 15—

MUST use the standard namespace prefixes as declared in Table 1-3. In order to properly
process the XML documents described herein, control points and devices MUST use
namespace-aware XML processors [XML-NMSP] for both reading and writing. As allowed by
[XML-NMSP], the namespace prefixes used in an instance document are at the sole
discretion of the document creator. Therefore, the declared prefix for a namespace in a
document MAY be different from the standard prefix. All devices MUST be able to correctly
process any valid XML instance document, even when it uses a non-standard prefix for
ordinary XML names. However, it is strongly RECOMMENDED that all devices use these
standard prefixes for all instance documents to avoid confusion on the part of both human
and machine readers. These standard prefixes are used in all descriptive text and all XML
examples in this and related UPnP specifications. Also, each individual specification may
assume a default namespace for its descriptive text. In that case, names from that
namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5,
“Default Namespaces for the AV Specifications”.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are
never used with AV Working Committee defined attribute names.

Table 1-5 — Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport avt-event

ConnectionManager n/a

ContentDirectory didl-lite

MediaRenderer n/a

MediaServer n/a

RenderingControl rcs-event

ScheduledRecording Srs

1.4.2 Namespace Names, Namespace Versioning and Schema Versioning

The UPnP AV service specifications define several data structures (such as state variables
and action arguments) whose format is an XML instance document that must comply with one
or more specific XML namespaces. Each namespace is uniquely identified by an assigned
namespace name. The namespaces that are defined by the AV Working Committee MUST be
named by a URN. See Table 1-3, “Namespace Definitions” for a current list of namespace
names. Additionally, each namespace corresponds to an XML schema document that
provides a machine-readable representation of the associated namespace to enable
automated validation of the XML (state variable or action parameter) instance documents.

Within an XML schema and XML instance document, the name of each corresponding
namespace appears as the value of an xmlns attribute within the root element. Each xmlIns
attribute also includes a namespace prefix that is associated with that namespace in order to
disambiguate (a.k.a. qualify) element and attribute names that are defined within different
namespaces. The schemas that correspond to the listed namespaces are identified by URI
values that are listed in the schemaLocation attribute also within the root element. (See
Clause 1.4.3, “Namespace Usage Examples”)

In order to enable both forward and backward compatibility, namespace names are
permanently assigned and MUST NOT change even when a new version of a specification
changes the definition of a namespace. However, all changes to a namespace definition
MUST be backward-compatible. In other words, the updated definition of a namespace
MUST NOT invalidate any XML documents that comply with an earlier definition of that same
namespace. This means, for example, that a namespace MUST NOT be changed so that a
new element or attribute is required. Although namespace names MUST NOT change,
namespaces still have version numbers that reflect a specific set of definitional changes.

- 16 - 29341-4-14 © ISO/IEC:2011(E)

Each time the definition of a namespace is changed, the namespace’s version number is
incremented by one.

Each time a new namespace version is created, a new XML schema document (.xsd) is
created and published so that the new namespace definition is represented in a machine-
readable form. Since a XML schema document is just a representation of a namespace
definition, translation errors can occur. Therefore, it is sometime necessary to re-release a
published schema in order to correct typos or other namespace representation errors. In
order to easily identify the potential multiplicity of schema releases for the same namespace,
the URI of each released schema MUST conform to the following format (called Form 1):

Form 1: "http://www.upnp.org/schemas/av/" schema-root-name "-v" ver "-" yyyymmadd
where

e schema-root-name is the name of the root element of the namespace that this schema
represents.

e ver corresponds to the version number of the namespace that is represented by the
schema.

e yyyymmdd is the year, month and day (in the Gregorian calendar) that this schema was
released.

Table 1-4, “Schema-related Information” identifies the URI formats for each of the
namespaces that are currently defined by the UPnP AV Working Committee.

As an example, the original schema URI for the “rcs-event” namespace (that was released
with the original publication of the UPnP AV service specifications in the year 2002) was
“http://www.upnp.org/schemas/av/rcs-event-v1-20020625.xsd”. When the UPnP AV service
specifications were subsequently updated in the year 2006, the URI for the updated version
of the “rcs-event” namespace was “http://www.upnp.org/schemas/av/rcs-event-v2-
20060531.xsd”. However, in 2006, the schema URI for the newly created “srs-event”
namespace was “http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd”. Note the
version field for the “srs-event” schema is “v1” since it was first version of that namespace
whereas the version field for the “rcs-event” schema is “v2” since it was the second version of
that namespace.

In addition to the dated schema URIs that are associated with each namespace, each
namepace also has a set of undated schema URIs. These undated schema URIs have two
distinct formats with slightly different meanings:

Form 2: “http://www.upnp.org/schemas/av/” schema-root-name “-v” ver
where ver is described above.
Form 3: “http://www.upnp.org/schemas/av/” schema-root-name

Form 2 of the undated schema URI is always linked to the most recent release of the schema
that represents the version of the namespace indicated by ver. For example, the undated URI
“...lavircs-event-v2.xsd” is linked to the most recent schema release of version 2 of the “rcs-
event” namespace. Therefore, on May 31, 2006 (20060531), the undated schema URI was
linked to the schema that is otherwise known as *“.../av/rcs-event-v2-20060531.xsd".
Furthermore, if the schema for version 2 of the “rcs-event” nhamespace was ever re-released,
for example to fix a typo in the 20060531 schema, then the same undated schema URI
(“.../av/rcs-event-v2.xsd") would automatically be updated to link to the updated version 2
schema for the “rcs-event” namespace.

Form 3 of the undated schema URI is always linked to the most recent release of the schema
that represents the highest version of the namespace that has been published. For example,
on June 25, 2002 (20020625), the undated schema URI “.../av/rcs-event.xsd” was linked to
the schema that is otherwise known as “.../av/rcs-event-v1-20020625.xsd”. However, on May

29341-4-14 © ISO/IEC:2011(E) - 17 -

31, 2006 (20060531), that same undated schema URI was linked to the schema that is
otherwise known as “.../av/rcs-event-v2-20060531.xsd".

When referencing a schema URI within an XML instance document or a referencing XML
schema document, the following usage rules apply:

¢ All instance documents, whether generated by a service or a control point, MUST use
Form 3.

e All UPnP AV published schemas that reference other UPnP AV schemas MUST also use
Form 3.

Within an XML instance document, the definition for the schemaLocation attribute comes
from the XML Schema namespace “http://www.w3.0rg/2002/XMLSchema-instance”. A single
occurrence of the attribute can declare the location of one or more schemas. The
schemalLocation attribute value consists of a whitespace separated list of values that is
interpreted as a namespace name followed by its schema location URL. This pair-sequence
is repeated as necessary for the schemas that need to be located for this instance document.

In addition to the schema URI naming and usage rules described above, each released
schema MUST contain a version attribute in the <schema> root element. Its value MUST
correspond to the format:

ver “-" yyyymmdd where ver and yyyymmdd are described above.

The version attribute provides self-identification of the namespace version and release date
of the schema itself. For example, within the original schema released for the “rcs-event”
namespace (.../rcs-event-v2-20020625.xsd), the <schema> root element contains the
following attribute: version="2-20020625".

1.4.3 Namespace Usage Examples

The schemalLocation attribute for XML instance documents comes from the XML Schema
instance namespace “http:://www.w3.0rg/2002/XMLSchema-instance”. A single occurrence of
the attribute can declare the location of one or more schemas. The schemalLocation
attribute value consists of a whitespace separated list of values: namespace name followed
by its schema location URL. This pair-sequence is repeated as necessary for the schemas
that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Instance Document. Note that the references to the UPnP AV
schemas do not contain any version or release date information. In other words, the
references follow Form 3 from above. Consequently, this example is valid for all releases of
the UPnP AV service specifications.

<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmIns:upnp=""'urn:schemas-upnp-org:metadata-1-0/upnp/*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
xsi:schemalLocation="
urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://www.upnp.org/schemas/av/didl-lite.xsd
urn:schemas-upnp-org:metadata-1-0/upnp/
http://www.upnp.org/schemas/av/upnp.xsd">
<item id="18" parentlD="13" restricted="0">
</item>
</DIDL-Lite>

- 18 - 29341-4-14 © ISO/IEC:2011(E)

1.5 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state variables, actions or properties,
their assigned names and XML representation MUST follow the naming conventions and XML
rules as specified below.

1.5.1 Vendor-defined Action Names

Vendor-defined action names MUST begin with “X_". Additionally, it SHOULD be followed by
an ICANN assigned domain name owned by the vendor followed by the underscore character
(“_". It MUST then be followed by the vendor-assigned action name. The vendor-assigned
action name MUST NOT contain a hyphen character (“-”, 2D Hex in UTF-8) nor a hash
character (“#”, 23 Hex in UTF-8). Vendor-assigned action names are case sensitive. The first
character of the name MUST be a US-ASCII letter (“A"-“Z", “a”-"z"), US-ASCII digit (“0"-“9™),
an underscore (“_"), or a non-experimental Unicode letter or digit greater than U+007F.

Succeeding characters MUST be a US-ASCII letter (“A”-“Z", “a”-“z"), US-ASCII digit (“0"-“9™),

an underscore (“_"), a period (“."), a Unicode combiningchar, an extender, or a non-

experimental Unicode letter or digit greater than U+007F. The first three letters MUST NOT
be “XML" in any combination of case.

1.5.2 Vendor-defined State Variable Names

Vendor-defined state variable names MUST begin with “X_". Additionally, it SHOULD be
followed by an ICANN assigned domain name owned by the vendor, followed by the
underscore character (“_"). It MUST then be followed by the vendor-assigned state variable
name. The vendor-assigned state variable name MUST NOT contain a hyphen character (“-”,
2D Hex in UTF-8). Vendor-assigned action names are case sensitive. The first character of
the name MUST be a US-ASCII letter (*A”-*Z", “a”’-“z"), US-ASCII digit (“0"-"9”), an
underscore (“_"), or a non-experimental Unicode letter or digit greater than U+007F.

Succeeding characters MUST be a US-ASCII letter (“A”-“Z", “a”-"z2"), US-ASCII digit (“0"-“9"),

an underscore (“_"), a period (“."), a Unicode combiningchar, an extender, or a non-

experimental Unicode letter or digit greater than U+007F. The first three letters MUST NOT
be “XML" in any combination of case.

1.5.3 Vendor-defined XML Elements and attributes

UPnP vendors MAY add non-standard elements and attributes to a UPnP standard XML
document, such as a device or service description. Each addition MUST be scoped by a
vendor-owned XML namespace. Arbitrary XML MUST be enclosed in an element that begins
with “X_,” and this element MUST be a sub element of a standard complex type. Non-
standard attributes MAY be added to standard elements provided these attributes are scoped
by a vendor-owned XML namespace and begin with “X_".

154 Vendor-defined Property Names

UPnP vendors MAY add non-standard properties to the ContentDirectory service. Each
property addition MUST be scoped by a vendor-owned namespace. The vendor-assigned
property name MUST NOT contain a hyphen character (“-”, 2D Hex in UTF-8). Vendor-
assigned property names are case sensitive. The first character of the name MUST be a US-
ASCII letter (“A"-“Z", “a"-“z"), US-ASCII digit (“0"-“9"), an underscore (“_"), or a non-
experimental Unicode letter or digit greater than U+007F. Succeeding characters MUST be a
US-ASCII letter (“A”-"Z", “a”-“z"), US-ASCII digit (“0"-“9"), an underscore (“_"), a period (“."), a
Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater
than U+007F. The first three letters MUST NOT be “XML" in any combination of case.

1.6 References

This clause lists the normative references used in the UPnP AV specifications and includes
the tag inside square brackets that is used for each such reference:

29341-4-14 © ISO/IEC:2011(E) - 19 -

[AVARCH] - AVArchitecture:1, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20080930.pdf. Latest version
available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1.pdf.

[AVDT] — AV DataStructure Template:1, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20080930.pdf. Latest version
available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf.

[AVDT-XSD] - XML Schema for UPnP AV Datastructure Template:1, UPnP Forum,
September 30, 2008. Available at: http://www.upnp.org/schemas/av/avdt-v1-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt-v1.xsd.

[AV-XSD] — XML Schema for UPnP AV Common XML Data Types, UPnP Forum, September
30, 2008. Available at: http://www.upnp.org/schemas/av/av-v2-20080930.xsd. Latest version
available at: http://www.upnp.org/schemas/av/av-v2.xsd.

[AVS-XSD] — XML Schema for UPnP AV Common XML Structures, UPnP Forum, September
30, 2008. Available at: http://www.upnp.org/schemas/av/avs-v2-20080930.xsd. Latest version
available at: http://www.upnp.org/schemas/av/avs-v2.xsd.

[AVT] - AVTransport:2, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20080930.pdf. Latest
version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[AVT-EVENT-XSD] — XML Schema for AVTransport:2 LastChange Eventing, UPnP Forum,
September 30, 2008. Available at: http://www.upnp.org/schemas/av/avt-event-v2-
20080930.xsd. Latest version available at: http://www.upnp.org/schemas/av/avt-event-v2.xsd.

[CDS] - ContentDirectory:3, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v3-Service-20080930.pdf. Latest
version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v3-Service.pdf.

[CDS-EVENT-XSD] — XML Schema for ContentDirectory:3 LastChange Eventing, UPnP
Forum, September 30, 2008. Available at: http://www.upnp.org/schemas/av/cds-event-v1-
20080930.xsd. Latest version available at: http://www.upnp.org/schemas/av/cds-event-v1.xsd.

[CM] - ConnectionManager:2, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20080930.pdf. Latest
version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-
Service.pdf.

[DC-XSD] - XML Schema for UPnP AV Dublin Core. Available at:
http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[DC-TERMS] — DCMI term declarations represented in XML schema language. Available at:
http://www.dublincore.org/schemas/xmils.

[DEVICE] — UPnP Device Architecture, version 1.0, UPnP Forum, July 20, 2006. Available at:
http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20060720.htm. Latest
version available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-
v1.0.htm.

[DIDL] — ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2:
Digital Item Declaration, July 2001.

- 20 - 29341-4-14 © ISO/IEC:2011(E)

[DIDL-LITE-XSD] — XML Schema for ContentDirectory:3 Structure and Metadata (DIDL-Lite),
UPnP Forum, September 30, 2008. Available at: http://www.upnp.org/schemas/av/didl-lite-v2-
20080930.xsd. Latest version available at: http://www.upnp.org/schemas/av/didl-lite-v2.xsd.

[EBNF] — ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF,
December 1996.

[HTTP/1.1] — HyperText Transport Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H.
Frystyk, L. Masinter, P. Leach, T. Berners-Lee, June 1999. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

IEC 61883] — IEC 61883 Consumer Audio/Video Equipment — Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[[EC-PAS 61883] — IEC-PAS 61883 Consumer Audio/Video Equipment — Digital Interface -
Part 6. Available at: http://www.iec.ch.

[ISO 8601] — Data elements and interchange formats — Information interchange --
Representation of dates and times, International Standards Organization, December 21, 2000.
Available at: 1ISO 8601:2000.

[MIME] — IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N.
Freed, June 1992. Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] - MediaRenderer:2, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20080930.pdf. Latest
version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf.

[MS] - MediaServer:3, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v3-Device-20080930.pdf. Latest version
available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v3-Device.pdf.

[RCS] - RenderingControl:2, UPnP Forum, December 31, 2007. Available at:
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20080930.pdf. Latest
version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

[RCS-EVENT-XSD] -XML Schema for RenderingControl:2 LastChange Eventing, UPnP
Forum, September 30, 2008. Available at: http://www.upnp.org/schemas/av/rcs-event-v1-
20080930.xsd. Latest version available at: http://www.upnp.org/schemas/av/rcs-event-vl.xsd.

[RFC 1738] — IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al.,
December 1994. Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2045] — IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part 1:Format of
Internet Message Bodies, N. Freed, N. Borenstein, November 1996. Available at:
http://www.ietf.org/rfc/rfc2045.txt.

[RFC 2119] — IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S.
Bradner, 1997. Available at: http://www.faqgs.org/rfcs/rfc2119.html.

[RFC 2396] — IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim
Berners-Lee, et al, 1998. Available at: http://www.ietf.org/rfc/rfc2396.txt.

[RFC 3339] — IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne,
Clearswift Corporation, C. Newman, Sun Microsystems, July 2002. Available at:
http://www.ietf.org/rfc/rfc3339.txt.

29341-4-14 © ISO/IEC:2011(E) -21-

[RTP] — IETF RFC 1889, Realtime Transport Protocol (RTP), H. Schulzrinne, S. Casner, R.
Frederick, V. Jacobson, January 1996. Available at: http://www.ietf.org/rfc/rfc1889.txt.

[RTSP] — IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R.
Lanphier, April 1998. Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] - ScheduledRecording:2, UPnP Forum, September 30, 2008. Available at:
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-Service-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v2-
Service.pdf.

[SRS-XSD] — XML Schema for ScheduledRecording:2 Metadata and Structure, UPnP Forum,
September 30, 2008. Available at: http://www.upnp.org/schemas/av/srs-v2-20080930.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-v2.xsd.

[SRS-EVENT-XSD] — XML Schema for ScheduledRecording:2 LastChange Eventing, UPnP
Forum, September 30, 2008. Available at: http://www.upnp.org/schemas/av/srs-event-v1-
20080930.xsd. Latest version available at: http://www.upnp.org/schemas/av/srs-event-v1.xsd.

[UAX 15] — Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0,
revision 25, M. Dauvis, M. Durst, March 25, 2005. Available at:
http://www.unicode.org/reports/tr15/tr15-25.html.

[UNICODE COLLATION] — Unicode Technical Standard #10, Unicode Collation Algorithm
version 4.1.0, M. Davis, K. Whistler, May 5, 2005. Available at:
http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] — XML Schema for ContentDirectory:3 Metadata, UPnP Forum, September 30,
2008. Available at: http://www.upnp.org/schemas/av/upnp-v3-20080930.xsd. Latest version
available at: http://www.upnp.org/schemas/av/upnp-v3.xsd.

[UTS 10] — Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0,
revision 14, M. Davis, K. Whistler, May 5, 2005. Available at:
http://www.unicode.org/reports/tr10/tr10-14.html.

[UTS 35] — Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1,
revision 5,.M. Davis, June 2, 2005. Available at: http://www.unicode.org/reports/tr35/tr35-
5.html.

[XML] — Extensible Markup Language (XML) 1.0 (Third Edition), Francois Yergeau, Tim Bray,
Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4,
2004. Available at: http://www.w3.0rg/TR/2004/REC-xml-20040204.

[XML-NS] - The “xml:” Namespace, November 3, 2004. Available at:
http://lwww.w3.0rg/XML/1998/namespace.

[XML-XSD] - XML Schema for the “xml:” Namespace. Available at:
http://www.w3.0rg/2001/xml.xsd.

[XML-NMSP] — Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999. Available at: http://www.w3.0rg/TR/1999/REC-xml-
names-19990114.

[XML SCHEMA-1] — XML Schema Part 1: Structures, Second Edition, Henry S. Thompson,
David Beech, Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REC-xmIschema-1-20041028.

- 22 - 29341-4-14 © ISO/IEC:2011(E)

[XML SCHEMA-2] — XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok
Malhotra, W3C Recommendation, 28 October 2004. Available at:
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] - XML Schema for XML Schema. Available at:
http://www.w3.0rg/2001/XMLSchema.xsd.

[XPATH20] - XML Path Language (XPath) 2.0. Anders Berglund, Scott Boag, Don
Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan Robie, Jerome Simeon. W3C
Recommendation, 21 November 2006. Available at: http://www.w3.0org/TR/xpath20.

[XQUERY10] — XQuery 1.0 An XML Query Language. W3C Recommendation, 23 January
2007. Available at: http://www.w3.0rg/TR/2007/REC-xquery-20070123.

2 Service Modeling Definitions

2.1 ServiceType

The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:ScheduledRecording:2

ScheduledRecording service is used herein to refer to this service type.

2.2 Terms and Abbreviations
2.2.1 Abbreviations

Table 2-1 — Abbreviations

Definition Description
CDS ContentDirectory Service
EPG Electronic Program Guide
SRS ScheduledRecording Service

2.2.2 Terms
2.2.2.1 CDS object

An object in a ContentDirectory service metadata hierarchy; that is: item or container.

2.2.2.2 User Channel

A User Channel is a ContentDirectory service object that exposes the (continuous) content
stream of a particular broadcast channel. Usually, the actual channel that the User Channel
exposes is determined by the user through some device-specific interaction. Examples are:
manual programming of a number of channel presets; invoking of the auto-scan functionality
of a device; predefined fixed channel assignments by the device manufacturer.

2.2.2.3 Channel Group

A Channel Group is a ContentDirectory service container that holds a number of User
Channel items. Typically, a Channel Group contains User Channel items that are bound to a
particular hardware resource. Examples include: a single analog cable TV tuner, a HDTV
digital tuner, an AM/FM radio tuner, etc.

29341-4-14 © ISO/IEC:2011(E) - 23—

2.2.2.4 Channel Line-up

A service provider-generated list of channels with their associated content provider.

2.2.2.5 object

A recordSchedule or a recordTask (see definition of recordSchedule and recordTask below).

2.2.2.6 class

As defined in the ContentDirectory service specification, a class is used to assign a type to
an object. It also identifies the minimum REQUIRED set of properties that MUST be present
on that object and the OPTIONAL properties that MAY be present. Classes are organized in a
hierarchy with certain classes being derived from others as in a typical object-oriented
system. This specification defines two base classes (recordSchedule and recordTask) from
which all other classes are derived.

2.2.2.7 object Modification

An object is considered modified when one of its properties (or its list of properties) is
modified; that is: added, removed or changed in value (see definition of property below).

2.2.2.8 recordSchedule

A ScheduledRecording service construct that represents a complete set of recording
instructions to the service, which allows the service to generate recordTask objects as
necessary to record the desired content. The creator of the recordSchedule object assigns it
a specific class, based on the type and complexity of the instructions, used to identify the
content.

A recordSchedule is represented in XML as an <item>..</item> element.

2.2.2.9 Conflicting_ recordSchedule

A conflicting recordSchedule exists when one or more of its associated recordTask instances
is in conflict with another recordTask instance.

2.2.2.10 recordTask

A ScheduledRecording service construct that represents a discrete recording operation of the
underlying recording system. A recordTask is created by its parent recordSchedule and can
not be directly created by the user. The parent-child relationship of recordSchedule and
recordTask can be 1-to-zero or more.

A recordTask is represented in XML as an <item>..</i1tem> element.

2.2.2.11 Conflicting_recordTask

A conflicting recordTask exists when it overlaps in time with one or more other recordTask
instances and the ScheduledRecording service has insufficient resources to record all of
them. Existing pre-roll and post-roll adjustments (as defined by the
scheduledStartDateTimeAdjust and scheduledDurationAdjust properties) MUST be taken into
account when determining conflicts.

2.2.2.12 recordScheduleParts

A ScheduledRecording service construct that represents user-level recording instructions to
the service, which provide a template to generate complete recordSchedule objects. The

- 24 — 29341-4-14 © ISO/IEC:2011(E)

creator of the recordScheduleParts object assigns it a specific class, based on the type and
complexity of the instructions, used to identify the content.

A recordScheduleParts is represented in XML as an <item>..</item> element.

2.2.2.13 Property-set Data Types

Certain ScheduledRecording service actions use property-set arguments that contain
information about a set of properties, typically expressed in the form of an srs XML Document
(for example, the Elements argument of the CreateRecordSchedule() action). The set of
properties that can exist in a property-set argument is implementation dependent. Indeed, the
set of optional properties that a particular ScheduledRecording service chooses to implement
is vendor dependent.

This specification currently defines three different property-set data types:

e A_ARG_TYPE_RecordSchedule
e A ARG_TYPE_RecordTask
e A ARG_TYPE_RecordScheduleParts

Although these three types are different, they are very similar in nature and are defined using
the same SRS schema [SRS-XSD], which defines all the properties that can ever occur in
any of the three property-set data types. They differ only in the set of properties that can
appear in them and in the values that are allowed for these properties.

2.2.2.14 Property

A property in the ScheduledRecording service represents a characteristic of an object.
Properties are distinguished by their names. The ScheduledRecording service defines two
kinds of properties — independent and dependent. Each independent property has zero or
more dependent properties associated with it. Independent property names contain no “@”
symbol; they may contain an XML namespace prefix (see below for an explanation of the
relationship between properties and XML). Each dependent property is associated either with
exactly one independent property or directly with a ScheduledRecording service class. The
name of a dependent property that is associated with an independent property is the
concatenation of three parts: its associated independent property name, the “@” symbol, and
a name for the relationship between the two properties’ values. The name of a dependent
property that is associated directly with a class is just the “@" symbol followed by the
relationship name. Their data types and meanings are defined in AnnexB, *“
(normative)

AV Working Committee Extended Properties”.

Even though ScheduledRecording service properties are not XML objects, XML is used to
express them in all exchanges between a control point and a ScheduledRecording service
implementation. This creates an unavoidable relationship between XML syntax and property
names and values. In XML, an independent property is represented as an element. The
property name is used as the element name. The property value is the element content. A
dependent property is represented as an attribute in XML. The dependent property’s
relationship name is used as the attribute name. The dependent property’s value is the
attribute value. For dependent properties that are associated with an independent property,
the attribute appears in the start tag of the element that represents its associated
independent property. For dependent properties that are associated directly with a class, the
attribute appears in the top-level start tag for each object of that class.

Examples:

29341-4-14 © ISO/IEC:2011(E) - 25—

Table 2-1 — Properties in XML

Property Name XML Representation (srs declared as default namespace)
title <title>.</title>
taskProgramCode <taskProgramCode>..</taskProgramCode>
taskProgramCode@type <taskProgramCode type=".">.</taskProgramCode>
@id <item id=".">.</item>

2.2.2.15 Member Property

A property is a member of a particular class when the property is declared to be either
REQUIRED or OPTIONAL for that class.

2.2.2.16 Supported Member Property

A supported member property is a member property that is supported by a particular
ScheduledRecording service implementation, according to the information returned by the
GetPropertyList() action.

2.2.2.17 Multi-valued property

Some independent properties are multi-valued. This means that the property MAY occur more
than once in an object.

2.2.2.18 Single-valued property

Most independent properties are single-valued. This means thatthe property MUST occur at
most once in an object. Some single-valued properties can contain a CSV list of values. A
dependent property is always considered single-valued, because it can occur at most once
with each occurrence of its associated independent property, even though the independent
property may be multi-valued.

2.2.2.19 XML Document

A string that represents a valid XML 1.0 document according to a specific schema. Every
occurrence of the phrase “XML Document” is preceded by the appropriate root element name,
italicized, as listed in column 3, “Valid Root Element(s)” of Table 1-4, “Schema-related
Information”.

For example, the phrase “srs XML Document” refers to an XML document based on the SRS
Schema as defined in [SRS-XSD]. Such a document comprises a single <srs ..> root
element, optionally preceded by the XML declaration: <?xml version="1.0" ..?>.

Therefore, the string containing the srs XML Document will have one of the following two
forms:

“<srs ..>.</srs>”

or

“<?xml ..?>
<srs ..>.</srs>"

2.2.2.20 XML Fragment

An XML Fragment is a sequence of XML elements that are valid direct or indirect child
elements of the root element according to a specific schema. Every occurrence of the phrase
“XML Fragment” is preceded by the appropriate root element name, italicized, as listed in
column 3, “Valid Root Element(s)” of Table 1-4, “Schema-related Information”.

- 26 — 29341-4-14 © ISO/IEC:2011(E)

For example, the phrase “srs XML Fragment” refers to a sequence of XML elements that are
defined in the SRS Schema as defined in [SRS-XSD]:

“<item id="." .>.</item>"
or
“<recordDestination mediaType="." preference=".">

</recordDestination>”"

or

“<title>.</title>
<class>..</class>
<.>.</.>

<.>.</.>"

2.2.2.21 actualScheduledStartDateTime

The actual scheduled start date&time of a program item is defined as:

actualScheduledStartDateTime = scheduledStartDateTime +
scheduledStartDateTimeAdjust

where_scheduledStartDateTime is the scheduled broadcast start date&time of the program
item and scheduledStartDateTimeAdjust is a user-supplied adjustment to that date&time, for
example for pre-roll purposes.

2.2.2.22 actualStartDateTime

The actual start date&time of a program item is defined as:

actualStartDateTime = actualScheduledStartDateTime + any device-specific record
startup latency.

2.2.2.23 actualScheduledEndDateTime

The actual scheduled end time of a program item is defined as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration +
scheduledDurationAdjust

where_scheduledStartDateTime is the scheduled broadcast start date&time of the program
item, scheduledDuration is the scheduled broadcast duration of the program item and
scheduledDurationAdjust is a user-supplied adjustment to that duration, for example to select
just a part of the program for recording.

2.2.2.24 actualEndDateTime

The actual end date&time of a program item is defined as:

actualEndDateTime = actualScheduledEndDateTime + any device-specific record
teardown latency.

2.2.2.25 actualScheduledDuration

The actual scheduled duration of a program item is defined as:

29341-4-14 © ISO/IEC:2011(E) - 27 -

actualScheduledDuration = actualScheduledEndDateTime -
actualScheduledStartDateTime

= scheduledDuration + scheduledDurationAdjust -
scheduledStartDateTimeAdjust

where__scheduledDuration is the scheduled broadcast duration of the program item,
scheduledDurationAdjust is a user-supplied adjustment to that duration, and
scheduledStartDateTimeAdjust is a user-supplied adjustment to the scheduled start
date&time.

2.2.2.26 Lexical Sort Order

Lexical sort order refers to string sorting — also called collation — based on language and
regional conventions. It is not based on the binary codes of the characters in strings.
Furthermore, lexical sorting is not based on character sets; a single character set may have
multiple sort orders, again according to language and regional conventions. It is also possible
to have lexical sorts that are further refined according to user preference. For a complete
discussion of this topic see [UTS 10], and the related standards [UAX 15] and [UTS 35]. [UTS
10] defines the lexical sort algorithms. It uses a secondary algorithm defined in [UAX 15] and
supporting data tables defined in [UTS 35]. These three references together — [UAX 15],
[UTS 10] and [UTS 35] — should be sufficient to implement a robust lexical sort.

Simple example: one of the most familiar examples is case-insensitive sorting on the ASCII
subset of Unicode. In a binary ASCII sort, all lower case letters sort after the upper case “Z”
because “Z” has a character code of Ox5A, and all lower case character codes are greater
than or equal to Ox61.

More complex example: the “6” character in German sorts between “n” and “p” characters

[T}

whereas in Swedish, it sorts after “z".

2.2.2.27 Lexical Matching

Lexical matching compares two (sub)strings for equality under certain lexical sorting
conditions. It is important to note that equality in lexical matching is often less restrictive than
equality in lexical sorting. In other words, two strings that are equal under a lexical sort will
always be a lexical match. However, two strings that are a lexical match might not be equal
under a lexical sort for the same language and region. In some cases, an implementation’s
lexical sort might consider all alphabetic characters with diacritical marks (accents, umlauts,
circumflexes, etc.) to be distinct, yet the same implementation might ignore diacritical marks
in lexical matching. For example, the strings “resumé”, “resume” and “résumé” might sort as
“resume” < “resumé” < “résumé”, but when a lexical match using the string “resume”, might
find all three strings “resumé”, “resume” and “résumé”. For implementation techniques, see
[UTS 10] Clause 8, “Searching and Matching”.

2.2.2.28 Simple Non-case-sensitive Sort Order

A simple non-case-sensitive sort order applies only to Roman alphabetic characters. All lower
case ASCII alphabetic characters MUST sort the same as their uppercase equivalent, except
when compared directly with their upper case equivalent, in which case the upper case
character SHOULD sort before its lower case equivalent. This means that of the following
three ordering relations, #1 MUST be true, at least one of #2 and #3 MUST be true, and #2
SHOULD be true.

I\
N

“AH S “a" < “B” S “b" < . < HYH S “y” < “Z"
AN B = S e BE G i A i VA S AR S 4

nAn - nan < an - nbn < ... < uYn - uyn < nzn - uzn

- 28 — 29341-4-14 © ISO/IEC:2011(E)

Additionally, the same upper and lower case relationships SHOULD hold for non-ASCII
Roman alphabetic characters. That is, lower case alphabetic characters with diacritical marks
SHOULD sort as their upper case equivalent, except when compared directly with their upper
case equivalent, in which case the upper case character should sort before its lower case
equivalent. The ordering relation between ASCII and non-ASCII alphabetic characters is left
unspecified. Also, the ordering relation between non-ASCII alphabetic characters that are not
upper or lower case equivalents of each other is left unspecified. This may be summarized in
the following relations. In each, the letter “c” represents any non-ASCIlI Roman alphabetic
character. #4 SHOULD be true for all “c”. #5 SHOULD be true for all “c”. If #5 is false for any
“c”, it should be false for all “c” and #6 SHOULD be true for all “c”.

upper(c) < lower(c)
upper(c) < lower(c)
upper(c) = lower(c)

2.2.2.29 Simple Non-case-sensitive Matching

In a simple non-case-sensitive match, relation #0 above MUST be true, and relation #0 above
SHOULD be true.

2.2.2.30 Numeric Sort Order

A sort order in which values are compared numerically. If the type of an individual value is
numeric, the numeric value is used. If the type of an individual value is string, the string is
converted to a number and that numeric value is used.

2.2.2.31 Boolean Sort Order

Boolean values are sorted with “0” (false) being less than “1” (true).

2.2.2.32 Sequenced Sort

A sequenced sort is a sort applied to a set of values, each of which is composed of a
sequence of subvalues. The sequence is often in a CSV list, but there are other kinds of
sequences used for sorting in this specification. The sequenced sort starts by sorting based
on the first subvalue in the sequence. If all values differ in the first subvalue, the sort is
finished. Otherwise, each subset of equal subvalues is then sorted based on the next
subvalue in the sequence. This process repeats iteratively until there are no more subsets of
equal subvalues or the sequence is exhausted.

2.2.2.33 Sequenced Lexical Sort

A sequenced sort in which all subvalues are strings and the subvalues are compared lexically.

2.2.2.34 Sequenced Numeric Sort

A sequenced sort in which each subvalue is either a number or the number represented by a
string.

2.2.2.35 Lexical Numeric Sort

A lexical numeric sort is one where one or more substrings are known to represent numbers.
The strings are then sorted using a sequenced sort, where the sequence is composed of the
sequence of non-numeric and numeric substrings from the larger string.

For example, assume a property has the form <letter>-<number>, where <number> ranges
from 1 to 10. In a straight ascending lexical sort, the values “A-10", “A-1", “A-2" would sort as:

29341-4-14 © ISO/IEC:2011(E) - 29 —

“A-1", “A-10", “A-2". “A-10" sorts before “A-2" because they are equal in the first two
character positions, but in the third position, “1” < “2". However, in a lexical numeric sort,
each string is considered to be a sequence of a letter and number separated by a hyphen.
These values then sort as “A-1", “A-2", “A-10" because all three are equal in the first
subvalue, “A”, but the second subvalue sorts as 1, 2, 10 in numeric order.

2.2.2.36 type Relationship Sort

This is a sort defined exclusively for independent properties that have a dependent property
relationship named “type”. These properties are sorted as a sequence of two subvalues: the
first subvalue is the value of the property’s xxx@type dependent property; the second
subvalue is the value of the independent property xxx itself. The xxx@type subvalues are
sorted as specified for the dependent xxx@type property in its own subclause. The
independent property subvalues are sorted according to the order specified in its subclause.
Sorting of the independent property may vary with the value of the dependent property.

2.3 ScheduledRecording Service Architecture
2.3.1 recordSchedule

A ScheduledRecording service implementation has a single, flat list of recordSchedule
instances. A recordSchedule represents the user-level recording instructions to the
ScheduledRecording service. These user-level instructions have various levels of complexity.
For example, a simple instruction may state: “record channel 15 at 4PM on March 19, 2004,”
while a more complex instruction may state: “record all episodes of the DIY Home
Improvement Show on any channel that has the show for the next month.” The behavior of a
recordSchedule is described by one or more properties, and these properties can be
manipulated through several actions.

As shown in Figure 1, when a control point requests a new scheduled recording to the
ScheduledRecording service via the CreateRecordSchedule() action, the control point sets a
number of properties and passes them to the ScheduledRecording service to express user-
desired instructions to the scheduled recording. Then, as a response to the
CreateRecordSchedule() action, the ScheduledRecording service creates a recordSchedule,
assigns a unique ID to the recordSchedule and returns the recordSchedule with the complete
set of initial property settings. The ScheduledRecording service MUST add OPTIONAL
properties to the recordSchedule when a control point did not specify them. Additionally, the
ScheduledRecording service MAY add some informative properties.

If a control point specifies unsupported or unknown properties as input to the
CreateRecordSchedule() action, the ScheduledRecording service MUST gracefully ignore
these. A control point can always parse the generated recordSchedule returned in the Result
argument of the CreateRecordSchedule action to verify whether certain properties were
rejected by the ScheduledRecording service. If unsupported values are set for supported
properties, the ScheduledRecording service MUST return an error and the recordSchedule
MUST NOT be created.

D D
CreateRecordSchedule(e)
¢ Properties with desired
values
Scheduled
Sl Recordin
Point < e ding
Service
L ¢ RecordSchedulelD
¢ Properties with initially
assigned values
_ .

Figure 1 — Creating a new recordSchedule

- 30 - 29341-4-14 © ISO/IEC:2011(E)

Some properties are defined as optional in the ScheduledRecording service. Therefore, a
control point needs to determine which properties a ScheduledRecording service
implementation actually supports. Since support levels and allowed values for properties can
be different for recordScheduleParts, recordSchedule or recordTask usage, a pair of actions
(GetPropertyList() and GetAllowedValues())) are provided to retrieve the relevant information.
Figure 2 illustrates the concept.

A D
GetPropertyList@®) .

e Property-set Datatype

<«
L e List of property names
supported for the datatype
Control Scheduled
Point GetAllowedValues(®) Recording
Service
e List of property names
4 ,
L ¢ Allowed values for the listed
properties
. .

Figure 2 — Capability check.

Figure 3 illustrates how recordSchedule instances can be browsed by the control point after
they have been created, to retrieve the updated/current values of the properties.

2 VR
BrowseRecordSchedules() >
-l ,
Control A L Schedu_led
Point . Current_ values of the Recor_dmg
properties of the returned Service
recordSchedules
. .

Figure 3 — Browse recordSchedule.

Figure 4 illustrates how a control point can delete a recordSchedule from the
ScheduledRecording service.

DeleteRecordSchedule(e) |

Scheduled
Recording
Service

Control e RecordSchedulelD
Point

Figure 4 — Delete a recordSchedule

2.3.2 recordTask

A recordSchedule will generate one recordTask for each recording operation that matches
the criteria of the recordSchedule. A recordTask also has properties indicating its behavior. A
recordTask is different from a recordSchedule in that it always represents a single recording
operation whereas a recordSchedule may actually represent multiple recording operations.

29341-4-14 © ISO/IEC:2011(E) -31-

For example, a ScheduledRecording service that interprets a recordSchedule to lead to three
different recording operations could generate three different recordTask instances over its
lifetime. At a given time, a recordSchedule can have zero (no recording operations currently
scheduled) or more recordTask instances associated with it. A ScheduledRecording service
MUST report at least one recordTask when the underlying system is performing a recording
operation for some recordSchedule.

When a recordSchedule is created, the ScheduledRecording service generates necessary
recordTask instances associated with each scheduled recording occurrence. The
ScheduledRecording service may also later add a new recordTask whenever a new
scheduled recording occurrence arrives. Similarly, a ScheduledRecording service may delete
recordTask instances when they are no longer needed. This MAY happen in a device
dependent manner. For example, some ScheduledRecording service implementations delete
a recordTask when the recording is finished while other ScheduledRecording service
implementations keep maintaining finished recordTask instances. A recordTask can only be
created by the ScheduledRecording service as a result of a trigger from a recordSchedule. A
control point can never create a recordTask directly. Both a recordTask and a
recordSchedule MAY be deleted by the ScheduledRecording service or a control point.

The lifetime of a recordTask is determined in a vendor dependent way. Some
implementations maintain a recordTask even after it finishes its recording while others may
delete the recordTask once the recording finishes. However, in any implementation, when a
recordSchedule is deleted, the ScheduledRecording service MUST delete all of its associated
recordTask instances.

2.4 State Variables

Like the ContentDirectory service, the ScheduledRecording service is primarily action-based.
The service state variables exist primarily to support argument passing within service actions.
Information is not exposed directly through explicit state variables. Instead, a client retrieves
ScheduledRecording service information via the return arguments of the actions defined
below. The majority of state variables defined below exist simply to provide data type
information for the arguments of the various actions of this service.

Reader Note: For a first-time reader, it may be more helpful to read the action definitions
before reading the state variable definitions.

- 32 - 29341-4-14 © ISO/IEC:2011(E)

2.4.1 State Variable Overview

Table 2-2 — State Variables

Variable Name R/O @ Data Allowed Value Default Eng.
Type Value Units
SortCapabilities R string CSV (string)
SortLevelCapability R ui4
StateUpdatelD R ui4
LastChange R string
A ARG _TYPE PropertylList R string CSV (string)
A ARG TYPE DataTypelD R string See Table 2-3
A ARG TYPE ObjectID R string
A ARG TYPE ObjectIDList ob string CSV (string)
A_ARG_TYPE Propertylnfo R string
A ARG TYPE Index R uid
A ARG TYPE Count R uid
A ARG _TYPE SortCriteria R string CSV (string)
A ARG _TYPE RecordSchedule R string
A ARG TYPE RecordTask R string
A ARG TYPE RecordScheduleParts R string
a R = Required, O = Optional, X = Non-standard
b CONDITIONALLY REQUIRED. This argument type variable is REQUIRED when the
GetRecordScheduleConflicts() or GetRecordTaskConflicts() actions are implemented. See Clauses 2.6.17,
“GetRecordScheduleConflicts()” and 2.6.18, “GetRecordTaskConflicts()” to determine when these actions
MUST be implemented.

Table 2-3 — allowedValuelList for the DataTypelD argument

Value R/O @
“A_ARG_TYPE RecordSchedule” R
“A_ARG_TYPE RecordTask” R
“A_ARG_TYPE RecordScheduleParts” R
Vendor-defined X
a R = REQUIRED, O = OPTIONAL, X = Non-standard

2.4.2 SortCapabilities

This state variable contains a CSV list of property names that the ScheduledRecording
service can use to sort the information returned in the Result argument of various actions,
such as BrowseRecordSchedules() and BrowseRecordTasks(). An empty string indicates that
the device does not support any kind of sorting. A wildcard “srs:*” indicates that any
supported property within the srs namespace can be used for sorting.

2.4.3 SortLevelCapability

This state variable contains an integer that indicates the maximum number of property names
that can be specified in the SortCriteria argument at the same time.

29341-4-14 © ISO/IEC:2011(E) - 33 -

2.4.4 StateUpdatelD

This state variable is a ScheduledRecording service system-wide numeric value. Its initial
value is 0.

e StateUpdatelD MUST be incremented by 1 whenever any of the following occurs:
e ArecordSchedule or recordTask is created or deleted.

e ArecordSchedule or recordTask is modified, which means that one or more properties
are added, deleted or had their value changed.

e Any other change to the state of the ScheduledRecording service that could be
observed by a control point. This includes any vendor- or other future-defined
behavior.

e When the value of StateUpdatelD is equal to the ui4 maximum value of 4294967295 (2%-
1), incrementing it causes it to roll over to the value 0.

e The increment and the operation that caused it must occur atomically relative to all
information visible to any control point — including both action out arguments and evented
variable values.

For example, consider the case where a control point invokes CreateRecordSchedule() to
create a new recordSchedule that also immediately spawns exactly one recordTask.
Assume that StateUpdatelD is 10 when the control point invokes the action and that for a
short time period around this invocation, no other activity occurs that affects the value of
StateUpdatelD. During this time period, exactly one of the following MUST be true as
seen by all external observations (including the returned values from this
CreateRecordSchedule() invocation):

e StateUpdatelD is 10; and the new recordSchedule has not been created; and the new
recordTask has not been created.

e StateUpdatelD is 11; and the recordSchedule has been created; and the new
recordTask has not been created; and the recordSchedule’s value of
currentRecordTaskCount is 0, indicating that no recordTask has been created.

e StateUpdatelD is 12; and the recordSchedule has been created; and the new
recordTask has been created; and the recordSchedule’s value of
currentRecordTaskCount is 1, indicating that the child recordTask has been created.

ScheduledRecording service implementations SHOULD maintain the same value for
StateUpdatelD through power cycles and any other disappearance/reappearance of the
service on the network. Control points can use a change in the value of this variable to
determine if there has been a change in the ScheduledRecording service.

The value of the StateUpdatelD state variable, returned within events and returned as an
output argument of certain actions should be monitored very closely by control points. Indeed,
whenever an action returns with a StateUpdatelD value in its UpdatelD argument that is less
than the StateUpdatelD value received in the updatelD attribute from the most recent
LastChange event, the information returned by that action is potentially stale. A control point
may want to refresh that information for instance by invoking the appropriate Browsexxx() or
Getxxx() action. It is safe to use the information as long as the StateUpdatelD value returned
in the UpdatelD argument of the action is greater than or equal to the StateUpdatelD value
received in the updatelD attribute from the most recent LastChange event.

2.4.5 LastChange

Note: It is assumed that the default namespace for this subclause (2.4.5, “LastChange”) of
the specification is srs-Ic.

This state variable is used for eventing purposes to allow clients to receive meaningful event
notifications whenever a recordSchedule or recordTask in the ScheduledRecording service
changes. [SRS-EVENT-XSD] defines the schema for the StateEvent XML Document used in
this state variable. The optional XML header <?xml version="1.0" ?> is allowed. One

- 34 - 29341-4-14 © ISO/IEC:2011(E)

root element, <StateEvent> MAY have zero or more elements, each of which represent one
update to a recordSchedule or recordTask instance. Six types of update elements are defined
as shown in Table 2-4, *“Allowed Elements in <StateEvent> Element’. Future
ScheduledRecording service specifications MAY add other types of update elements. A
vendor MAY add vendor-defined elements. The ScheduledRecording:1 service does not
define the value for these elements. Vendor-defined element names MUST follow the rules
set forth in Clause 1.5, “Vendor-defined Extensions”. Note that future ScheduledRecording
service specifications MAY define sub-elements for the elements. Also note that this state
variable MUST be properly escaped as defined in [XML].

Table 2-4 — Allowed Elements in <StateEvent> Element

Element Name Description
RecordScheduleCreated A new recordSchedule is created
RecordScheduleModified One or more properties of a recordSchedule are

modified (added, deleted or values are changed).
RecordScheduleDeleted A recordSchedule is deleted.
RecordTaskCreated A new recordTask is created.
RecordTaskModified One or more properties of a recordTask are modified
(added, deleted or values are changed).
RecordTaskDeleted A recordTask is deleted.
Vendor-defined See Clause 1.5, “Vendor-defined Extensions”.

Each element MUST have one updatelD attribute, which is set to the value of the
StateUpdatelD state variable at the time of the update and one objectlD attribute, whose
value is set to the value of the @id property of the updated recordSchedule or recordTask
instance. Future ScheduledRecording service specifications MAY add other attributes to
existing update elements. A vendor MAY add vendor-defined attributes for existing update
elements.

Example (before XML escaping)

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmIns=""urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www._upnp.org/schemas/av/srs-event.xsd">
<RecordScheduleCreated updatelD="213" objectlD="s001"/>
<RecordTaskCreated updatelD="214" objectlD="s001-001"/>
<RecordTaskModified updatelD="215" objectlD="s001-001"/>
</StateEvent>

The LastChange state variable is evented and moderated. When multiple updates occurred
within a LastChange moderation period, the new LastChange state variable reports more
than one update at the same time. A series of updates and the resulting eventing activity are
illustrated in their temporal order in the following example.

Example

0: ScheduledRecording service activity = Power-on.

StateUpdatelD = 0
LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>

<StateEvent

xmIns=""urn:schemas-upnp-org:av:srs-event"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event

29341-4-14 © ISO/IEC:2011(E) - 35—

http://www_upnp.org/schemas/av/srs-event.xsd">
</StateEvent>

GENA behavior: None
1. ScheduledRecording service activity = a recordSchedule with @id = “s001” is created.
StateUpdatelD =1

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>

<StateEvent

xmIns=""urn:schemas-upnp-org:av:srs-event"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’

Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs-event

http://www._upnp.org/schemas/av/srs-event.xsd">

<RecordScheduleCreated updatelD="1" objectlID="s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Nothing is evented since there are no current subscribers.
2: ScheduledRecording service activity = new control point signs up for events.
StateUpdatelD =1

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>

<StateEvent

xmIns=""urn:schemas-upnp-org:av:srs-event"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event

http://www_upnp.org/schemas/av/srs-event._xsd">

<RecordScheduleCreated updatelD="1" objectlD="s001">
</RecordScheduleCreated>

</StateEvent>

GENA behavior: Send initial Notify with the LastChange value above.

3: ScheduledRecording service activity = a recordTask with @id = “t001-000" is created.
Its associated recordSchedule with @id = “s001” is modified by the ScheduledRecording
service at the same time because its currentReordTaskCount property is updated to
reflect the existence of the new recordTask.

StateUpdatelD = 3

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmIns=""urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs-event
http://www._upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="2" objectlD="t001-000">
</RecordTaskCreated>
<RecordScheduleModified updatelD="3" objectID="s001"">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify with
the LastChange value above.

4. ScheduledRecording service activity = a recordTask with @id = “t001-001" is created.
Its associated recordSchedule with @id = “s001” is modified by the ScheduledRecording
service at the same time because its currentReordTaskCount property is updated to
reflect the existence of the new recordTask. Within the same moderation period, a
recordTask with @id = “t001-002" is also created. Its associated recordSchedule with @id
= “s001” is modified by the ScheduledRecording service at the same time because its

- 36 — 29341-4-14 © ISO/IEC:2011(E)

currentReordTaskCount property is updated to reflect the existence of the new
recordTask.

StateUpdatelD =7

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmIns=""urn:schemas-upnp-org:av:srs-event"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs-event
http://www_upnp.org/schemas/av/srs-event.xsd">
<RecordTaskCreated updatelD="4" objectlD="t001-001">
</RecordTaskCreated>
<RecordScheduleModified updatelD="5" objectID="s001"">
</RecordScheduleModified>
<RecordTaskCreated updatelD="6" objectlD="t001-002">
</RecordTaskCreated>
<RecordScheduleModified updatelD="7" objectID="s001"">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify with
the LastChange value above.

2.4.6 A ARG TYPE PropertylList

This state variable is introduced to provide type information for various action arguments that
contain a CSV list of property names. Namespace prefixes MUST be included with all
property names (see Clause 1.4, “Management of XML Namespaces”). The exact semantics
of these property names depend on the associated action.

2.4.7 A ARG TYPE DataTypelD

This state variable is introduced to provide type information for various action arguments that
are used to identify a specific property-set data type (see Clause 2.2.2.13, “Property-set Data
Types”). An argument of type A_ARG_TYPE DataTypelD can have the values listed in Table
2-3, “allowedValuelList for the DataTypelD argument”.

2.4.8 A ARG TYPE ObjectID

This state variable is introduced to provide type information for various action arguments that
uniquely identify an individual recordSchedule or a recordTask by their object ID.

2.4.9 A ARG TYPE ObjectIDList

This state variable is introduced to provide type information for various action arguments that
contain a CSV list of object IDs (@id) used to identify a collection of either recordSchedule or
recordTask instances (the list MUST be homogeneous).

2.4.10 A ARG TYPE Propertylnfo

This state variable is introduced to provide type information for various action arguments that
contain detailed XML-based information on supported properties and their interdependencies
for a particular ScheduledRecording service implementation. The format of these arguments
is similar to the XML Service Description (SCPD), but instead of describing state variables
and actions, they describe properties, their allowed values, and interdependencies.

Refer to [AVDT] for the definition of the AVDT Datastructure Template.

Note that since the format of these arguments is based on XML, it needs to be escaped
(using the normal XML rules: [XML] Clause 2.4 Character Data and Markup) before
embedding in a SOAP response message.

29341-4-14 © ISO/IEC:2011(E) - 37 -

2.4.11 A ARG TYPE Index

This state variable is introduced to provide type information for various action arguments that
specify an offset into an arbitrary set of objects. A value of O represents the first object in the
set.

2412 A ARG TYPE Count

This state variable is introduced to provide type information for various action arguments that
specify a number of arbitrary objects.

2.4.13 A ARG TYPE SortCriteria

This state variable is introduced to provide type information for various action arguments that
contain a CSV list of property names prefixed by one or more sort modifiers. Namespace
prefixes MUST be included with all property names that do not belong to the srs namespace.
Namespace prefixes MAY be included with property names that belong to the srs namespace
(see Clause 1.4, “Management of XML Namespaces”). The “+” and “-” sort modifier prefixes
indicate that the sort is in ascending or descending order, respectively, with regard to the
value of the prefixed property name.

2.4.14 A ARG TYPE RecordSchedule

This state variable is introduced to provide type information for various action arguments that
contain a list of zero or more recordSchedule objects. All instances of this data type MUST
comply with the SRS schema. See Annex A, “
(normative)

srs XML Document” for details.

The structure of an argument of data type A_ ARG TYPE RecordSchedule is an srs XML
Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs> is the root element.

e The <srs> element MUST have zero or more <item> elements, each representing a
recordSchedule object.

e Each <item> element has a set of property values describing the recordSchedule object.
Each property is expressed either as the content of an XML element or as the value of an
XML attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B, “
(normative)

AV Working Committee Extended Properties.”

Note that since the SRS format of an argument of data type A_ARG_TYPE RecordSchedule
is XML, it needs to be escaped (using the normal XML rules: [XML] Clause 2.4 Character
Data and Markup) before embedding in a SOAP response message.

2.4.15 A ARG TYPE RecordTask

This state variable is introduced to provide type information for various action arguments that
contain a list of zero or more recordTask objects. All instances of this data type MUST
comply with the SRS schema. See Annex A, “
(normative)

srs XML Document” for details.

The structure of an argument of data type A ARG _TYPE RecordTask is an srs XML
Document:

- 38 — 29341-4-14 © ISO/IEC:2011(E)

e Optional XML declaration <?xml version="1.0" ?>
e <srs> is the root element.

e The <srs> element MUST have zero or more <item> elements, each representing a
recordTask object.

e Each <item> element has a set of property values describing the recordTask object.
Each property is expressed either as the content of an XML element or as the value of an
XML attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B, “
(normative)

AV Working Committee Extended Properties.”

Note that since the SRS format of an argument of data type A_ ARG TYPE RecordTask is
XML, it needs to be escaped (using the normal XML rules: [XML] Clause 2.4 Character Data
and Markup) before embedding in a SOAP response message.

2.4.16 A ARG TYPE RecordScheduleParts

This state variable is introduced to provide type information for various action arguments that
contain a single recordScheduleParts object. A recordScheduleParts object indicates the
desired values for a subset of properties that provide a template for other recordSchedule
objects. Typically, a recordScheduleParts is used to create new recordSchedule objects. All
instances of this data type MUST comply with the SRS schema. See Annex A, “
(normative)

srs XML Document” for details.

The structure of an argument of data type A_ARG _TYPE RecordScheduleParts is an srs
XML Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs>is the root element.

e The <srs> element MUST have a single <item> element, representing the
recordScheduleParts object.

e The <item> element has a set of property values describing the recordScheduleParts
object. Each property is expressed either as the content of an XML element or as the
value of an XML attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-
defined names for metadata are described in Annex B, “
(normative)

AV Working Committee Extended Properties.”

Note that since the SRS format of an argument of data type
A ARG _TYPE RecordScheduleParts is XML, it needs to be escaped (using the normal XML
rules: [XML] Clause 2.4 Character Data and Markup) before embedding in a SOAP response
message.

29341-4-14 © ISO/IEC:2011(E)

— 39 —

2.5 Eventing and Moderation
Table 2-5 — Eventing and Moderation
Moderate Logical Min Delta
d Max Event | combinatio per
Variable Name Evented Event Rate 2 n Event b

SortCapabilities NO NO

SortLevelCapability NO NO

StateUpdatelD NO NO

LastChange YES YES 0.2

seconds

A ARG _TYPE PropertylList NO NO

A ARG TYPE DataTypelD NO NO

A ARG _TYPE ObjectiD NO NO

A ARG _TYPE ObjectIDList NO NO

A ARG _TYPE Propertyinfo NO NO

A ARG _TYPE_ Index NO NO

A_ARG_TYPE_Count NO NO

A ARG _TYPE SortCriteria NO NO

A ARG _TYPE RecordSchedule NO NO

A ARG _TYPE RecordTask NO NO

A_ ARG _TYPE RecordScheduleParts NO NO

a Determined by N, where Rate = (Event)/(N secs).

b (N) * (allowedValueRange Step).

- 40 - 29341-4-14 © ISO/IEC:2011(E)

2.6 Actions

Table 2-6 — Actions

Name R/O @

GetSortCapabilities() R

GetPropertyList() R

GetAllowedValues() R

GetStateUpdatelD() R

BrowseRecordSchedules() R

BrowseRecordTasks() R

CreateRecordSchedule() R

DeleteRecordSchedule() R

GetRecordSchedule() R

EnableRecordSchedule() ob

DisableRecordSchedule() ob

DeleteRecordTask() (0]

GetRecordTask() R

EnableRecordTask() oc¢

DisableRecordTask() oc

ResetRecordTask() oc¢

GetRecordScheduleConflicts() od

GetRecordTaskConflicts() oe

a R = REQUIRED, O = OPTIONAL, X = Non-standard

b CONDITIONALLY REQUIRED. The EnableRecordSchedule() and DisableRecordSchedule() actions
MUST be implemented as a combination. If one action is implemented, then the other action MUST
also be implemented.

C CONDITIONALLY REQUIRED. The EnableRecordTask(), DisableRecordTask(), and
ResetRecordTask() actions MUST be implemented as a combination. If one action is implemented,
then the other actions MUST also be implemented.

d CONDITIONALLY REQUIRED. See Clause 2.6.17, “GetRecordScheduleConflicts()” to determine when
this action MUST be implemented.

€ CONDITIONALLY REQUIRED. See Clause 2.6.18, “GetRecordTaskConflicts()” to determine when this
action MUST be implemented.

2.6.1 GetSortCapabilities()

This action returns a CSV list of property names that can be used in the SortCriteria
argument of various actions.

2.6.1.1 Arguments

Table 2-7 — Arguments for GetSortCapabilities()

Argument Direction relatedStateVariable
SortCaps ouT SortCapabilities
SortLevelCap ouT SortLevelCapability

2.6.1.1.1 SortCaps

This argument contains a CSV list of property names that the ScheduledRecording service
can use to sort the information returned in the Result argument of various actions, such as

29341-4-14 © ISO/IEC:2011(E) -41 -

BrowseRecordSchedules() and BrowseRecordTasks(). The appropriate namespace prefixes
(either “srs:” or “<vendor-defined namespace prefix>:") MUST be included with the
returned property names (see Clause 1.4, “Management of XML Namespaces”). An empty
string indicates that the device does not support any kind of sorting. A wildcard “srs:*”"
indicates that any property within the srs namespace can be used for sorting. See also
Clause 2.4.2, “SortCapabilities”

2.6.1.1.2 SortLevelCap

This argument contains an integer that indicates the maximum number of property names
that can be specified at the same time in the SortCriteria argument of various actions. See
also Clause 2.4.3, “SortLevelCapability.”

2.6.1.2 Dependency on State

None.

2.6.1.3 Effect on State

None.

2.6.1.4 Errors

Table 2-8 — Error Codes for GetSortCapabilities()

ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.

2.6.2 GetPropertyList()

The__ GetPropertyList() action provides a means to retrieve from a particular
ScheduledRecording service implementation which properties are actually supported for a
specific property-set data type. The GetPropertyList() action returns a CSV list of property
names that may appear in action arguments of the property-set data type, specified in the
DataTypelD input argument. This CSV list MUST include property names of imported
properties from other namespaces as well as any vendor-defined property names. For
example, the ContentDirectory service imported properties (such as dc:title) that are included
as part of the value of the cdsReference property, MUST be returned.

The appropriate namespace prefixes MUST be included with all property names (see Clause
1.4, “Management of XML Namespaces”).

The set of allowed values for srs properties and vendor-defined properties (when used for the
specified property-set data type) can be obtained via the GetAllowedValues() action. The set
of allowed values for imported properties cannot be retrieved by the GetAllowedValues()
action.

2.6.2.1 Arguments

Table 2-9 — Arguments for GetPropertyList()

Argument Direction relatedStateVariable

DataTypelD IN A_ARG _TYPE DataTypelD

PropertyList UT A ARG _TYPE PropertyList

- 42 — 29341-4-14 © ISO/IEC:2011(E)

2.6.2.1.1 DataTypelD

The DataTypelD argument identifies the property-set data type for which the set of property
names is to be returned. See Clause 2.4.7, “A_ARG _TYPE DataTypelD” for details regarding
its format. The set of allowed values is listed in Table 2-3, “allowedValueList for the

DataTypelD argument”.

2.6.2.1.2 PropertyList

The PropertyList argument contains the set of property names (including their namespace
prefixes) that may appear in action arguments of the property-set data type, specified by the

DataTypelD input argument.
2.6.2.2 Dependency on State

None.

2.6.2.3 Effect on State

None.

2.6.2.4 Errors

Table 2-10 — Error Codes for GetPropertyList()

ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.
711 Invalid DataTypelD An invalid value has been specified in the DataTypelD input
argument.

2.6.3 GetAllowedValues()

This action is used to determine the allowed values and dependencies for srs properties that
can appear within action arguments of the specified property-set data type. The set of
allowed values that are returned is static and does not depend on the current state of the
ScheduledRecording service. The property information is returned in an AVDT XML
Document as defined in [AVDT]. The set of properties for which information is returned is
determined by the intersection of the property names in the Filter argument and the names of
the properties supported by the implementation for the specified property-set data type in the
DataTypelD argument. All property names MUST belong either to the srs namespace or a
vendor-defined namespace.

The set of allowed values for imported properties cannot be retrieved by the
GetAllowedValues() action.

2.6.3.1 Arguments

Table 2-11 — Arguments for GetAllowedValues()

Argument Direction relatedStateVariable
DataTypelD IN A ARG _TYPE DataTypelD
Eilter IN A_ARG_TYPE_PropertyList
Propertylnfo ouT A_ARG_TYPE Propertylnfo

2.6.3.1.1 DataTypelD
See Clause 2.6.2.1.1, “DataTypelD".

29341-4-14 © ISO/IEC:2011(E) - 43 —

2.6.3.1.2 Filter

The Filter argument contains a CSV list of property names that indicates for which properties
allowed value information is to be returned in the AVDT XML Document, contained in the
PropertyInfo output argument. The Filter argument SHOULD only include property names that
are returned in the PropertyList argument of the GetPropertyList() action when specifying the
same value in the DataTypelD argument. ScheduledRecording service implementations
MUST gracefully ignore other property names. The “srs:” namespace prefix MUST be
included with srs property names in the Filter argument. Likewise, a namespace prefix MUST
be included with all vendor-defined property names in the Filter argument (see Clause 1.4,
“Management of XML Namespaces”).

If the Filter argument is set to “*:*”, then allowed values for all supported properties
(including srs properties and vendor-defined properties, but excluding imported properties)
for the specified property-set data type MUST be returned. If the Filter argument is set to
“srs:*”, then allowed values for all supported properties in the srs namespace MUST be
returned. If the Filter argument is set to “<vendor-defined namespace prefix>:*", then
allowed values for all vendor-defined properties in that namespace MUST be returned. If the
Filter argument is set to the empty string, no information is provided (an AVDT XML
Document with an empty root element is returned).

Examples of valid Filter argument values include:

e ‘“srs:@id,srs:priority@orderedValue”

e ‘“srs:title,srs:class”

° u*:*n

e “srs:*”

2.6.3.1.3 Propertylnfo

The Propertylnfo argument MUST only include allowed value and dependency information on
properties that are specified in the Filter argument. The Propertylnfo argument MUST be
properly escaped as defined in [XML]. The particular AVDT XML Document that is returned in
the Propertylnfo argument depends on the property-set data type, specified in the
DataTypelD input argument. See Annex A, “
(normative)

srs XML Document” for further details.

2.6.3.2 Dependency on State

None.

2.6.3.3 Effect on State

None.

2.6.3.4 Errors

Table 2-12 — Error Codes for GetAllowedValues()

ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.
711 Invalid DataTypelD An invalid value has been specified in the DataTypelD input
argument.

- 44 — 29341-4-14 © ISO/IEC:2011(E)

2.6.4 GetStateUpdatelD()

This action returns the current value of the StateUpdatelD state variable in the Id output
argument. This action can be used to poll the ScheduledRecording service for any change in
the service that might have occurred since the last time this action was invoked. If the
returned Id value is different from the value that was returned the last time this action was
invoked, then there has been a change in one or more recordSchedule or recordTask objects
in the ScheduledRecording service. See Clause 2.4.4, “StateUpdatelD” for more information.

2.6.4.1 Arguments

Table 2-13 — Arguments for GetStateUpdatelD()

Argument Direction Related State Variable
Id ouT StateUpdatelD

26.41.1 Id

The Id argument contains the current value of the StateUpdatelD state variable.

2.6.4.2 Dependency on State

None.

2.6.4.3 Effect on State

None.

2.6.4.4 Errors

Table 2-14 — Error Codes for GetStateUpdatelD()

ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.

2.6.5 BrowseRecordSchedules()

This action is used to browse the set of recordSchedule objects in the ScheduledRecording
service.

2.6.5.1 Arguments

Table 2-15 — Arguments for BrowseRecordSchedules()

Argument Direction relatedStateVariable
Filter IN A ARG _TYPE Propertylist
Startinglndex IN A ARG _TYPE Index
RequestedCount IN A ARG TYPE Count
SortCriteria IN A ARG _TYPE SortCriteria
Result ouT A ARG _TYPE RecordSchedule
NumberReturned ouT A ARG TYPE Count
TotalMatches ouT A ARG TYPE Count
UpdatelD ouT StateUpdatelD

29341-4-14 © ISO/IEC:2011(E) — 45—

2.6.5.1.1 Filter

The Filter argument contains a CSV list of property names that indicates which properties are
to be returned in the srs XML Document, contained in the Result output argument.
Namespace prefixes MUST be included with all property names, specified in the Filter
argument (see Clause 1.4, “Management of XML Namespaces”).

The Filter argument has no impact on the number of objects returned in the Result argument.
Instead, the Filter argument allows control points to control the complexity of the object
metadata that is returned in the srs XML Document for each object. It allows a control point to
specify a subset of the supported properties for inclusion in the srs XML Document.
Properties that are REQUIRED by the SRS Schema MUST always be returned. Compliant
ScheduledRecording service implementations MUST NOT return optional properties unless
they are explicitly requested in the Filter input argument or are needed to create a valid XML
document. For example, specifying a dependent property in the Filter argument, such as
priority@orderedValue, will cause its associated independent property, priority, to be
included in the srs XML Document.

In all cases, a compliant ScheduledRecording service implementation MUST always respond
to query requests with the smallest, valid srs XML Document in the Result argument that
satisfies the Filter input argument. If the Filter argument is set to the empty string (*”), then
only the REQUIRED properties are returned.

If the Filter argument is equal to “*:*", then all supported properties for all supported
namespaces MUST be returned. If the Filter argument is equal to “<namespace
prefix>:*" then all of the REQUIRED srs properties and all of the supported properties
within that single namespace MUST be returned. For example, “srs:*" is equivalent to
listing all srs namespace properties supported by the device.

Properties defined in the ContentDirectory service MUST only be imported through the multi-
valued cdsReference property. Therefore, if the Filter argument contains property names
from namespaces defined in the ContentDirectory service specification, the appropriate
cdsReference property values MUST be included in the Result output argument and those
values MUST be filtered, according to what is specified in the Filter argument but also
preserving the validity of the DIDL-Lite XML Document, returned in the cdsReference

property.
Examples of valid Filter argument values include:

e ‘“srs:@id,srs:priority@orderedValue”

e “srs:title,dc:title”

° Wk kT
e ‘“upnp:*,dc:*,didl_lite:*”

A compliant ScheduledRecording service implementation MUST also ignore optional
properties requested in the Filter input argument which are not actually present in the
matching objects. For example, a BrowseRecordSchedules() Filter input argument of the form
“srs:activePeriod” is successful and returns a Result value that complies with the other
BrowseRecordSchedules() input arguments, even in the case where the objects represented
in the Result argument do not have an activePeriod property defined.

2.6.5.1.2 Startinglndex and RequestedCount

This action returns a specified number of recordSchedule objects from the list as indicated by
the RequestedCount argument and starting from a specified index in the list, as indicated by
the Startinglndex argument. The first recordSchedule in the list MUST be indexed by an index
value of 0. Specifying 0 in the RequestedCount argument is PROHIBITED. If the range
indicated by the Startingindex and RequestedCount arguments reaches beyond the end of

- 46 — 29341-4-14 © ISO/IEC:2011(E)

the list, then the ScheduledRecording service MUST return all recordSchedule objects up to
the end of the list and starting from the specified Startingindex.

2.6.5.1.3 SortCriteria

The order of the recordSchedule objects in the Result argument is determined by the
SortCriteria argument. When an empty string is specified in the SortCriteria argument, then
the order is device dependent. Additionally, this device dependent ordering MUST remain
constant unless the UpdatelD argument value has changed since the Ilast
BrowseRecordSchedules() action. In other words, any two objects that appear in a Result
argument MUST always appear in the same relative order as long as the UpdatelD argument
value (and therefore the StateUpdatelD state variable) did not change.

The SortCriteria argument contains a CSV list of property names (namespace prefixes MUST
always be included). Each property name MUST be prefixed by either a “+” or a “-” sort
modifier. The “+” and “-” modifiers indicate that the sort is in ascending or descending order,
respectively, with regard to the value of its associated property.

The ScheduledRecording service MUST NOT accept any property name in the SortCriteria
argument that is not included in the SortCapabilities state variable.

The objects are first sorted on the value of the first property in the SortCriteria argument. If
all values differ in the first property, the sort is finished. If any values of the first property are
equal, each subset of equal values is then sorted based on the next property in the
SortCriteria argument. This process repeats iteratively until there are no more subsets of
equal values or the SortCriteria argument list is exhausted.

For example, a value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime, -srs:scheduledChannel ID, +srs:matchingName”

would sort the returned recordSchedule instances first by start date&time in ascending order,
then for each date&time, the instances would be sorted by descending channel ID and finally,
for each channel ID, the instances would be sorted by ascending program name.

Sorting rules for each property depend on that property’s semantics. Sorts for individual
properties can be any of: numeric sort, lexical sort, lexical numeric sort, Boolean sort,
sequenced sort, type relationship sort, or property specific, according to an explicit ordering
of values defined individually for that property. The definition of each kind of sort may be
found in Clause 2.2.2.26, “Lexical Sort Order”. The specific sort order rules that MUST be
used for each property are given in Annex B, “
(normative)

AV Working Committee Extended Properties”.

When a SortCriteria argument contains property names of optional and/or multi-valued
properties, the following rules apply:

If the property is prefixed by “+” then:

e Objects that do not have a value for the property are returned first in their group.

e Objects that have at least one value for the property are returned next in their group.
Objects that have multiple values for the property (either multi-valued or CSV list) are
sorted based on the property value that would cause the object to appear earliest in the
list.

If the property is prefixed by “-” then:

29341-4-14 © ISO/IEC:2011(E) - 47 —

e Objects that have at least one value for the property are returned first in their group.
Objects that have multiple values (either multi-valued or CSV list) for the property are
sorted based on the property value that would cause the object to appear earliest in the
list.

e Objects that do not have a value for the property are returned last in their group.

Example:
Assume a ScheduledRecording service contains the following items and the current date is
Tuesday, June 21, 2005:
<item id=""1">
<scheduledStartDateT ime>2006-02-07T15:30:00</ScheduledStartDateTime>

</item>
<item id="2">

éscheduIedStartDateTime>MONT15:30:OO</ScheduIedStartDateTime>
<scheduledStartDateTime>WEDT15:30:00</ScheduledStartDateTime>

</item>
<item id="3">

Lschedu ledStartDateTime>MON-FRIT16:00:00</ScheduledStartDateTime>

</item>
<item id="4">

No <scheduledStartDateTime> property

</item>

A value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime”

would sort the returned recordSchedule instances on Tuesday, June 21, 2005 as follows:

<item id="4"/>
<item id="2"/>
<item id="3"/>
<item id="1"/>

because:

e <item id="4"/> has no srs:scheduledStartDateTime property, it therefore appears first.

e <item id="2"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T15:30:00 since this is the earliest date&time in the list. It
therefore appears second.

e <item id="3"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T16:00:00. It therefore appears third.
e <item id="1"/> srs:scheduledStartDateTime property resolves to

Tuesday, 2006-02-07T15:30:00. It therefore appears last.

Sorting on ContentDirectory service imported properties is not supported.

- 48 — 29341-4-14 © ISO/IEC:2011(E)

2.6.5.1.4 Result

The Result output argument contains an XML escaped srs XML Document (see [SRS-XSD]).
This document contains a set of zero or more recordSchedule objects as described in
Annex A, “
(normative)

srs XML Document”. Each of the returned recordSchedule objects MUST NOT have
properties other than those specified in the Filter argument unless they are needed to create
a valid srs XML Document. The ScheduledRecording service implementation MUST ignore
unknown properties specified in the Filter argument. If “*:*” is specified in the Filter argument,
then all supported properties for which the ScheduledRecording service has meaningful
values MUST be returned. The REQUIRED properties (for example,_@id, title, class, ...)
MUST always be included even if not specified in the Filter argument (the srs XML Document
MUST be valid). The ScheduledRecording service implementation MUST ensure that the
information returned in this argument is always consistent. In other words, if during the
information gathering process, certain updates occur, the ScheduledRecording service
implementation MUST re-examine the already gathered information to verify that this
information is still accurate before returning from the action invocation.

2.6.5.1.5 NumberReturned

The NumberReturned argument MUST indicate the actual number of returned objects.

2.6.5.1.6 TotalMatches

The TotalMatches argument MUST indicate the total number of recordSchedule objects that
exist in the ScheduledRecording service.

2.6.5.1.7 UpdatelD

The returned UpdatelD argument MUST be the value of the StateUpdatelD state variable at
the time the returned data has been completely and consistently collected. In other words, if
during the information gathering process, certain updates occur, the ScheduledRecording
service implementation MUST re-examine the already gathered information to verify that this
information is still accurate before returning from the action invocation. Refer to Clause 2.4.4,
“StateUpdatelD” for additional information.

The UpdatelD argument is used to verify whether the returned information in the Result
argument has not become stale. After the action completes, if the value of the StateUpdatelD
state variable is different from the value returned in the UpdatelD argument, then the
information returned in the Result argument may be stale. In this case, the control point
should invoke the appropriate action to refresh its copy of the desired information (for
example, via the BrowseRecordSchedules() or GetRecordSchedule() action).

2.6.5.2 Dependency on State

None.

2.6.5.3 Effect on State

None.

2.6.5.4 Errors

Table 2-16 — Error Codes for BrowseRecordSchedules()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

29341-4-14 © ISO/IEC:2011(E) - 49 —

ErrorCode errorDescription Description
600-699 TBD See UPnP Device Architecture clause on Control.
709 Unsupported or The sort criteria specified are not supported or are invalid.
invalid sort criteria
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.6 BrowseRecordTasks()

This action is used to browse the list of recordTask objects associated with a single
recordSchedule. In addition, it can be used to browse the entire list of all recordTask objects
available in the entire ScheduledRecording service, independent of their parent
recordSchedule.

The Result argument contains an XML escaped srs XML Document that contains a set of
recordTask objects. When the RecordSchedulelD input argument contains the @id value of
an existing recordSchedule, then the Result argument returns an XML escaped srs XML
Document that contains the set of recordTask objects associated with that particular
recordSchedule. When the RecordSchedulelD input argument is set to the empty string ("),
then the Result argument returns an XML escaped srs XML Document that contains a list of
all available recordTask objects in the entire ScheduledRecording service.

2.6.6.1 Arguments

Table 2-17 — Arguments for BrowseRecordTasks()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG _TYPE ObjectID
Filter IN A ARG _TYPE Propertylist
Startinglndex IN A ARG _TYPE Index
RequestedCount IN A ARG TYPE Count
SortCriteria IN A ARG _TYPE SortCriteria
Result ouT A ARG TYPE RecordTask
NumberReturned ouT A ARG TYPE Count
TotalMatches ouT A ARG _TYPE Count
UpdatelD ouT StateUpdatelD

The syntax and semantics of the arguments (the RecordSchedulelD argument not included)
of the BrowseRecordTasks() action are identical to those of the BrowseRecordSchedules()
action, except that the objects returned by this action are recordTask objects instead of
recordSchedule objects.

2.6.6.1.1 RecordSchedulelD

The RecordSchedulelD input argument contains the object ID of the recordSchedule for
which all associated recordTask instances are returned in the Result argument. If the
RecordSchedulelD input argument contains the empty string (*"), then all available
recordTask instances in the entire ScheduledRecording service are returned.

2.6.6.1.2 Filter

See Clause 2.6.5.1.1, “Filter”.

2.6.6.1.3 Startinglndex and RequestedCount

See Clause 2.6.5.1.2, “Startinglndex and RequestedCount”.

- 50 - 29341-4-14 © ISO/IEC:2011(E)

2.6.6.1.4 SortCriteria

See Clause 2.6.5.1.3, “SortCriteria”.

2.6.6.1.5 Result

See Clause 2.6.5.1.4, “Result”. However, the returned objects are recordTask objects instead
of recordSchedule objects.

2.6.6.1.6 NumberReturned

See Clause 2.6.5.1.5, “NumberReturned”.

2.6.6.1.7 TotalMatches

When the RecordSchedulelD input argument contains the @id value of an existing
recordSchedule, then the TotalMatches argument MUST indicate the total number of
recordTask objects that exist in the ScheduledRecording service for the indicated
recordSchedule. When the RecordSchedulelD input argument is set to the empty string (*"),
then the TotalMatches argument MUST indicate the total number of recordTask objects that
exist in the entire ScheduledRecording service, independent of their parent recordSchedule.

2.6.6.1.8 UpdatelD
See Clause 2.6.5.1.7, “UpdatelD".

2.6.6.2 Dependency on State

None.

2.6.6.3 Effect on State

None.

2.6.6.4 Errors

Table 2-18 — Error Codes for BrowseRecordTasks()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

709 Unsupported or The sort criteria specified is not supported or is invalid.
invalid sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.7 CreateRecordSchedule()

This action creates a recordSchedule (that is: a scheduled recording list entry) for some
media content (for example, broadcast content, analog input content, etc). This action
creates a new object of a class, derived from the recordSchedule class. Control points that
want to schedule a recording invoke the CreateRecordSchedule() action.

If the CreateRecordSchedule() action returns successfully, then a new recordSchedule object
is added to the list of Record Schedules maintained by the ScheduledRecording service. This
list can be consulted through the BrowseRecordSchedules() action. The ScheduledRecording

29341-4-14 © ISO/IEC:2011(E) -51-

service MAY also instantiate one or more recordTask objects to represent the discrete
recording tasks that are associated with the high level schedule, defined by the
recordSchedule. The instantiation of recordTask objects may happen after the
CreateRecordSchedule() action returns successfully. However, if the created recordSchedule
would lead to the instantiation of one or more recordTask objects, these recordTask objects
MUST be created by the ScheduledRecording service as soon as possible and within a
reasonable amount of time. If any of these spawned recordTask objects end up in a state that
indicates that these recordTask objects should already be recording, then the
ScheduledRecording service MUST ensure that these recordings start as soon as possible
and within a reasonable amount of time (this will most likely result in a partial recording). If a
ScheduledRecording service implementation can not ensure that these recordings start as
soon as possible, then the CreateRecordSchedule() action MUST return with error code 720
without any change.

2.6.7.1 Arguments

Table 2-19 — Arguments for CreateRecordSchedule()

Argument Direction relatedStateVariable
Elements IN A _ARG_TYPE RecordScheduleParts
RecordSchedulelD ouT A_ARG_TYPE_ ObjectID
Result ouT A_ARG_TYPE RecordSchedule
UpdatelD ouT StateUpdatelD

2.6.7.1.1 Elements

The Elements input argument contains an XML escaped srs XML Document (see [SRS-XSD]).
This document contains a single recordScheduleParts. The recordScheduleParts object
identifies the desired property values for the recordSchedule object to be created. The new
recordSchedule will be an instance of a specific recordSchedule class. Each class defines its
set of member properties, some of which are REQUIRED, and some of which are OPTIONAL.
See Annex C, “
(normative)

AV Working Committee Class Definitions” for details. All REQUIRED member properties
MUST be specified. If a control point omits supported OPTIONAL member properties from the
Elements argument, then the ScheduledRecording service MUST create the recordSchedule
with the appropriate default value for those omitted member properties. If unsupported
properties or unknown properties are specified in the Elements argument, the
ScheduledRecording service MUST gracefully accept these. If an unsupported value is
specified for a supported member property, the ScheduledRecording service MUST detect
this and return error code 703.

2.6.7.1.2 RecordSchedulelD

If the ScheduledRecording service accepts the recordSchedule in the Elements input
argument, then the ScheduledRecording service MUST provide a value in this output
argument. The returned RecordSchedulelD value MUST be a unique value within the
ScheduledRecording service. RecordSchedulelD values are assumed to be opaque values
without special meaning. Although a ScheduledRecording service may choose to use a
RecordSchedulelD value that was previously assigned (and later removed from the active list
of recordSchedule instances), this specification recommends that the RecordSchedulelD
value be unique in time as well.

2.6.7.1.3 Result

The Result output argument contains an XML escaped srs XML Document (see [SRS-XSD]).
This document contains the newly created recordSchedule object as described in Annex A, “
(normative)

srs XML Document”. Any properties specified in the input Elements argument MUST have the
same values in the output recordSchedule. The ScheduledRecording service MUST return all

-52 - 29341-4-14 © ISO/IEC:2011(E)

supported member properties for which it has meaningful values. This complete set allows a
control point to see the default values of those properties that it did not specify in the input
Elements argument. Note that some properties such as scheduleState are defined as
REQUIRED for an output recordSchedule and MUST be included in the returned document.
Refer to C.1.1, “Relationships between Classes and Properties” for the support level of each

property.

The ScheduledRecording service implementation MUST ensure that the information returned
in this argument is always consistent. In other words, if during the information gathering
process, certain updates occur, the ScheduledRecording service implementation MUST re-
examine the already gathered information to verify that this information is still accurate before
returning from the action invocation.

2.6.7.1.4 UpdatelD
See Clause 2.6.5.1.7, “UpdatelD".

2.6.7.2 Dependency on State

None.

2.6.7.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

29341-4-14 © ISO/IEC:2011(E) - 53 -
2.6.7.4 Errors
Table 2-20 — Error Codes for CreateRecordSchedule()
ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 Invalid Syntax The recordSchedule in the Elements argument has invalid syntax.
This includes malformed XML in the Elements input argument or a
general schema violation.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

707 Read only Property Specifying a read only property is not allowed.

708 Required Property Omitting a REQUIRED property is not allowed

720 Cannot Process the | Cannot process the request in a reasonable amount of time.

Request

730 Conflict The specified recordSchedule is conflicting with one or more
existing recordSchedule objects.

The ScheduledRecording service MAY reject a conflicting
recordSchedule and return with this error code.

731 Protected Contents | The specified contents are copy protected.

The ScheduledRecording service MAY reject a recordSchedule that
specifies copy protected contents and return with this error code.

732 No Media The specified removable media is not inserted.

733 Media Write Protect | The specified removable media is write-protected.

734 Media No Space The specified media does not have sufficient capacity.

735 Media Error Error related to the specified destination media.

736 Too Many The maximum number of recordSchedule objects is reached.

recordSchedules

737 Resource Error Error related to an application resource.

2.6.8 DeleteRecordSchedule()

The DeleteRecordSchedule() action is used to delete a specific recordSchedule. When the
recordSchedule is deleted, all of the associated recordTask objects MUST also be deleted.
The list of Record Schedules and their associated recordSchedulelD currently maintained by
the ScheduledRecording service can be retrieved through the BrowseRecordSchedules()
action.

A recordSchedule can only be deleted when all of its associated recordTask objects are in
the “IDLE” or the “DONE” phase. If any of the associated recordTask objects are in the
“ACTIVE” phase, then the ScheduledRecording service MUST return with error code 705
(active recordTask) without any change. A control point that wants to recover from this error
scenario can first delete the associated active recordTask objects by invoking the
DeleteRecordTask() action on these objects and then delete the recordSchedule. The active
recordTask objects can be retrieved by properly invoking the BrowseRecordTasks() action.

It must be noted that a ScheduledRecording service can delete a recordSchedule without
control point intervention. For example, a non-recurring recordSchedule that has completed
its last recordTask MAY (OPTIONALLY) be automatically deleted along with its associated
recordTask objects. However, it is RECOMMENDED that a ScheduledRecording service
implementation retains completed recordSchedule instances and their associated recordTask
instances for a reasonable amount of time so that the user can examine potential error
information after recording is completed.

- 54 — 29341-4-14 © ISO/IEC:2011(E)

2.6.8.1 Arguments

Table 2-21 — Arguments for DeleteRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A_ARG_TYPE_ ObjectID

2.6.8.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule to be deleted.

2.6.8.2 Dependency on State

None.

2.6.8.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

2.6.8.4 Errors

Table 2-22 — Error Codes for DeleteRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

705 Active recordTask One or more recordTask instances are actively recording.

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.9 GetRecordSchedule()

This action is used to retrieve a single recordSchedule from the ScheduledRecording service.

2.6.9.1 Arguments

Table 2-23 — Arguments for GetRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG _TYPE ObjectIlD
Filter IN A ARG _TYPE PropertylList
Result ouT A ARG _TYPE RecordSchedule
UpdatelD ouT StateUpdatelD

2.6.9.1.1 RecordSchedulelD

The RecordSchedulelD contains the object ID of the recordSchedule for which information is
to be returned.

2.6.9.1.2 Filter

See Clause 2.6.5.1.1, “Filter”.

29341-4-14 © ISO/IEC:2011(E) - 55—

2.6.9.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a
single recordSchedule identified by the @id value specified in the RecordSchedulelD
argument. For further details, see Clause 2.6.5.1.4, “Result”.

2.6.9.1.4 UpdatelD
See Clause 2.6.5.1.7, “UpdatelD".

2.6.9.2 Dependency on State

None.

2.6.9.3 Effect on State

None.

2.6.9.4 Errors

Table 2-24 — Error Codes for GetRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.10 EnableRecordSchedule()

This OPTIONAL action is used to enable a previously disabled recordSchedule. Enabling a
recordSchedule is allowed in any state except for the “"COMPLETED” state. In this case, the
action MUST return with error code 740.

The invocation of the EnableRecordSchedule() action enables all the associated recordTask
objects in the “IDLE” or “ACTIVE” phase (See Clause 2.6.14, “EnableRecordTask()") except
for those which were disabled individually at the recordTask level via the DisableRecordTask()
action. Disabling at the recordTask level always takes precedence. If any of the associated
recordTask objects end up in a state that indicates that these recordTask objects should
already be recording, then the ScheduledRecording service MUST ensure that these
recordings start as soon as possible and within a reasonable amount of time (this will most
likely result in a partial recording). If a ScheduledRecording service implementation can not
ensure that these recordings start as soon as possible, then the EnableRecordSchedule()
action MUST return with error code 720. If the ScheduledRecording service can not enable
some of the recordTask objects in the “IDLE” or “ACTIVE” phase, it MUST return error code
740 without any change.

Enabling a recordSchedule MUST NOT affect its recordTask objects in the “DONE” phase.
These recordTask objects MUST NOT cause error code 739 to be generated.

- 56 — 29341-4-14 © ISO/IEC:2011(E)

2.6.10.1 Arguments

Table 2-25 — Arguments for EnableRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A ARG _TYPE ObjectID

2.6.10.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule to be enabled.

2.6.10.2 Dependency on State

None.

2.6.10.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated (the scheduleState@currentErrors property and some taskState@xxx error
properties might be updated).

2.6.10.4 Errors

Table 2-26 — Error Codes for EnableRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled or disabled.

recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED” or disabled.

2.6.11 DisableRecordSchedule()

This OPTIONAL action is used to disable a recordSchedule. Disabling a recordSchedule is
allowed in any state except for the “COMPLETED” state. In this case, the action MUST return
with error code 740.

The invocation of the DisableRecordSchedule() action disables all associated recordTask
objects in the “IDLE” phase (See Clause 2.6.15, “DisableRecordTask()") except for those
which were enabled individually at the recordTask level via the_EnableRecordTask() action.
Enabling at the recordTask level always takes precedence. If the ScheduledRecording
service can not disable some of the recordTask objects in the “IDLE"phase, it MUST return
error code 739 without any change.

The DisableRecordSchedule() action has no impact on recordTask objects already in the
“ACTIVE" phase. These recordTask objects complete as planned.

Also, disabling a recordSchedule MUST NOT affect its recordTask objects in the “DONE”
phase. These recordTask objects MUST NOT cause error code 739 to be generated. A
disabled recordSchedule MUST continue to generate new recordTask objects but they MUST
all be disabled. This allows control points to understand which recordTask objects will

29341-4-14 © ISO/IEC:2011(E) - 57 -

become active, once the RecordSchedule is re-enabled. This also provides the means for a
control point to enable individual recordTask objects, even when the recordSchedule is
disabled.

2.6.11.1 Arguments

Table 2-27 — Arguments for DisableRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A ARG _TYPE ObjectlD

2.6.11.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule to be disabled.

2.6.11.2 Dependency on State

None.

2.6.11.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated (the scheduleState@currentErrors property and some taskState@xxx error
properties might be updated).

2.6.11.4 Errors

Table 2-28 — Error Codes for DisableRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled ordisabled.

recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED" or disabled.

2.6.12 DeleteRecordTask()

This OPTIONAL action is used to delete a recordTask. For any existing recordTask, this
action MUST always succeed. The recordTask object is removed from the list of recordTask
objects that is maintained by the ScheduledRecording service for the (parent)
recordSchedule and any ongoing recording for this recordTask MUST stop immediately. The
associated recorded content for that recordTask MUST NOT be deleted as a result of this
action.

2.6.12.1 Arguments

Table 2-29 — Arguments for DeleteRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN A ARG _TYPE ObjectIlD

- 58 - 29341-4-14 © ISO/IEC:2011(E)

2.6.12.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask to be deleted.

2.6.12.2 Dependency on State

None.

2.6.12.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

2.6.12.4 Errors

Table 2-30 — Error Codes for DeleteRecordTask()

ErrorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.
713 No such recordTask | The specified recordTask does not exist.
1D

2.6.13 GetRecordTask()

This action is used to retrieve a single recordTask from the ScheduledRecording service.

2.6.13.1 Arguments

Table 2-31 — Arguments for GetRecordTask()

Argument Direction relatedStateVariable

z

RecordTaskID A_ ARG _TYPE_ ObjectID

Z |l

Eilter A ARG _TYPE Propertylist
Result ouT A ARG _TYPE RecordTask
UpdatelD ouT StateUpdatelD

2.6.13.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask for which information is
to be returned.

2.6.13.1.2 Filter

See Clause 2.6.5.1.1, “Filter”.

2.6.13.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a
single recordTask instance, identified by the @id value specified in the RecordTasklD
argument. The Result argument is identical to the Result argument of the
BrowseRecordTasks() action. See Clause 2.6.6.1.5, “Result” for further details.

2.6.13.1.4 UpdatelD
See Clause 2.6.5.1.7, “UpdatelD".

29341-4-14 © ISO/IEC:2011(E) - 59 —

2.6.13.2 Dependency on State

None.

2.6.13.3 Effect on State

None.

2.6.13.4 Errors

Table 2-32 — Error Codes for GetRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

713 No such recordTask | The specified recordTask does not exist.
1D

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.14 EnableRecordTask()

This OPTIONAL action is used to first de-synchronize the recordTask enable/disable
behavior from the (parent) recordSchedule and then individually enable the recordTask, if not
already enabled.

e A recordTask that is enabled in the “IDLE” phase will record content in the future unless
the occurrence of an error prevents that.

e A recordTask that is enabled in the “ACTIVE” phase MUST start recording content as
soon as possible and within a reasonable amount of time unless the occurrence of an
error prevents that. In that case, it MUST return error code 720 without any change.

Invoking EnableRecordTask() on a recordTask in the_“DONE” phase MUST NOT affect the
state of the recordTask and MUST fail with error code 741.

Enabling a recordTask always takes persistent precedence over enabling/disabling activities
performed at the (parent) recordSchedule level. A recordTask that is enabled by invoking
EnableRecordTask() remains enabled until explicitly disabled by invoking
DisableRecordTask() on that recordTask. Invoking EnableRecordSchedule() or
DisableRecordSchedule() on the (parent) recordSchedule does not affect the recordTask
anymore. A recordTask enable/disable behavior can be re-synchronised to the (parent)
recordSchedule by invoking the ResetRecordTask() action. From that point onwards, a
recordTask will follow any enabling/disabling activities performed at the (parent)
recordSchedule level again.

2.6.14.1 Arguments

Table 2-33 — Arguments for EnableRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN A_ ARG _TYPE_ ObjectID

2.6.14.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask to be enabled.

- 60 - 29341-4-14 © ISO/IEC:2011(E)

2.6.14.2 Dependency on State

None.

2.6.14.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

2.6.14.4 Errors

Table 2-34 — Error Codes for EnableRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

713 No such recordTask | The specified recordTask does not exist.
1D

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

741 recordTask in A recordTask in the “DONE” phase cannot be enabled or disabled.
“DONE” phase

2.6.15 DisableRecordTask()

This OPTIONAL action is used to first de-synchronize the recordTask enable/disable
behavior from the (parent) recordSchedule and then individually disable the recordTask, if not
already disabled. A disabled recordTask MUST behave identical to an enabled recordTask,
except for the following:

e A disabled recordTask in the “IDLE” phase MUST report error code 101 (Disabled) in the
taskState@pendingErrors property.

e A disabled recordTask in the “ACTIVE” phase MUST NOT record content and it MUST
report error code 101 (Disabled) in the taskState@currentErrors and
taskState@errorHistory properties.

When a recordTask in the “ACTIVE” phase is disabled, it MUST stop recording immediately.
If that is not possible, it MUST return error code 720 without any change. Invoking
DisableRecordTask() on a recordTask in the “DONE” phase MUST NOT affect the state of
the recordTask and MUST fail with error code 741.

Disabling a recordTask always takes persistent precedence over enabling/disabling activities
performed at the (parent) recordSchedule level. A recordTask that is disabled by invoking
DisableRecordTask() remains disabled until explicitly re-enabled by invoking
EnableRecordTask() on that recordTask. Invoking EnableRecordSchedule() or
DisableRecordSchedule() on the (parent) recordSchedule does not affect the recordTask
anymore. A recordTask enable/disable behavior can be re-synchronised to the (parent)
recordSchedule by invoking the ResetRecordTask() action. From that point onwards, a
recordTask will follow any enabling/disabling activities performed at the (parent)
recordSchedule level again.

2.6.15.1 Arguments

Table 2-35 — Arguments for DisableRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN A ARG _TYPE ObjectlD

29341-4-14 © ISO/IEC:2011(E) - 61—

2.6.15.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask to be disabled.

2.6.15.2 Dependency on State

None.

2.6.15.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

2.6.15.4 Errors

Table 2-36 — Error Codes for DisableRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

713 No such recordTask | The specified recordTask does not exist.
1D

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

741 recordTask in A recordTask in the “DONE” phase cannot be enabled or disabled.
“DONE" phase

2.6.16 ResetRecordTask()

This OPTIONAL action is used to force a previously enabled or disabled recordTask to follow
any enabling/disabling activities performed at the (parent) recordSchedule level again.

If the (parent) recordSchedule is in the “ENABLED” state, then the effect of invoking the
ResetRecordTask() action on an associated recordTask is identical to invoking the
EnableRecordTask() action on that recordTask and from that point onwards, following any
enabling/disabling activities performed at the (parent) recordSchedule level again for that
recordTask.

If the (parent) recordSchedule is in the “DISABLED” state, then the effect of invoking the
ResetRecordTask() action on an associated recordTask is identical to invoking the
DisableRecordTask() action on that recordTask and from that point onwards, following any
enabling/disabling activities performed at the (parent) recordSchedule level again for that
recordTask.

2.6.16.1 Arguments

Table 2-37 — Arguments for ResetRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN A_ ARG _TYPE_ ObjectID

2.6.16.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask to be reset.

2.6.16.2 Dependency on State

None.

- 62— 29341-4-14 © ISO/IEC:2011(E)

2.6.16.3 Effect on State

The value of the StateUpdatelD state variable is changed and the LastChange state variable
is updated.

2.6.16.4 Errors

Table 2-38 — Error Codes for ResetRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

713 No such recordTask | The specified recordTask does not exist.
ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.17 GetRecordScheduleConflicts()

This action returns a CSV list of recordSchedule objects that conflict with the recordSchedule
indicated by the RecordSchedulelD argument.

Support of this action is REQUIRED if the ScheduledRecording service implementation
allows conflicting recordSchedule instances to be created.

2.6.17.1 Arguments

Table 2-39 — Arguments for GetRecordScheduleConflicts()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG _TYPE ObjectID
RecordScheduleConflictIDList ouT A ARG _TYPE ObjectIDList
UpdatelD ouT StateUpdatelD

2.6.17.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule for which all
conflicting recordSchedule object ID values are to be returned in the
RecordScheduleConflictIDList output argument.

2.6.17.1.2 RecordScheduleConflictIDList

This output argument contains the CSV list of recordSchedule object IDs that conflict with the
recordSchedule, indicated by the RecordSchedulelD argument.

2.6.17.1.3 UpdatelD

The returned UpdatelD argument MUST contain the most recent value of the StateUpdatelD
state variable before the action began collecting information to create the value returned in
the RecordScheduleConflictIDList argument. This ensures that any changes that occur during
the gathering of information can be detected by comparing the value of the UpdatelD
argument to the updatelD attribute value in the most recent LastChange event. Refer to
Clause 2.4.4, “StateUpdatelD” for more detailed information on the use of this argument.

2.6.17.2 Dependency on State

None.

29341-4-14 © ISO/IEC:2011(E) - 63—

2.6.17.3 Effect on State

None.

2.6.17.4 Errors

Table 2-40 — Error Codes for GetRecordScheduleConflicts()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.18 GetRecordTaskConflicts()

This action returns a CSV list of @id values of all the recordTask instances that conflict with
the recordTask indicated by the RecordTaskID argument.

Support of this action is REQUIRED if the ScheduledRecording service implementation
allows conflicting recordTask instances to be created.

2.6.18.1 Arguments

Table 2-41 — Arguments for GetRecordTaskConflicts()

Argument Direction relatedStateVariable

RecordTaskID IN

=z

A _ARG_TYPE ObjectID

RecordTaskConflictIDList ouT A ARG _TYPE ObjectIDList
UpdatelD ouT StateUpdatelD

2.6.18.1.1 RecordTaskID

The RecordTasklD argument contains the object ID of the recordTask for which all conflicting
recordTask object ID values are to be returned in the RecordTaskConflictiIDList output
argument.

2.6.18.1.2 RecordTaskConflictIDList

This output argument contains the CSV list of recordTask object IDs that conflict with the
recordTask, indicated by the RecordTaskID argument.

2.6.18.1.3 UpdatelD

The returned UpdatelD argument MUST contain the most recent value of the StateUpdatelD
state variable before the action began collecting information to create the value returned in
the RecordTaskConflictIDList argument. This ensures that any changes that occur during the
gathering of information can be detected by comparing the value of the UpdatelD argument to
the updatelD attribute value in the most recent LastChange event. Refer to Clause 2.4.4,
“StateUpdatelD” for more detailed information on the use of this argument.

2.6.18.2 Dependency on State

None.

- 64 — 29341-4-14 © ISO/IEC:2011(E)

2.6.18.3 Effect on State

None.

2.6.18.4 Errors

Table 2-42 — Error Codes for GetRecordTaskConflicts()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

713 No such recordTask | The specified recordTask does not exist.
ID

720 Cannot process the Cannot process the request in a reasonable amount of time.
request

2.6.19 Common Error Codes

The following table lists error codes common to actions for this service type. If an action
results in multiple errors, the most specific error should be returned.

29341-4-14 © ISO/IEC:2011(E)

— 65 —

Table 2-43 — Common Error Codes

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

700 Reserved for future extensions.

701 Invalid Syntax The recordSchedule in the Elements argument has invalid syntax.
This includes malformed XML in the Elements input argument or a
general schema violation.

702 Reserved for future extensions.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

704 No such The specified recordSchedule does not exist.

recordSchedule ID

705 Active recordTask One or more recordTask instances are actively recording.

706 Reserved for future extensions.

707 Read-only property Unable to specify read-only property.

708 Required property Omitting a REQUIRED property is not allowed

709 Unsupported or The sort criteria specified are not supported or are invalid.

invalid sort criteria

710 Reserved for future extensions.

711 Invalid DataTypelD An invalid value has been specified in the DataTypelD input
argument.

712 Reserved for future extensions.

713 No such recordTask | The specified recordTask does not exist.

ID

714-719 Reserved for future extensions.

720 Cannot process the | Cannot process the request in a reasonable amount of time.

request

721-729 Reserved for future extensions.

730 Conflict The specified recordSchedule is conflicting with one or more
existing recordSchedule objects.

The ScheduledRecording service MAY reject a conflicting
recordSchedule and return with this error code.

731 Protected Contents | The specified contents are copy protected.

The ScheduledRecording service MAY reject a recordSchedule that
specifies copy protected contents and return with this error code.

732 No Media The specified removable media is not inserted.

733 Media Write Protect | The specified removable media is write-protected.

734 Media No Space The specified media does not have sufficient capacity.

735 Media Error Error related to the specified destination media.

736 Too many record The maximum number of recordSchedule objects is reached.

schedules

737 Resource Error Error related to an application resource.

738 Reserved for future extensions.

739 Cannot One or more of the associated recordTask objects could not be

enable/disable enabled or disabled.
recordSchedule
740 recordSchedule The recordSchedule has already completed and cannot be enabled

“COMPLETED”

or disabled.

- 66 — 29341-4-14 © ISO/IEC:2011(E)

ErrorCode errorDescription Description
741 recordTask in A recordTask in the “DONE” phase cannot be enabled or disabled.
“DONE” phase

Note: 800-899 Error Codes are not permitted for standard actions. See UPnP Device Architecture clause
on Control for more details.

2.7 State Diagram of recordTask

In the ScheduledRecording service, the state of each recordTask is represented by its state
properties (that is: taskState and its associated properties taskState@xxx). The definitions
are described in clause B.16, “Task State Properties”. Additionally, the state behavior of a
recordTask is illustrated by a state diagram to give a visual description of each state and the
state transitions. State diagrams are provided for informational purposes. Whenever there is
a discrepancy between the state diagram and the textual description of state and state
transition, the normative textual description takes precedence.

2.7.1 A Full-Featured State Diagram

As described above, the taskState property reflects the current state of the recordTask. Its
value changes over time as the recordTask progresses through its life-cycle. The following
state transition diagram shows the possible states and state transitions that a given
recordTask may take throughout its life time. It is assumed that all (REQUIRED and
OPTIONAL) normative states and attributes of a recordTask are supported by the device.
Further, it is assumed that a device is able to resume recording in the middle of the “ACTIVE”
phase., The GetAllowedValues() action can be used to determine if a device supports all
states and attributes.

29341-4-14 © ISO/IEC:2011(E)

recordTask

Created

FE>1
EH>++
PH->DONE
SBM~>1

STM~> 1
PH->ACTIVE

— 67 —

PH = @phase property

STM = @startDateTimeMet property

ETM = @endDateTimeMet property

Rec = @recording property

SBR = @someBitsRecorded property

FBR = @firstBitsRecorded property

LBR = @lastBitsRecorded property

SBM = @someBitsMissing property

CE = @currentErrors property

EH = @errorHistory property

FE = @fatalErrorFlag property

PE = @pendingErrors property

Info = @infoList property

> = Triggers a transition when set to new value
> = Transition causes a new value to be set

=? = Transition target determined by current value

\ /

ACTIVE.
TRANSITION.
FROMSTART

Rec>1
SBR>1

CE>++
EH->++
SBM->1

~

ACTIVE.
TRANSITION.
RESTART

ACTIVE.
NOTRECOR
DING

FBR>1
PE =?
0 1
ACTIVE. ACTIVE. ACTIVE. ACTIVE.
RECORDING RECORDING. RECORDING RECORDING.
FEDL FROMSTART FROMSTART RESTART. RESTART.
REEP0 0K ATRISK oK U
EH>++
PH->DONE
SBM>1
SBR =? K /
0 1
ETM->1 0 ETM>1 ETM>1
Rec>0 [} Rec>0 PH->DONE
PH->DONE, (] PH->DONE,
A LBR>1 (] LBR>1
DONE.
PARTIAL

recordTask Deleted

Figure 5 — A Full-Featured State Diagram

2.7.1.1 “IDLE” Phase

The states in this phase indicate that the recordTask’s start time has not yet been reached
and that the target content is not yet available for recording. The recordTask will remain in
the “IDLE” phase (that is: in any of the IDLE states), until either the recordTask’s start time is
If/when the start time is reached, the recordTask will

reached or a fatal error is detected.

transition to one of the states in the “ACTIVE” phase.

If a fatal error is detected,

recordTask will transition directly to the “DONE.EMPTY?” state within the “DONE” phase.

- 68 — 29341-4-14 © ISO/IEC:2011(E)

2.7.1.1.1 “IDLE.READY" State

This state indicates that the recordTask is waiting for the start time to be reached and that no
error conditions (either fatal or non-fatal) have been detected. If/when the start time is
reached, the recordTask will transition to one of the states in the “ACTIVE” phase. If, while
waiting for the start time, a non-fatal error is detected, the recordTask will transition to the
“IDLE.ATRISK” state indicating that the recordTask is at risk of not completing successfully
due to some non-fatal error condition.

2.7.1.1.2 “IDLE.ATRISK” State

This state indicates that the recordTask is waiting for the start time to be reached, but that at
least one non-fatal error condition has been detected. If/when the start time is reached, the
recordTask will transition to one of the states in the “ACTIVE” phase. If, while waiting for the
start time, the non-fatal error is resolved, the recordTask will transition back to the
“IDLE.READY?” state.

2.7.1.2 “ACTIVE” Phase

The states in this phase indicate that the recordTask’s start time has been reached and that
the target content is available for recording. While in this phase (that is: in one of these
states), the device will attempt to record the content. The recordTask will remain in this
phase until either the recordTask’s end time is reached (that is: the content is no longer
available) or until a fatal error is detected. If/when the end time is reached, the recordTask
will transition to the appropriate “DONE” state based on how much of the content was
recorded (that is: all — “DONE.FULL", part — “DONE.PARTIAL", or none —“DONE.EMPTY"). If
a fatal error is detected, the recordTask will transition to either the “DONE.PARTIAL" or the
“DONE.EMPTY” state, depending on how much of the content was recorded (that is: part or
none).

2.7.1.2.1 “ACTIVE.TRANSITION.FROMSTART" State

This state indicates that the recordTask is attempting to begin recording the recordTask’s
content from the beginning of the designated start time. The recordTask remains in this state
until either the device actually begins recording data to the media or until a non-fatal or fatal
error occurs. If the device actually starts to record data to the media, the recordTask will
transition to “ACTIVE.RECORDING.FROMSTART" states where the content continues to be
recorded. If the initial recording attempt fails due to a non-fatal error, the recordTask
transitions to the “ACTIVE.NOTRECORDING” state where one or more attempts is made to
resolve the problem and re-start the recording. If a fatal error is detected, the recordTask will
transition to either the “DONE.PARTIAL"” or the “DONE.EMPTY” state, depending on how
much of the content was actually recorded (that is: part or none).

Although the recordTask remains in this state for a relatively short period of time, this state
bridges an inherent discontinuity between the “IDLE” states and the “ACTIVE” states.
Specifically, at the instant when the recordTask’s start time is reached, the recordTask (by
definition) must transition out of the “IDLE” phase and into the “ACTIVE” phase, However,
since the device has not yet attempted to record any content data on to the media, it is
unknown which “ACTIVE"” state the recordTask should transition to. Firstly, it is not
appropriate to transition to any of the “ACTIVE.RECORDING.xxx" states because the device
has not yet actually recorded any content data. Secondly, it is not appropriate to transition to
the “ACTIVE.NOTRECORDING" state because this state (by definition) means that a non-
fatal error has occurred resulting in the loss of content. Since no other “ACTIVE” states are
appropriate at this instant in time, the “ACTIVE.TRANSITION.xxx" states exist as a brief
transition point while the true disposition of the recordTask is determined.

2.7.1.2.2 “ACTIVE.TRANSITION.RESTART” State

This state indicates that the recordTask is attempting to re-start the recording of the
recordTask’s content some time after the beginning of the designated start time. This implies
that either the initial recording attempt failed or that the initial recording attempt succeeded,

29341-4-14 © ISO/IEC:2011(E) - 69 —

but was later disrupted due to a non-fatal error. The recordTask remains in this state until
either the device actually begins recording data to the media or until a non-fatal or fatal error
occurs. If the device actually starts to record data to the media, the recordTask will transition
to “ACTIVE.RECORDING.RESTART" states where the content continues to be recorded. If
the initial recording attempt fails due to a non-fatal error, the recordTask transitions to the
“ACTIVE.NOTRECORDING"” state where one or more attempts is made to resolve the
problem and re-attempt to start the recording. If a fatal error is detected, the recordTask will
transition to either the “DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how
much of the content was recorded (that is: part of none).

Although the recordTask remains in this state for a relatively short period of time, this state
bridges an inherent discontinuity between the “ACTIVE.NOTRECORDING” state and the
“ACTIVE.RECORDING.xxx" states. Specifically, at the instant when a current non-fatal error
has been resolved, the recordTask (by definition) must transition out of the
“ACTIVE.NOTRECORDING” state and into one of the other “ACTIVE" states. However, since
the device has not yet attempted to restart the recording of content data on to the media, it is
unknown which “ACTIVE” state the recordTask should transition to. Firstly, it is not
appropriate to transition to any of the “ACTIVE.RECORDING.xxx" states because the device
has not yet actually (re)started to record any content data. Secondly, it is not appropriate to
transition back to the “ACTIVE.NOTRECORDING” state because there are no unresolved
non-fatal errors. Since no other “ACTIVE” states are appropriate at this instant in time, the
“ACTIVE.TRANSITION.xxx" states exists as a brief transition point while the true disposition
of the recordTask is determined.

2.7.1.2.3 “ACTIVE.RECORDING.FROMSTART.OK" State

This state indicates that the recordTask has reached its start time and that all of the target
content has been recorded continuously from the beginning. Additionally, no non-fatal or fatal
errors have occurred or have been detected which would otherwise threaten the future
continuity of the recording. The recordTask remains in this state until either the recordTask’s
end time is reached or until a non-fatal or fatal error occurs or a pending non-fatal or fatal
error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to
the “DONE.FULL" state indicating that the entire target content was recorded uninterrupted. If
a non-fatal error actually occurs, the recording has already halted and the recordTask
transitions to the “ACTIVE. NOTRECORDING” state where one or more attempts are made to
resolve the problem and restart the recording. If a fatal error actually occurs, the recording
has already halted and the recordTask transitions directly to the “DONE.PARTIAL” state
indicating that part of the target content was recorded. If a pending non-fatal or fatal error is
detected (but has not vyet occurred), the recordTask transitions to the
“ACTIVE.RECORDING.FROMSTART.ATRISK” state indicating that the target content has
been recorded continuously from the beginning, but a pending error has been detected that
threatens the remainder of the recording.

2.7.1.2.4 “ACTIVE.RECORDING.FROMSTART.ATRISK" State

This state indicates that the recordTask has reached its start time and that all of the target
content has been recorded continuously from the beginning. Although no non-fatal or fatal
errors have occurred, one or more pending non-fatal or fatal errors have been detected that
threaten the future continuity of the recording. The recordTask remains in this state until
either the recordTask’s end time is reached or until all of the pending non-fatal and fatal
errors have been resolved or until a non-fatal or fatal error actually occurs.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to
the “DONE.FULL” state indicating that the entire target content was recorded uninterrupted. If
all of the pending errors have been resolved, the recordTask transitions to the
“ACTIVE.RECORDING.FROMSTART.OK" state indicating that the target content has been
recorded continuously from the beginning and that no pending non-fatal or fatal errors have
been detected. If a non-fatal error actually occurs, the recording has already halted and the

- 70— 29341-4-14 © ISO/IEC:2011(E)

recordTask transitions to the “ACTIVE. NOTRECORDING” state where one or more attempts
are made to resolve the problem and restart the recording. If a fatal error actually occurs, the
recording has already halted and the recordTask transitions directly to the “DONE.PARTIAL"
state indicating that part of the target content was recorded.

2.7.1.2.5 “ACTIVE.RECORDING.RESTART.OK” State

This state indicates that the recordTask has reached its start time and that the target content
data is being recorded onto the media. However, at some point in the past, the recording was
disrupted either at the beginning or somewhere in the middle so that part of the content was
not recorded. Fortunately, no pending non-fatal or fatal errors have been detected which
would otherwise threaten the future continuity of the recording. The recordTask remains in
this state until either the recordTask’s end time is reached or until a non-fatal or fatal actually
occurs or a pending non-fatal or fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to
the “DONE.PARTIAL" state indicating that part, but not all, of the target content was recorded.
If a non-fatal error actually occurs, the recording has already halted and the recordTask
transitions to the “ACTIVE. NOTRECORDING" state where one or more attempts are made to
resolve the problem and again restart the recording. If a fatal error actually occurs, the
recording has already halted and the recordTask transitions directly to the “DONE.PARTIAL"
state indicating that part of the target content was recorded. If a pending non-fatal or fatal
error is detected (but has not yet occurred), the recordTask transitions to the
“ACTIVE.RECORDING.RESTART.ATRISK"” state indicating that part of the target content has
been recorded and that additional non-fatal or fatal errors are pending which threaten the
remainder of the recording.

2.7.1.2.6 “ACTIVE.RECORDING.RESTART.ATRISK” State

This state indicates that the recordTask has reached its start time and that the target content
data is being recorded onto the media. However, at some point in the past, the recording was
disrupted either at the beginning or somewhere in the middle so that part of the content was
not recorded. Additionally, one or more pending non-fatal or fatal errors have been detected
that threaten the future continuity of the recording. The recordTask remains in this state until
either the recordTask’s end time is reached or until all of the pending non-fatal and fatal
errors have been resolved or until a non-fatal or fatal actually occurs.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to
the “DONE.PARTIAL” state indicating that part, but not all, of the target content was recorded.
If all of the pending errors have been resolved, the recordTask transitions to the
“ACTIVE.RECORDING.RESTART.OK?" state indicating that the target content continues to be
recorded, but with some content missing, and that no pending non-fatal or fatal errors have
been detected. If a non-fatal error actually occurs, the recording has already halted and the
recordTask transitions to the “ACTIVE. NOTRECORDING” state where one or more attempts
are made to resolve the problem and again restart the recording. If a fatal error actually
occurs, the recording has already halted and the recordTask transitions directly to the
“DONE.PARTIAL" state indicating that part of the target content was recorded.

2.7.1.2.7 “ACTIVE.NOTRECORDING" State

This state indicates that a non-fatal error has occurred while the device was recording the
target content or while the device was attempting to start recording the target content. The
recordTask remains in this state until either the recordTask’s end time is reached or until all
of the current non-fatal errors are resolved, or until a fatal error actually occurs.

If the recordTask reaches its end time, the recordTask transitions to either the
“DONE.PARTIAL” or “DONE.EMPTY"” depending on how much of the content was actually
recorded (that is: part or none). If all of the current non-fatal errors have been resolved, the
recordTask transitions to the “ACTIVE.TRANSITION.RESTART" state where one or more
attempts are made to restart the recording. If a fatal error is detected, the recordTask

29341-4-14 © ISO/IEC:2011(E) -71-

transitions to either the “DONE.PARTIAL” or the “DONE.EMPTY” state depending on how
much of the content was actually recorded (that is: part or none).

2.7.1.3 “DONE” Phase

The states in this phase indicate that the device is finished with this recordTask. Each
“DONE” state indicates the success or failure of the recordTask based on how much of the
target content was actually recorded. Once the recordTask reaches one of the “DONE” states,
it remains in that state until the recordTask is deleted and none of the recordTask’s property
values change.

2.7.1.3.1 “DONE.FULL" State
This state indicates that all of the recordTask’s target content was recorded in its entirety

without any interruptions. No error occurred while recording the target content. The
recordTask remains in this state until the recordTask is deleted.

2.7.1.3.2 “DONE.PARTIAL" State

This state indicates that part of the recordTask’s target content was recorded, but not all of it.
One or more errors occurred while recording the target content that prevented part of that
content from being recorded. The recordTask remains in this state until the recordTask is
deleted.

2.7.1.3.3 “DONE.EMPTY” State

This state indicates that none of the recordTask’s target content was recorded. One or more
errors occurred that prevented the recording from even getting started. The recordTask
remains in this state until the recordTask is deleted.

2.7.2 A Minimal-Implementation State Diagram

The simplest state diagram based on the minimum required state related properties is
illustrated below to show the behavior of such a device and the progression of its state. The
support level of these state related properties is defined in C.3.2, “object.recordTask Class”.
This example only uses the set of REQUIRED allowed values for the taskState property. In
the example below, it is assumed that the device is UNABLE to resume recording once the
“ACTIVE" phase is entered. By definition, any device MUST support at least the following 5
illustrated states.

-72 - 29341-4-14 © ISO/IEC:2011(E)

recordTask PH = @phase property
STM = @startDateTimeMet property
Created ETM = @endDateTimeMet property

Rec = @recording property

SBR = @someBitsRecorded property
FBR = @firstBitsRecorded property
LBR = @lastBitsRecorded property
SBM = @someBitsMissing property
CE = @currentErrors property

EH = @errorHistory property

FE = @fatalErrorFlag property

FE>1 /0 N\ T PE = @pendingErrors property
EH>++ IDLE. Info = @infolList property
PH->DONE READY . "
SBM>1 - =Triggers a transition when set to new value

> = Transition causes a new value to be set

PH->ACTIVE
\

=? = Transition target determined by current value
\ STM> 1

~

/

ACTIVE.
RECORDING.

FEDL FROMSTART
REG0 .OK
E'H—>I++

PH->DONE

SBM>1 K

\ ETM->1
Rec>0

' PH>DONE
(LBR>1

DONE.
PARTIAL

recordTask Deleted

Figure 6 — A Minimal-Implementation State Diagram

2.7.2.1 “IDLE” Phase

In this phase, the device is not able to detect pending errors (that is:
taskState@pendingErrors MUST be empty); therefore, once the start time is reached, the
device will go to the “ACTIVE.RECORDING.FROMSTART.OK" state and start recording. If
the device can not start recording, it is treated as a fatal error, and the recordTask will
transition directly to the “DONE.EMPTY” state. Also, anytime during the “IDLE" phase, a fatal
error can occur, and the recordTask will transition directly to the “DONE.EMPTY” state.

29341-4-14 © ISO/IEC:2011(E) - 73—

2.7.2.1.1 “IDLE.READY" State

Because there is no error detecting mechanism (that is: taskState@pendingErrors) supported,
this state indicates that the recordTask is waiting for the start time to be reached and that no
errors conditions (either fatal or non-fatal) have been detected. If/when the start time is
reached, the recordTask will attempt to record immediately.

2.7.2.1.2 “IDLE.ATRISK” State

Because there is no error detecting mechanism (that is: taskState@pendingErrors) supported,
this state is not supported.

2.7.2.2 “ACTIVE” Phase

Because there is no pending error (that is: taskState@pendingErrors) detection mechanism
supported, nor is an interrupted “ACTIVE” recording or late recording (that is: the start time is
missed) able to resume recording (due to device limitations), only one state MUST be
supported in the “ACTIVE” phase, that is: “ACTIVE.RECORDING FROMSTART.OK". It
indicates a perfect recording condition.

2.7.2.2.1 “ACTIVE.TRANSITION.FROMSTART" State

This state is not supported.

2.7.2.2.2 “ACTIVE.TRANSITION.RESTART” State

This state is not supported.

2.7.2.2.3 “ACTIVE.RECORDING.FROMSTART.OK” State

This is the only state that MUST be supported in the “ACTIVE” phase. It indicates the perfect
recording condition. The recordTask has reached its start time and all of the target content
has been recorded continuously from the beginning. The recordTask remains in this state
until either the recordTask’s end time is reached or until a fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to
the “DONE.FULL" state indicating that the entire target content was recorded uninterrupted. If
the recording is interrupted for any reason, it is treated as a fatal error, and the recordTask
immediately transitions to either the “DONE.PARTIAL” or the “DONE.EMPTY” state.

2.7.2.2.4 “ACTIVE.RECORDING.FROMSTART.ATRISK” State

This state is not supported since the device does not support pending errors.

2.7.2.2.5 “ACTIVE.RECORDING.RESTART.OK” State

This state is not supported since the device can not resume an interrupted recording or catch
a late recording that misses the beginning.

2.7.2.2.6 “ACTIVE.RECORDING.RESTART.ATRISK” State

This state is not supported since the device does not support pending errors.

2.7.2.2.7 “ACTIVE.NOTRECORDING" State

This state is not supported since the device can not resume interrupted recording. Any
interruptions during the middle of recording will cause a transition to the “DONE” phase.

- 74 - 29341-4-14 © ISO/IEC:2011(E)

2.7.2.3 “DONE"” Phase
The states in this phase indicate that the device is finished with this recordTask. Each

“DONE” state indicates the success or failure of the recordTask based on how much of the
target content was actually recorded.

2.7.2.3.1 “DONE.FULL” State

This state indicates a perfect recording. The recordTask’s target content was recorded in its
entirety without any interruptions.

2.7.2.3.2 “DONE.PARTIAL" State

This state indicates that part of the recordTask’s target content was recorded, but not all of it.
This state is reached from an “ACTIVE” recordTask due to a fatal error.

2.7.2.3.3 “DONE.EMPTY” State

This state indicates that none of the recordTask’s target content was recorded. It is a result
of a recording that has never been started due to a fatal error.

2.7.3 recordTask State Example

The following example illustrates the use of state attributes. In this example, it is assumed
that a device is able to resume a recording after it is interrupted.

The events occurs at:

e TO: Sytem is idle.

e T1: Error 1 (for example, DRM protected is being broadcast) and Error 3 (for example,
conflicted-loser) are predicted.

e T2: The recordSchedule reaches the scheduled start time, but Error 1 prevents the
recording from starting.

e T3: Suddenly, a new Error 2 occurs (for example, disabled)

e T4: Error 1 is fixed (for example, the protected part ends.), but Error 3 is still predicited.
e T5: Error 2 is fixed (for example, enabled by user), but Error 3 is still predicited.

e T6: Error 3 occurs (for example, other prioritized program starts)

e T7: Error 3 is fixed (for example, the prioritized program ends)

e T8: The recordSchedule reached the scheduled end time

29341-4-14 © ISO/IEC:2011(E) - 75—

Table 2-44 — recordTask State Timeline

5 PeIRlke|R|R
o o ||» 2 o |[Z||o
=} 3 °© llo |2 n |[|» o
|2 e (B =121l 15 =
S |m{mim s ol |15 (o || ||®@ 2
a|la 3|33 o=@ |2 |1 17 || 3 | =
ol|o|o = o |z 1= |1= [|3 s |5
|| 0 2o |2 g 3 (1R (;DU ~
52| vfw I SICHEYEE 218 | |m
o |3 S (@ E 2 1o le S| =
n ||® = ||z = o
s 2 EEIEIE | 2 |5
- o |l |l@ |I® 8 o
[¢] o pry
taskState
TO “IDLE.READY” “IDLE” ojojo|l0|0O|O0O|O0O|0| O | O [%]
Tl “IDLE.ATRISK” “IDLE” ojo0f0f|oO 0(0|0| @ [1,3 [%]
“ACTIVE.NOTRECORDING" “ACTIVE|O0O|O|1]|]1|0|0|O0OfO0O]| 1 3 1
“ACTIVE.NOTRECORDING” “ACTIVE|O|O|1|1|0|0|0O|0 (21,2 3 1,2
“ACTIVE.NOTRECORDING" “ACTIVE|O0O|O|1|1|0|0|O0Of|O0O]| 2 3 1,2
“ACT.RECORDING.RESTART.ATRISK"'ACTIVE|1|1|1|1|0|0|0|0| @ | 3 1,2
I“ACTIVE.NOTRECORDING" “ACTIVE|O|1|1|1|0|0|O0O|O0O| 3| @ |1,2,3
“ACT.RECORDING.RESTART.OK” “ACTIVE|1|1|1|1|0|0|0O|0| @ | @ |1,2,3
“DONE.PARTIAL" ‘DONE” (0|21 |1|1|1|0|12|0| @ | @ |1,2,3

2.8 ScheduledRecording Service Priority Model
2.8.1 Introduction of the ScheduledRecording Service Priority Model

The ScheduledRecording service priority model allows control points to provide desired
priority information in order to help the ScheduledRecording service prioritize conflicting
recordTask instances that were generated by different recordSchedule instances. The
ScheduledRecording service priority model does not remove these conflicts from the system,
but it does help the ScheduledRecording service make scheduling decisions that more
closely match the desires of the end-user.

The ScheduledRecording service priority model is based on a “priority level” system in which
each recordSchedule is assigned a specific priority level. The recordTask inherits the priority
of its parent recordSchedule. In other words, the recordTask instances generated by a
recordSchedule of a higher priority level are given higher priority than those recordTask
instances generated by a recordSchedule of a lower priority level. Except for those
ScheduledRecording service implementations that support “ordered priority” (described
below), all of the recordTask instances generated by any of the recordSchedule instances
assigned to the same priority level will have the same priority. If conflicts arise between any
of these (same priority) recordTask instances, the ScheduledRecording service MAY give
preference to any of these recordTask instances in a device-dependant manner.

The number of distinct priority levels supported by a ScheduledRecording service is vendor-
dependent. Each priority level is identified by its name which MUST have the form “L<x>"
where “L” is an abbreviation for “Level” and <x> is a number ranging from 1 to some device-
specific maximum value n where n is the total number of distinct priority levels supported by
the ScheduledRecording service.

For example, a ScheduledRecording service that supports 5 distinct priority levels will have
the following priority levels named as follows:

- 76 — 29341-4-14 © ISO/IEC:2011(E)

L1" (Highest priority level)

w17
«Lo"
. L3
Ly
“L5

e “L5" (Lowest priority level)

The list of priority levels supported by a ScheduledRecording service is obtainable via the
GetAllowedValues() action by examining the allowed value list of the priority property. Each
existing recordSchedule (on a given ScheduledRecording service) MUST be assigned one of
these supported priority levels. The priority property of each recordSchedule indicates the
current priority level assigned to that recordSchedule which can be retrieved via the
BrowseRecordSchedules() action.

2.8.2 Ordered Priority within Each Priority Level

In addition to supporting one or more priority levels, some ScheduledRecording service
implementations are able to prioritize the recordSchedule instances within each priority level.
When ordered priority is supported, each recordSchedule (in addition to its assigned priority
level) is also assigned a unique “ordered priority slot” ranging from 1 to <n> where <n> is the
total number of recordSchedule instances within the ScheduledRecording service. A value of
1 represents the highest priority recordSchedule within the ScheduledRecording service; that
is: the highest priority recordSchedule within the highest priority level “L1". The value <n>
represents the lowest priority recordSchedule within the ScheduledRecording service; that is:
the lowest recordSchedule within the lowest priority level. The ordered priority slot assigned
to each recordSchedule can be obtained via the recordSchedule’s priority@orderedValue
property. A ScheduledRecording service that support ordered priority MUST expose this
property for each of their recordSchedule instances. Conversely, a ScheduledRecording
service that does not support this capability MUST NOT expose the priority@orderedValue
property. Within a given ScheduledRecording service, each ordered priority slot is assigned
to exactly one recordSchedule.

As a natural consequence, the recordSchedule instances assigned to a higher priority level
will always have a higher ordered priority than the recordSchedule instances assigned to a
lower priority levels.

The following examples shows a ScheduledRecording service that supports ordered priority
values within each of its 5 priority levels. The first example shows a ScheduledRecording
service with fewer recordSchedule instances than the number of priority levels supported by
that ScheduledRecording service. The second example shows a ScheduledRecording service
with more recordSchedule instances than the number of priority levels supported by the
ScheduledRecording service.

Of particular note, recordSchedule instances do not need to be evenly distributed between
the different priority levels. Ordered priority slots are contiguously assigned starting with the
highest priority recordSchedule down to the lowest priority recordSchedule.

Table 2-45 — Example 1: Fewer recordSchedule instances than the Number of
Supported Priority Levels.

Priority Level RecordSchedulelD Ordered Priority Slot
“L1” (highest priority level) RS-A 1
“L3” RS-C 2
RS-B 3
“L5" (lowest priority level)

29341-4-14 © ISO/IEC:2011(E) - 77—

Table 2-46 — Example 2: More recordSchedule instances than the Number of Supported
Priority Levels.

Priority Level RecordSchedulelD Ordered Priority Slot

“L1" (highest priority level) RS-A 1
“ o RS-F 2
“L3” RS-C 3

RS-B 4
L RS-E 5
L5" (lowest priority level) RS-G 6

RS-D 7

2.8.3 Setting the Initial Priority Level of arecordSchedule

The initial priority level of a recordSchedule is determined by the ScheduledRecording
service when the recordSchedule is created. When determining the initial priority level, the
ScheduledRecording service MUST examine the recordSchedule’s incoming desiredPriority
property, and if provided, set the recordSchedule’s initial priority level as indicated. If the
desiredPriority property is not set, then the ScheduledRecording service MUST assign the
recordSchedule to one of the supported priority levels based on some device-dependent
assignment algorithm. As described below, the desiredPriority property can be set to one of
many different values which allow control points to express the desired priority in a number of
different ways. The GetAllowedValues() action can be used to determine which values a
ScheduledRecording service allows for its desiredPriority property.

The desiredPriority property has an associated desiredPriority@type property that MUST be
set to “PREDEF” except when an object ID is specified in the desiredPriority property. In this
case the desiredPriority@type property MUST be set to “OBJECTID” (see below for details).

In the simplest case, the incoming desiredPriority property is set to the name of one of the
supported priority levels. This value indicates that the recordSchedule MUST be assigned to
the specified priority level. If the ScheduledRecording service is not able to complete the
assignment, then it MUST fail the creation request.

If a control point does not have a desired priority for a recordSchedule that it is about to
create, the control point may set the incoming desiredPriority property to the value
“DEFAULT”. This value indicates that the control point is willing to accept the
ScheduledRecording service’s default priority level assignment.

If the ScheduledRecording service supports ordered priority (that is: the ScheduledRecording
service supports the priority@orderedValue property), the ScheduledRecording service
MUST also support some additional values for its desiredPriority property. Firstly, the
ScheduledRecording service MUST support a value with the following format (without the
double-quotes): “<@id>" where <@id> is the @id property value of an already existing
recordSchedule. (The associated desiredPriority@type property MUST be set to “OBJECTID”
in this case). This value indicates that the new recordSchedule MUST be assigned to the
same priority level as the existing recordSchedule identified by <@id>. Furthermore, the new
recordSchedule MUST be assigned the ordered priority slot of the existing recordSchedule
with the existing recordSchedule and all other lower priority recordSchedule instances shifted
to the next lower ordered priority slot. (See examples below.)

Additionally, when ordered priority is supported, the ScheduledRecording service MUST also
support a number of convenience values corresponding to the highest and lowest ordered
priority slots within each of its supported priority level. These convenience values MUST have
the form “L<x> HI” or “L<x> LOW” where “L” is an abbreviation for “Level”, <x> is a number
ranging from 1 to some device-specific maximum value n where n is the total number of
distinct priority levels supported by the ScheduledRecording service. For example, a
ScheduledRecording service that supports 5 priority levels and also ordered priority MUST
support the values “L1 HI", “L1 LOW”, “L2 HI", “L2 LOW", “L3 HI", “L3 LOW", “L4 HI",

- 78 — 29341-4-14 © ISO/IEC:2011(E)

“L4 LOW”, “L5 HI", “L5 LOW" for the desiredPriority property. Furthermore, the
ScheduledRecording service MUST also support two additional convenience values
corresponding to the highest and lowest priority within the ScheduledRecording service.
These two additional convenience values are “HIGHEST” (which is equivalent to the highest
ordered priority slot in the highest priority level “L1_HI"), and “LOWEST" (which is equivalent
to the lowest priority slot within the lowest priority level “L<n> LOW" when n is the total
number of priority slots supported by the ScheduledRecording service).

All of these additional convenience values behave just like a “<@id>" value. The primary
benefit of the convenience values is that they can be used to specify a specific ordered
priority slot without having to determine the @id of the existing recordSchedule currently
assigned to that slot. Additionally, as with a “<@id>" value, the existing recordSchedule
already assigned to that desired ordered priority slot and those recordSchedule instances
assigned to lower priority slots, are shifted to the next lower slot. However, all
recordSchedule instances remain within their same priority level.

In the following examples, the ScheduledRecording service supports 3 priority levels and also
supports ordered priority. The examples begin with the following recordSchedule priorities
already assigned.

Table 2-47 — Existing recordSchedule Priorities

Priority Level RecordSchedulelD Ordered Priority Value
“L1” (highest priority level) RS-A 1
“L2” RS-C 2
“L3" (lowest priority level) RS-B 3

Then the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“RS-C”. After the action completes, a new recordSchedule is created with the @id property
set to “RS-D". The set of recordSchedule instances is now prioritized as follows:

Table 2-48 — desiredPriority Property Set to “RS-C”

Priority Level RecordSchedulelD Ordered Priority Value
“L1” (highest priority level) RS-A 1
L2 RS-D 2
RS-C 3
“L3" (lowest priority level) RS-B 4

Next the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“HIGHEST”, “L1_HI", or “RS-A" (all values have the same effect). After the action completes,
a new recordSchedule is created with the @id property set to “RS-E”. The set of
recordSchedule instances is now prioritized as follows:

Table 2-49 — desiredPriority Property Set to “HIGHEST”, “L1 HI", or “RS-A"

Priority Level RecordSchedulelD Ordered Priority Value
“L1” (highest priority level) RS-E 1
RS-A 2
“L2” RS-D 3
RS-C 4
“L3" (lowest priority level) RS-B 5

Now the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“LOWEST"”, “L3_LOW", or “RS-B” (all values have the same effect). After the action
completes, a new recordSchedule is created with the @id property set to “RS-F". The set of
recordSchedule instances is now prioritized as follows:

29341-4-14 © ISO/IEC:2011(E) - 79—

Table 2-50 — desiredPriority Property Set to “LOWEST”, “L3 LOW", or “RS-B”

Priority Level RecordSchedulelD Ordered Priority Value
“L1" (highest priority level) RS-E 1
RS-A 2
L2 RS-D 3
RS-C 4
“L3" (lowest priority level) RS-B 5
RS-F 6

Finally, the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“RS-C”. After the action completes, a new recordSchedule is created with the @id property
set to “RS-G”. The set of recordSchedule instances is now prioritized as follows:

Table 2-51 — desiredPriority Property Set to “RS-C”

Priority Level RecordSchedulelD Ordered Priority Value

“L1” (highest priority level) RS-E
RS-A

“L2" RS-D
RS-G
RS-C

“L3" (lowest priority level) RS-B
RS-F

~NOoO | W | NP

2.8.4 Sorting recordSchedule Instances Based on their Current Priority Settings

Control points can obtain the list of recordSchedule instances sorted either by their current
priority level or by their ordered priority slot. In order to sort the list of recordSchedule
instances by their current priority level (in descending order; that is: highest priority level
recordSchedule instances listed first), control points can invoke the
BrowseRecordSchedules() action with the SortCriteria argument set to “+srs:priority”. In
order to sort the list of recordSchedule instances sorted by their current ordered priority slot
number (in descending order with the lowest ordered priority slot; that is: the highest slot
number listed first), the control point can invoke the BrowseRecordSchedules() action with
the SortCriteria argument set to “~-srs:priority@OrderedValue”.

2.9 Theory of Operation
2.9.1 Introduction

The following subclauses walk through several scenarios to illustrate the various actions
supported by the ScheduledRecording service. It should be noted that these scenarios are for
example purposes only and do not have any normative value. Vendors may combine the
described components in a variety of ways.

NOTE: For easy readability, The srs XML Documents of the examples presented below are
shown before XML-escaping to improve readability. However, they need to be escaped
before embedding in a SOAP message. Also, a shorthand notation method is used to
describe the actions. The SOAP envelope is omitted in the examples and replaced by a
shorthand notation.

2.9.2 Checking the Capabilities of a ScheduledRecording Service

The following examples illustrate how to check the capabilities of the ScheduledRecording
service by using the GetSortCapabilities(), GetPropertyList(), and GetAllowedValues() actions.

- 80 — 29341-4-14 © ISO/IEC:2011(E)

29.2.1 Checking the Sort Capabilities

Assume that the ScheduledRecording service supports sorting on title,
scheduledStartDateTime, and priority only. Then the request:

Request:
GetSortCapabilities()

will result in the following response:

Response:
GetSortCapabilities('srs:title,srs:scheduledStartDateTime,srs:priority")

2.9.2.2 Checking Supported Properties and their Allowed Values

A number of properties are OPTIONAL and therefore, vendors are free to decide whether or
not to support those properties for their particular ScheduledRecording implementations. The
GetPropertyList() and GetAllowedValues() actions provide the means for a control point to
determine which properties a particular ScheduledRecording service supports
(GetPropertyList() action) and also what the allowed values are for these properties
(GetAllowedValues() action). Since the set of supported properties and their allowed values
may depend on the context within which these properties are used, the GetPropertyList() and
GetAllowedValues() actions allow the control point to specify the property-set data type for
which the control point wants to retrieve support level information.

2.9.2.2.1 Minimal Implementation Example

As a first example, assume that this particular ScheduledRecording service is a truly minimal
implementation (only the object.recordSchedule.direct.cdsNonEPG class is supported and
only required properties are supported).

Assume further that the control point wants to determine which properties it can specify in the
Elements input argument of the CreateRecordSchedule() action of this minimal
ScheduledRecording implementation. It first issues the following request (The Elements input
argument of the CreateRecordSchedule() action is of data type
A ARG TYPE RecordScheduleParts):

Note: This A_ ARG _TYPE RecordScheduleParts example is marked by a white background
for better reader orientation.

Request:
GetPropertyList("'A_ARG_TYPE_RecordScheduleParts')

Then the following response will be generated:

Response:

GetPropertyList(

"srs:@id,srs:title,srs:class,srs:scheduledCDSObjectlD,
srs:scheduledStartDateTime,srs:scheduledDuration’™)

If the control point then wants to investigate further what values it may use for those
properties when building a recordSchedule, it can retrieve that information using the following
request:

Note: specifying “*:*” in the Filter argument is equivalent to specifying the complete list of
property names that was returned in the Propertylist argument of the GetPropertyList()
action with the DataTypelD argument set to “A_ARG_TYPE RecordScheduleParts”.

29341-4-14 © ISO/IEC:2011(E) - 81—

Request:
GetAllowedValues(""A_ARG_TYPE_RecordScheduleParts™, "*:*'")

The following response will be generated:

Response:

GetAl lowedValues("'

<?xml version="1.0" encoding="UTF-8"?>

<AVDT

xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmIns:srs="urn:schemas-upnp-org:av:srs"

xmIns=""urn:schemas-upnp-org:av:avdt"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www_upnp.org/schemas/av/srs._xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt.xsd">

<contextlD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextID>

<dataStructType>A_ARG_TYPE_RecordScheduleParts</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:class</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValuelList>
<allowedValue>
OBJECT . RECORDSCHEDULE .DIRECT . CDSNONEPG
</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledCDSObjectlD</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<fField>
<name>srs:scheduledStartDateTime</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowAny></al lowAny>

- 82— 29341-4-14 © ISO/IEC:2011(E)

</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledDuration</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

</fieldTable>
</AVDT>"")

Assume further that the control point wants to determine which properties it can expect to get
returned in the Result output argument of the CreateRecordSchedule() action of that same
minimal ScheduledRecording implementation. It issues the following request (The Result
argument of the CreateRecordSchedule() action is of data type
A ARG _TYPE RecordSchedule):

Note: This A_ ARG TYPE RecordSchedule example is marked by a grey background for
better reader orientation.

Request:
GetPropertyList("'A_ARG_TYPE_RecordSchedule™)

The following response will be generated:

Response:

GetPropertyList(

"srs:@id,srs:title,srs:class,srs:priority,
srs:recordDestination,srs:recordDestination@mediaType,
srs:recordDestination@preference,
srs:scheduledCDSObjectlID,
srs:scheduledStartDateTime,srs:scheduledDuration
srs:scheduleState,srs:scheduleState@currentErrors,
srs:abnormalTasksExist,srs:currentRecordTaskCount'™)

If the control point then wants to investigate further what values it may expect for some of
those properties when browsing a recordSchedule, it can retrieve that information using the
following request (the Eilter argument contains only a subset of the possible properties in this
example):

Note: specifying “*:*” in the Filter argument is again equivalent to specifying the complete
list of properties returned in the PropertyList argument of the GetPropertyList() action with
the DataTypelD argument set to “A_ARG _TYPE RecordSchedule”.

Request:

GetAl lowedValues(""A_ARG_TYPE_RecordSchedule™,
"srs:recordDestination,srs:recordDestination@mediaType,
srs:scheduleState,srs:scheduleState@currentErrors,
srs:abnormalTasksExist,srs:currentRecordTaskCount')

The following response will be generated:

Response:

GetAl lowedValues("

<?xml version="1.0" encoding="UTF-8"?>

<AVDT
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:srs="urn:schemas-upnp-org:av:srs"
xmIns=""urn:schemas-upnp-org:av:avdt"

29341-4-14 © ISO/IEC:2011(E) - 83—

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
Xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www_upnp.org/schemas/av/avdt.xsd">

<contextiD>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlD>

<dataStructType>A ARG TYPE RecordSchedule</dataStructType>

<fieldTable>
<fField>
<name>srs:recordDestination</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValueList>
<allowedValue>Hard Disk</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType>xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>HDD</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduleState</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValuelList>
<al lowedValue>0PERATIONAL</al lowedValue>
<al lowedValue>ERROR</al lowedValue>
<allowedValue>COMPLETED</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduleState@currentErrors</name>
<dataType>xsd: int</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduleState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvValuelList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:abnormal TasksExist</name>
<dataType>xsd:boolean</dataType>
<minCountTotal>1</minCountTotal>
<al lowedvalueDescriptor>

-84 — 29341-4-14 © ISO/IEC:2011(E)

<allowAny></al lowAny>
</allowedValueDescriptor>
</Tield>

<field>
<name>srs:currentRecordTaskCount</name>
<dataType>xsd:unsignedInt</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

</fieldTable>
</AVDT>"")

Assume further that the control point wants to determine which properties it can expect to get
returned in the Result output argument of the GetRecordTask() action of that same minimal
ScheduledRecording implementation. It issues the following request (The Result argument of
the GetRecordTask() action is of data type A_ARG_TYPE RecordTask):

Note: This A_ ARG _TYPE RecordTask example is marked by a light turquoise background for
better reader orientation.

Request:
GetPropertyList(""A_ARG_TYPE_RecordTask')

The following response will be generated:

Response:

GetPropertyList(

"srs:@id,srs:title,srs:class,srs:priority,
srs:recordDestination,srs:recordDestination@mediaType,
srs:recordDestination@preference,
srs:recordSchedulelD,
srs:taskChannel ID, srs:taskChannel ID@type,srs:taskStartDateTime,
srs:taskDuration,srs:recordQuality,srs:recordQuality@type,
srs:taskState,srs:taskState@phase,
srs:taskState@recording,srs:taskState@someBitsRecorded,
srs:taskState@someBitsMissing,srs:taskState@fatalError,
srs:taskState@currentErrors,srs:taskState@errorHistory,
srs:taskState@pendingErrors,srs:taskState@infolList')

If the control point then wants to investigate further what values it may expect for some of
those properties when browsing a recordTask, it can retrieve that information using the
following request (the Filter argument contains only a subset of the possible properties in this
example):

Note: specifying “*:*” in the Filter argument is again equivalent to specifying the complete
list of properties returned in the PropertylList argument of the GetPropertyList() action with
the DataTypelD argument set to “A_ARG_TYPE RecordTask”.

Request:

GetAllowedValues(""A_ARG_TYPE_RecordTask",

"srs:recordDestination,srs:recordDestination@mediaType,
srs:taskState,srs:taskState@currentErrors')

The following response will be generated:

Response:

GetAl lowedValues(*'

<?xml version="1.0" encoding="UTF-8"?>
<AVDT

29341-4-14 © ISO/IEC:2011(E) - 85—

xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:srs="urn:schemas-upnp-org:av:srs"
xmlns=""urn:schemas-upnp-org:av:avdt"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www_upnp.org/schemas/av/avdt.xsd">

<contextlID>

uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlID>

<dataStructType>A ARG TYPE RecordTask</dataStructType>

<fieldTable>
<field>
<name>srs:recordDestination</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValueList>
<allowedValue>Hard Disk</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType>xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>HDD</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValuelList>
<allowedValue>IDLE.READY</al lowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART .0OK
</allowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART .ATRISK
</allowedValue>
<allowedValue>DONE.FULL</al lowedValue>
<allowedValue>DONE.PARTIAL</al lowedValue>
<al lowedValue>DONE .EMPTY</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fField>

<fField>
<name>srs:taskState@currentErrors</name>
<dataType>xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue></al lowedValue>

- 86 — 29341-4-14 © ISO/IEC:2011(E)

<allowedValue>100</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

</fieldTable>
</AVDT>"")

2.9.2.2.2 Full-fledged Implementation Example

In this example, it is assumed that this particular ScheduledRecording service supports all
optional functionality, offered by the ScheduledRecording service specification.

Assume that the control point wants to determine which properties it can specify in the
Elements input argument of the CreateRecordSchedule() action of this full-fledged
ScheduledRecording implementation. It issues the following request (The Elements input
argument of the CreateRecordSchedule() action is of data type
A ARG_TYPE RecordScheduleParts):

Note: This A_ ARG TYPE RecordScheduleParts example is marked by a white background
for better reader orientation.

Request:
GetPropertyList(""A_ARG_TYPE_RecordScheduleParts')

Then the following response will be generated:

Response:
GetPropertyList(

""'srs:@id,

srs:title,

srs:class,

srs:desiredPriority,
srs:desiredPriority@type,
srs:recordDestination,
srs:recordDestination@mediaType,
srs:recordDestination@targetURL,
srs:recordDestination@preference,
srs:desiredRecordQuality,
srs:desiredRecordQuality@type,
srs:scheduledCDSObjectlID,
srs:scheduledChannel lD,
srs:scheduledChannel 1D@type,
srs:scheduledStartDateTime,
srs:scheduledDuration,
srs:scheduledProgramCode,
srs:scheduledProgramCode@type,
srs:matchingName,
srs:matchingName@type,
srs:matchingName@subStringMatch,
srs:matchinglD,
srs:matchinglD@type,
srs:matchingChannellD,
srs:matchingChannel 1D@type,
srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatingLimit@type,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,
srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,
srs:activePeriod,
srs:durationLimit,
srs:durationLimit@effect,
srs:channelMigration,

29341-4-14 © ISO/IEC:2011(E) - 87 -

srs:timeMigration,

srs:allowDuplicates,
srs:persistedRecordings,
srs:persistedRecordings@latest,
srs:persistedRecordings@preAllocation,
srs:persistedRecordings@storedLifetime’™)

If the control point then wants to investigate further what values it may use when building a
recordSchedule, it can retrieve that information using the following request:

Request:
GetAllowedValues("'A_ARG_TYPE_RecordScheduleParts™, "*:*)

The following response will be generated:

Response:

See G.3, “A_ARG_TYPE RecordScheduleParts AVDT Example” for a complete response
message.

- 88 — 29341-4-14 © ISO/IEC:2011(E)

srs:scheduledProgramCode@type,
srs:matchingName,
srs:matchingName@type,
srs:matchingName@subStringMatch,
srs:matchinglD,
srs:matchinglD@type,
srs:matchingChannel D,
srs:matchingChannel 1D@type,
srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatingLimit@type,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,
srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,
srs:activePeriod,
srs:durationLimit,
srs:durationLimit@effect,
srs:channelMigration,
srs:timeMigration,
srs:allowDuplicates,
srs:persistedRecordings,
srs:persistedRecordings@latest,
srs:persistedRecordings@preAl location,
srs:persistedRecordings@storedLifetime,
srs:scheduleState,
srs:scheduleState@currentErrors,
srs:abnormal TasksExist,
srs:currentRecordTaskCount,
srs:totalCreatedRecordTasks,
srs:totalCompletedRecordTasks'™)

If the control point then wants to investigate further what values it may expect for all of those
properties when browsing a recordSchedule, it can retrieve that information using the
following (The Result output argument of the CreateRecordSchedule() action is of data type
A ARG _TYPE RecordSchedule):

Request:
GetAllowedValues("'A_ARG_TYPE_RecordSchedule™, "*:*")

The following response will be generated:

Response:

See G.1, "A ARG TYPE RecordSchedule AVDT Example” for a complete response
message.

Assume further that the control point wants to determine which properties it can expect to get
returned in the Result output argument of the BrowseRecordTasks() action of that same full-
fledged ScheduledRecording implementation. It issues the following request (The Result
output argument of the BrowseRecordTasks() action is of data type
A ARG _TYPE RecordTask):

Note: This A_ ARG TYPE RecordTask example is marked by a light turquoise background for
better reader orientation.

Request:
GetPropertyList(""A_ARG_TYPE_RecordTask™)

29341-4-14 © ISO/IEC:2011(E) -89 —

The following response will be generated:

Response:
GetPropertyList(
"'srs:@id,
srs:title,
srs:class,
srs:additionalStatusinfo,
srs:cdsReference,
srs:cdsReference@link,
srs:priority,
srs:priority@orderedvalue,
srs:desiredPriority,
srs:desiredPriority@type,
srs:recordDestination,
srs:recordDestination@mediaType,
srs:recordDestination@targetURL,
srs:recordDestination@preference,
srs:desiredRecordQuality,
srs:desiredRecordQuality@type,
srs:recordSchedulelD,
srs:recordedCDSObjectlID,
srs:recordedCDSObjectID@link
srs:taskCDSObjectlID,
srs:taskCDSObjectID@link,
srs:taskChannellD,
srs:taskChannel ID@type,
srs:taskStartDateTime,
srs:taskDuration,
srs:taskProgramCode,
srs:taskProgramCode@type,
srs:recordQuality,
srs:recordQuality@type,
srs:matchedName,
srs:matchedName@type,
srs:matchedlD,
srs:matchedID@type,
srs:matchedRating,
srs:matchedRating@type,
srs:matchedEpisodeType,
srs:taskStartDateTimeAdjust,
srs:taskDurationAdjust,
srs:taskDurationLimit,
srs:taskDurationLimit@effect,
srs:taskChannelMigration,
srs:taskTimeMigration,
srs:taskState,
srs:taskState@phase,
srs:taskState@startDateTimeMet,
srs:taskState@endDateTimeMet,
srs:taskState@recording,
srs:taskState@someBitsRecorded,
srs:taskState@someBitsMissing,
srs:taskState@firstBitsRecorded,
srs:taskState@lastBitsRecorded,
srs:taskState@fatalError,
srs:taskState@currentErrors,
srs:taskState@errorHistory,
srs:taskState@pendingErrors,
srs:taskState@infoList')

If the control point then wants to investigate further what values it may expect for all of those
properties when browsing a recordTask, it can retrieve that information using the following

(The Result output argument of the BrowseRecordTasks() action
A ARG TYPE RecordTask):

Request:
GetAllowedValues(""A_ARG_TYPE_RecordTask', "*:*'")

is of data type

- 90 - 29341-4-14 © ISO/IEC:2011(E)

The following response will be generated:

Response:

See G.2,“A ARG _TYPE RecordTask AVDT Example” for a complete response message.

2.9.3 Adding a Scheduled Recording Entry to the List

The following examples illustrate how to create a recordSchedule entry in the list of
recordSchedule instances by invoking the CreateRecordSchedule() action, using the different
available recordSchedule classes. It is assumed that the implementation used in the
examples that follow supports the allowed values for the desiredRecordQuality and
desiredRecordQuality@type properties as indicated in Table B.9, “desiredRecordQuality
Example” and for the recordQuality and recordQuality@type properties as indicated in Table

B.33, “recordQuality Example”.

2.9.3.1 object.recordSchedule.direct classes

The object.recordSchedule.direct classes are used when the control point has all the
necessary information available to uniquely identify the content to be recorded. The
ScheduledRecording service does not have to perform searches or matching to determine
what content is eligible for recording. Note that the control point might need to interact with
external databases (like EPG information) to allow the user to make a selection of the content
that he wants to record. Once the content is selected however, all information is available to
set up the recordSchedule unambiguously.

2.9.3.1.1 Creating a object.recordSchedule.direct.manual Class recordSchedule

The object.recordSchedule.direct.manual class is used when the control point has access to
the three basic components of information that are needed to uniquely identify the content to
record:

e The scheduled channel that is used for broadcast of the content (where)
e The scheduled start date and time of the recording (when)

e The scheduled duration of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information.
It passes this information into the recordSchedule using the REQUIRED properties
scheduledChannellD and scheduledChannellD@type, scheduledStartDateTime, and
scheduledDuration.

The control point creates a properly escaped srs XML Document that MUST contain all the
REQUIRED properties necessary to create the object.recordSchedule.direct.manual class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.direct.manual class.

As an example, the control point wants to create a recurring recordSchedule to record the
BBC news that is broadcast for one hour every evening at 7 pm on channel 47. Assume that
the current date&time is Tuesday, June 28, 2005, 9:15 pm. If possible, the control point
would like this recording to be stored on the internal hard disk, but if, for some reason, the
hard disk is not available at the time of recording, the DVD+R drive may also be used as a
secondary destination. The control point further specifies that this recording should be
encoded using a low record quality setting of standard definition (“SD”"). If that is not possible,
any other record quality may be used (“AUTQO"). A pre-roll time of two and a half minutes and
a post-roll time of five minutes are also specified. The control point further instructs the
ScheduledRecording service to keep at least the latest three recordings around. Older
recordings may be discarded and no preallocation is desired.

29341-4-14 © ISO/IEC:2011(E) -91 -

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule("

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF'>L2</desiredPriority>

<recordDestination mediaType="HDD" preference="1">
Hard Disk

</recordDestination>

<recordDestination mediaType="DVD+R" preference="2">
DVD Recorder

</recordDestination>

<desiredRecordQuality type="DEFAULT">
SD,AUTO

</desiredRecordQual ity>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:05:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY">
3
</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
or more recordTask instances may be created as a result of the recordSchedule creation. In
this example, it is assumed that 2 recordTask instances are spawned immediately and it is
also assumed that 2 new items are created in the associated ContentDirectory service that
will hold the recorded content once the recordings are made (object IDs “rec00001” and
“rec00002" are assigned).

Response:
CreateRecordSchedule(*'s101","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""s101">

<desiredPriority type="PREDEF'>L2</desiredPriority>

-92 - 29341-4-14 © ISO/IEC:2011(E)

<desiredRecordQuality type="DEFAULT">
SD,AUTO
</desiredRecordQual ity>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:05:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
3
</persistedRecordings>

<totalCreatedRecordTasks>2</totalCreatedRecordTasks>

<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>

</srs>")

2.9.3.1.2 Creating a object.recordSchedule.direct.cdsEPG Class recordSchedule

The object.recordSchedule.direct.cdsEPG class is used when the control point has access to
a local ContentDirectory service EPG database. The content to be recorded is uniquely
identified by an EPG item in the associated ContentDirectory service. The association
between a ContentDirectory service and a ScheduledRecording service is established by
having both services reside within the same UPnP MediaServer device.

In this case, the basic component of information that is needed to uniquely identify the
content to record is the object ID of the EPG item (contains the where, when and how long
information) that represents that content. The control point passes this information into the
recordSchedule using the REQUIRED scheduledCDSObjectID property.

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.direct.cdsEPG class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.direct.cdsEPG class.

As an example, the control point wants to create a recordSchedule to record the “UPnP
Awards Ceremony” that is broadcast for a marathon fifteen hours on April 1%, at 9 am on
channel 215. It finds this program in the EPG database of the associated ContentDirectory
service and retrieves the object ID (value of the didl-lite:@id property of the EPG item). Due
to the length of the program, the recording must be stored on the internal hard disk. If, for
some reason, the hard disk is not available at the time of recording, the recording must be
canceled. Further, if the recording would last longer than the anticipated 15 hours, the
recording must be limited to 15 hours and the first part of the program discarded. The control
point also specifies that this recording should be encoded using a low record quality setting

29341-4-14 © ISO/IEC:2011(E) -93 -

of “Q3”. If that is not possible, the recording will not be made. A pre-roll time of two minutes
and a post-roll time of 15 minutes are also specified. The control point further instruct the
ScheduledRecording service to keep track of this item in case the broadcaster decides to
move it to a different channel and/or time.

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule("

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"

xmIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF'>L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQuality>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:15:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">P15:00:00</durationLimit>
<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>
<persistedRecordings
latest=""1"
preAllocation=""0"
storedLifetime=""ANY"">
1
</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
recordTask instance may be created as a result of the recordSchedule creation. In this
example, it is assumed that the recordTask instance is spawned immediately.

Response:
CreateRecordSchedule(*'s102","
<?xml version="1.0" encoding=""UTF-8"7?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd">
<item i1d="s102">

- 94 - 29341-4-14 © ISO/IEC:2011(E)

<desiredPriority type="PREDEF'>L1</desiredPriority>

<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>

-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>

+P00:15:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">P15:00:00</durationLimit>
<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">

1
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

2.9.3.1.3 Creating a object.recordSchedule.direct.cdsNonEPG Class recordSchedule

The object.recordSchedule.direct.cdsNonEPG class is used when the control point has
access to a local ContentDirectory service database that contains items that identify content
that will be available for recording at the time the recording is scheduled to start.

A typical example of this is TV tuner that is represented as a channelGroup container,
containing items of class object.item.videoltem.videoBroadcast, each representing a channel
to which the tuner can be tuned (User Channel). The association between a ContentDirectory
service and a ScheduledRecording service is established by having both services reside
within the same UPnP MediaServer device.

In this case, the basic components of information that are needed to uniquely identify the
content to record are:

e The object ID of the ContentDirectory service item that represents the User Channel that
is used for broadcast of the content (where)

e The scheduled start date and time of the recording (when)

e The scheduled duration of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information.

It passes this information into the recordSchedule using the REQUIRED properties
scheduledCDSObjectID, scheduledStartDateTime, and scheduledDuration.

The control point creates a properly escaped srs XML Document that MUST contain all the
properties necessary to create the object.recordSchedule.direct.cdsNonEPG

29341-4-14 © ISO/IEC:2011(E) - 95—

class recordSchedule. The control point can add any OPTIONAL property that is applicable to
the_object.recordSchedule.direct.cdsNonEPG class.

As an example, assume that today’s date is Tuesday, June 28, 2005 and the control point
wants to create a recordSchedule to record the show “Life of a Software Developer” that is
broadcast on channel 5 every Monday evening at 7 pm, starting on July 4"™. The show lasts
for an hour and runs for 13 episodes (until the end of September). The first fifteen minutes of
each show are dedicated to a reading of the “Most Popular Software Code Quote of the
Week”. The user found all this information in a printed TV Guide. The ContentDirectory
service has no EPG data.

The control point finds the User Channel that represents channel 5 in the associated
ContentDirectory service and retrieves its object ID (value of the didl-lite:@id property of the
User Channel item). The recording should be stored on the internal hard disk. If, for some
reason, the hard disk is not available at the time of recording, the recording might also be
recorded on an external network storage device. All episodes (13) of the show should be
recorded. The control point also specifies that this recording should be encoded using a high
record quality setting of High Definition (*"HD"”). The “Most Popular Software Code Quote of
the Week” part of the show must be skipped but a pre-roll time of two minutes and a post-roll
time of three minutes are also specified. All episodes must be preserved until deleted by the
user.

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs'
xmlIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF'">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<recordDestination mediaType="HDD" preference="2"
targetURL="http://192.168.0.12/MyNAS/RecordedTV"">
Shared Content
</recordDestination>
<desiredRecordQuality type="DEFAULT">
HD
</desiredRecordQuality>

<totalDesiredRecordTasks>13</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:13:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:03:00
</scheduledDurationAdjust>
<activePeriod>NOW/09-30T23:59:59</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="INFINITY">
13

- 96 — 29341-4-14 © ISO/IEC:2011(E)

</persistedRecordings>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
or more recordTask instances may be created as a result of the recordSchedule creation. In
this example, it is assumed that 2 recordTask instances are spawned immediately.

Response:
CreateRecordSchedule(*'s103","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""s103">

<desiredPriority type="PREDEF'>L1</desiredPriority>

<desiredRecordQuality type="DEFAULT">
HD
</desiredRecordQual ity>

<totalDesiredRecordTasks>13</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:13:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:03:00
</scheduledDurationAdjust>
<activePeriod>NOW/09-30T23:59:59</activePeriod>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="INFINITY">
13
</persistedRecordings>

<totalCreatedRecordTasks>2</totalCreatedRecordTasks>

<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>

</srs>")

29341-4-14 © ISO/IEC:2011(E) - 97 -

29.3.14 Creating a object.recordSchedule.direct.programCode Class
recordSchedule

The object.recordSchedule.direct.programCode class is used when the control point has
access (via the user, most likely) to a program code. The content to be recorded is uniquely
identified by this program code in the sense that the program code contains in encoded form
all necessary information for recording the program item (where, when and how long). If the
ScheduledRecording service supports a particular program code type, that implies that the
ScheduledRecording service must understand how to interpret and decode the program code
into its where, when and how long components.

In this case, the basic component of information that is needed to uniquely identify the
content to record is the program code of the program item that represents that content. The
control point passes this information into the recordSchedule using the REQUIRED properties
scheduledProgramCode and scheduledProgramCode@type.

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.direct.programCode
class recordSchedule. The control point can add any OPTIONAL property that is applicable to
the_object. recordSchedule.direct.programCode class.

As a hypothetical example, the control point wants to create a recordSchedule to record a
program item, identified by a program code of type “upnpexample.com_upnpProgramCode”
time. The upnpProgramCode type specifies the encoding to be simply:

program code = <channel number>_<StartDateTime>_<Duration>

The user retrieved the program code from some external source (a printed program guide)
and the advertised title of the program is “Everything you ever wanted to know about SRS”.

It is assumed that the ScheduledRecording service supports the
“upnpexample.com_upnpProgramCode” program code type and therefore knows how to
decode the program code into its basic where, when and how long components. The
recording must be stored on the internal DVD+RW drive. If, for some reason, the DVD+RW
drive is not available at the time of recording, the recording must be stored on the internal
hard disk. The control point also specifies that this recording should be recorded using any
available record quality setting. No pre-roll or post-roll times are specified.

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule(™

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF">L1</desiredPriority>

<recordDestination mediaType="DVD+RW" preference=""1">
DVD Drive

</recordDestination>

<recordDestination mediaType="HDD" preference="2">
Hard Disk

</recordDestination>

<desiredRecordQuality type="DEFAULT">
AUTO

</desiredRecordQuality>

-98 - 29341-4-14 © ISO/IEC:2011(E)

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
recordTask instance may be created as a result of the recordSchedule creation. In this
example, it is assumed that the recordTask instance is spawned immediately.

Response:
CreateRecordSchedule(''s104","
<?xml version="1.0" encoding=""UTF-8"7?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd"">
<item i1d="s104">

<desiredPriority type="PREDEF'>L1</desiredPriority>

<desiredRecordQuality type="DEFAULT">
AUTO
</desiredRecordQuality>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime=""ANY"">
0
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

29341-4-14 © ISO/IEC:2011(E) -99 -

2.9.3.2 object.recordSchedule.query classes

The object.recordSchedule.query classes are used when the control point only has partial
information to identify possible candidates for recording. The ScheduledRecording service
must perform further (continuous) searching or matching to determine what content is eligible
for recording. The ScheduledRecording service must consult with external databases (like
EPG information or over-the-wire Service Information) to find content that matches all the
criteria, specified in the recordSchedule. Every time a match is found, a new recordTask is
created.

2.9.3.21 Creating a object.recordSchedule.query.contentName Class
recordSchedule

The object.recordSchedule.query.contentName class is used when the control point has
knowledge about the (partial) name of the content to be recorded. This could either be a
series name or a program name. Other properties, specified in the recordSchedule are also
used to further narrow down what will be recorded (activePeriod, totalDesiredRecordTasks,
etc.). It is the responsibility of the ScheduledRecording service to continuously search
available external databases (like EPG or Service Information) and create a recordTask
instance for every complete match (all specified matching criteria are satisfied) it finds within
those external databases.

In this case, the basic piece of information that is needed to identify the content to record is
the (partial) program or series name of the program item or series. The control point passes
this information into the recordSchedule using the REQUIRED properties matchingName and
matchingName@type.

The control point creates a properly escaped srs XML Document that MUST contain all the
properties necessary to create the object.recordSchedule.query.contentName

class recordSchedule. The control point can add any OPTIONAL property that is applicable to

the_object.recordSchedule.query.contentName class.

As an example, the control point wants to create a recordSchedule to record the series
entitled “Meet the UPnP Guys” (exact title). The control point has no further information,
except that the series is broadcast during summer season and the series finale is planned
somewhere during the month of September.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk
is not available at the time of recording, the recording must be canceled. The control point
also specifies that these recordings should be encoded using a low record quality (“SD”). If
that is not possible, medium record quality (“ED”) may also be used. If that is not possible, no
recording will be made. No pre-roll or post-roll times are specified. If the broadcaster decides
to change broadcast channel or date&time, the ScheduledRecording service is supposed to
track.

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF'>L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk

- 100 - 29341-4-14 © ISO/IEC:2011(E)

</recordDestination>

<desiredRecordQuality type="DEFAULT">
SD,ED

</desiredRecordQual ity>

<matchingStartDateTimeRange>

NOW/09-30T23:59:59
</matchingStartDateTimeRange>
<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<channelMigration>1</channelMigration>
<timeMigration>1</timeMigration>

</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
or more recordTask instances may be created as a result of the recordSchedule creation. In
this example, it is assumed that one recordTask instance is spawned immediately (12
remaining matches need to be found in the future, when new EPG data is available, for
instance).

Response:
CreateRecordSchedule(*'s201","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""s201">

<desiredPriority type="PREDEF'>L1</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD,ED
</desiredRecordQual ity>

<matchingStartDateTimeRange>
NOW/09-30T23:59:59
</matchingStartDateTimeRange>
<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
0
</persistedRecordings>

29341-4-14 © ISO/IEC:2011(E) - 101 -

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

2.9.3.2.2 Creating a object.recordSchedule.query.contentlD Class recordSchedule

The object.recordSchedule.query.contentlD class is used when the control point has
knowledge about the ID of the content to be recorded. This could either be a series ID or a
program ID. Other properties, specified in the recordSchedule are also used to further narrow
down what will be recorded (activePeriod, totalDesiredRecordTasks, etc.). It is the
responsibility of the ScheduledRecording service to continuously search available external
databases (like EPG or Service Information) and create a recordTask instance for every
complete match (all specified matching criteria are satisfied) it finds within those external
databases.

In this case, the basic piece of information that is needed to identify the content to record is
the program ID or series ID of the program item or series. The control point passes this
information into the recordSchedule using the REQUIRED properties matchinglD and
matchinglD@type.

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.query.contentlD class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.query.contentID class.

As an example, the control point wants to create a recordSchedule to record the program
with program ID “123456” from service provider “MyLocalProvider.net”. It has obtained this ID
through means outside the scope of this specification. The control point has no further
information.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk
is not available at the time of recording, the recording must be canceled. The control point
also specifies that the recording should be encoded using a high record quality setting of
“720p60”". If that is not possible, no recording will be made. No pre-roll or post-roll times are
specified. If the broadcaster decides to change broadcast channel or date&time, the
ScheduledRecording service is supposed to track.

To achieve the behavior specified above, the control point needs to provide the following srs
XML Document in the Elements input argument of the CreateRecordSchedule() action:

Request:
CreateRecordSchedule("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs'
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""">

<desiredPriority type="PREDEF'">L1</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestination>
<desiredRecordQuality type="ATSC">
720p60
</desiredRecordQuality>

- 102 - 29341-4-14 © ISO/IEC:2011(E)

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<channelMigration>1</channelMigration>
<timeMigration>l1</timeMigration>
</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action
returns the following srs XML Document in the Result output argument. The
ScheduledRecording service MUST add unspecified supported OPTIONAL properties to
convey default settings (Note that this srs XML Document MUST be properly escaped). One
recordTask instance may be created as a result of the recordSchedule creation. In this
example, it is assumed that the recordTask instance is spawned immediately.

Response:
CreateRecordSchedule("s202","
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs'
xmlIns:xsi="http://www._.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id="s202">

<desiredPriority type="PREDEF">L1</desiredPriority>

<desiredRecordQuality type="ATSC">
720p60
</desiredRecordQual ity>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:00:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<durationLimit effect="LAST">INFINITY</durationLimit>
<persistedRecordings
latest=""1"
preAllocation="0"
storedLifetime="ANY"">
0
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks>
</item>
</srs>")

294 Deleting arecordSchedule

A control point can delete a particular recordSchedule by invoking the
DeleteRecordSchedule() action and specifying its object ID in the RecordSchedulelD
argument.

29341-4-14 © ISO/IEC:2011(E) - 103 -

Assume that the recordSchedule to be deleted has its @id property set to “s301” .

To delete this recordSchedule, the control point generates the following request:

Request:
DeleteRecordSchedule(*'s301™)

Response:

2.9.5 Browsing recordSchedule and recordTask instances

A control point can investigate which recordSchedule and/or recordTask instances are
currently present within a ScheduledRecording service implementation by invoking the
BrowseRecordSchedules() and BrowseRecordTasks() actions.

For example purposes, it is assumed that the control point has invoked the
CreateRecordSchedule() action once for each of the cases described in Clauses 2.9.3.1.1
through 2.9.3.1.4 and Clauses 2.9.3.2.1 and 2.9.3.2.2. As a result, six recordSchedule
instances as specified in the clauses above have been created. In addition, eight recordTask
instances have been created so that the available recordSchedule and recordTask instances
in this particular ScheduledRecording service implementation are as follows:

recordSchedule (@id = “s101”, class = “OBJECT.RECORDSCHEDULE.DIRECT.MANUAL")

recordTask (@id = “t101-001", class = “OBJECT.RECORDTASK")

recordTask (@id = “t101-002", class = “OBJECT.RECORDTASK")

recordSchedule (@id = “s102", class = “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG")

recordTask (@id = “t102-001", class = “OBJECT.RECORDTASK")

recordSchedule (@id = “s103”, class = “OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG")

recordTask (@id = “t103-001", class = “OBJECT.RECORDTASK")

recordTask (@id = “t103-002", class = “OBJECT.RECORDTASK")

recordSchedule (@id = “s104”, class = “OBJECT.RECORDSCHEDULE.DIRECT.PROGRAMCODE")

recordTask (@id = “t104-001", class = “OBJECT.RECORDTASK")

recordSchedule (@id = “s201”, class = “OBJECT.RECORDSCHEDULE.QUERY.CONTENTNAME")

recordTask (@id = “t201-001", class = “OBJECT.RECORDTASK")

recordSchedule (@id = “s202", class = “OBJECT.RECORDSCHEDULE.QUERY.CONTENTID")

recordTask (@id = “t202-001", class = “OBJECT.RECORDTASK")

2951 Browsing recordSchedule instances

When a control point wants to gather detailed information on currently existing
recordSchedule instances, it can do this by invoking the BrowseRecordSchedules() action.
The following request:

Request:
BrowseRecordSchedules(""", 0, 10, "+srs:title")

- 104 - 29341-4-14 © ISO/IEC:2011(E)

returns the following response (the result only returns the REQUIRED properties (Filter
argument is set to “”) and is sorted according to the value of the title property):

Response:
BrowseRecordSchedules("
<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd">
<item id=""s104">

</item>
<item id="s101">

</item>
<item id="s103">

29341-4-14 © ISO/IEC:2011(E) - 105 -

</item>
<item id="s201">

</item>
<item id="'s202">

</item>
<item id="s102">

</item>
</srs>",
6, 6, 123456)

2.9.5.2 Browsing recordTask instances associated with a single recordSchedule

When a control point wants to gather detailed information on currently existing recordTask
instances that are associated with a particular recordSchedule, it can do this by invoking the
BrowseRecordTasks() action.

As an example, assume that the control point wants to browse all recordTask instances,
associated with the recordSchedule with its @id property set to “s101”. It wants to retrieve all
supported properties (Filter argument set to “*:*") and sorting is not important (SortCriteria
argument set to “").

The following request:

Request:

- 106 - 29341-4-14 © ISO/IEC:2011(E)

BrowseRecordTasks(''s101", "*:*", 0, 10, ')

returns the following response:

Response:

BrowseRecordTasks ("

<?xml version="1.0" encoding=""UTF-8"7?>
<srs

xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""

urn:schemas-upnp-org:av:srs

http://www._upnp.org/schemas/av/srs._xsd">

<item i1d="t101-001">

<cdsReference Bink="LINK1">

<l--
The following DIDL-Lite XML Document needs to be interpreted as a simple string and
therefore needs to be properly escaped

<!-- End of DIDL-Lite XML Document -->

</cdsReference>

<desiredPriority type="PREDEF'>L2</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD,AUTO
</desiredRecordQuality>

29341-4-14 © ISO/IEC:2011(E) - 107 -

<recordedCDSObjectID Iink="LINK1">
rec00001
</recordedCDSObjectID>

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjust>
+P00:05:00
</taskDurationAdjust>

startDateTimeMet="0"
endDateTimeMet=""0"

firstBitsRecorded="0"
lastBitsRecorded="0"

</item>
<item id="t101-002'">

<cdsReference Bink="LINK1">

<l--
The following DIDL-Lite XML Document needs to be interpreted as a simple string and

therefore needs to be properly escaped
-——>

- 108 - 29341-4-14 © ISO/IEC:2011(E)

<!-- End of DIDL-Lite XML Document -->

</cdsReference>

<desiredPriority type="PREDEF'>L2</desiredPriority>

<desiredRecordQuality type="LABEL">
SD,AUTO
</desiredRecordQual ity>

<recordedCDSObjectID Iink="LINK1">
rec00002
</recordedCDSObjectID>

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjust>
+P00:05:00
</taskDurationAdjust>

startDateTimeMet="0"
endDateTimeMet="0"

firstBitsRecorded="0"
lastBitsRecorded="0"

</item>
</srs>",
2, 2, 123456)

2.9.6 Rating System

A ScheduledRecording service offers the OPTIONAL ability to impose rating limits on
recordable content.

A ScheduledRecording service implementation may provide a list of supported ratings. The
supported ratings can be retrieved by invoking the GetAllowedValues() action and specifying
the matchingRatingLimit property in the Filter argument.

29341-4-14 © ISO/IEC:2011(E) - 109 -

In the United States, TV manufacturers are REQUIRED to provide built-in support for the TV
Parental Guidelines Monitoring Board rating system. (See http://www.tvguidelines.org.)

Motion picture content is rated on a voluntary basis by the Motion Picture Association of
America. (See http://www.mpaa.org.)

Since it is not a simple matter to determine the rating system applicable to recordable content,
the control point should provide values for all applicable rating systems when specifying a
rating limit.

For example if the control point was configured to limit content for children, it may provide the
following rating limit properties.

<matchingRatingLimit type="TVGUIDELINES.ORG">
TV-G

</matchingRatingLimit>

<matchingRatingLimit type="MPAA._ORG">
G

</matchingRatingLimit>

Since the intent of the rating limit is a limiting value, the ScheduledRecording service MUST
exclude unrated content or content whose rating system does not match any of the rating
types in the matchingRatingLimit properties provided by the control point.

Since rating limits are intended to preclude some (subset of) users from accessing content, it
is up to the control point to identify users and apply the appropriate rating profile to individual
users.

2.9.7 Conflict Detection and Resolution

Conflicts between recordTask instances arise when the recording events, associated with
those recordTask instances, overlap in time and there are not enough resources available to
record all of the requested recording events.

Conflict detection always happens at the recordTask level. It is possible that, at
recordSchedule creation time, the ScheduledRecording service is not able to accurately
indicate whether scheduling conflicts may arise in the future. Indeed, a ScheduledRecording
service is not required or even capable (for a query-type recordSchedule) of generating all
the recordTask instances that will ever be associated with the recordSchedule. Furthermore,
a ScheduledRecording service implementation is allowed to either reject the creation of a
recordSchedule that creates a scheduling conflict (the CreateRecordSchedule() action
returns with error code 730, “Conflict”) or accept such a recordSchedule. A control point can
therefore only rely on the occurrence of error code 401, “Conflicting Program Loser” or error
code 402, “Conflicting Program Winner” in the taskstate@currentErrors property of all the
recordTask instances to accurately determine whether scheduling conflicts exist. Note that
the ScheduledRecording service always picks a Conflicting Program Winner, based upon
priority settings and/or other vendor-defined criteria.

At this time, conflict resolution is not adequately supported by this specification. When one or
more recordTask instances are conflicting, there is currently no straightforward way for a
control point to change the Conflicting Program Winner. Instead, a control point may disable
specific recordTask instances so that the intended recordTask becomes the Conflicting
Program Winner. The drawback of this approach is that if the newly appointed Conflicting
Program Winner changes over time (due to channel- or time migration, for instance), the
disabled recordTask instances remain disabled and will not record, even if that would have
become possible.

- 110 - 29341-4-14 © ISO/IEC:2011(E)

Alternatively, a control point may use the DeleteRecordSchedule() and
CreateRecordSchedule() actions to reschedule the recordSchedule with a different priority
level. The drawback of this approach is that all recordTask instances associated with the
deleted recordSchedule are also deleted and any customization by the user that happened at
the recordTask level will get lost as well.

A future version of this specification will address the conflict resolution issue in detail.

3 XML Service Description

<?xml version="1.0" encoding="UTF-8"?>
<scpd xmIns="'urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<actionList>

<action>
<name>GetSortCapabi lities</name>
<argumentList>
<argument>
<name>SortCaps</name>
<direction>out</direction>
<relatedStateVariable>
SortCapabilities
</relatedStateVariable>
</argument>
<argument>
<name>SortLevelCap</name>
<direction>out</direction>
<relatedStateVariable>
SortLevelCapability
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetPropertyList</name>
<argumentList>
<argument>
<name>DataTypelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_DataTypelD
</relatedStateVariable>
</argument>
<argument>
<name>PropertyList</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>

29341-4-14 © ISO/IEC:2011(E) - 111 -

<name>GetAl lowedValues</name>
<argumentList>
<argument>
<name>DataTypelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_DataTypelD
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
<argument>
<name>Propertylnfo</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_Propertylnfo
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetStateUpdatelD</name>
<argumentList>
<argument>
<name>ld</name>
<direction>out</direction>
<relatedStateVariable>

StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>
<action>
<name>BrowseRecordSchedules</name>
<argumentList>
<argument>
<name>Filter</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
<argument>
<name>Startinglndex</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_Index
</relatedStateVariable>
</argument>
<argument>
<name>RequestedCount</name>
<direction>in</direction>
<relatedStateVariable>
A _ARG_TYPE_Count
</relatedStateVariable>
</argument>
<argument>

<name>SortCriteria</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_SortCriteria
</relatedStateVariable>
</argument>

-112 - 29341-4-14 © ISO/IEC:2011(E)

<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A _ARG_TYPE_RecordSchedule
</relatedStateVariable>
</argument>
<argument>
<name>NumberReturned</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_Count
</relatedStateVariable>
</argument>
<argument>
<name>TotalMatches</name>
<direction>out</direction>
<relatedStateVariable>
A _ARG_TYPE_ Count
</relatedStateVariable>
</argument>
<argument>
<name>Update lD</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>BrowseRecordTasks</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
<argument>
<name>Startinglndex</name>
<direction>in</direction>
<relatedStateVariable>
A _ARG_TYPE_Index
</relatedStateVariable>
</argument>
<argument>
<name>RequestedCount</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_Count
</relatedStateVariable>
</argument>
<argument>
<name>SortCriteria</name>
<direction>in</direction>
<relatedStateVariable>
A ARG_TYPE_SortCriteria
</relatedStateVariable>
</argument>
<argument>

29341-4-14 © ISO/IEC:2011(E) - 113 -

<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_RecordTask
</relatedStateVariable>
</argument>
<argument>
<name>NumberReturned</name>
<direction>out</direction>
<relatedStateVariable>
A _ARG_TYPE_ Count
</relatedStateVariable>
</argument>
<argument>
<name>TotalMatches</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_Count
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>CreateRecordSchedule</name>
<argumentList>
<argument>
<name>Elements</name>
<direction>in</direction>
<relatedStateVariable>

A_ARG_TYPE_RecordScheduleParts

</relatedStateVariable>
</argument>
<argument>
<name>RecordSchedulelD</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_RecordSchedule
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DeleteRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>

~114 -

<relatedStateVariable>
A_ARG_TYPE_ObjectID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A _ARG_TYPE_RecordSchedule
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DisableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DeleteRecordTask</name>
<argumentList>

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E) - 115 -

<argument>
<name>RecordTasklID</name>
<direction>in</direction>
<relatedStateVariable>

A_ARG_TYPE_ObjectlD

</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>GetRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_PropertylList
</relatedStateVariable>
</argument>
<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_RecordTask
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectID
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>DisableRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklID</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
</argumentList>
</action>

- 116 - 29341-4-14 © ISO/IEC:2011(E)

<action>
<name>ResetRecordTask</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordScheduleConflicts</name>
<argumentList>
<argument>
<name>RecordSchedulelD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>RecordScheduleConflictlIDList</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlIDList
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordTaskConflicts</name>
<argumentList>
<argument>
<name>RecordTasklD</name>
<direction>in</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectlD
</relatedStateVariable>
</argument>
<argument>
<name>RecordTaskConflictIDList</name>
<direction>out</direction>
<relatedStateVariable>
A_ARG_TYPE_ObjectIDList
</relatedStateVariable>
</argument>
<argument>
<name>Update ID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStateVariable>
</argument>
</argumentList>
</action>

</actionList>

<serviceStateTable>

29341-4-14 © ISO/IEC:2011(E) - 117 -

<stateVariable sendEvents="no">
<name>SortCapabi lities</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no"'>
<name>SortLevelCapability</name>
<dataType>uid</dataType>
</stateVariable>

<stateVariable sendEvents='"no'>
<name>StateUpdatelD</name>
<dataType>ui4</dataType>

</stateVariable>

<stateVariable sendEvents="yes">
<name>LastChange</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no'>
<name>A_ARG_TYPE_PropertyList</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A_ARG_TYPE_DataTypelD</name>
<dataType>string</dataType>
<allowedValueList>
<allowedValue>A_ARG_TYPE_RecordSchedule</al lowedValue>
<allowedValue>A ARG _TYPE_RecordTask</al lowedValue>
<allowedValue>A_ARG_TYPE_RecordScheduleParts</allowedValue>
</allowedValueList>
</stateVariable>

<stateVariable sendEvents="no"'>
<name>A_ARG_TYPE_ObjectlD</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents='"no'>
<name>A_ARG_TYPE_ObjectIDList</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no"'>
<name>A_ARG_TYPE_Propertylnfo</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents='"no'>
<name>A_ARG_TYPE_Index</name>
<dataType>ui4</dataType>

</stateVariable>

<stateVariable sendEvents='"no">
<name>A_ARG_TYPE_Count</name>
<dataType>uid</dataType>

</stateVariable>

<stateVariable sendEvents='"no'>
<name>A_ARG_TYPE_SortCriteria</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no"'>
<name>A_ARG_TYPE_RecordSchedule</name>
<dataType>string</dataType>
</stateVariable>

-118 -

<stateVariable sendEvents='"no'>
<name>A_ARG_TYPE_RecordTask</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no"'>
<name>A_ARG_TYPE_RecordScheduleParts</name>
<dataType>string</dataType>
</stateVariable>

</serviceStateTable>
</scpd>

4 Test

No semantic tests have been specified for this service.

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E) - 119 -

Annex A
(normative)
srs XML Document

This annex describes the srs XML Document that is used in action arguments of the property-
set data type. Any srs XML Document MUST conform to the SRS schema as defined in [SRS-
XSD]. Each srs XML Document contains one of the following data types:
A ARG _TYPE RecordSchedule, A ARG TYPE RecordTask or
A _ARG_TYPE RecordScheduleParts. All property-set data types are based on properties in
the srs namespace and are therefore based on the SRS schema.

Due to limitations of the XML Schema syntax, the SRS schema in itself is often not adequate
to accurately describe the limitations and restrictions imposed by a particular
ScheduledRecording service implementation. For example, the set of supported properties
and their allowed values may vary among implementations.

To allow ScheduledRecording service implementations to indicate which properties and their
allowed values they support, the concept of the AV Datastructure Template (AVDT) is
introduced. A ScheduledRecording service implementation can provide very detailed
information about supported properties and their allowed values by means of an AVDT XML
Document. The AVDT XML Document MUST conform to the AVDT schema as defined in
[AVDT].

An AVDT XML Document can be retrieved by invoking the GetAllowedValues() action. The
DataTypelD input argument identifies the data structure to be described by the AVDT XML
Document. Indeed, depending on the particular ScheduledRecording service implementation,
the set of supported properties and their allowed values of a given property-set data type
may vary. For example, the set of properties that can be specified in the Elements input
argument (of data type A_ ARG _TYPE RecordScheduleParts) of the CreateRecordSchedule()
action may differ substantially between implementations. Additionally, the set of properties
supported by different data types will obviously vary as well.

At this time, this specification identifies three different AVDT XML Document manifestations,
depending on the data type of the objects described in the AVDT XML Document:

e The A ARG TYPE RecordSchedule AVYDT XML Document

e The A ARG TYPE RecordTask AVDT XML Document

e The A ARG TYPE RecordScheduleParts AVDT XML Document

A.1 A ARG TYPE RecordSchedule AVDT XML Document

This type of AVDT XML Document is used to describe the data structure of a recordSchedule
object for a particular ScheduledRecording service implementation. Examples of action
arguments that use this data type include the Result output argument of the
BrowseRecordSchedules() and GetRecordSchedule() actions.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextlID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1".

e The <dataStructType> field MUST be setto “A_ARG_TYPE RecordSchedule”.

e The <fieldTable> field MUST contain field elements for all the REQUIRED properties
of all the object.recordSchedule.xxx classes supported by the service. Refer to Table C.2,
“Class Properties Overview for recordSchedule”, recordSchedule-related columns.

e The <fieldTable> field MUST also contain field elements for all the supported
OPTIONAL properties of all the object.recordSchedule.xxx classes implemented by the

- 120 - 29341-4-14 © ISO/IEC:2011(E)

service. Refer to Table C.2, “Class Properties Overview for recordSchedule”,
recordSchedule-related columns.

Field specific rules:

e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule
virtual class.

e The <name> subelement of all <Field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a A_ARG_TYPE RecordSchedule AVDT XML Document, see
G.1, “A_ARG_TYPE RecordSchedule AVDT Example

A.2 A ARG TYPE RecordTask AVDT XML Document

This type of AVDT XML Document is used to describe the data structure of a recordTask
object for a particular ScheduledRecording service implementation. Examples of action
arguments that use this data type include the Result output argument of the
BrowseRecordTasks() and GetRecordTask() actions.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextlID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1".

e The <dataStructType> field MUST be setto “A_ARG_TYPE RecordTask”.

e The <fieldTable> field MUST contain field elements for all the REQUIRED properties
of the object.recordTask class. Refer to Table C.2, “Class Properties Overview for
recordSchedule”, recordTask-related column.

e The <fieldTable> field MUST also contain field elements for all the supported
OPTIONAL properties of the object.recordTask class. Refer to Table C.2, “Class
Properties Overview for recordSchedule”, recordTask-related column.

Field specific rules:

e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordTask class.

e The <name> subelement of all <field> elements MUST only contain names of
recordTask properties.

For a full-fledged example of a A_ARG_TYPE RecordTask AVDT XML Document, see G.2,
“A_ARG_TYPE RecordTask AVDT Example”.

A.3 A ARG TYPE RecordScheduleParts AVDT XML Document

This This type of AVDT XML Document is used to describe the data structure of a
recordScheduleParts object for a particular ScheduledRecording service implementation.
Examples of action arguments that use this data type include the Elements input argument of
the CreateRecordSchedule() action.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextID> field MUST be set to ‘“uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1".

e The <dataStructType> field MUST be setto “A_ARG_TYPE RecordScheduleParts”.

29341-4-14 © ISO/IEC:2011(E) - 121 -

e The <fieldTable> field MUST contain field elements for all the REQUIRED properties
of all the object.recordSchedule.xxx classes supported by the service. Refer to Table C.1,
“Class Properties Overview ", recordSchedule-related columns.

e The <fieldTable> field MUST also contain field elements for all the supported
OPTIONAL properties of all the object.recordSchedule.xxx classes implemented by the
service. Refer to Table C.1, “Class Properties Overview ”,_recordSchedule-related
columns.

Field specific rules:

e There must be one and only one field with the subelement <name> set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule
virtual class.

e The <name> subelement of all <field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a A_ ARG _TYPE RecordScheduleParts AVDT XML Document,
see G.3,“A ARG TYPE RecordScheduleParts AVDT Example”.

- 122 - 29341-4-14 © ISO/IEC:2011(E)

Annex B
(normative)
AV Working Committee Extended Properties

The tables and subclauses below list all properties defined by the AV Working Committee. A
property is expressed in XML as either an XML element or an XML attribute.

In the following subclauses, the definition of each property and its default value, if applicable,
is described, followed by the specifics pertaining to INPUT and OUTPUT usage for this
property. The INPUT usage indicates how the property is used in a recordScheduleParts
object. The OUTPUT usage indicates how the property is used in a recordSchedule and/or
recordTask object.

Note: The NS column in the tables contains the namespace prefix of the namespace to which
the property name belongs. The M-Val column indicates whether the property is multi-valued
(M-Val = YES) or single-valued (M-Val = NO). See Clause 2.2.2.17, “Multi-valued property”
and Clause 2.2.2.18, “Single-valued property”.

B.1 Base Properties

Table B.1 — Base Properties Overview

Property Name NS Data Type M-Val Reference
@id Srs xsd:string NO Subclause B.1.1
title srs xsd:string NO Subclause B.1.2
class srs xsd:string NO Subclause B.1.3
additionalStatusinfo Srs xsd:string NO Subclause B.1.4
cdsReference srs xsd:string YES Subclause B.1.5
cdsReference@link Srs xsd:string NO Subclause B.1.5.1
B.1.1 @id
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The @id property identifies a recordSchedule or recordTask object. The value
MUST be unique in the ScheduledRecording service. The value MUST be set by the
ScheduledRecording service.

Default Value: N/A — Required on input.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating @id values. If @id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: When creating a new recordSchedule object, the @id property MUST be specified to
satisfy the SRS XML Schema and MUST be set to the empty string.

Output: The unique object ID set by the ScheduledRecording service.

B.1.2 title

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

29341-4-14 © ISO/IEC:2011(E) - 123 -

Description: Primary title of the object. The_title property contains a friendly name to identify
the object. This property can be either user-supplied or derived from the content name the
object represents. This property is not to be confused with the matchingName or
matchedName property. See also http://dublincore.org/documents/dces.

Default Value: N/A — Required on input.
Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.1.3 class

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The class property identifies the class of the object. A ScheduledRecording
service implementation MUST list all classes it supports. If some (vendor-defined) classes
are derived from other classes, then both the derived classes and the parent classes MUST
be listed. See Annex C, “
(normative)

AV Working Committee Class Definitions” for details.

Default Value: N/A — Required on input.

Sort Order: Sequenced Lexical. Sequence subvalues are substrings separated by periods.
Input: The desired setting.

Output: The current setting.

B.1.3.1 allowedValuelList for the class Property

Table B.2 — allowedValuelList for the class Property

Value R/O Description
“OBJECT.RECORDSCHEDULE.DIRECT.MANUAL" o
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG” o
“OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG” R .

Control points should support
“OBJECT.RECORDSCHEDULE.DIRECT.PROGRAMCODE" o all predefined values in these
rows.
“OBJECT.RECORDSCHEDULE.QUERY.CONTENTNAME”" o
“OBJECT.RECORDSCHEDULE.QUERY.CONTENTID" o
“OBJECT.RECORDTASK" o
vendor-defined. X See clause C.1, “Class
)) Hierarchy” for rules on vendor-
Vendor-defined class names MUST obey the rules set forth in defined class extensions
clause D.3, “Class Name Syntax”. '
B.1.4 additionalStatusinfo
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The additionalStatusinfo property is a general-purpose property that can hold
text-based additional status information.

- 124 - 29341-4-14 © ISO/IEC:2011(E)

Default Value: N/A — Output only.
Sort Order: Lexical.

Input: N/A.

Output: The current setting.

B.1.5 cdsReference

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The cdsReference property MUST only contain metadata of a ContentDirectory
service object that is referenced (directly or indirectly) by a recordSchedule or recordTask
object.

Note that this is a multi-valued property so that metadata of multiple referenced
ContentDirectory service objects can be stored. A recordSchedule or recordTask object
references ContentDirectory service objects through properties, such as the
scheduledCDSObjectID property, recordedCDSObjectlD property, etc. (collectively indicated
by the notation: xxxCDSObjectlD property). To indicate which cdsReference property is
associated with which xxxCDSObjectlD property, both properties have a dependent property,
cdsReference@link and xxxCDSObjectID@Ilink respectively, that MUST contain the same
unique, vendor-defined link identifier.

The cdsReference property MUST contain a valid and properly escaped DIDL-Lite XML
Document. The DIDL-Lite XML Document describes a device-dependent (sub)set of imported
properties (metadata) of the ContentDirectory service object that is referenced by the linked
xxxCDSObjectlD property. See clause B.17, “ContentDirectory Service Imported Properties”
for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.1.5.1 cdsReference@link

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The cdsReference@link contains a unique, vendor-defined link identifier that
unambiguously links its cdsReference property to a particular xxxCDSObjectID property
within the same recordSchedule or recordTask object. See clause B.17, “ContentDirectory
Service Imported Properties” for details.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating cdsReference@link values. If cdsReference@link values contain a numeric
(sub)string that contains values that increment with each new object creation, then use
Lexical Numeric; otherwise, use Lexical

29341-4-14 © ISO/IEC:2011(E) - 125 -

Input: N/A.

Output: The current setting.

B.2 Priority Properties

Table B.3 — Priority Properties

Property Name NS Data Type M-Val Reference
priority Srs xsd:string NO Subclause B.2.1
priority@orderedValue Srs xsd:unsignedIint NO Subclause B.2.1.2
desiredPriority Srs xsd:string NO Subclause B.2.2

B.2.1 priority

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The priority property indicates the priority level of the associated object (a
recordSchedule or a recordTask). The priority-value format syntax of the priority
property is described in Annex D, “
(normative)

EBNF Syntax Definitions”.

Example values for this property include: “L1", “L2", “L3", ... where “L1” represents the
highest priority level with subsequent values representing progressively lower priority levels.

Note: Desired priority settings are specified via the desiredPriority property passed into the
CreateRecordSchedule() action. See Clause 2.8, “ScheduledRecording Service Priority
Model” for details.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on priority order. Ascending: lowest priority first.
Input: N/A.

Output: The current setting.

B.2.1.1 allowedValuelList for the priority Property

Table B.4 — allowedValuelList for the priority Property

Value R/O Description

|70

The highest priority level supported by the device.

=
N[
(@)

The next progressively lower priority level
supported by the device.

e (o) Progressively lower priority level supported by the
device.

“L<x>" [e] The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:

All devices MUST support 1 or more priority levels.

-126 - 29341-4-14 © ISO/IEC:2011(E)
If “L<x>"is supported, then all values between “L1"” and “L<x>" MUST be supported.

B.2.1.2 priority@orderedValue

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The priority@orderedValue property indicates the relative numerical priority
value of the associated object (a recordSchedule or a recordTask). A value of 1 indicates that
this object is the highest priority object of that object type (that is: of all recordSchedule
instances or all recordTask instances). Other ascending values indicate that the object has a
progressively lower priority relative to the other objects of that type. A value of N (where N is
the total number of objects of that type) indicates that the object is the lowest priority object
of that type. No two objects of the same type will have the same value for this property.

Note: This property is not evented when the priority of the object changes (for example due to
the creation of a new object with a higher priority).

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.2.2 desiredPriority

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The desiredPriority property specifies the desired priority level of the
associated object (a recordSchedule or a recordTask). The priority-value format syntax
of the desiredPriority property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

Except as noted below, the value for this property MUST match one of the allowed values
returned by the GetlnputPropertylnfo() action for this property. The allowed values MUST
comply with the table in B.2.2.1, “allowedValueLists for the desiredPriority Property” below.
Additionally, if the priority@orderedValue property is supported, the desiredPriority property
can also be set to one of the allowed values listed in Table B.6, “Additional allowedValueList

for the desiredPriority Property”.

Default Value: “DEFAULT".

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.2.2.1 allowedValuelists for the desiredPriority Property

Table B.5 — Primary allowedValueList for the desiredPriority Property

Value R/O Description

“DEFAULT” R No priority preference. The device itself will
determine the object’s priority.

29341-4-14 © ISO/IEC:2011(E) - 127 -

Value R/O Description

=
=
o

The highest priority level supported by the device.

R
o

The next to highest priority level supported by the
device.

(e}

Progressively lower priority levels between 1 and
<x>, “L3", “L4”, etc.

“Lax>"

o

The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:
All devices MUST support 1 or more priority levels.

If “L<x>" is supported, then all values between “L1” and “L<x>" MUST be continuously
supported; that is: a device MUST not support only “L1", “L3", and “L5".

Additionally, if the device supports the priority@orderedValue property, then the device
MUST also support the following allowed values. Conversely, if any of these allowed values
are supported, then the device MUST support the priority@orderedValue property. These
allowed values provide a mechanism for more precise prioritization control with those devices
that support it.

Table B.6 — Additional allowedValueList for the desiredPriority Property

Value R/O Description

“HIGHEST” R The highest level possible. — Same as “L1_HI”"
defined below.

“LOWEST” R The lowest level possible. — Same as “L<x> LOW”
defined below.

“L1 HI” R The highest priority possible within the highest
priority level.

“L1 LOW” R The lowest priority possible within the highest
priority level.

“L2_HI” R The highest priority possible within the next to
highest priority level.

“L2_LOW” R The lowest priority possible within the next to
highest priority level.

e R Progressively lower priority levels.

“L<x>_ HI” R The highest priority possible within the lowest
priority level where <x> is the total number of
distinct priority levels supported by the device.

“L<x> LOW” R The lowest priority possible, but within the lowest
priority level where <x> is the total number of
distinct priority levels supported by the device.

<@id> R The next highest priority “slot” immediately higher
than (but within the same priority level of) the
existing object whose @id is specified by <@id>.

Notes:

a) If a device supports the priority@orderedValue property, then the device MUST also
support these CONDITIONALLY REQUIRED allowed values. Conversely, if any of these
allowed values are supported, then the device MUST support the priority@orderedValue
property.

b) These allowed values provide a mechanism for more precise prioritization control with
those devices that support it. If “L<x> LOW" is supported, then all values between
“L1 HI” and_“L<x> LOW”" MUST be continuously supported; that is: a device MUST not

- 128 - 29341-4-14 © ISO/IEC:2011(E)

support only “L1 HI", “L1 LOW”, “L3 HI", “L3_LOW", “L5 HI” and “L5 LOW" or only
“L1 HI", “L2 HI", and “L3 HI".

B.2.3 desiredPriority @type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: When the desiredPriority@type property is set to “PREDEF", it indicates that
the desiredPriority property contains one of the predefined priority labels (“L1", “L2 LOW”,
etc.). When set to “OBJECTID”, it indicates that the desiredPriority property contains an
object ID (@id value).

Default Value: “PREDEF".

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.2.3.1 allowedValuelists for the desiredPriority@type Property

Table B.7 — allowedValuelList for the desiredPriority@type Property

Value R/O Description

“PREDEF”

|70

“OBJECTID”

|70

B.3 Output Control Properties

Table B.8 — Output Control Properties

Property Name NS Data Type M-Val Reference
recordDestination srs xsd:string YES Subclause B.3.1
recordDestination@mediaType Srs CSV (xsd:string) NO Subclause B.3.1.1
recordDestination@targetURL Srs xsd:anyURI NO Subclause B.3.1.2
recordDestination@preference srs xsd:unsignedint NO Subclause B.3.1.3
desiredRecordQuality srs xsd:string NO Subclause B.3.2
desiredrecordQuality@type Srs xsd:string NO Subclause B.3.2.2

B.3.1 recordDestination

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The recordDestination property identifies the storage unit to be used for the
recording. This identifier, which is to be generated by the ScheduledRecording service,
SHOULD be a user-friendly name for the storage unit so that its value is meaningful to a user
when displayed.

This is a multi-valued property so that more than one record destination can be specified for
a recording. The recordDestination@preference property allows the order of preference
among multiple record destinations to be specified. If none of the specified record
destinations is available at the time of recording, then the recording MUST NOT take place.

Examples: “Hard Disk Drive”, “DVD-1", “LINE1”, “AUX-out” etc.

29341-4-14 © ISO/IEC:2011(E) -129 -
Default Value: Vendor-defined.

Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.3.1.1 recordDestination@mediaType

Namespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The recordDestionation@mediaType property indicates the type of media that is
to be used for the recording.

If the media type of the specified record destination is fixed (not removable), then the value
of the recordDestination@mediaType property MUST match the actual physical media type of
the record destination. This single value can be retrieved through the GetAllowedValues()
action.

If the media of the specified record destination is manually removable (requires explicit user
intervention) then the currently inserted physical media MUST match one of the values in the
recordDestination@mediaType property. In other words, the specified list of media types
indicates those that are acceptable for the recording. If the current physical media does not
match one of the acceptable media types, then the recording MUST NOT take place on this
record destination.

If the specified record destination supports automatic swapping of media, such as a jukebox
recorder, then the recordDestination@mediaType property indicates which media type(s)
MUST be used for the recording. Recording MUST occur on the available media type that
appears earliest in the list. If none of the specified media types is available for recording,
then the recording MUST NOT take place on this record destination.

If recording can not take place as described above, then lower preference record destinations
MAY be used (see Clause B.3.1.3, “recordDestination@preference”). The set of allowed
values for the recordDestination@mediaType property can be retrieved through the
GetAllowedValues() action.

Examples: “HDD”, “DVD-RW”"

Default Value: Vendor-defined.
Sort Order: Sequenced Lexical.
Input: The desired setting.
Output: The current setting.

B.3.1.1.1 allowedValuelList for the recordDestination@mediaType Property

One of the allowed values for the AVTransport::RecordStorageMedium state variable MUST
be specified. Please refer to the AVTransport service specification for the table of allowed
values.

B.3.1.2 recordDestination@targetURL

Namespace: srs Property Data Type: xsd:anyURI Multi-Valued: NO

- 130 - 29341-4-14 © ISO/IEC:2011(E)

Description: The recordDestination@targetURL property MUST contain a URL that identifies
the location, such as the location of a directory, where the recorded content is to be stored.

Examples:

“file://ID:/MyDocuments/MyVideos”
“http://10.0.0.1/MyDocuments/MyVideos”

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

B.3.1.3 recordDestination@preference

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The recordDestination@preference property is wuseful when multiple
recordDestination properties are specified within the same recordSchedule or recordTask
object. In this case, the values indicate the preference order of the multiple record
destinations. Higher numbers indicate lower preference. The values do not have to be
contiguous.

If multiple recordDestination@preference properties have the same value, then the order of
preference in which their associated record destinations are chosen is device-dependent.

If the recordDestination@preference property is not supported by an implementation, then
the order of preference of all specified record destinations is device-dependent.

Default Value: Vendor-defined.
Sort Order: Numeric.

Input: The desired setting.
Output: The current setting.

B.3.2 desiredRecordQuality

Namespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The desiredRecordQuality property is used to express the desired or preferred
recording quality level(s) for a particular recordSchedule. Multiple recording quality levels can
be specified in the comma-separated value list of the desiredRecordQuality property. If there
is more than one value specified, then the values indicate the desired recording quality, in
order of preference, highest preference first. The value “AUTO” MUST be supported by all
implementations. When “AUTQ” is included in the list, it MUST appear as the last value in the
list and indicates that if none of the preceding values are available, then the
ScheduledRecording service is free to use any recording quality level to maximize the
probability that the recording actually takes place. When the “AUTO” value is the only value
in the list, then the ScheduledRecording service is free to use any recording quality level.

There are many ways to express recording quality. Some implementations use bitrates, some
use user-friendly labels etc. Some implementations might even support multiple ways to

29341-4-14 © ISO/IEC:2011(E) - 131 -

express recording quality simultaneously. The desiredRecordQuality property is used in
conjunction with the desiredRecordQuality@type to allow implementations to express these
variations. However, since the desiredRecordQuality property can appear only once, the
acceptable recording quality levels for a particular recordSchedule are restricted to a single
type variation.

If an implementation is capable of encoding or transcoding, then it MAY do so in order to
achieve the desired recording quality.

Example: Assume a (hypothetical) implementation that supports the type variations
“DEFAULT”, “ATSC” and “QLEVEL" for the desiredRecordQuality@type property. The
following table expresses the supported desiredRecordQuality property values for those
variations and also indicates how the different type variations interrelate for this particular
implementation:

Table B.9 — desiredRecordQuality Example

“DEFAULT” “ATSC” “QLEVEL”

“1080p30”
“1080p24" “Q1”
“1080i60”

“HD"
“720p60”

e Specifying “HD,ED” in the desiredRecordQuality property and

“720p30”

“720p24”

“Q2”

“ED”

“480p60”

“480p30”

“480p24”

“480i60"

“Q3”

“AUTO"

“AUTO”

“AUTO”"

“DEFAULT”

desiredRecordQuality@type property will result in the following:

e |f possible, the recording will be made using “HD” quality. In this case, it is up to the
implementation to determine exactly which recording quality level within the “HD”
range will be used for the recording.

e |If recording using “HD” quality is not possible, the recording will be made using “ED”
quality, if possible. Again, it is up to the implementation to determine exactly which
recording quality level within the “ED” range will be used for the recording.

e |f the recording cannot be made in either “HD” or “ED” quality, then no recording will
be made.

e Specifying “ED,SD,AUTQ" in the desiredRecordQuality property and “DEFAULT” in the
desiredRecordQuality@type property will result in the following:

e |f possible, the recording will be made using “ED” quality. It is up to the
implementation to determine exactly which recording quality level within the “ED”
range will be used for the recording.

e |f that is not possible, the recording will be made using “SD” quality, if possible. It is
up to the implementation to determine exactly which recording quality level within the
“SD” range will be used for the recording.

e |f the recording cannot be made in either “ED” or “SD" quality, then the recording will
be made using any other available recording quality.

e Specifying “720p60” in the desiredRecordQuality property and “ATSC” in the
desiredRecordQuality@type property will result in the following:

e |f possible, the recording will be made using “720p60” quality.

- 132 - 29341-4-14 © ISO/IEC:2011(E)

e |f that is not possible, no recording will be made.

When the ScheduledRecording service responds to a GetAllowedValues() action with
desiredRecordQuality information, then the allowed values MUST be listed in order of quality
from highest quality to lowest. The value “AUTO” MUST always be present and appear as the
last item in the list.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on the allowedValueList for the desiredRecordQuality
property. Ascending: lowest quality first.

Input: The desired setting.
Output: The current setting.

B.3.2.1 allowedValuelist for the desiredRecordQuality Property

Table B.10 — allowedValuelList for the desiredRecordQuality Property

Value R/O Description

“AUTO”" R If none of the quality levels preceding the “AUTOQO”
value are available, then any recording quality
level may be used. The “AUTO” value MUST
always appear last in the list when present.

Vendor-defined X

B.3.2.2 desiredRecordQuality@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: There are many ways to express recording quality. Some implementations use
bitrates, some use user-friendly labels etc. Some implementations might even support
multiple ways to express recording quality simultaneously. The desiredRecordQuality@type
property is used to express which type variation is used in its associated independent
desiredRecordQuality property. The “DEFAULT” value MUST be supported and indicates
which of the supported type variations is preferred by the device when expressing recording
quality levels.

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

B.3.2.2.1 allowedValuelList for the desiredRecordQuality@type Property

Table B.11 — allowedValuelList for the desiredRecordQuality @type Property

Value R/O Description

“DEFAULT" R Indicates the type variation that is preferred by the
device when expressing recording quality levels.

Vendor-defined X

29341-4-14 © ISO/IEC:2011(E) - 133 -

B.4 Content Identification Related Properties

Table B.12 — Content Identification Related Properties

Property Name NS Data Type M-Val Reference
scheduledCDSObjectID Srs xsd:string NO Subclause B.4.1
scheduledCDSObjectID@Iink Srs xsd:string NO Subclause B.4.1.1
scheduledChannellD srs xsd:string NO Subclause B.4.2
scheduledChannellD @type Srs xsd:string NO Subclause B.4.2.1
scheduledChannellD @distriNetworkName Srs xsd:string NO Subclause B.4.2.2
scheduledChannellD @distriNetworkID Srs xsd:string NO Subclause B.4.2.3
scheduledStartDateTime srs xsd:string YES Subclause B.4.3
scheduledDuration Srs xsd:string NO Subclause B.4.4
scheduledProgramCode Srs xsd:string NO Subclause B.4.5
scheduledProgramCode@type Srs xsd:string NO Subclause B.4.5.1
B.4.1 scheduledCDSObjectID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledCDSObjectID property contains the didl-lite:@id property value
of the ContentDirectory service object from which relevant metadata information is extracted
to create the recordSchedule.

Default Value: N/A — Required on input.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that
contains values that increment with each new object creation, then use Lexical Numeric;
otherwise, use Lexical.

Input: The desired setting.
Output: The current setting.

B.4.1.1 scheduledCDSObjectID@link

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledCDSObjectiD@Ilink contains a unique, vendor-defined link
identifier that unambiguously links its scheduledCDSObjectlD property to a particular
cdsReference property instance within the same recordSchedule object. See clause B.17,
“ContentDirectory Service Imported Properties” for details.

Default Value: N/A — Output only.

Sort Order: Same as cdsReference@link.

Input: N/A.

Output: The current setting.

- 134 - 29341-4-14 © ISO/IEC:2011(E)

B.4.2 scheduledChannellD

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD property provides channel information for the
recordSchedule. Its format depends on the scheduledChannellD@type property as follows:

If scheduledChannellD@type = “ANALOG" then the scheduledChannellD property contains
the channel number.

Note: The label “ANALOG” actually is a misnomer. The format of the scheduledChannellD
property does not indicate the nature of the channel (analog versus digital). Rather, it
merely indicates the format of the label (for example, a single channel number versus a
channel number pair). Therefore, the label “ANALOG” should be interpreted as meaning:
the scheduledChannellD property’s format is a single channel number.

Examples: “5”, “7", etc.

If scheduledChannellD@type = “DIGITAL” then the scheduledChannellD property contains
the channel number pair “<Major Channel Number>,<Minor Channel Number>".

Note: The label “DIGITAL"” actually is a misnomer. The format of the scheduledChannellD
property does not indicate the nature of the channel (analog versus digital). Rather, it
merely indicates the format of the label (for example, a single channel number versus a
channel number pair). Therefore, the label “DIGITAL” should be interpreted as meaning:
the scheduledChannellD property’s format is a channel number pair.

Examples: “5,1", “5,2”", etc.

If scheduledChannellD@type = “FREQUENCY” then the scheduledChannellD property
contains the channel center frequency, expressed in Hz.

Examples: “150125000” (VHF band), “615000000” (UHF band), “96500000” (FM band), etc.

If scheduledChannellD@type = “SI” then the scheduledChannellD property contains the
Service Information Triplet “<Network ID>,<Transport Stream ID>, <Service ID>", embedded
in the content stream.

Examples: “0x1234,0xFEDC,0x0102", “12345,23456,32109", etc.

If scheduledChannellD@type = “LINE” then the scheduledChannellD property contains a
vendor-defined label identifying the line input.

Examples: “Line 1", “AUX”, “Front”, “Rear”, etc.

If scheduledChannellD@type = “NETWORK?” then the scheduledChannellD property contains
the URI that uniquely identifies the content to be recorded.

Examples: “http://upnp-server/stream1.mp2/”, “http://internet/stream2.mp2/”
Default Value: N/A — Required on input.

Sort Order: type Relationship.

“ANALOG”: Numeric.

“DIGITAL”: Sequenced numeric.

29341-4-14 © ISO/IEC:2011(E) - 135 -
“FREQUENCY”: Numeric.

“SI": Sequenced lexical.

“LINE": Lexical.

“NETWORK?": Lexical.

Vendor-defined: Vendor-defined sorting.

Input: The desired setting.

Output: The current setting.

B.4.2.1 scheduledChannellD@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@type property determines the format that is used for
the scheduledChannellD property as defined above.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on the order in Table B.13. Ascending: first table entry
first. If there is a single vendor-defined value, it sorts in table position. If there are multiple
vendor-defined values, they sort lexically among themselves, all after the Table B.13 entries
in ascending order and all before the Table B.13 entries in descending order.

Input: The desired setting.
Output: The current setting.

B.4.2.1.1 allowedValueList for the scheduledChannellD@type Property

Table B.13 — allowedValuelList for the scheduledChannellD@type Property

Value R/O Description
“ANALOG”)
“DIGITAL” (o]
“FRECUENCY" o At least one value in these rows MUST be

supported by a compliant ScheduledRecording

service implementation. Control points should
support all values in these rows.

|
lo

—
=
m
(e}

“NETWORK”

o

Vendor-defined

<

B.4.2.2 scheduledChannellD@distriNetworkName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@distriNetworkName property contains the name of
the Distribution Network that provides the channel, identified by the scheduledChannellD
property.

Default Value: Vendor-defined.

- 136 — 29341-4-14 © ISO/IEC:2011(E)
Sort Order: Lexical.
Input: The desired setting.
Output: The current setting.

B.4.2.3 scheduledChannellD@distriNetworkID

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@distriNetworklD property contains an ID that
uniquely identifies the Distribution Network that provides the channel, identified by the
scheduledChannellD property

Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired setting.
Output: The current setting.

B.4.3 scheduledStartDateTime

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The_scheduledStartDateTime property indicates what date or day(s) and time
the recording will take place. This property does not account for any recording time
adjustments such as scheduledStartDateTimeAdjust, and device latencies.

The sched-start format syntax of the scheduledStartDateTime property is defined in
Annex D, “
(normative)

EBNF Syntax Definitions”.

Examples: “02-07T15:30:00” (February 7", 3:30pm), “2005-02-07T15:30:00” (February 7",
2005, 3:30pm), “MONT15:30:00” (Mondays at 3:30pm), “T15:30:00” (Every day at 3:30pm)

Recording(s) will occur on the next occurrence(s) of the specified date or day(s) and time
until the total number of desired recordings (as indicated by the_totalDesiredRecordTasks
property) has been made.

Note that the scheduledStartDateTime property is a multi-valued property. Therefore, multiple
date× can be specified for the same recordSchedule. Recording will occur on every next
occurrence of any of the specified start date× until the total number of desired
recordings (as indicated by the_totalDesiredRecordTasks property) has been made.

See Subclause B.7.1, “totalDesiredRecordTasks” for further details on the use of the
totalDesiredRecordTasks property.

The value “NOW?” is defined by this specification to indicate that the recording MUST start
immediately (as soon as possible).

Default Value: N/A — Required on input.

Sort Order: Property Specific, in chronological order.

29341-4-14 © ISO/IEC:2011(E) - 137 -
Input: The desired setting.
Output: The current setting.

B.4.4 scheduledDuration

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDuration property indicates the scheduled duration of the
recording. The duration format syntax of the scheduledDuration property is defined in
Annex D, “
(normative)

EBNF Syntax Definitions”.

Examples: “P01:30:00” (one hour and thirty minutes), “P2D01:15:00” (two-day and seventy
five minutes recording).

This property does not necessarily represent the exact recording duration but represents the
scheduled recording duration. This property does not account for any recording time
adjustments such as scheduledDurationAdjust, and device latencies.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
Input: The desired setting.

Output: The current setting.

B.4.5 scheduledProgramCode

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCode property indicates the program code provided by a
program guide service of a particular program item. The format of the program code is
defined by the program guide service. A scheduledProgramCode@type property MUST be
specified with this property to identify the program guide service used.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.4.5.1 scheduledProgramCode@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCode@type property indicates the type of the program
guide service that defines the program code specified in the scheduledProgramCode property.
The format of this property is “<ICANN registered domain>"“_" “<program code name>".

Example: “epg.com_GuideCode".

—138 - 29341-4-14 © ISO/IEC:2011(E)
Default Value: N/A — Required on input.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5 Matching Content Criteria Properties

Table B.14 — Matching Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchingName srs xsd:string NO Subclause B.5.1
matchingName@type Srs xsd:string NO Subclause B.5.1.1
matchingName@subStringMatch srs xsd:boolean NO Subclause B.5.1.2
matchinglD Srs xsd:string NO Subclause B.5.2
matchingID@type Srs xsd:string NO Subclause B.5.2.1

B.5.1 matchingName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingName property contains (part of) the name of a program or series.
To match the criteria of this recordSchedule, an external item’s name information MUST
(partially) match the specified matchingName value. Matching SHOULD be done using lexical
matching (see Clause 2.2.2.27, “Lexical Matching”). It MAY be done using simple non-case-
sensitive matching (see Clause 2.2.2.29, “Simple Non-case-sensitive Matching”).

Example: “NFL Worldcup 2005", “Friends”.
Default Value: N/A — Required on input.
Sort Order: Lexical.

Note: This is an exception to the normal rule of type Relationship sorting. The equivalent of
type Relationship sorting may be achieved by including “+srs:matchingName@type” in the
sort property list immediately in front of “+srs:matchingName”.

Input: The desired setting.
Output: The current setting.

B.5.1.1 matchingName@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM”, then the matchingName property contains a program
name. If set to “SERIES”, then the matchingName property contains a series name.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on the order in Table B.15. Ascending: first table entry
first.

29341-4-14 © ISO/IEC:2011(E) - 139 -
Input: The desired setting.
Output: The current setting.

B.5.1.1.1 allowedValuelList for the matchingName@type Property

Table B.15 — allowedValuelList for the matchingName@type Property

Value R/O Description

“PROGRAM"

|70

“SERIES” R

B.5.1.2 matchingName@subStringMatch

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If set to “1”, the value specified in the matchingName property is used for a
substring match search within the program or series name (title). If set to “0” the value
specified in the matchingName property must match the program or series name exactly.

Default Value: “1”.
Sort Order: Boolean.
Input: The desired setting.

Output: The current setting.

B.5.2 matchinglD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Description: The matchinglD property contains the unique ID of a program or series. To

match the criteria of this recordSchedule, an external item’s ID information MUST match the
specified matchinglID value.

If the matchinglD@type property is set to “SI_PROGRAMID”, then the matchinglD property is
formatted as follows:

“<Network ID>,<Transport Stream ID>,<Service ID>,<Program ID>".

If the matchingID@type property is set to “SI_SERIESID”, then the matchinglD property is
formatted as follows:

“<Network ID>,<Transport Stream ID>,<Service ID>,<Series ID>".

If the matchinglD@type property is set to <ICANN Name>, then the matchinglD property is
formatted as follows:

“<Unique content ID, defined by the data provider>".
Default Value: N/A — Required on input.
Sort Order: Sorting on this property is meaningless and will be ignored.

Input: The desired setting.

— 140 - 29341-4-14 © ISO/IEC:2011(E)

Output: The current setting.

B.5.2.1 matchingID@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchinglD@type property indicates the type of the ID that is contained in
the matchingID property.

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5.2.1.1 allowedValueList for the matchinglD@type Property

Table B.16 — allowedValuelList for the matchinglD@type Property

Value R/O Description

“SI_PROGRAMID”

|70

“SI_SERIESID”

|70

<ICANN Name>_<ldentifier>

(e}

<ICANN Name>: The ICANN name of the
organization that defines the format and values of

the matchinglD property.

<Identifier>: A unique identifier for the particular
ID type, defined by that organization.

Examples: “mycompany.com_ID1",
“upnp.org_SpeciallD".

B.6 Matching Qualifying Criteria Properties

Table B.17 — Matching Qualifying Criteria Properties

Property Name NS Data Type M-Val Reference
matchingChannellD Srs xsd:string YES Subclause B.6.1
matchingChannellD@type Srs xsd:string NO Subclause B.6.1.1
matchingChannellD @distriNetworkName Srs xsd:string NO Subclause B.6.1.2
matchingChannellD @distriNetworkID Srs xsd:string NO Subclause B.6.1.3
matchingStartDateTimeRange Srs xsd:string YES Subclause B.6.2
matchingDurationRange Srs xsd:string YES Subclause B.6.3
matchingRatingLimit Srs xsd:string YES Subclause B.6.4
matchingRatingLimit@type Srs xsd:string NO Subclause B.6.4.2
matchingEpisodeType Srs xsd:string NO Subclause B.6.5
B.6.1 matchingChannellD
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingChannellD property contains a scheduledChannellD value. Its
format depends on the matchingChannellD@type property. To match the criteria of this
recordSchedule, an external item’s channel information (after translation into the format of a

29341-4-14 © ISO/IEC:2011(E) - 141 -

scheduledChannellD property) MUST match one of the specified matchingChannellD values.
If this property is omitted from the recordSchedule, the external item’s channel information is
not taken into consideration to determine a match.

Default Value: N/A — Not used if omitted on input.

Sort Order: Same as scheduledChannellD.

Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.1.1 matchingChannellD@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingChannellD@type property determines the format that is used for
the matchingChannellD property as defined in B.4.2, “scheduledChannellD” and B.4.2.1,
“scheduledChannellD@type”.

Default Value: N/A — Not used if omitted on input .

Sort Order: Same as scheduledChannellD@type.

Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.1.2 matchingChannellD@distriNetworkName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingChannellD@distriNetworkname property definition is identical to
the scheduledChannellD @distriNetworkName property definition. See B.4.2.2,
“scheduledChannellD@distriNetworkName” for details.

Default Value: N/A — Not used if omitted on input.

Sort Order: Same as scheduledChannellD@distriNetworkName property.

Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.1.3 matchingChannellD@distriNetworkID

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchinChannellD@distriNetworklD property definition is identical to the
scheduledChannellD @distriNetwork property definition. See B.4.2.3,
“scheduledChannellD@distriNetworkID” for details.

Default Value: N/A — Not used if omitted on input.

Sort Order: Same as scheduledChannellD@distriNetworkID property.

- 142 - 29341-4-14 © ISO/IEC:2011(E)
Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.2 matchingStartDateTimeRange

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingStartDateTimeRange property contains a date range. The start-
range format syntax of the matchingStartDateTimeRange property is defined inAnnex D, “
(normative)

EBNF Syntax Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the
“r,

To match the criteria of this recordSchedule, an external item’s start date and time
information MUST fall within one of the specified matchingStartDateTimeRange ranges. If this
property is omitted from the recordSchedule, the external item’s start date and time
information is not taken into consideration to determine a match.

Note: The matchingStartDateTimeRange property is different from the activePeriod property
in that the first identifies the actual matching criteria whereas the second identifies the period
of time when potential matches are to be examined.

Default Value: N/A — Not used if omitted on input.

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.3 matchingDurationRange

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

The matchingDurationRange property contains a duration range. The duration-range
format syntax of the matchingDurationRange property is defined in AnnexD, *
(normative)

EBNF Syntax Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the
“r,

To match the criteria of this recordSchedule, an external item’s duration information (after
translation into the format of a scheduledDuration property) MUST fall within the specified
matchingDurationRange range. If this property is omitted from the recordSchedule, the
external item’s duration information is not taken into consideration to determine a match.

Default Value: N/A — Not used if omitted on input.

Sort Order: Sequenced Sort of two duration subvalues separated by “/".

29341-4-14 © ISO/IEC:2011(E) — 143 -
Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.4 matchingRatingLimit

Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingRatingLimit property indicates a maximum allowed rating. Several
different rating systems are available. The rating system is indicated in the
matchingRatingLimit@type property. The allowed values for the matchingRatingLimit property
depend on the rating system used.

Common rating systems as well as their allowed rating values (in order of ascending
restriction level beginning with the most lenient) for each rating system are defined below.

Other values MAY be specified using other rating systems identified by their ICANN domain
names.

To match the criteria of this recordSchedule, an external item’s rating information MUST be
less than or equal to all of the specified matchingRatingLimit values. If this property is
omitted from the recordSchedule, the external item’s rating information is not taken into
consideration to determine a match. If the external item does not contain rating information
and this property is specified, the external item will not be recorded.

Default Value: N/A — Not used if omitted on input.
Sort Order: type Relationship.

For each value of matchingRatingLimit@type, based on the order in the table associated with
the matchingRatingLimit@type property below. Ascending: first table entry first.

Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.4.1 allowedValuelList for the matchingRatingLimit Property

The allowed values for the matchingRatingLimit property depends on the
matchingRatingLimit@type property. The following tables list the allowed values for each
defined rating system.

Table B.18 — allowedValuelList for the matchingRatingLimit Property Using the MPAA
Rating System (matchingRatingLimit@type = “MPAA.ORG")

Value R/O Description
“‘G” R General Audiences.
PG” R Parental Guidance Suggested.
PG-13" R Parents Strongly Cautioned.
R R Restricted.
NC-17" R No One 17 and Under Admitted.
NR” R Not Rated Yet.

- 144 - 29341-4-14 © ISO/IEC:2011(E)

Table B.19 — allowedValuelList for the matchingRatingLimit Property Using the RIAA
Rating System (matchingRatingLimit@type = “RIAA.ORG")

Value R/O Description

|70

Non-explicit Content

“PA-EC” R Parental Advisory — Explicit Content

Table B.20 — allowedValuelList for the matchingRatingLimit Property Using the ESRB
Rating System (matchingRatingLimit@type = “ESRB.ORG")

Value R/O Description
“EC” R Early Childhood.
“E” R Everyone.
E10+" R Everyone 10 and Older.
“T” R Teen.
“M” R Mature.
“AQ” R Adults Only.
“‘RP” R Rating Pending.

Table B.21 — allowedValuelList for the matchingRatingLimit Property Using the
TVGUIDELINES Rating System (matchingRatingLimit@type = “TVGUIDELINES.ORG")

Value R/O Description
TV-Y” R All Children.
TV-Y7" R Directed to Older Children.
TV-Y7FEV R Directed to Older Children — Fantasy Violence.
TV-G” R General Audience.
TV-PG R Parental Guidance Suggested.
TV-14" R Parents Strongly Cautioned.
TV-MA’ R Mature Audience Only.

B.6.4.2 matchingRatingLimit@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingRatingLimit@type property indicates the rating system used in the
matchingRatingLimit property. Several different rating systems are available. The allowed
values for the matchingRatingLimit property depend on the rating system used.

Other rating systems MAY be specified using their ICANN domain names.

This is not a matching property. It is used in conjunction with the matchingRatingLimit
property and identifies the used rating system.

Default Value: N/A — Required in input.
Sort Order: Lexical.
Input: The desired setting.

Output: The current setting.

29341-4-14 © ISO/IEC:2011(E) — 145 -

B.6.4.2.1 allowedValuelList for the matchingRatingLimit@type Property

Table B.22 — allowedValueList for the matchingRatingLimit@type Property

Value R/O Description Remarks

“MPAA.ORG” o The Motion Picture

Association of America. .
At least one value in these rows

“RIAA.ORG” o The Recording Industry MUST be supported by a
Association of America. compliant ScheduledRecording
service implementation. Control
“ESRB.ORG” o The Entertainment Software | points should support all values
Rating Board. in these rows.
“TVGUIDELINES.ORG" o TV Parental Guidelines.
<ICANN Name>_<Identifier> X <ICANN Name>: The

ICANN name of the
organization that defines
the rating.

<ldentifier>: A unique
identifier for a particular
rating system, defined by
that organization.

Examples:
“mycompany.com_RS1",
“upnp.org_ratingx”.

B.6.5 matchingEpisodeType

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingEpisodeType property indicates the type of content to be recorded
in terms of its broadcast novelty. To match the criteria of this recordSchedule, an external
item’s episode type information MUST match the specified matchingEpisodeType value. If
this property is omitted from the recordSchedule, the external item’s episode type information
is not taken into consideration to determine a match. If the external item does not contain
episode type information and this property is specified, the external item will not be recorded.

Default Value: N/A — Not used if omitted on input.

Sort Order: Property Specific, based on the order in Table B.23. Ascending: first table entry
first.

Input: The desired setting.
Output: The current setting if specified on input. Otherwise not present.

B.6.5.1 allowedValuelist for the matchingEpisodeType Property

Table B.23 — allowedValueList for the matchingEpisodeType Property

Value R/O Description
“ALL” R All programs are recorded.
“FIRST-RUN" R Only programs that have an original air date equal
to the current date are recorded.
“REPEAT” R Only programs that have an original air date
earlier than the current date are recorded.

— 146 - 29341-4-14 © ISO/IEC:2011(E)

B.7 Content Control Properties

Table B.24 — Content Control Properties

Property Name NS Data Type M-Val Reference
totalDesiredRecordTasks Srs xsd:unsignedint NO Subclause B.7.1
scheduledStartDateTimeAdjust Srs xsd:string NO Subclause B.7.2
scheduledDurationAdjust Srs xsd:string NO Subclause B.7.3
activePeriod Srs xsd:string NO Subclause B.7.4
durationLimit Srs xsd:string NO Subclause B.7.5
durationLimit@effect srs xsd:string NO Subclause B.7.5.1
channelMigration srs xsd:boolean NO Subclause B.7.6
timeMigration Srs xsd:boolean NO Subclause B.7.7
allowDuplicates srs xsd:boolean NO Subclause B.7.8

B.7.1 totalDesiredRecordTasks

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The totalDesiredRecordTasks property indicates the maximum number of
recordTask instances, associated with a given recordSchedule that will ever be generated
over the lifetime of the recordSchedule. A value of 0 means that an unlimited number of
recordTask instances can be spawned from the recordSchedule.

This property is used to enable or disable recurrence. If a value different from 1 is specified
in the totalDesiredRecordTasks property, then the recordSchedule MUST remain active after
the first recordTask has been spawned and MUST monitor its internal state to determine if
the conditions that caused the first recordTask to be spawned are met again in the future.
Whenever this happens, a new recordTask MUST be spawned until the total number of
spawned recordTask instances reaches the value, specified in the totalDesiredRecordTasks
property. The activePeriod property can be used to terminate this process prematurely.

Default Value: 1 (recurrence is disabled by default).
Sort Order: Numeric.

Input: The desired setting.

Output: The current setting.

B.7.2 scheduledStartDateTimeAdjust

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledStartDateTimeAdjust property indicates a time period to be
applied as an adjustment to the scheduled start time. The duration-adj format syntax of
the scheduledStartDateTimeAdjust property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

Note that the scheduledStartDateTimeAdjust property can take on both positive and negative
values. Negative values provide pre-roll functionality (notice the + sign in the formula below)
whereas positive values allow for starting the recording a certain period of time into the
recording. The actual scheduled start time is calculated as:

29341-4-14 © ISO/IEC:2011(E) - 147 -

actualScheduledStartDateTime = scheduledStartDateTime + scheduledStartDateTimeAdjust

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: from longest negative
elapsed time to longest positive elapsed time.

Input: The desired setting.
Output: The current setting.

B.7.3 scheduledDurationAdjust

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDurationAdjust property indicates a period of time to be applied
as an adjustment to the scheduled duration time. The duration-adj format syntax of the
scheduledDurationAdjust property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

Note that the scheduledDurationAdjust property can take on both positive and negative
values. Positive values provide post-roll functionality whereas negative values allow for
ending the recording a certain time period before the end of the recording. The actual
scheduled end time and actual scheduled duration are calculated as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration + scheduledDurationAdjust

actualScheduledDuration = actualScheduledEndDateTime — actualScheduledStartDateTime
= scheduledDuration + scheduledDurationAdjust — scheduledStartDateTimeAdjust

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: from longest negative
elapsed time to longest positive elapsed time.

Input: The desired setting.
Output: The current setting.

B.7.4 activePeriod

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The activePeriod property indicates the date&time range within which the
recordSchedule is active; that is: the recordSchedule MUST NOT spawn any recordTask
instances whose actualStartDateTime fall outside the period specified in the activePeriod
property. The start-range format syntax of the activePeriod property is defined in Annex D,

(normative)
EBNF Syntax Definitions”.

The value specified after the “/” MUST be equal or greater than the value specified before the
“r.

A recordSchedule MUST not generate new recordTask instances for programs broadcast
after the expiration date.

— 148 - 29341-4-14 © ISO/IEC:2011(E)

Note: The activePeriod property is different from the_matchingStartDateTimeRange property
in that the first identifies the period of time when potential matches are to be examined
whereas the second identifies the actual matching criteria.

Default Value: “NOW/INEINITY".

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting.

B.7.5 durationLimit

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The durationLimit property indicates the maximum allowed duration of the
recording. The duration-long format syntax of the durationLimit property is defined in
Annex D, “
(normative)

EBNF Syntax Definitions”.

If the actual duration of the recording exceeds the value specified in the durationLimit
property, then the ScheduledRecording service MUST stop recording and either delete the
partially recorded content so far or preserve part of the recorded content depending on the
current setting of the durationLimit@effect property.

If the durationLimit property is set to “INFINITY”, then no limit is in effect.

Example: the value “P02:30:00” indicates that the recording MUST be stopped after two and
a half hours.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
Input: The desired setting.

Output: The current setting.

B.7.5.1 durationLimit@effect

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The durationLimit@effect property determines the behavior of the
recordSchedule when the duration of the content exceeds the value specified in the
durationLimit property.

If set to “SKIP”, then the partially recorded content is deleted once the actualDuration of the
recording exceeds the value specified in the durationLimit property.

If set to “LAST", then only the latest part (in length equal to the value specified in the
durationLimit property) of the content is preserved, effectively deleting the first part of the
recording.

29341-4-14 © ISO/IEC:2011(E) - 149 -

If set to “FIRST”, then only the initial part (in length equal to the value specified in the
durationLimit property) of the content is preserved, effectively deleting the last part of the
recording.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on the order in Table B.25. Ascending: first table entry
first.

Input: The desired setting.
Output: The current setting.

B.7.5.1.1 allowedValueList for the durationLimit@effect Property

Table B.25 — allowedValuelList for the durationLimit@effect Property

Value R/O Description
SKIP” o]
At least one value in these rows MUST be
LAST” o] supported. Control points should support all
values in these rows.
FIRST” [e]

B.7.6 channelMigration

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled channel may change between the time the
recordSchedule was created and the actual broadcast time. If this property is set to “1”, then
the ScheduledRecording service MUST automatically follow the program if it moves to
another channel (The reservation will be tracking broadcast channel change). If this value is
set to “0", then the ScheduledRecording service does not follow the program, and the
recording will take place on the channel that was specified at the time the recordSchedule
created the accociated recordTask.

Default Value: Vendor-defined.
Sort Order: Boolean.
Input: The desired setting.

Output: The current setting.

B.7.7 timeMigration

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled date&time may change between the time the
recordSchedule was created and the actual broadcast time. If this property is set to “1”, then
the ScheduledRecording service MUST automatically follow the program if it moves to
another date&time (The reservation will be tracking broadcast date&time change). If this
value is set to “0”, then the ScheduledRecording service does not follow the program, and the
recording will take place at the date&time that was specified at the time the recordSchedule
created the accociated recordTask.

Default Value: Vendor-defined.

Sort Order: Boolean.

- 150 - 29341-4-14 © ISO/IEC:2011(E)

Input: The desired setting.
Output: The current setting.

B.7.8 allowDuplicates

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If set to “1”, then programs are recorded, even if a duplicate program has
already been recorded as a result of the recordSchedule. If set to “0”, no duplicates are
recorded. Detection of duplicate programs is device- and EPG-dependent.

Default Value: Vendor-defined.
Sort Order: Boolean.
Input: The desired setting.

Output: The current setting.

B.8 Storage Related Properties

Table B.26 — Storage Related Properties

Property Name NS Data Type M-Val Reference
persistedRecordings Srs xsd:unsignedint NO Subclause B.8.1
persistedRecordings@latest Srs xsd:boolean NO Subclause B.8.1.1
persistedRecordings@preAllocation srs xsd:boolean NO Subclause B.8.1.2
persistedRecordings@storedLifetime Srs xsd:string NO Subclause B.8.1.3

B.8.1 persistedRecordings

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The persistedRecordings property indicates the minimum number of recordings
for a given recordSchedule that will be preserved at all times, once available. Even when the
ScheduledRecording service needs to make space for other recordings, this minimum
number of recordings (that is: the actual content) generated by the recordSchedule will not be
deleted. However, if more recordings, associated with the recordSchedule exist, then these
excess recordings MAY be deleted by the ScheduledRecording service. Whether the oldest
or the newest excess recordings will be deleted depends on the value of the
persistedRecordings@]latest property.

Default Value: Vendor-defined.
Sort Order: Numeric.

Input: The desired setting.
Output: The current setting.

B.8.1.1 persistedRecordings@latest

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

29341-4-14 © ISO/IEC:2011(E) - 151 -

Description: The persistedRecordings@latest property indicates whether newest or oldest
recordings are preserved. If set to “1", then the newest recordings are preserved. The
recordings prior to these MAY be deleted when more recent content is recorded.

If set to “0”, then the oldest recordings are preserved. Older content will never be deleted to
make room for newer content.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.8.1.2 persistedRecordings@preAllocation

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The persistedRecordings@preAllocation property indicates whether to reserve
storage space on beforehand to accommodate for the number of recordings as indicated by
the persistedRecordings property. If set to “1”, adequate storage space is reserved. To
reserve storage space, the ScheduledRecording service calculates a best estimate based on
parameters such as record quality, start time and duration adjustment etc. However, the
ScheduledRecording service can never guarantee that sufficient storage space is reserved to
accommodate the total number of recordings, specified in the persistedRecordings property.
If set to “0”, no storage space is reserved.

Default Value: Vendor-defined.
Sort Order: Boolean.

Input: The desired setting.
Output: The current setting.

B.8.1.3 persistedRecordings @storedLifetime

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The persistedRecordings@storedLifetime property indicates the minimum time
recorded content associated with a recordSchedule will be preserved after the recording
completes. This will prohibit a recording from being deleted by the auto-delete operation
within the specified time period. The duration-any format syntax of the
persistedRecordings@storedLifetime property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

If the value is set to “INFINITY", then the content MUST never be automatically deleted.

A value of “ANY” indicates that the content can be deleted at any time by the auto-delete
operation. However, it is RECOMMENDED that a ScheduledRecording service
implementation only deletes content when space is needed.

Default Value: Vendor-defined.

- 152 - 29341-4-14 © ISO/IEC:2011(E)

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
“ANY” is considered the shortest elapsed time possible; “INFINITY” is considered the longest
elapsed time possible.

Input: The desired setting.

Output: The current setting.

B.9 Schedule State Properties

Table B.27 — Schedule State Properties

Property Name NS Data Type M-Val Reference
scheduleState Srs xsd:string NO Subclause B.9.1
scheduleState@currentErrors Srs CSV (xsd:int) NO Subclause B.9.1.2
abnormalTasksExist srs xsd:boolean NO Subclause B.9.2

B.9.1 scheduleState

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduleState property indicates the overall state of the recordSchedule
itself.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B.28. Ascending: first table entry
first.

Input: N/A.
Output: The current setting.

B.9.1.1 allowedValuelist for the scheduleState Property

Table B.28 — allowedValuelList for the scheduleState Property

Value R/O Description

“OPERATIONAL" R recordSchedule is operating and spawning
recordTask instances as scheduled.

“COMPLETED” R recordSchedule is completed and reached final
disposition. No properties will change.

“ERROR” R recordSchedule ceases spawning recordTask
instances due to error.

B.9.1.2 scheduleState@currentErrors

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The scheduleState@currentErrors property indicates the current error(s) that
cause the schedule to be in the “ERROR” state. This error list pertains specifically to the
behavior of a recordSchedule and describes a recordSchedule’s inability to create new tasks.
When the scheduleState property has the value “OPERATIONAL", the
scheduleState@currentErrors property MUST be empty. The list of error codes are listed in
the recordSchedule error code subclause.

29341-4-14 © ISO/IEC:2011(E) - 153 -
Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.

Input: N/A.

Output: The current setting.

B.9.1.2.1 allowedValuelist for the scheduleState@currentErrors Property

Table B.29 — allowedValuelList for the scheduleState@currentErrors Property

Value R/O Description

0-99 N/A Reserved

100 R General error — an error is detected but the cause can not be identified.

101 (o) The number of spawned recordTask instances has reached some device
dependent limit.

102 o] EPG information not available.

103 o recordSchedule is disabled by the user.

104 (o) Insufficient memory — The system does not have enough system memory to
create any additional recordTask instances.

105 o] General resource error — some system related resource is causing the
recordSchedule to malfunction.

106-149 o Reserved for future recordSchedule error codes.

150-199 X Vendor extended recordSchedule error codes.

200 and above N/A Reserved for future extensions.

B.9.2 abnormalTasksEXxist

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If this property is set to “1”, then that indicates that at least one abnormal
recordTask exists for the recordSchedule. If this property is set to “0”, then no abnormal
recordTask exists for the recordSchedule. A recordTask is considered abnormal if it reaches
any state other than “IDLE.READY”, “ACTIVE.RECORDING.FROMSTART.OK"” or
“DONE.FULL".

Default Value: N/A — Output only.
Sort Order: Boolean.
Input: N/A.

Output: The current setting.

B.10 Statistics Properties

Table B.30 — Statistics Properties

Property Name NS Data Type M-Val Reference
currentRecordTaskCount Srs xsd:unsignedint NO Subclause B.10.1
totalCreatedRecordTasks Srs xsd:unsignedint NO Subclause B.10.2
totalCompletedRecordTasks Srs xsd:unsignedint NO Subclause B.10.3

— 154 - 29341-4-14 © ISO/IEC:2011(E)

B.10.1 currentRecordTaskCount

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The currentRecordTaskCount property indicates the number of existing
recordTask instances that are currently associated with a given recordSchedule. Previously
generated recordTask instances that have finished recording and that have been (auto-
)deleted by the ScheduledRecording service are not taken into account.

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.10.2 totalCreatedRecordTasks

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The totalCreatedRecordTasks property indicates how many recordTask
instances have been created during the lifetime of the associated recordSchedule. This
includes previously generated recordTask instances that have finished recording and that
have been (auto-)deleted by the ScheduledRecording service.

Default Value: N/A — Output only.
Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.10.3 totalCompletedRecordTasks

Namespace: srs Property Data Type: xsd:unsignedint Multi-Valued: NO

Description: The totalCompletedRecordTasks property indicates how many recordTask
instances have been completed (that is: reached any of the “DONE.xxx" states, during the
lifetime of the associated recordSchedule. This includes previously generated recordTask
instances that have finished recording and that have been (auto-)deleted by the
ScheduledRecording service.

Default Value: N/A — Output only.
Sort Order: Numeric.
Input: N/A.

Output: The current setting.

29341-4-14 © ISO/IEC:2011(E) — 155 -

B.11 Task General Properties

Table B.31 — Task General Properties

Property Name NS Data Type M-Val Reference
recordSchedulelD Srs xsd:string NO Subclause B.11.1
recordedCDSObjectID Srs xsd:string NO Subclause B.11.2
recordedCDSObjectID@Ilink Srs xsd:string NO Subclause B.11.2.1

B.11.1 recordSchedulelD

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordSchedulelD property contains the value of the @id property of the
recordSchedule that generated the recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating @id values. If @id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.11.2 recordedCDSObjectlD

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectlD property contains the didl-lite:@id property value of
the ContentDirectory service object that represents the content recorded by the recordTask.

Default Value: N/A — Output only.
Sort Order Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that
contains values that increment with each new object creation, then use Lexical Numeric;
otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.11.2.1 recordedCDSObjectID@link

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectID@Ilink contains a unique, vendor-defined link
identifier that unambiguously links its recordedCDSObjectlD property to a particular
cdsReference property instance within the same recordTask object. See clause B.17,
“ContentDirectory Service Imported Properties” for details.

- 156 - 29341-4-14 © ISO/IEC:2011(E)

Default Value: N/A — Output only.

Sort Order: Same as cdsReference@link property.

Input: N/A.

Output: The current setting.

B.12 Task Content Identification Properties

Table B.32 — Task Content Identification Properties

Property Name NS Data Type M-Val Reference
taskCDSObjectID Srs xsd:string NO Subclause B.12.1
taskCDSObjectID@link Srs xsd:string NO Subclause B.12.1.1
taskChannellD Srs xsd:string NO Subclause B.12.2
taskChannellD@type Srs xsd:string NO Subclause B.12.2.1
taskChannellD@distriNetworkName srs xsd:string NO Subclause B.12.2.2
taskChannellD @distriNetworklD srs xsd:string NO Subclause B.12.2.3
taskStartDateTime Srs xsd:string NO Subclause B.12.2.2
taskDuration Srs xsd:string NO Subclause B.12.4
taskProgramCode Srs xsd:string NO Subclause B.12.5
taskProgramCode@type srs xsd:string NO Subclause B.12.5.1
recordQuality Srs xsd:string YES Subclause B.12.6
recordQuality@type Srs xsd:string NO Subclause B.12.6.2
B.12.1 taskCDSObjectID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskCDSObjectlD property contains the didl-lite@id property value of the
ContentDirectory service object from which relevant metadata information was extracted to
create the recordSchedule that generated this recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of
generating didl-lite:@id values. If didl-lite:@id values contain a numeric (sub)string that
contains values that increment with each new object creation, then use Lexical Numeric;
otherwise, use Lexical.

Input: N/A.
Output: The current setting.

B.12.1.1 taskCDSObjectID@Ilink

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskCDSObjectID@Ilink contains a unique, vendor-defined link identifier
that unambiguously links its taskCDSObjectlD property to a particular cdsReference property

29341-4-14 © ISO/IEC:2011(E) - 157 -

instance within the same recordTask object. See clause B.17, “ContentDirectory Service
Imported Properties” for details.

Default Value: N/A — Output only.

Sort Order: Same as cdsReference@link property.

Input: N/A.
Output: The current setting.

B.12.2 taskChannellD

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannellD property indicates the actual channel that is used for the
recording. Its format depends on the taskChannellD@type property. The possible formats
and the dependency on the taskChannellD@type property are identical to the possible
formats of the scheduledChannellD and its dependency on the scheduledChannellD@type
property as described in B.4.2, “scheduledChannellD” and B.4.2.1,
“scheduledChannellD@type”.

Default Value: N/A — Output only.

Sort Order: Same as scheduledChannellD property.

Input: N/A.
Output: The current setting.

B.12.2.1 taskChannellD@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannellD@type property determines the format that is used for the
taskChannellD property as defined above. See B.4.2.1, “scheduledChannellD@type” for
details and allowed values.

Default Value: N/A — Output only.

Sort Order: Same as scheduledChannellD@type property.

Input: N/A.
Output: The current setting.

B.12.2.2 taskChannellD@distriNetworkName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannellD@distriNetworkname property definition is identical to the
scheduledChannellD @distriNetworkName property definition. See B.4.2.2,
“scheduledChannellD @distriNetworkName” for details.

Default Value: N/A — Output only.

— 158 - 29341-4-14 © ISO/IEC:2011(E)

Sort Order: Same as scheduledChannellD@distriNetworkName property.

Input: N/A.
Output: The current setting.

B.12.2.3 taskChannellD@distriNetworkID

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskChannellD@distriNetworklD property definition is identical to the
scheduledChannellD @distriNetwork property definition. See B.4.2.3,
“scheduledChannellD@distriNetworkID” for details.

Default Value: N/A — Output only.

Sort Order: Same as scheduledChannellD@distriNetworkID property.

Input: N/A.
Output: The current setting.

B.12.3 taskStartDateTime

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskStartDateTime property indicates the actual start date&time (based on
the current information) of the recording. This date&time does not include any adjustments.
These are reflected in the taskStartDateTimeAdjust property. The date-time format syntax
of the taskStartDateTime property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

Default Value: N/A — Output only.

Sort Order: Property Specific, in chronological order.
Input: N/A.

Output: The current setting.

B.12.4 taskDuration

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDuration property indicates the actual duration (based on the current
information) of the recording. This duration does not include any adjustments. These are
reflected in the taskDurationAdjust property. The duration format syntax of the
taskDuration property is defined in Annex D, “
(normative)

EBNF Syntax Definitions”.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.

29341-4-14 © ISO/IEC:2011(E) - 159 -

Input: N/A.
Output: The current setting.

B.12.5 taskProgramCode

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskProgramCode property indicates the actual program code that is used
for the recording. The format is identical to the format of the scheduledProgramCode property.
See B.4.5, “scheduledProgramCode” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.12.5.1 taskProgramCode@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskProgramCode@type property indicates the type of the program guide
service that defines the program code specified in the taskProgramCode property. The format
is identical to the format of the scheduledProgramCode@type property. See B.4.5.1,
“scheduledProgramCode@type” for details.

Default Value: N/A — Output only.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.12.6 recordQuality
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The recordQuality property expresses the recording quality level that is used for
a particular recordTask.

When the recordTask is in the “IDLE” phase (the actual recording has not started yet), this
property contains a best-known estimate of the recording quality for the recording. Therefore,
the recordQuality property MUST contain one of the vendor-defined values supported by the
ScheduledRecording service. The value “AUTO” is not allowed. If the implementation does
not have enough information to generate a value with some accuracy, then the value
“UNKNOWN" MUST be used.

When the recordTask is in the “ACTIVE” or “DONE"” phase, the recordQuality property MUST
contain one of the values supported by the implementation, that describes the actual
recording quality. The values “AUTO” and “UNKNOWN?" are not allowed.

- 160 - 29341-4-14 © ISO/IEC:2011(E)

There are many ways to express recording quality. Some implementations use bitrates, some
use user-friendly labels etc. Some implementations might even support multiple ways to
express recording quality simultaneously. The recordQuality property is used in conjunction
with the recordQuality@type to allow implementations to express these type variations.

For each type variation, the allowed values for the recordQuality property MUST be the same
as the allowed values supported for the corresponding type variation of the
desiredRecordQuality property, except that “UNKNOWN" replaces “AUTQO".

Note that the recordQuality property is a multi-valued property. Therefore, the actual
recording quality level can be expressed using different type variations simultaneously. As a
baseline, all implementations MUST support type variation “DEFAULT”". All record quality
levels expressed in a certain type variation MUST have equivalent quality levels expressed in
all other type variations, supported by the implementation. If an implementation supports
multiple type variations to express recording quality, then it MUST provide the recording
quality level expressed in all supported type variations.

Example: Assume a (hypothetical) implementation that supports the type variations
“DEFAULT", “ATSC” and “QLEVEL" for the recordQuality@type property. The following table
expresses the supported recordQuality property values for those variations and also indicates
how the different type variations interrelate for this particular implementation:

Table B.33 — recordQuality Example

“DEFAULT" “ATSC” “QLEVEL"
“1080p30”
“1080p24” “Q1”

“1080i60”

“HD"
“720p60”

“720p30” “Q2”

“720p24”

«ED” “480p60”

“480p30”

“Q3”
“SD” “480p24”

“480i60”

“UNKNOWN" “UNKNOWN” “UNKNOWN"

e Assuming the actual recording quality of a recordTask is “720p60” (as an example), then
the recordTask object MUST include three instances of the recordQuality property as
illustrated by the following XML fragment:
<recordQuality type="DEFAULT">HD</recordQuality>

<recordQuality type="ATSC'>720p60</recordQuality>
<recordQuality type="QLEVEL">Q2</recordQuality>

e Assuming the actual recording quality of a recordTask is “480p60”, then the recordTask
object MUST include three instances of the recordQuality property as illustrated by the
following XML fragment:
<recordQuality type="DEFAULT">ED</recordQuality>

<recordQuality type="ATSC'>480p60</recordQuality>
<recordQuality type="QLEVEL">Q3</recordQuality>

When the ScheduledRecording service responds to a GetAllowedValues() action with
recordQuality information, then the allowed values MUST be listed in order of quality from
highest quality to lowest.

Default Value: N/A — Output only.

29341-4-14 © ISO/IEC:2011(E) - 161 -

Sort Order: type Relationship.
Input: N/A.
Output: The current setting.

B.12.6.1 allowedValuelList for the recordQuality Property

Table B.34 — allowedValuelList for the recordQuality Property

Value R/O Description

“UNKNOWN" R The recording quality is unknown by the
ScheduledRecording service. Only applicable
when the_recordTask is in the “IDLE” phase.

Vendor-defined X
B.12.6.2 recordQuality@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: There are many ways to express recording quality. Some implementations use
bitrates, some use user-friendly labels etc. Some implementations might even support
multiple ways to express recording quality simultaneously. The recordQuality@type property
is used to express which type variation is used in its associated independent recordQuality
property. The “DEFAULT” value MUST be supported.

Default Value: N/A — Output only.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.13 Task Matched Content Criteria Properties

Table B.35 — Task Matched Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchedName Srs xsd:string NO Subclause B.13.1
matchedName@type srs xsd:string NO Subclause B.13.1.1
matchedID srs xsd:string NO Subclause B.13.2
matchedID@type Srs xsd:string NO Subclause B.13.2.1

B.13.1 matchedName

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedName property contains the full matched name of a program or
series. This is the full program or series name of the external item that (partially) matched the
name specified in the matchingName property of the recordSchedule.

Default Value: N/A — Output only.

Sort Order: Same as matchingName property.

- 162 - 29341-4-14 © ISO/IEC:2011(E)

Input: N/A.
Output: The current setting.

B.13.1.1 matchedName@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM", then the matchedName property contains a program
name. If set to “SERIES”, then the matchedName property contains a series name. The
format is identical to the format of the matchingName@type property. See B.5.1.1,
“matchingName@type” for details.

Default Value: N/A — Output only.

Sort Order: Same as matchingName@type property.

Input: N/A.
Output: The current setting.

B.13.2 matchedID

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedID property contains the matched ID of a program or series. This is
the ID of the external item that matched the ID specified in the matchinglD property of the
recordSchedule. The format is identical to the format of the matchinglD property. See B.5.2,
“matchinglD” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.13.2.1 matchedID@type

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedID@type property indicates the type of the ID that is contained in
the matchedlD property. The format of this property is identical to the format of the
matchingID@type property. See B.5.2.1, “matchinglD@type” for details.

Default Value: N/A — Output only.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

29341-4-14 © ISO/IEC:2011(E)

B.14 Task Matched Qualifying Criteria Properties

- 163 -

Table B.36 — Task Matched Qualifying Criteria Properties

Property Name NS Data Type M-Val Reference
matchedRating Srs xsd:string YES Subclause B.14.1
matchedRating@type Srs xsd:string NO Subclause B.14.2
matchedEpisodeType Srs xsd:string NO Subclause B.14.3

B.14.1 matchedRating

Namespace: srs

Property Data Type: xsd:string

Multi-Valued: YES

Description: The matchedRating property contains the actual rating of the recording. This is
the rating of the external item that matched (was less or equal to) a rating limit specified in
one of the matchingRatingLimit properties of the recordSchedule. The format is identical to
the format of the matchingRatingLimit property. See B.6.4, “matchingRatingLimit for details.

Default Value: N/A — Output only.

Sort Order: Same as matchingRatingLimit property.

Input: N/A.
Output: The current setting.

B.14.2 matchedRating@type

Namespace: srs

Property Data Type: xsd:string

Multi-Valued: NO

Description: The matchedRating@type property indicates the rating system used in the

matchedRating property. The

format is identical

to

the format of the

matchingRatingLimit@type property. See B.6.4.2, “matchingRatingLimit@type” for details.

Default Value: N/A — Output only.

Sort Order: Same as matchingRatingLimit@type property.

Input: N/A.
Output: The current setting.

B.14.3 matchedEpisodeType

Namespace: srs

Property Data Type: xsd:string

Multi-Valued: NO

Description: The matchedEpisodeType property contains the actual episode type of the
recording. This is the episode type of the external item that matched episode type specified in
the matchingEpisodeType property of the recordSchedule. The format is identical to the

format of the matchingEpisodeType property. See B.6.5, “matchingEpisodeType” for details.

Default Value: N/A — Output only.

Sort Order: Same as matchingEpisodeType property.

- 164 - 29341-4-14 © ISO/IEC:2011(E)

Input: N/A.

Output: The current setting.

B.15 Task Matched Content Control Properties

Table B.37 — Task Matched Content Control Properties

Property Name NS Data Type M-Val Reference
taskStartDateTimeAdjust Srs xsd:string NO Subclause B.15.1
taskDurationAdjust srs xsd:string NO Subclause B.15.2
taskDurationLimit Srs xsd:string NO Subclause B.15.3
taskDurationLimit@effect Srs xsd:string NO Subclause B.15.4
taskChannelMigration Srs xsd:boolean NO Subclause B.15.5
taskTimeMigration srs xsd:boolean NO Subclause B.15.6

B.15.1 taskStartDateTimeAdjust

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskStartDateTimeAdjust property is set to the value of the
scheduledStartDateTimeAdjust property of the parent recordSchedule. The format is identical
to the format of the scheduledStartDateTimeAdjust property. See B.7.2,
“scheduledStartDateTimeAdjust” for details.

Default Value: N/A — Output only.

Sort Order: Same as scheduledStartDateTimeAdjust property.

Input: N/A.
Output: The current setting.

B.15.2 taskDurationAdjust

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDurationAdjust property is set to the value of the
scheduledDurationAdjust property of the parent recordSchedule. The format is identical to the
format of the scheduledDurationAdjust property. See B.7.3, “scheduledDurationAdjust” for
details.

Default Value: N/A — Output only.

Sort Order: Same as scheduledDurationAdjust property.

Input: N/A.
Output: The current setting.

B.15.3 taskDurationLimit

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

29341-4-14 © ISO/IEC:2011(E) - 165 -

The taskDurationLimit property is set to the value of the durationLimit property of the parent
recordSchedule. The format is identical to the format of the durationLimit property. See B.7.5,
“durationLimit” for details.

Default Value: N/A — Output only.

Sort Order: Same as durationLimit property.
Input: N/A.

Output: The current setting.

B.15.4 taskDurationLimit@effect

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

The taskDurationLimit@effect property is set to the value of the durationLimit@effect
property of the parent recordSchedule. The format is identical to the format of the
durationLimit@effect property. See B.7.5.1, “durationLimit@effect” for details.

Default Value: N/A — Output only.

Sort Order: Same as durationLimit@effect property.

Input: N/A.
Output: The current setting.

B.15.5 taskChannelMigration

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskChannelMigration property is set to the value of the channelMigration
property of the parent recordSchedule. The format is identical to the format of the
channelMigration property. See B.7.6, “channelMigration” for details.

Default Value: N/A — Output only.

Sort Order: Same as channelMigration property.

Input: N/A.
Output: The current setting.

B.15.6 taskTimeMigration

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskTimeMigration property is set to the value of the timeMigration property
of the parent recordSchedule. The format is identical to the format of the timeMigration
property. See B.7.7, “timeMigration” for details.

Default Value: N/A — Output only.

Sort Order: Same as timeMigration property.

- 166 - 29341-4-14 © ISO/IEC:2011(E)

Input: N/A.

Output: The current setting.

B.16 Task State Properties

Table B.38 — State Related Properties

Property Name NS Data Type M-Val Reference

taskState Srs xsd:string NO Subclause B.16.1
taskState@phase Srs xsd:string NO Subclause B.16.1.2
taskState@startDateTimeMet srs xsd:boolean NO Subclause B.16.1.3
taskState@endDateTimeMet srs xsd:boolean NO Subclause B.16.1.4
taskState@recording Srs xsd:boolean NO Subclause B.16.1.5
taskState@someBitsRecorded srs xsd:boolean NO Subclause B.16.1.6
taskState@someBitsMissing srs xsd:boolean NO Subclause B.16.1.7
taskState @firstBitsRecorded srs xsd:boolean NO Subclause B.16.1.8
taskState@lastBitsRecorded srs xsd:boolean NO Subclause B.16.1.9
taskState @fatalError srs xsd:boolean NO Subclause B.16.1.10
taskState@currentErrors Srs CSV (xsd:int) NO Subclause B.16.1.11
taskState@errorHistory Srs CSV (xsd:int) NO Subclause B.16.1.12
taskState@pendingErrors Srs CSV (xsd:int) NO Subclause B.16.1.13
taskState@infolist Srs CSV (xsd:int) NO Subclause B.16.1.14

B.16.1 taskState

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Description: The taskState property indicates the overall state of the recordTask.
Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B.39. Ascending: first table entry
first.

Input: N/A.
Output: The current setting.

B.16.1.1 allowedValueList for the taskState Property

This subclause defines the normative allowed values for the taskState property. Each of
these values represents a semantically meaningful combination of values for some of the
“low-level” state properties (that is: taskState@xxx). Although it is possible to derive the
value of the taskState property from some of the “low-level” taskState@xxx properties, the
taskState property provides a more convenient mechanism to determine the current state of
the recordTask.

The definition of each state is shown in the table below. This table represents the normative
definitions of the various states. Although some of the low-level state properties have been
declared as optional, their underlying semantics and their significance towards the definition
of each valid taskState value is not diminished. Regardless of whether or not a given device
is able to expose all of the low-level state properties, every device has a conceptual notion of

29341-4-14 © ISO/IEC:2011(E) - 167 -

property semantics. For example, some devices may not be able to support the
taskState@lastBitsRecorded property, however, even these devices have an internal concept
that the last bits of the content have or have not been recorded.

In some cases, a specific low-level state property does not contribute to the definition of a
given state. In other words, the low-level property can have any value without affecting the
semantics of the state. This situation is indicated by a “-" in the table entry.

The “@" symbol is used to indicate an empty attribute. The “{}" symbol is used when the
attribute is not empty.

Following this table, a more intuitive informational description of each state value and their
support level is described.

Table B.39 — allowedValuelList for the taskState Property

Value

Q [Sioligbuipus

“IDLE.READY” “IDLE”

“IDLE.ATRISK” “IDLE”

asey
O | o | o [bulpiodai®

O | © | © [papi0daygSligoawos®
© | © | © [BUISSINS1IgaWwoS®

= | O | o |p 19NaWILareqliels©@
o | o | ol PopiodaygsSHgIsinio@
O | O | o |p paplodaysiigise|®

o | o | © [fjoraerelo

O | o | o |p 1I9NaWILaTegpUa®

Q| Q| Q [siol131ua1ind

Q | Q| Q [AI0ISIHI0II8®

“ACTIVE.TRANSITION.FROMSTART" “ACTIVE

“ACTIVE.TRANSITION.RESTART" “ACTIVE| O - 1 0 g | - 411 0 - 0

I

“ACTIVE.RECORDING.FROMSTART.OK” ‘ACTIVE | 1 1 0 0 g |10 |9 |1 0 1 0

“ACTIVE.RECORDING.FROMSTART.ATRISK['ACTIVE | 1 1 0 0 g 1{ |9 |1 0 1 0

n I

“ACTIVE.RECORDING.RESTART.OK" FACTIVE[1 [1 |1 |0 |@ |@ | |1 |0 |- |0
“ACTIVE.RECORDING.RESTART.ATRISK” FACTIVE|1 |1 |1 |0 |@ | |3 |1 |0 |- |oO
“ACTIVE.NOTRECORDING" FACTIVE|[O [- |1 o | |- |¢g |2 |o |- |o
“DONE.FULL” “DONE" |0 |1 |0 |0 |@ |- |@ |1 |1 |1 |1
“DONE.PARTIAL” “DONE” |0 |1 |1 |0 |@ |- | |1 |21 |- |-

FDONE” [0 [1 |1 |1 |@ |- |8 |- [0 |- |-
“DONE.EMPTY”" “DONE” |0 |0 |1 |0 |@ |- |3 |- |1 |0 |oO

“DONE" |0 |0 |1 |1 |@ |- |{ |- |0 |0 |oO

a Some implementations may not expose these individual properties to the control point. However, in this
case, all visible external behavior of the device MUST be as if it implemented all of the properties as|
specified in the table above.

In the following table, a more intuitive informational description of each state value and its
support level is described.

Table B.40 — allowedValuelList for the taskState Property

Value ‘ R/O ‘ Description

- 168 - 29341-4-14 © ISO/IEC:2011(E)

Value R/O Description

“IDLE.READY”

[0

The recordTask is waiting for the start time
to be reached. No errors have been
detected.

“IDLE.ATRISK”

O

The recordTask is waiting for the start time
to be reached while some pending errors
exist.

“ACTIVE.TRANSITION.FROMSTART" The device’s record mechanism has been
initiated to record the content from its
beginning but no actual recording has

occurred.

(@)

“ACTIVE. TRANSITION.RESTART"

(@)

The device’s record mechanism has been
re-initiated following some content loss
from previous error conditions.

“ACTIVE.RECORDING.FROMSTART.OK”

|70

The device’s record mechanism is currently
continuously recording from the beginning.
No current or pending errors exist.

“ACTIVE.RECORDING.FROMSTART.ATRISK”

(@)

The device’s record mechanism is currently
continuously recording from the beginning.
Some pending errors are detected.

“ACTIVE.RECORDING.RESTART.OK”

O

The device’s record mechanism is currently
recording content, following some content
loss from previous error conditions. No
current or pending errors exist.

“ACTIVE.RECORDING.RESTART.ATRISK”

O

The device’s record mechanism is currently
recording content following some content
loss from previous error conditions. One or
more pending errors are detected, which
will block the recording in the future.

“ACTIVE.NOTRECORDING”

(@)

The device’s record mechanism is currently
NOT recording content due to one or more
error conditions.

“DONE.FULL"

|70

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. All of the
content has been recorded.

“DONE.PARTIAL"

|70

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. The content is
only partially recorded due to error(s).

“DONE.EMPTY”

)

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. No content has
been recorded at all due to error conditions.

B.16.1.2 taskState@phase

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskState@phase property indicates the current phase of a recordTask
within its normal lifetime. The following allowed values for this property are sequentially
assigned at the appropriate points in time within the recordTask’s normal lifetime: “IDLE” >
“ACTIVE" > “DONE". In certain cases, some of the phase values may be skipped, for
example, when a fatal error is detected.

Default Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B.41. Ascending: first table entry
first.

Input: N/A.

29341-4-14 © ISO/IEC:2011(E) - 169 -

Output: The current setting.

B.16.1.2.1 allowedValuelList for the taskState@phase Property

Table B.41 — allowedValuelList for the taskState@phase Property

Value R/O Description

“IDLE” R Indicates that the recordTask’s start time has not
yet been reached.

“ACTIVE" R Indicates that the recordTask is in between the
“IDLE” and “DONE" phases. Typically, the
recordTask’s content is (partially) available and an
attempt is made to record the remaining content.

“DONE" R Indicates that the recordTask’s final disposition
has been reached. For example, the recordTask’s
end time has been reached or a fatal error has
occurred. Once the device reaches this phase, no
additional state changes occure.

B.16.1.3 taskState@startDateTimeMet

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@startDateTimeMet property indicates whether the recordTask’s
actualStartDateTime has been reached. See Clause 2.2, “Terms” for the definition of
actualStartDateTime.

If a recordTask has reached the “DONE" phase, this property indicates the last status before
the recordTask has reached the “DONE” phase. Note: if the recordTask terminates
prematurely (that is: reaches the “DONE” phase before the start time is reached, for example,
due to a fatal error), this property is not updated.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.4 taskState@endDateTimeMet

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@endDateTimeMet property indicates whether the recordTask’s
actualEndDateTime has been reached. See Clause 2.2, “Terms” for the definition of
actualEndDateTime.

If a recordTask has reached the “DONE" phase, this property indicates the last status before
the recordTask has reached the “DONE” phase. Note: if the recordTask terminates
prematurely (that is: reaches the “DONE” phase before the end time is reached, for example,
due to a fatal error), this property is not updated.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

- 170 - 29341-4-14 © ISO/IEC:2011(E)

Output: The current setting.

B.16.1.5 taskState@recording

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@recording property indicates whether one of the device’s record
destinations is currently recording the content identified by the recordTask.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.6 taskState@someBitsRecorded

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@someBitsRecorded property indicates whether some portion of
the content identified by the recordTask has been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.7 taskState@someBitsMissing

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@someBitsMissing property indicates whether some portion of
the content identified by the recordTask has not been recorded. This property will be “0” as
long as all the bits that have been available so far have also been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.8 taskState@firstBitsRecorded

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@firstBitsRecorded property indicates whether the first portion of
the content identified by the recordTask has been recorded.

29341-4-14 © ISO/IEC:2011(E) -171 -
Default Value: N/A — Output only.

Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.9 taskState@lastBitsRecorded

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@lastBitsRecorded property indicates whether the ending portion
of the content identified by the recordTask has been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.10 taskState@fatalError

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@fatalError property indicates whether a fatal error has occurred.
A fatal error is defined to be an error condition that causes the recordTask to terminate
before its actualEndDateTime has been reached.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.11 taskState@currentErrors

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@currentErrors property identifies the CSV list of errors that are
currently preventing the recordTask from recording. An empty CSV list indicates that there
are no errors currently blocking the recording. Multiple errors are listed in order of occurrence
starting with the oldest error and ending with the most recent.

When the errors are not resolved before reaching the “DONE” phase, they MAY be persisted
in the “DONE” phase. If a device persists current errors, the value of this property MUST be
set to the value that this property had immediately prior to entering the “DONE” phase.If a
device does not persist current errors, the taskState@currentErrors MUST be empty in the
“DONE” phase.

By definition, this property MUST be empty while in the “IDLE” phase. The current errors are
also copied to the taskState@errorHistory property.

-172 - 29341-4-14 © ISO/IEC:2011(E)

Default Value: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.11.1 allowedValuelList for the taskState@currentErrors Property and Other
Error Properties

The following table defines error codes for all error properties of a recordTask, such as
taskState@currentErrors, taskState@errorHistory, etc. to expose error conditions. This error
list can be extended in the future or by vendors. The errors are grouped into separate
categories and labeled 1xx, 2xx, 3xx, and 4xx groups, each group representing the nature of
errors; that is: general errors, media errors, system errors and content errors, respectively.
The grouping of error codes allows a control point to be able to understand the nature of
errors when an unknown error code (that is: extended specification or vendor extended) is
encountered. For example, if an unknown error is labeled 3xx, it can be interpreted by the
control point as 300.

29341-4-14 © ISO/IEC:2011(E)

-173 -

Table B.42 — allowedValuelList for the taskState@xxx Properties

Value R/O Description

Non-positive N/A These error codes are reserved for future use. Control points should gracefully
ignore any non-positive error codes.

001-099 N/A Reserved.

100-199 N/A General Error Code Group - arbitrary errors, which do not belong to other
groups.

100 R General Problem — a problem is confirmed, but no specific reason can be
identified.

101 o] Disabled - the recordTask is disabled by the user.

102 o The recordTask’s enable/disable behavior is overriding the default behavior
specified by the associated recordSchedule.

103-149 N/A Reserved for future General Error Codes.

150-199 N/A Reserved for vendor-defined General Error Codes.

200-299 N/A Media Error Code Group - arbitrary media related errors.

200 (o) General Media Problem — some trouble related to media is detected. Replacing
the media may likely resolve it.

201 o] No Media — necessary media is missing from the recording device.

202 [e] Media Write Protect - write access to the recording media is prohibited.

203 (o) Insufficient Media Space - recording media does not have enough available
space to complete the recordTask.

204 o] Media Low Space - the recording media has low available space and the
recordTask may fail. The criteria to determine “low space” is vendor dependent
and may be independent from the size of the scheduled content to record.

205-249 N/A Reserved for future Media ErrorCodes.

250-299 N/A Reserved for vendor-defined Media Error Codes.

300-399 N/A System Error Code Group - arbitrary system related error.

300 (o) General System Problem — a problem related to the system is detected. It may
affect all recordTask instances in the ScheduledRecording service.

301 o] Insufficient Memory- the system does not have enough system memory to
complete the recordTask.

302 (o) Insufficient Processing - the system does not have enough CPU power to
execute the recordTask.

303 (o) Low Memory - the system has low available memory and the recordTask may
fail. The criteria to determine “low memory” is vendor dependent and may be
independent from the size of the scheduled content to record.

304 (o) Low Processing - the system has low available CPU power and the recordTask
may fail. The criteria to determine “low processing” is vendor dependent and
may be independent from the size of the scheduled content to record.

305 (o) Signal Lost - the system has lost the input signal.

306 (o) Low Signal - The system has low input signal and the recordTask may fail. The
criteria to determine “low processing” is vendor dependent.

307 o No EPG - the system lost access to the EPG.

308-349 N/A Reserved for future System Error Codes.

350-399 N/A Reserved for vendor-defined System Error Codes.

400-499 N/A Content Error Code Group - arbitrary errors related to the content program to be
recorded.

400 (o) General Content Problem — a problem related to the content is detected. It may
be associated with the content that is being recorded.

401 (o) Conflicting Program Loser — there are other conflicting programs with

overlapping time period, and the current recordTask is superseded by the
conflicting program.

- 174 - 29341-4-14 © ISO/IEC:2011(E)

Value R/O Description

402 (o) Conflicting Program Winner - there are other conflicting programs with
overlapping time period, and the current recordTask superseded the conflicting
program.

403 (o) PPV (Pay per View) - the content is PPV and some procedures are needed for
the recordTask to begin.

404 o] Content Rescheduled - the originally scheduled content has been preempted.

405-449 N/A Reserved for future Content Error Codes.

450-499 N/A Reserved for vendor-defined Content Error Codes.

500 and above N/A Reserved for future new category information extensions.

B.16.1.12 taskState@errorHistory

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@errorHistory property identifies the CSV list of errors that have
(at any time) prevented the recordTask from completing successfully. This includes both past
and current recording errors. Multiple errors are listed in order of occurrence starting with the
oldest error and ending with the most recent. An empty list indicates that none of the
recordTask’s content has yet been prevented from being recorded. By definition, this list will
always be empty while in the “IDLE” phase. Note: Any errors listed in
taskState@currentErrors MUST also be copied to and persisted in this property.

Default Value: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.12.1 allowedValuelList for the taskState@errorHistory Property

See B.16.1.11.1, “allowedValuelList for the taskState@currentErrors Property” for details.

B.16.1.13 taskState@pendingErrors

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@pendingErrors property identifies the CSV list of errors that may
prevent the recordTask from completing successfully at some time in the future unless
resolved. An empty CSV list means that no pending errors have been detected. The list of
errors that the device is able to detect before they actually occur may be obtained via the
GetAllowedValues() action.

Those devices that are not able to detect any pending errors before they actually occur MAY
always return an empty list for the value of this property. In this case, the value returned by
GetAllowedValues() for this property MUST also be an empty list.

If any of these pending errors actually occur, they MUST be added to the
taskState@currentErrors list and taskState@ErrorHistory and removed from this list. When
the pending errors did not occur, these errors MAY be persisted to the “DONE” phase. If a
device does not persist any pending errors that have not occurred yet, then the
taskState@pendingErrors MUST be empty in the “DONE” phase. Otherwise the value of this
property MUST be set to the value that this property had immediately prior to entering the
“DONE" phase.

29341-4-14 © ISO/IEC:2011(E) - 175 -
Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.

Input: N/A.

Output: The current setting.

B.16.1.13.1 allowedValuelList for the taskState@pendingErrors Property

See B.16.1.11.1, “allowedValuelList for the taskState@currentErrors Property” for details.

B.16.1.14 taskState@infolList

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState@infoList property identifies the CSV list of additional conditions
that have been detected but will not block the current recordTask, for example, conflict
winner.

The list of possible information that the device is able to detect may be obtained via the
GetAllowedValues() action.

Devices that are not able to detect any additional information MUST always return an empty
list. In this case, the value returned by GetAllowedValues() for this property MUST also be an
empty list.

Note: a device can also use additionalStatusinfo to expose information in text format.

Default Value: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.14.1 allowedValuelList for the taskState@infolList Property

See B.16.1.11.1, “allowedValuelList for the taskState@currentErrors Property” for details.

B.17 ContentDirectory Service Imported Properties

ContentDirectory service properties are imported through the cdsReference multi-valued
property. The main reason to import properties (metadata) from ContentDirectory service
objects into a recordSchedule or recordTask object is to make that object self-contained; that
is: a control point can retrieve relevant metadata from the ScheduledRecording service object
without having to first extract the object IDs of external ContentDirectory service objects and
then retrieve the metadata from these objects via additional actions. In addition, even when
the referenced object in the ContentDirectory service is deleted, its metadata is still
preserved within the ScheduledRecording service. It is the responsibility of the device to
maintain consistency between the actual ContentDirectory service object’s metadata and the
metadata contained in the corresponding cdsReference property.

- 176 - 29341-4-14 © ISO/IEC:2011(E)

The cdsReference property MUST contain a valid (it MUST contain all the REQUIRED
properties as dictated by the DIDL-Lite Schema; also, if dependent properties are imported,
their independent properties MUST be imported as well.) and properly escaped DIDL-Lite
XML Document as defined in the ContentDirectory service specification. (Care must be taken
to correctly define namespaces.)

The DIDL-Lite XML Document describes a device-dependent (sub)set of imported properties
(metadata) of the ContentDirectory service object that is referenced by the linked
xxxCDSObjectlD property. The information contained in the DIDL-Lite XML Document MUST
exactly match the DIDL-Lite XML Document that would be returned in the Result argument of
the ContentDirectory::Browse() action with its input arguments set as follows:

ObjectID: The linked xxxCDSObjectID property value.

BrowseFlag: Set to “BrowseMetaData”.

Filter: Set to the list of property names that are imported from the ContentDirectory service by
the ScheduledRecording service.

Startinglndex: 0.
RequestedCount: 0.
SortCriteria: “”, the empty string.

The following example illustrates the possible content of a cdsReference property in the
context of a recordSchedule object (expressed in XML).

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
Xxsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www._upnp.org/schemas/av/srs.xsd"">
<item id="sched001'>
<class>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</class>
<title>My Schedule</title>

— > zscheduledCDSObjectlD 1ink=""schedObj001"">
epg001
</scheduledCDSObjectID>

—» <cdsReference link=""schedObj001">

<l—-

The following DIDL-Lite XML Document needs to be interpreted as a simple string and
therefore needs to be properly escaped
-——>

&1t;?xml version="1.0" encoding="UTF-8"?>
&It;DIDL-Lite
xmlns:dc="http://purl_org/dc/elements/1.1/"
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
<item 1d="epg001™ parentlD="container007""
restricted="0">
<dc:title>Friends</dc:titledgt;
<upnp:classé>
object.item.epgltem.videoProgram
</upnp:class>

&Itf/item>
&It;/DIDL-Lite>

<!-- End of DIDL-Lite XML Document -->

29341-4-14 © ISO/IEC:2011(E) - 177 -

</item>
</srs>

- 178 - 29341-4-14 © ISO/IEC:2011(E)

The next example illustrates the possible content of two cdsReference property instances
relating to the taskCDSObjectlD and recordedCDSObjectlD property in the context of a
recordTask object (expressed in XML).

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmIns=""urn:schemas-upnp-org:av:srs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www_upnp.org/schemas/av/srs.xsd">
<item id=""Task001">
<class>0BJECT .RECORDTASK</class>
<title>My Task</title>

—» <taskCDSObjectID link="tskObj001">
epg001
</taskCDSObjectID>

—> QrecordedCDSObjectlD link="recObj001">
rec001
</recordedCDSObjectID>

> <cdsReference link=""tskObj001"">

<li_

Tﬁe following DIDL-Lite XML Document needs to be interpreted as a simple string and
therefore needs to be properly escaped

>

<?xml version="1.0" encoding="UTF-8"?>
&It;?DIDL-Lite
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
<?item id="epg001" parentlD="container007"
restricted="0">
<?dc:title>Friends<?/dc:title>
<?upnp:classé>
object. item.epgltem.videoProgram
&It;?/upnp:classégt;

&It??/item>
&1t;?/DIDL-Lite>

<!li- End of DIDL-Lite XML Document -->

</cdsReference>

- <cdsReference link=""recObj001'>

<l:-

The following DIDL-Lite XML Document needs to be interpreted as a simple string and

thérefore needs to be properly escaped
-——>

&It;?xml version="1.0" encoding="UTF-8"?>
&It;?DIDL-Lite
xmlIns:dc=""http://purl._org/dc/elements/1.1/"
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmlns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
&It;?item id="rec001l" parentlD="cnt009" restricted="0">
<?dc:title>My Show<?/dc:title>
<?upnp:class>
object.item.videoltem
&It;?/upnp:classé>

&ItE?/item>
&It;?/DIDL-Lite>

<!l-- End of DIDL-Lite XML Document -->

</cdsReference>

29341-4-14 © ISO/IEC:2011(E) - 179 -

</item>
</srs>

- 180 - 29341-4-14 © ISO/IEC:2011(E)

Annex C
(normative)
AV Working Committee Class Definitions

C.1 Class Hierarchy

The ScheduledRecording service exposes a class hierarchy which is used to type all objects
that can be retrieved from it. Each class is named using a string of the form described in
clause D.3, “Class Name Syntax” below.

For a particular class, some properties are REQUIRED, others are OPTIONAL and some are
PROHIBITED.

A class that is derived from another class MUST include all of the member properties of the
parent class. The definition of a derived class MAY make some optional properties of the
base class REQUIRED.

Each class definition includes a list of properties. Each property is expressed in XML as
either an XML Element or an XML Attribute. Some independent properties are multi-valued
for a class, meaning that, in an XML instance of the class, the property may occur more than
once.

This Annex defines the base class object from which all other classes are derived. No object
of this abstract class can be instantiated. From the object class, two classes are derived; the
object.recordSchedule class and the object.recordTask class.

The abstract object.recordSchedule class and its two derived abstract classes
object.recordSchedule.direct and object.recordSchedule.query make up the basic hierarchy
from which all other recordSchedule classes are derived. These three classes can not be
instantiated (no object can exist within the ScheduledRecording service that has its class
property set to “OBJECT.RECORDSCHEDULE", “OBJECT.RECORDSCHEDULE.DIRECT” or
“OBJECT.RECORDSCHEDULE.QUERY?™).

The object.recordTask class is used to type all recordTask objects in the
ScheduledRecording service. The object.recordTask class has no derived classes defined yet.

In addition to these classes, a number of classes are derived from the
object.recordSchedule.direct and object.recordSchedule.query classes. Figure 7 below
shows the hierarchy of these classes.

object

v v

recordSchedule recordTask

|
v v

direct query

v ¥ | ¥ ' +—‘—+

manual CdsEPG cdsNonEPG programCode contentName contentlD

Y

Vendor defined class extensions

29341-4-14 © ISO/IEC:2011(E) - 181 -

Figure 7 — Class hierarchy for the ScheduledRecording service.

Vendors MAY extend the functionality, provided by the standard record classes, by adding
vendor-defined properties. Any device that adds a property whose description matches one of
the AV Working Committee-defined property descriptions MUST use the AV Working
Committee-defined property name. In addition, any device that uses a property name from
the ScheduledRecording service specification MUST use it with the same semantics as the
AV Working Committee-defined description of that property. In order to accommodate vendor-
defined properties, control points should gracefully ignore any properties whose names and
semantics they do not understand.

When adding properties, it is RECOMMENDED that vendors create a vendor-defined derived
class with a vendor-defined class name, rather than adding the properties to the existing
standard class without creating a vendor-defined class. This provides a simple mechanism
for control points to determine if a class has been extended by simply examining the class
property value. In all cases, vendor-defined classes MUST remain fully compatible with the
standard class from which they were derived. In other words, control points that do not
understand the specifics of the vendor-defined additions should still be able to interact with
an instance of the vendor-defined derived class object as if it were an instance of that
standard class.

Vendor-defined classes MUST always be derived from standard classes that can be
instantiated (the green-colored boxes in Figure 7). It is therefore PROHIBITED to derive
vendor-defined classes directly from classes, such as “OBJECT.RECORDSCHEDULE",
“OBJECT.RECORDSCHEDULE.DIRECT", and “OBJECT.RECORDSCHEDULE.QUERY". It is
allowed to derive vendor-defined classes from class “OBJECT.RECORDTASK”".

All standard classes and vendor-defined derived classes supported by a particular
ScheduledRecording service implementation MUST be individually listed in the
allowedValuelList of the class property. (This list can be retrieved via the GetAllowedValues()
action.) Implementations are REQUIRED to support all intermediate classes in a chain of
derived classes. For example, if an implementation supports a vendor-defined class
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG.HDTV.LOCAL", then it MUST also support
the “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG.HDTV”" and
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG” classes.

As indicated in clause D.3, “Class Name Syntax”, strict naming conventions MUST be
followed when naming derived vendor-defined classes. Vendor-defined class names MUST
be based on one of the instantiatable class names in this specification. Therefore, all vendor-
defined class names MUST start with one of the string values, defined in Table B.2,
“allowedValuelList for the class Property”.

Control points that need to examine class property values, should be prepared to handle
vendor-defined class names. Therefore, control points should never use simple string
matching to determine the actual class of an object. Rather, they should parse the class
name from left to right and determine if there is at least a left substring match with one of the
string values defined in Table B.2, “allowedValueList for the class Property”. If such a match
is found, the remaining characters in the class name can be examined for potential matches
with vendor-defined class names of which the control point is aware. If no such match is
found, the control point can treat the object as if it were an instance of the most specialized
class for which a match was found.

C.11 Relationships between Classes and Properties

The following tables present a complete overview of all the defined properties and in which
classes these properties are actually used (member properties).

- 182 - 29341-4-14 © ISO/IEC:2011(E)

For a particular class, some properties are REQUIRED, others are OPTIONAL and some are
PROHIBITED. Every instance of a class MUST have a value for each supported REQUIRED
or OPTIONAL member property of that class (see Clause 2.2, “Terms”).

The support level of a member property defines how the member property MUST be used in
the arguments of an action when that action is invoked. The support level of a member
property can be different for recordSchedule, recordScheduleParts, and recordTask usage.

The recordScheduleParts support level for the specified class indicates the use of a member
property when a control point requests to create a recordSchedule. If a member property is
defined as REQUIRED for recordScheduleParts usage, an argument of type
A ARG _TYPE RecordScheduleParts MUST contain that member property and the
ScheduledRecording service MUST support it. If it is defined as OPTIONAL, the
ScheduledRecording service MAY support the member property and a control point may
specify or omit the member property in a request message even if the member property is
supported by the ScheduledRecording service. PROHIBITED or unsupported OPTIONAL
member properties specified in an argument of type A_ ARG TYPE RecordScheduleParts
MUST be gracefully ignored by the ScheduledRecording service. The set of properties that
are supported for an argument of type A_ ARG _TYPE RecordScheduleParts can be retrieved
by specifying “A_ARG_TYPE RecordScheduleParts” in the DataTypelD argument when
invoking the GetPropertyList() action. The support level for each of those supported member
properties of each class can be retrieved by invoking the GetAllowedValues() action.

The recordSchedule support level for the specified class indicates the use of a member
property when a control point retrieves a recordSchedule object. If a member property is
defined as REQUIRED for recordSchedule usage, an argument of type
A _ARG_TYPE RecordSchedule MUST contain that member property and the
ScheduledRecording service MUST support it. OPTIONAL supported member properties that
are enumerated in the Filter argument MUST also be specified in the argument. If the
resulting XML is not a valid document, other OPTIONAL properties MUST be added to create
the smallest valid XML document. If the action does not have a Filter argument (like the
CreateRecordSchedule() action), the action MUST return all OPTIONAL supported member
properties (as if the Filter argument were set to “*:*"). If a control point does not specify a
supported OPTIONAL member property in a request, the ScheduledRecording service MUST
add it into the response and provide its default setting. The set of properties that are
supported for an argument of type A ARG _TYPE RecordSchedule can be retrieved by
specifying “A_ARG_TYPE RecordSchedule” in the DataTypelD argument when invoking the
GetPropertyList() action. The support level for each of those supported member properties of
each class can be retrieved by invoking the GetAllowedValues() action.

The recordTask support level for the specified class indicates the use of a member property
when a control point retrieves a recordTask object. If a member property is defined as
REQUIRED for recordTask usage, an argument of type A_ ARG TYPE RecordTask MUST
contain that member property and the ScheduledRecording service MUST support it.
OPTIONAL supported member properties that are enumerated in the Filter argument MUST
also be specified in the argument. If the resulting XML is not a valid document, other
OPTIONAL properties MUST be added to create the smallest valid XML document. The set of
properties that are supported for an argument of type A ARG TYPE RecordTask can be
retrieved by specifying “A ARG TYPE RecordTask” in the DataTypelD argument when
invoking the GetPropertyList() action. The support level for each of those supported member
properties of each class can be retrieved by invoking the GetAllowedValues() action.

Dependent properties are PROHIBITED if their associated independent property does not
exist. They can be REQUIRED or OPTIONAL when the independent property does exist.

C.1.2 recordScheduleParts Properties

The following table indicates the support level (REQUIRED, OPTIONAL, EROEIEIEE or
OIEEINEY) of a property when used in an argument of type

29341-4-14 © ISO/IEC:2011(E) — 183 -

A ARG TYPE_ RecordScheduleParts for each class. The ¥ mark indicates that the property’s
support level is inherited from the parent class. The coloring still indicates the support level.

Table C.1 — Class Properties Overview for recordScheduleParts usage

REQUIRED
OPTIONAL
PROHIBITED = o °
° O 8 £
UNDEFINED 2 aifo I o
& =19 gl § ElIE
INHERITED S IETEIRIEIE g2
ol 5l 3| gl| e @ o SRR
= IEIEIREIEIEIE 3l gl 3
Property Name 2 I I e e 1

Common Properties

Base Properties

@id

additionalStatusinfo

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

Schedule Only Properties

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellD@type

scheduledChannellD@distriNetworkNa
me

scheduledChannellD @distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

- 184 - 29341-4-14 © ISO/IEC:2011(E)

REQUIRED
OPTIONAL
PROHIBITED 2 o o
S ol 8 g
UNDEFINED ° all 3 9| o
» =9 gl § 2| €
INHERITED A =1 Syl el e ol| @
g SRR ol €| =
SIEIEIREIEIEIE sl §| 3
Property Name 2 I 1 1 e e d 1 e

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchinglD
matchinglD@type
Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingChannellD @distriNetworkNam
e

matchingChannellD @distriNetworkID

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

Storage Related Properties

persistedRecordings

persistedRecordings@latest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksEXist

29341-4-14 © ISO/IEC:2011(E) - 185 -

REQUIRED
OPTIONAL
PROHIBITED 2 o o
S ol 8 g
UNDEFINED ° all 3 9| o
» =9 gl § 2| €
INHERITED A =1 Syl el e ol| @
%’: SRR ol €| =
SIEIEIREIEIEIE sl §| 3
Property Name SR IR H I

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

Task Only Properties

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@link

Content ID Related Properties

taskCDSObjectID
taskCDSObjectID@link

taskChannellD

taskChannellD@type

taskChannellD @distriNetworkName

taskChannellD @distriNetworkID

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type

recordQuality

recordQuality@type

Matched Content Criteria

matchedName

matchedName@type

matchedID

matchedID@type
Matched Qualifying Criteria

matchedRating

matchedRating@type

matchedEpisodeType

- 186 - 29341-4-14 © ISO/IEC:2011(E)

REQUIRED
OPTIONAL
PROHIBITED 2 o o
S ol 8 g
UNDEFINED ° all 3 9| o
» =9 gl § 2| €
INHERITED A =1 Syl el e ol| @
%’: SRR ol €| =
SIEIEIREIEIEIE sl §| 3
Property Name 2 s e L e L d 1 e

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState @startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState@someBitsRecorded

taskState@someBitsMissing

taskState @firstBitsRecorded

taskState @lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

C.1.3 recordSchedule Properties

The next table indicates the support level (REQUIRED, OPTIONAL, BROHIENEE or
UNDEFINED] of a property when used in an argument of type

A ARG TYPE RecordSchedule for each class. The V¥ mark indicates that the property’s
support level is inherited from the parent class. The coloring still indicates the support level.

29341-4-14 © ISO/IEC:2011(E) - 187 -

Table C.2 — Class Properties Overview for recordSchedule usage

REQUIRED

(e}

OPTIONAL

PROHIBITED

UNDEFINED

=

INHERITED

.recordSchedule
...cdsNonEPG
...programCode
...contentName

...cdsEPG
...contentlD

..direct
...manual
..query

object

Property Name

Common Properties

Base Properties
@id

itle

—

class

=
=
<
<
<
<

additionalStatusinfo VI V]V

(@]
(@]

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

o
<.
<.
=
=
=
=
=
<.

o
=
=
=
=
=
=
=
=
<

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

(e}
=
=
=
=
=
=
=
=

recordDestination@targetURL

recordDestination@preference
desiredrecordQuality ol V| V| vI| V| V| v J vl v

desiredrecordQuality@type

Schedule Only Properties

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellD@type

scheduledChannellD @distriNetworkNam
e

scheduledChannellD @distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

- 188 - 29341-4-14 © ISO/IEC:2011(E)

R | REQUIRED
O | OPTIONAL
PROHIBITED 2 o o
ol 8 £
O O|
UNDEFINED 2 &l e 3| e
3 =] 9| 5| & ==
V| INHERITED 2 I T e 3| &
ol| 5 bt gl 9| 9| o o =[] €
] e e I s/ 9| ©
Property Name SIEIEIEIEIEIE 1| <] @
Matching Content Criteria
matchingName R
matchingName@type R
matchingName@subStringMatch o
matchinglD R
matchinglD@type R
Matching Qualifying Criteria
matchingChannellD o
matchingChannellD@type R
matchingChannellD @distriNetworkName o
matchingChannellD @distriNetworklD (0]
matchingStartDateTimeRange (o} 6]
matchingDurationRange oo
matchingRatingLimit oo
matchingRatingLimit@type R|R
matchingEpisodeType o0
Content Control Properties
totalDesiredRecordTasks of v Y| V|V V| V|V

scheduledStartDateTimeAdjust

o
=<
=<
<
<
<
<.
<
<

scheduledDurationAdjust ol V| V| V| V|V V0| V|V
activePeriod (O} NON O} ofV|v
durationLimit o of|V| ¥
durationLimit@effect R R| Y|V
channelMigration o o Y| Y
timeMigration o ofv|v
allowDuplicates ofV|v
Storage Related Properties

persistedRecordings VS| Y

o
=<
=<
<
<
<
<.
<
<

persistedRecordings@Iatest

o
<
<
<
<
<
<.
<.
<

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

o
=
=
=
=
=
=
=
I=_

Schedule State Properties

|

<.
<.
<
<
<
<.
<.
<.

scheduleState

|0
<.
<.
<
<
<
<
<
<.

scheduleState@currentErrors

[-o
=
<.
<.
<.
<.
<.
<.
=<

abnormalTasksExist

29341-4-14 © ISO/IEC:2011(E) - 189 -

REQUIRED

OPTIONAL

IO

PROHIBITED

UNDEFINED

v | INHERITED

.programCode

Property Name

.recordSchedule
...cdsEPG
...cdsNonEPG
...contentName
...contentlD

..direct
...manual

object

..quer

Statistics Properties

currentRecordTaskCount

e}
<
<
<
<
<
<
<
<

totalCreatedRecordTasks

o
<.
<.
=
=
=
=
=
<.

totalCompletedRecordTasks

Task Only Properties

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@link

Content ID Related Properties

taskCDSObjectID
taskCDSObjectID@link

taskChannellD

taskChannellD @type

taskChannellD @distriNetworkName

taskChannellD @distriNetworkID

taskStartDateTime

taskDuration

taskProgramCode
taskProgramCode@type

recordQuality
recordQuality@type

Matched Content Criteria

matchedName

matchedName@type

matchedID
matchedID@type
Matched Qualifying Criteria

matchedRating
matchedRatingt@type

matchedEpisodeType

- 190 -

29341-4-14 © ISO/IEC:2011(E)

REQUIRED

IO

OPTIONAL

PROHIBITED

UNDEFINED

v | INHERITED

Property Name

object

.recordSchedule

..direct

...manual

...cdsEPG

...cdsNonEPG

.programCode

..quer

...contentName
...contentlD

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase
taskState @startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState @someBitsRecorded

taskState@someBitsMissing

taskState @firstBitsRecorded

taskState @lastBitsRecorded

taskState @fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

C.14 recordTask Properties

The next table indicates the support level (REQUIRED, OPTIONAL, BROHIENEE or

INIBISEINISIB)) of a property when used in an argument of type A_ ARG TYPE RecordTask.
The v mark indicates that the property’s support level is inherited from the parent class. The

coloring still indicates the support level.

29341-4-14 © ISO/IEC:2011(E)

-191 -

Table C.3 — Class Properties Overview for recordTask usage

REQUIRED

O | OPTIONAL
PROHIBITED
UNDEFINED

v/ | INHERITED

Property Name

object

.recordTask

REQUIRED

O | OPTIONAL
PROHIBITED
UNDEFINED

v | INHERITED

Property Name

object

.recordTask

Common Properties

Matching Content Criteria

Base Properties

@id

additionalStatusinfo

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredrecordQuality

desiredrecordQuality@type

Schedule Only Properties

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@Ilink

scheduledChannellD

scheduledChannellD@type

scheduledChannellD @distriNetworkNam

e

scheduledChannellD @distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

matchingName

matchingName@type

matchingName@subStringMatch

matchinglD

matchinglD@type

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchinChannellD@distriNetworkName

matchingChannellD @distriNetworkID

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

durationLimit@effect

channelMigration

allowDuplicates

Storage Related Properties

persistedRecordings

persistedRecordings@latest

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksEXxist

-192 - 29341-4-14 © ISO/IEC:2011(E)
R | REQUIRED R | REQUIRED
O | OPTIONAL O | OPTIONAL
PROHIBITED PROHIBITED
UNDEFINED UNDEFINED

v | INHERITED

Property Name

.recordTask

object

=

INHERITED

Property Name

object

.recordTask

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

Task Only Properties

Matched Qualifying Criteria

matchedRating

matchedRatingt@type

matchedEpisodeType

Content Control Properties

General Properties

recordSchedulelD

recordedCDSObjectID

o [:-

recordedCDSObjectID@link

Content ID Related Properties

taskCDSObjectID

taskCDSObjectID@link

taskChannellD

taskChannellD@type

taskChannellD@distriNetworkName

taskChannellD @distriNetworkID

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type

recordQuality

recordQuality@type

Matched Content Criteria

matchedName

matchedName@type

matchedID

matchedID@type

C.2 Class Definitions

The following subclauses define the standard record classes. The support level of the
available properties for each class is also indicated. Vendors MAY add vendor-dependent
properties to any of the defined classes. An instance of a normative class MUST NOT add
properties, other than the properties already listed for each class definition below. In other

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState@someBitsRecorded

taskState@someBitsMissing

taskState @firstBitsRecorded

taskState@lastBitsRecorded

taskState @fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infolist

words, a given instance of a record class can only have:

e The properties listed for that class (as per each definiton below).

e The properties that are defined members of the parent class.

e Vendor-defined properties that are using other XML namespace(s).

29341-4-14 © ISO/IEC:2011(E) - 193 -

e ContentDirectory service properties imported with a normative namespace prefix (see
clause B.17, “ContentDirectory Service Imported Properties”).

C.3 object Base Class

This is the abstract base class for the entire ScheduledRecording service class hierarchy. No
object of this abstract class can be instantiated. The object class defines properties that are
common to all ScheduledRecording service objects. The table below lists all standard defined

properties (see

(normative)

AV Working Committee Extended Properties”
indicates the support level (d

class for each property.

Annex B,

for the definition of each property) and
, OPTIONAL, REQUIRED, and EI!EE%I!EE

Table C.4 — object Base Class Properties

Property Name

Property Name

Base Properties

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

additionalStatusinfo

matchinglD

cdsReference

matchinglD@type

cdsReference@link

Priority Properties

Matching Qualifying Criteria

matchingChannellD

priority

matchingChannellD@type

priority@orderedValue

matchingChannellD@distriNetworkName

desiredPriority

matchingChannellD @distriNetworklD

desiredPriority@type

matchingStartDateTimeRange

Output Control Properties

matchingDurationRange

recordDestination

matchingRatingLimit

recordDestination@mediaType

matchingRatingLimit@type

recordDestination@targetURL

matchingEpisodeType

recordDestination@preference

Content Control Properties

desiredRecordQuality

totalDesiredRecordTasks

desiredRecordQuality@type

scheduledStartDateTimeAdjust

Content ID Related Properties

scheduledDurationAdjust

scheduledCDSObjectID

activePeriod

scheduledCDSObjectID@link

durationLimit

scheduledChannellD

durationLimit@effect

scheduledChannellD@type

channelMigration

scheduledChannellD@distriNetworkName

timeMigration

scheduledChannellD @distriNetworkID

allowDuplicates

scheduledStartDateTime

Storage Related Properties

scheduledDuration

persistedRecordings

scheduledProgramCode

persistedRecordings@latest

scheduledProgramCode@type

persistedRecordings@preAllocation

persistedRecordings@storedLifetime

- 194 - 29341-4-14 © ISO/IEC:2011(E)

Property Name Property Name
Schedule State Properties Matched Qualifying Criteria
scheduleState matchedRating
scheduleState@currentErrors matchedRating@type
abnormalTasksExist matchedEpisodeType
Statistics Properties Content Control Properties
currentRecordTaskCount taskStartDateTimeAdjust
totalCreatedRecordTasks taskDurationAdjust
totalCompletedRecordTasks taskDurationLimit
Task General Properties taskDurationLimit@effect
recordSchedulelD taskChannelMigration
recordedCDSObjectID taskTimeMigration
recordedCDSObjectID@Ilink Task State Properties
Task Content ID Properties taskState
taskCDSObjectID taskState@phase
taskCDSObjectID@link taskState@startDateTimeMet
taskChannellD taskState@endDateTimeMet
taskChannellD@type taskState@recording
taskChannellD@distriNetworkName taskState@someBitsRecorded
taskChannellD @distriNetworkID taskState@someBitsMissing
taskStartDateTime taskState @firstBitsRecorded
taskDuration taskState@lastBitsRecorded
taskProgramCode taskState @fatalError
taskProgramCode@type taskState@currentErrors
recordQuality taskState@errorHistory
recordQuality@type taskState@pendingErrors
Matched Content Criteria taskState@infolist
matchedName
matchedName@type

matchedID

matchedID@type

C.3.1 object.recordSchedule Class

This is the abstract base class for the ScheduledRecording service record schedules class
hierarchy. No object of this abstract class can be instantiated. The object.recordSchedule
class defines properties that are common to all object.recordSchedule list entries. The table
below lists all recordSchedule-related standard defined properties (recordTask-only
properties are omitted from the table - see Annex B, “
(normative)

AV Working Committee Extended Properties” for the definition of each ErOEerty) and

indicates the support level (ERSEIBIEEE. OPTIONAL, REQUIRED, and) in this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.5 — object.recordSchedule Base Class Properties

29341-4-14 © ISO/IEC:2011(E) - 195 -

R AR
0 %)
Property Name xlx Property Name x| x
Base Properties Matching Qualifying Criteria
@id matchingChannellD
title matchingChannellD@type
class matchingChannellD @distriNetworkName

additionalStatuslnfo matchingChannellD @distriNetworklD

cdsReference matchingStartDateTimeRange

cdsReference@link matchingDurationRange

Priority Properties matchingRatingLimit

priority matchingRatingLimit@type

priority@orderedValue

matchingEpisodeType

desiredPriority Content Control Properties

desiredPriority@type totalDesiredRecordTasks oo
Output Control Properties scheduledStartDateTimeAdjust o]0
recordDestination scheduledDurationAdjust (o})

recordDestination@mediaType activePeriod

recordDestination@targetURL durationLimit

recordDestination@preference durationLimit@effect

desiredRecordQuality

channelMigration

desiredRecordQuality@type timeMigration

Content ID Related Properties allowDuplicates

scheduledCDSObjectID

Storage Related Properties

scheduledCDSObjectID@link

persistedRecordings 0|0
scheduledChannellD persistedRecordings@latest o|o
scheduledChannellD@type persistedRecordings@preAllocation oo
scheduledChannellD@distriNetworkName persistedRecordings@storedLifetime 0|0

scheduledChannellD @distriNetworklD

Schedule State Properties

scheduledStartDateTime scheduleState

scheduledDuration scheduleState@currentErrors

abnormalTasksEXist

scheduledProgramCode

scheduledProgramCode@type Statistics Properties

currentRecordTaskCount

Matching Content Criteria

totalCreatedRecordTasks

matchingName

totalCompletedRecordTasks

matchingName@type

matchingName@subStringMatch

matchinglD
matchinglD@type

C.3.1.1 object.recordSchedule.direct Class

The object.recordSchedule.direct abstract class is derived from the object.recordSchedule
class. No object of this abstract class can be instantiated.

The main characteristic of the object.recordSchedule.direct class is that all the information
that is needed to create associated recordTask instances is contained within the properties of
the recordSchedule. The properties contain sufficient information to allow the

- 196 - 29341-4-14 © ISO/IEC:2011(E)

ScheduledRecording service to translate this information into a deterministic set of
recordTask properties. For example, if a ScheduledRecording service implementation
supports the object.recordSchedule.direct.programCode class, the ScheduledRecording
service is able to interpret the scheduledProgramCode property and derive the appropriate
taskStartDate, taskStartTime, taskDuration, and taskChannellD recordTask properties from it.
The table below lists all standard defined properties (see AnnexB, *“
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support leve! (SROEIBHIES, OPTIONAL, REQUIRED, and WNBIEEINER) n this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.6 — object.recordSchedule.direct Class Properties

AR |9
Property Name & Property Name &
Base Properties Matching Content Criteria
@id matchingName
title matchingName@type
class matchingName@subStringMatch

matchinglD
matchinglD@type
Matching Qualifying Criteria

additionalStatusinfo

cdsReference

cdsReference@link

matchingChannellD

Priority Properties

matchingChannellD@type

priority

matchingChannellD@distriNetworkName

priority@orderedValue

matchingChannellD @distriNetworklD

desiredPriority

matchingStartDateTimeRange

desiredPriority@type

matchingDurationRange

Output Control Properties

matchingRatingLimit

recordDestination

matchingRatingLimit@type

recordDestination@mediaType

matchingEpisodeType

recordDestination@targetURL

Content Control Properties
recordDestination@preference -

totalDesiredRecordTasks V|V
desiredRecordQuality

scheduledStartDateTimeAdjust %
desiredRecordQuality@type - -

scheduledDurationAdjust V|V
Content ID Related Properties - -

activePeriod
scheduledCDSObjectID

durationLimit
scheduledCDSObjectID@Ilink

durationLimit@effect
scheduledChannellD

channelMigration
scheduledChannellD@type
scheduledChannellD@distriNetworkNam
e allowDuplicates
scheduledChannellD@distriNetworkID Storage Related Properties
scheduledStartDateTime persistedRecordings V|
scheduledDuration persistedRecordings@latest V|V
scheduledProgramCode persistedRecordings@preAllocation %
scheduledProgramCode @type persistedRecordings@storedLifetime V|V

29341-4-14 © ISO/IEC:2011(E) - 197 -

e g2
Property Name & Property Name &
Schedule State Properties Statistics Properties
scheduleState currentRecordTaskCount
scheduleState@currentErrors totalCreatedRecordTasks %
abnormalTasksExist totalCompletedRecordTasks v
Cc31l11 object.recordSchedule.direct.manual Class

The object.recordSchedule.direct.manual class is used to create recordSchedule instances
for manual scheduling of recordings. The content to be recorded is uniquely identified by the
scheduledChannellD, scheduledStartDateTime, and scheduledDuration properties.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support level (i OPTIONAL, REQUIRED, and EEEEE%E) in this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.7 — object.recordSchedule.direct.manual Class Properties

& lon AR
O x 9 x
Property Name 14 Property Name 24
Base Properties scheduledChannellD@type
@id scheduledChannellD@distriNetworkNam | O | O
e
title
scheduledChannellD @distriNetworkID (o} o)
class -
scheduledStartDateTime
additionalStatusinfo v :
— scheduledDuration
cdsReference
scheduledProgramCode
cdsReference@link
© scheduledProgramCode@type
Priority Properties Matching Content Criteria
priority matchingName
priority@orderedValue v matchingName@type
desiredPriorit V| Y matchingName@subStringMatch
desiredPriority@type matchinalD
Output Control Properties matchinglD@tvoe
recordDestination . e S
- v Matching Qualifying Criteria
recordDestination@mediaType v matchingChannellD
recordDestination@targetURL V|V matchingChannellD@type
recordDestination@preference v matchingChannellD@distriNetworkName
desiredRecordQuality V|V matchingChannellD @distriNetworkID
desiredRecordQuality@tvpe matchingStartDateTimeRange
Content ID Related Properties matchingDurationRange
scheduledCDSObjectID matchingRatingLimit
scheduledCDSObjectID@link - - .
matchingRatingLimit@type
scheduledChannellD - -
matchingEpisodeType

- 198 - 29341-4-14 © ISO/IEC:2011(E)

a | &lo
Property Name &) & Property Name (0,1) &

Content Control Properties persistedRecordings@preAllocation V|V

totalDesiredRecordTasks V|V persistedRecordings@storedLifetime V|V

scheduledStartDateTimeAdjust V|V Schedule State Properties

scheduledDurationAdjust V|V scheduleState

activePeriod (o e} scheduleState@currentErrors

durationLimit abnormalTasksEXxist

durationLimit@effect Statistics Properties

channelMigration currentRecordTaskCount

timeMigration totalCreatedRecordTasks

allowDuplicates totalCompletedRecordTasks

Storage Related Properties

persistedRecordings V| v

persistedRecordings@latest V|V

C.3.1.1.2 object.recordSchedule.direct.cdsEPG Class

The object.recordSchedule.direct.cdsEPG class is used to create recordSchedule instances
for scheduling of recordings, based on local EPG information. The content to be recorded is
uniquely identified by the scheduledCDSObjectID property that MUST reference an EPG item
(object.item.epgltem class) in an associated ContentDirectory service. Most EPG item types
currently defined identify only a single recording event. In the future, new EPG item types
may be defined that identify multiple recording events.

The REQUIRED association between a ContentDirectory service and a ScheduledRecording
service is established by having both services reside within the same UPnP MediaServer
device. See also Annex E, “
(informative)

ScheduledRecording Service Relationship to ContentDirectory Service” and Annex F,
(informative)

ScheduledRecording Service Relationship to EPG” for further details.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support level (i OPTIONAL, REQUIRED, and EEE%I!%E) in this
class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.8 — object.recordSchedule.direct.cdsEPG Class Properties

29341-4-14 © ISO/IEC:2011(E)

Property Name

RSP

RS

Base Properties

@id

additionalStatuslnfo

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID

scheduledChannellD

scheduledChannellD@type

scheduledChannellD @distriNetworkNa

me

scheduledChannellD @distriNetworkID

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchinglD

matchinglD@type

- 199 —

Property Name

RSP

RS

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingChannellD @distriNetworkNa

me

matchingChannellD@distriNetworklD

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

=

scheduledStartDateTimeAdjust

=

scheduledDurationAdjust

=

activePeriod

[O

durationLimit

[@)

durationLimit@effect

[O

channelMigration

[@)

[O

allowDuplicates

Storage Related Properties

O [To -Io O [T~~~

persistedRecordings

=
=

persistedRecordings@latest v |V
persistedRecordings@preAllocation A
persistedRecordings@storedLifetime |V |V

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

- 200 - 29341-4-14 © ISO/IEC:2011(E)

C.3.1.1.3 object.recordSchedule.direct.cdsNonEPG Class

The object.recordSchedule.direct.cdsNonEPG class is used to create recordSchedule
instances for scheduling of recordings, for which (only) channel information is available in a
local ContentDirectory database. The content to be recorded is uniquely identified by the
scheduledStartDateTime, and scheduledDuration properties, supplemented with the
scheduledCDSObjectID property that MUST reference a ContentDirectory service object
whose class is not “object.item.epgltem” or derived from that class. Additionally, the
referenced ContentDirectory service object MUST identify content that will be available for
recording at the time the recording is scheduled to start.

Examples of applicable ContentDirectory service objects are:

e A User Channel object that contains specific channel information.

e An object that represents an analog A/V input connection to the device.
e An object that represents an IP network program feed.

e An object that represents an already existing file.

o Etc.

The REQUIRED association between a ContentDirectory service and a ScheduledRecording
service is established by having both services reside within the same UPnP MediaServer
device. See also Annex E, "
(informative)

ScheduledRecording Service Relationship to ContentDirectory Service” and Annex F,
(informative)

ScheduledRecording Service Relationship to EPG” for further details.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support level (d OPTIONAL, REQUIRED, and mg%n&g) in this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

29341-4-14 © ISO/IEC:2011(E)

- 201 -

Table C.9 — object.recordSchedule.direct.cdsNonEPG Class Properties

Property Name

RSP
RS

Base Properties

additionalStatusinfo

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObijectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellD@type

scheduledChannellD @distriNetwor

kName

scheduledChannellD@distriNetwor

kiD

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchinglD

matchingID@type

C.3.114

Property Name

RSP

0
o

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingChannellD @distriNetwork
Name

matchingChannellD @distriNetworkl

D

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

Content Control Properties

totalDesiredRecordTasks

=

scheduledStartDateTimeAdjust

=
=_

scheduledDurationAdjust

=
=

activePeriod

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

Storage Related Properties

[®)
[@)

persistedRecordings

=
=_

persistedRecordings@latest

=
=

persistedRecordings@preAllocatio
n

=
=

persistedRecordings@storedLifeti
me

=

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

object.recordSchedule.direct.programCode Class

The object.recordSchedule.direct.programCode class

instances for scheduling of recordings, based on program code information. The content to

is used to create

recordSchedule

- 202 - 29341-4-14 © ISO/IEC:2011(E)

be recorded is uniquely identified by the scheduledprogramCode property that contains a
unique code that can be translated by the ScheduledRecording service into a precise start
date, start time, duration and channel for the recording event(s). However, most program
code types currently defined identify only a single recording event. In the future, new program
code types may be defined that identify multiple recording events.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
ndicates the support leve! (BRUGEIBHIER, OPTIONAL, REQUIRED, and WNBIEEINES) i this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.10 — object.recordSchedule.direct.programCode Class Properties

a | %)
0|2 Dl
Property Name 14 Property Name o
Base Properties Matching Content Criteria
@id matchingName
title matchingName@type
class matchingName@subStringMatch

additionalStatusinfo matchinglD

matchinglD@type
Matching Qualifying Criteria

cdsReference

cdsReference@link

Priority Properties matchingChannellD

priority matchingChannellD@type

priority@orderedValue matchingChannellD @distriNetworkName

desiredPriority matchingChannellD @distriNetworklD

desiredPriority@type

matchingStartDateTimeRange

Output Control Properties matchingDurationRange

recordDestination matchingRatingLimit

recordDestination@mediaType matchingRatingLimit@type

recordDestination@targetURL matchingEpisodeType

recordDestination@preference Content Control Properties

<
=

desiredRecordQuality totalDesiredRecordTasks

scheduledStartDateTimeAdjust

=
=

desiredRecordQuality@type

Content ID Related Properties scheduledDurationAdjust

scheduledCDSObijectID activePeriod

scheduledCDSObjectID@link durationLimit

scheduledChannellD durationLimit@effect

scheduledChannellD@type channelMigration
timeMigration

allowDuplicates

scheduledChannellD @distriNetworkName

scheduledChannellD@distriNetworklD

scheduledStartDateTime Storage Related Properties

scheduledDuration persistedRecordings V| v

scheduledProgramCode persistedRecordings@latest %

scheduledProgramCode@type persistedRecordings@preAllocation V|V
persistedRecordings@storedLifetime V|V

29341-4-14 © ISO/IEC:2011(E) - 203 -

&l &l
O O
Property Name 14 Property Name 14
Schedule State Properties Statistics Properties
scheduleState currentRecordTaskCount
scheduleState@currentErrors totalCreatedRecordTasks v
abnormalTasksExist totalCompletedRecordTasks v

Cc.3.1.2 object.recordSchedule.query Class

The object.recordSchedule.query abstract class is derived from the recordSchedule base
class. No object of this abstract class can be instantiated.

The main characteristic of the object.recordSchedule.query class is that the properties of the
recordSchedule are used as matching criteria to select items from external sources (like EPG
databases, side-band metadata streams in digital broadcasts, etc.). After appropriate
searching and matching, the metadata from these external items is used to populate
recordTask instances. This process ensures that the recordTask properties match the rules
set forth in the recordSchedule’s properties (matching criteria).

The table below lists all standard defined properties (see AnnexB, *
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support leve! (SROEIBHIER, OPTIONAL, REQUIRED, and WNBIEEINES) i this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C.11 — object.recordSchedule.query Class Properties

a |)
%) %)
Property Name x| X Property Name x| X
Base Properties scheduledCDSObjectID@link
@id scheduledChannellD
title scheduledChannellD@type
class scheduledChannellD@distriNetworkName

additionalStatuslnfo scheduledChannellD @distriNetworklD

cdsReference scheduledStartDateTime

scheduledDuration

cdsReference@link

scheduledProgramCode

Priority Properties

scheduledProgramCode@type

priority

S

priority@orderedValue Matching Content Criteria

matchingName

desiredPriority

matchingName@type

desiredPriority@type

matchingName@subStringMatch

Output Control Properties

matchinglD
matchinglD@type
Matching Qualifying Criteria

recordDestination

recordDestination@mediaType

recordDestination@targetURL

matchingChannellD

recordDestination@preference

matchingChannellD@type

desiredRecordQuality

matchingChannellD @distriNetworkName

desiredRecordQuality@type

matchingChannellD @distriNetworklD

Content ID Related Properties

matchingStartDateTimeRange

scheduledCDSObijectID

- 204 - 29341-4-14 © ISO/IEC:2011(E)

o o
Property Name &) 2 Property Name &) (Q

matchingDurationRange Storage Related Properties

matchingRatingLimit persistedRecordings IV v
matchingRatingLimit@type persistedRecordings@latest v |V
matchingEpisodeType persistedRecordings@preAllocation v |V
Content Control Properties persistedRecordings@storedLifetime v |V
totalDesiredRecordTasks v |V Schedule State Properties
scheduledStartDateTimeAdjust v |V scheduleState

scheduledDurationAdjust v |V scheduleState@currentErrors

activePeriod o |© abnormalTasksExist

durationLimit o 1o Statistics Properties

durationLimit@effect o] . currentRecordTaskCount

channelMigration o 1o totalCreatedRecordTasks

timeMigration o 1o totalCompletedRecordTasks

allowDuplicates O O
c.31.21 object.recordSchedule.query.contentName Class

The object.recordSchedule.query.contentName class is used to create recordSchedule
instances for scheduling of recordings, based on program or series name information. The
content to be recorded is determined by matching the value, specified in the matchingName
property to the names of content items made available to the ScheduledRecording service by
REQUIRED external resources like access to EPG databases, access to Service Information
side-band data in digital broadcasts, etc. The matching process can be further restricted by
providing a combination of Matching Qualifying Criteria properties. Any external content item
MUST match those additional criteria to be considered a potential candidate for recording.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support leve! (SRIGHISHIER, OPTIONAL, REQUIRED, and NNBIEINER) in this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

29341-4-14 © ISO/IEC:2011(E)

Table C.12 — object.recordSchedule.query.contentName Class Properties

— 205 -

AE AE
Property Name x| X Property Name x| X
Base Properties Matching Qualifying Criteria

@id matchingChannellD 0 O
title matchingChannellD@type -

class matchingChannellD @distriNetworkName O |10

additionalStatusinfo matchingChannellD @distriNetworkID o 1o

cdsReference matchingStartDateTimeRange O O

cdsReference@link matchingDurationRange 0 O

matchingRatingLimit O O

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

-
HEEE

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObijectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellD@type

scheduledChannellD @distriNetworkName

scheduledChannellD@distriNetworkID

scheduledStartDatetime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchinglD

matchinglD@type

C.3.1.2.2

matchingRatingLimit@type

matchingEpisodeType

Ol

Content Control Properties

totalDesiredRecordTasks v [V
scheduledStartDateTimeAdjust v |V
scheduledDurationAdjust v [V
activePeriod Vo
durationLimit VoY
durationLimit@effect v !
channelMigration v [V
timeMigration Vo
allowDuplicates Vo
Storage Related Properties

persistedRecordings vV v
persistedRecordings @latest v |V
persistedRecordings@preAllocation v |V
persistedRecordings@storedLifetime v |V

Schedule State Properties

scheduleState

scheduleState@currentErrors

abnormalTasksEXist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

object.recordSchedule.query.contentlD Class

The object.recordSchedule.query.contentlD class is used to create recordSchedule instances

for scheduling of recordings, based on program or series ID information. The content to be
recorded is determined by matching the value, specified in the matchingID property to the IDs

— 206 - 29341-4-14 © ISO/IEC:2011(E)

of content items made available to the ScheduledRecording service by REQUIRED external
resources like access to EPG databases, access Service Information side-band data in digital
broadcasts, etc. The matching process can be further restricted by providing a combination of
Matching Qualifying Criteria properties. Any external content item MUST match those
additional criteria to be considered a potential candidate for recording.

The table below lists all standard defined properties (see Annex B,
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support leve! (BRUGEIBHIER, OPTIONAL, REQUIRED, and NNBIEEINER) in this

class for both input and output for each property.

Table C.13 — object.recordSchedule.query.contentlD Class Properties

Q| o
Property Name AR Property Name Q
Base Properties matchingName
@id matchingName@type
title matchingName@subStringMatch
class matchinglD

matchinglD@type
Matching Qualifying Criteria

additionalStatusinfo

cdsReference

cdsReference@link matchingChannellD

matchingChannellD@type

Priority Properties

matchingChannellD @distriNetworkName

priority

priority@orderedValue

matchingChannellD @distriNetworklD

) . matchingStartDateTimeRange 0|0
desiredPriority
- . matchingDurationRange 0|0

desiredPriority@type

matchingRatingLimit 0|0
Output Control Properties

matchingRatingLimit@type
recordDestination

matchingEpisodeType
recordDestination@mediaType

Content Control Properties
recordDestination@targetURL

totalDesiredRecordTasks A%
recordDestination@preference

scheduledStartDateTimeAdjust %
desiredRecordQuality

scheduledDurationAdjust A%
desiredRecordQuality@type

activePeriod V|
Content ID Related Properties

durationLimit V|V
scheduledCDSObijectID

durationLimit@effect v .I
scheduledCDSObjectID@link

channelMigration A%
scheduledChannellD

timeMigration V|V
scheduledChannellD@type

allowDuplicates V| Y
scheduledChannellD @distriNetworkName

Storage Related Properties
scheduledChannellD @distriNetworkID

persistedRecordings A %
scheduledStartDateTime

persistedRecordings@latest A%
scheduledDuration

persistedRecordings@preAllocation A%
scheduledProgramCode

persistedRecordings@storedLifetime V|V
scheduledProgramCode@type

Schedule State Properties

Matching Content Criteria
scheduleState

29341-4-14 © ISO/IEC:2011(E) - 207 -

RSP
= | RS

Property Name

scheduleState@currentErrors

abnormalTasksEXist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

C.3.2 object.recordTask Class

This is the base class for the ScheduledRecording service record task class hierarchy.
Currently, this is the only class defined in this hierarchy. All recordTask objects in the
ScheduledRecording service are members of this class. The object.recordTask class defines
properties that are common to all recordTask list entries.

A recordTask object represents an actual recording occurrence. More sophisticated
ScheduledRecording service implementations MAY implement OPTIONAL actions that allow
a control point to manipulate individual recordTask instances. For example, the OPTIONAL
DisableRecordTask() action can be used to selectively disable (that is: recording task
suspended and any actual recording MUST NOT occur) one or more recordTask instances,
spawned from the same recordSchedule if not all recordings are desired.

A recordTask SHOULD be created by the ScheduledRecording service as soon as all
necessary information (like EPG data) becomes available. It SHOULD be maintained at least
until the recordTask has finished. It is RECOMMENDED to maintain all completed recordTask
instances for a reasonable time or until space is needed so that control points can retrieve
recordTask state information after the recording has finished.

One or more recordTask instances can be created per recordSchedule. Some
recordSchedule instances may not have a recordTask because they have not scheduled any
recordings yet.

The list of the recordTask instances can be obtained using the BrowseRecordTasks() action.
A recordTask can be disabled using the DisableRecordTask() action.

Note that a recordTask is not created by a control point directly; therefore, the input support

level below indicates ERSIIBIRED for all properties.

The table below lists all recordTask-related standard defined properties (recordSchedule-only
properties are omitted from the table - see Annex B, “
(normative)

AV Working Committee Extended Properties” for the definition of each property) and
indicates the support level (i, OPTIONAL, and REQUIRED) in this class for
recordTask (RT) usage for each property.

— 208 —

29341-4-14 © ISO/IEC:2011(E)

Table C.14 — object.recordTask Base Class Properties

Property Name e

Base Properties

@id

—

itle

class

additionalStatusinfo

o |

cdsReference

cdsReference@link

Priority Properties

priority

priority@orderedValue

desiredPriority

desiredPriority@type

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@link o

Content ID Related Properties

taskCDSObjectID o
taskCDSObjectID@link o

taskChannellD

taskChannellD@type

taskChannellD@distriNetworkNam |O
e

taskProgramCode@type

recordQuality

recordQuality@type

taskChannellD @distriNetworklD O
taskStartDateTime ‘
taskDuration ‘
taskProgramCode g
|
|
|

Property Name

RT

Matched Content Criteria

matchedName

matchedName@type

matchedID

matchedID@type

Lol

Matched Qualifying Criteria

matchedRating

matchedRating@type

matchedEpisodeType

@) !lo

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

O [TO !IO O [TO

Task State Properties

taskState

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState@someBitsRecorded

taskState@someBitsMissing

taskState @firstBitsRecorded

taskState@lastBitsRecorded

taskState @fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infolist

29341-4-14 © ISO/IEC:2011(E) - 209 -

Annex D
(normative)
EBNF Syntax Definitions

The following clauses define the syntax used for some of the properties and classes
described in the previous clauses. The syntax is formally defined using EBNF as described in
Clause 1.2.3, “Extended Backus-Naur Form”.

D.1 Priority Syntax

Note: Due to possible future extensions, unknown value inputs MUST be gracefully ignored.
In this case, the semantics of the “DEFAULT” value MUST be applied.

priority-value ::= standard-value]
extended-value (* extended-value is only applicable if
priority@orderedValue is supported *)

standard-value level | "DEFAULT"

level = ("L® number)

number = (* integer (n>0) *)

extended-value = "HIGHEST" | "LOWEST" | level-hi|level-low|object-id
level-hi = level " _HI"

level-low = level "_LOW"

object-id = (* @id value *)

D.2 Date&time Syntax

sched-start ::= date-time
day-of-yr-time
named-day-time
T-labeled-time
“NOw*™
(date-time| "NOW=) =/* (date-time|"INFINITY")
date-time "/" date-time

start-range
date-time-range

duration
duration-long
duration-any
duration-adj
duration-range

"P®" [n *D"] time

duration] "INFINITY"
duration] "INFINITY"] "ANY"
("+"]"-") duration
duration */° duration-long

yyyy "-" mm "-" dd T-labeled-time
mm "-* dd T-labeled-time
named-day T-labeled-time

date-time
day-of-yr-time
named-day-time

T-labeled-time "T" time [zone]

time = HH ":" MM ":*" SS

zone = "ZT1(CHT]T=T) HH Tt oMW

month-day = mm *-" dd

named-day = "MON™]"TUE"]"WED"]"THU"]"FRI "] "SAT"] "SUN"|
"MON-FRI "] "MON-SAT"

n = 1*DIGIT (* non-negative integer *)

YYVYYy = 4DIGIT (* 0001-9999 *)

mm = 2DIGIT (* 01-12 *)

dd = 2DIGIT (* 01-28, 01-29, 01-30, 01-31

based on month/year *)

HH = 2DIGIT (* 00-23 *)

MM = 2DIGIT (* 00-59 *)

SS = 2DIGIT (* 00-59 *)

D.3 Class Name Syntax

className = T"OBJECT." (sName]tName)

sName = "RECORDSCHEDULE.*" (dName]gName)

tName = "RECORDTASK®" ("." shortName)*

dName = T"DIRECT." directName ("." shortName)*
gName = T"QUERY." queryName ("." shortName)*

- 210 - 29341-4-14 © ISO/IEC:2011(E)

"MANUAL "] "CDSEPG" | "CDSNONEPG* | *PROGRAMCODE "
"CONTENTNAME™ | "CONTENTID"

(* valid XML 1.0 name, excluding the characters
"." (UTF-8 code Ox2E)

and

":" (UTF-8 code 0x3A) *)

directName
queryName
shortName

29341-4-14 © ISO/IEC:2011(E) - 211 -

Annex E
(informative)
ScheduledRecording Service Relationship to ContentDirectory Service

As noted in the specification, the only formal relationship between a ScheduledRecording
service and a ContentDirectory service is through the object.recordSchedule.direct.cdsEPG
and object.recordSchedule.direct.cdsNonEPG classes. The reason for keeping the
ScheduledRecording service and ContentDirectory service as separate services is because
they serve different purposes. The ScheduledRecording service is a service for creating a
schedule of recording operations whereas the ContentDirectory service is a service for
exposing content and its metadata. Therefore, the only formal dependency on a
ContentDirectory service is to accommodate the case where a control point identifies
recordable content on a ContentDirectory service and then instructs a sibling
ScheduledRecording service to record that content.

Although a ScheduledRecording service and a ContentDirectory service are generally
separated at the protocol layer, the two services can often interact in an out-of-band manner
to realize some additional usages.

Showing Recorded Content in a ContentDirectory service: Vendors who are interested in
making recorded content discoverable and network-consumable can expose the recorded
content through the associated ContentDirectory service. The exact location where the
recorded content will be exposed is determined by the implementation and is vendor-
dependent.

Sending recorded bits to a ContentDirectory service: One methodology for sending
recorded content to a ContentDirectory service (that is completely separate from the
ScheduledRecording service) is to do the following: Start the process by having the control
point invoke the ContentDirectory::CreateObject() action and obtain a res@importUri where
binary data can be deposited via HTTP-POST. As a second step, the control point uses the
CreateRecordSchedule() action with the appropriate destination type (recordDestination =
“MyNAS”, recordDestination@mediaType = “HDD”, recordDestination@targetURL =
res@importUri) to accommodate a URI that accepts HTTP-POST transmissions. When the
ScheduledRecording service begins to record (or finishes recording) the ScheduledRecording
service implementation can transmit the recorded bits using an HTTP-POST transaction.
When the transmission is complete, the ContentDirectory service updates its metadata to
allow rendering endpoints to play the content.

Scheduled recording from an external location: Vendors who want to use an external
location as a source of recordable content can achieve this use case in the following manner.
The control point obtains a URI that represents content that can be recorded. The control
point creates a manual recordSchedule with the appropriate scheduling information and the
URI as the input source in the scheduledChannellD property. At the instructed time, the
ScheduledRecording service will download or stream the content data bytes from the URI to
complete the recording.

- 212 - 29341-4-14 © ISO/IEC:2011(E)

Annex F
(informative)
ScheduledRecording Service Relationship to EPG

ScheduledRecording service implementations are NOT REQUIRED to be tied to an Electronic
Program Guide (EPG), as demonstrated by the object.recordSchedule.direct.manual class.
However the subject of EPG data is an important discussion point for achieving a variety of
use cases. This annex does not exhaustively cover every relationship between a
ScheduledRecording service and EPG, but it does discuss how the out-of-band EPG can fit
into various use cases.

For scenarios where a control point creates a manual recordSchedule, the EPG directly
provides information to the user. In some setups, the user may have to read an EPG in order
to manually provide the control point with the scheduling and tuning input values. In other
setups, the control point may have access to EPG data, allowing the control point to provide
a user interface that is focused on the EPG, hiding the control point input values from the
user. By design, the object.recordSchedule.direct.manual class does not require an EPG on
the ScheduledRecording service because the ScheduledRecording service can resolve a
manual recording type to discrete recordTask instances, without any additional information.

For scenarios where the control point creates a object.recordSchedule.direct.cdsEPG or
object.recordSchedule.query.contentName/contentlD class recordSchedule, the user still
interacts with the EPG in some way. In some setups, the user will need to obtain a well-
defined value (program or series ID, program title, etc.) from the EPG. In setups where the
control point has access to EPG data, the user may not need to know about those well-
defined values. Regardless of how the control point acquires the well-defined values, the
ScheduledRecording service still needs to be able to translate this higher-level information
into a recordSchedule object. In some setups, the ScheduledRecording service will have
access to a complete EPG to assist with the creation of individual recordSchedule instances.
In other setups, the ScheduledRecording service may have access to limited scheduling
information on a broadcast stream that allows the ScheduledRecording service to know when
to perform a recording operation. Intentionally, these types of recording types are designed
around a particular EPG or broadcast system.

For scenarios where the control point creates a object.recordSchedule.query.contentName
class of recordSchedule, the ScheduledRecording service will likely have direct access to
EPG data. The reason is that this type of recordSchedule allows the control point to specify
values that are not well-defined but still convey the desired content for recording. Therefore,
the ScheduledRecording service generally needs to have additional intelligence to translate
the recordSchedule into discrete recordTask instances. Often this process will include
continually cross-referencing the recordSchedule properties with information in an EPG, and
generating a recordTask instance every time a match is found between the matching criteria
of the recordSchedule and an EPG item.

For scenarios where the control point creates a object.recordSchedule.direct.cdsEPG class
of recordSchedule, the ScheduledRecording service and its sibling ContentDirectory service
will likely have access to some kind of EPG data. The ContentDirectory service uses the EPG
to expose recordable content to the control point/user. The user chooses a recordable object
and then instructs the ScheduledRecording service to record using the_didl-lite:@id value of
the recordable object. Although it is generally useful for a ContentDirectory service to expose
as much scheduling metadata as possible, the EPG data that is exposed by the
ContentDirectory service is determined by the ContentDirectory/ScheduledRecording service
implementer. As such, the only thing that a user needs is a control point that is capable of
representing the recordable objects found in the ContentDirectory service.

29341-4-14 © ISO/IEC:2011(E) - 213 -

Annex G
(informative)
AVDT Examples

The following clauses contain full-fledged examples of AVDT XML Document instances that a
particular implementation might return in response to the invocation of the GetAllowedValues()
action. All AV Working Committee defined values are printed using the forum character style.
All device dependent values are printed using the vendor character style.

Note: These examples may be used as a starting point for real life implementations. Vendors
may delete OPTIONAL property definitions that they do not support and add, delete and/or
modify device dependent values to match their implementation.

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E) - 215 -

<allowedValue>L2</allowedValue>
<allowedValue>L3</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:priority@orderedValue</name>
<dataType>xsd:unsignedlnt</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:priority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowedValueRange>
<minimum>1</minimum>
<maximum>64</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority</name>
<dataType maxSize="1024">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valuelList>
<value>PREDEF</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>L1</allowedValue>
<allowedValue>L2</al lowedValue>
<allowedValue>L3</allowedValue>
<allowedValue>HIGHEST</al lowedValue>
<allowedValue>LOWEST</al lowedValue>
<allowedvValue>L1 HI</allowedValue>
<allowedValue>L1 LO</allowedValue>
<allowedValue>L2_ Hl</allowedValue>
<allowedValue>L2 L0O</allowedValue>
<allowedValue>L3 HlI</allowedValue>
<allowedValue>L3 LO</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valuelList>
<value>0BJECTID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<al lowedValue>PREDEF</al lowedValue>
<allowedValue>0BJECTID</al lowedValue>

- 216 - 29341-4-14 © ISO/IEC:2011(E)

</allowedValueList>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:recordDestination</name>
<dataType maxSize="1024">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>
<allowedValue>DVD Drive</allowedValue>
<allowedValue>Remote Media Jukebox</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@medialype</name>
<dataType csv="xsd:string”™ maxSize="16">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<minListSizeTotal>1</minListSizeTotal>
<maxListSizeTotal>4</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valueList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<allowedValueList>
<al lowedValue>HDD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>DVD Drive</value>
</valueList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValueList>
<al lowedValue>DVD+RW</al lowedValue>
<al lowedValue>DVD-RW</al lowedValue>
<al lowedValue>DVD-R</al lowedValue>
<al lowedValue>DVD+R</al lowedValue>
<allowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>Remote Media Jukebox</value>
</valueList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>2</maxListSize>
<allowedValueList>
<al lowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>

29341-4-14 © ISO/IEC:2011(E) - 217 -

</field>

<field>
<name>srs:recordDestination@targetURL</name>
<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@preference</name>
<dataType>xsd:unsignedInt</dataType>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowedValueRange>
<minimum>1</minimum>
<maximum>3</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty</name>
<dataType csv="'xsd:string" maxSize="1024">xsd:string</dataType>
<maxListSizeTotal>UNBOUNDED</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty@type</name>
<valuelList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValueList>
<al lowedValue>HD</al lowedValue>
<al lowedValue>ED</al lowedValue>
<al lowedValue>SD</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty@type</name>
<valueList>
<value>ATSC</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>11</maxListSize>
<allowedValueList>
<allowedValue>1080p30</al lowedValue>
<al lowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<al lowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<allowedValue>480p60</al lowedValue>
<al lowedValue>480p30</al lowedValue>

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

29341-4-14 © ISO/IEC:2011(E)

- 228 - 29341-4-14 © ISO/IEC:2011(E)

G.2 A ARG TYPE RecordTask AVDT Example

Note: This A_ ARG _TYPE RecordTask example is marked by a light turquoise background.

Request:
GetAllowedValues(""A_ARG_TYPE_RecordTask™, "*:*")

The following response will be generated:

Response:
GetAl lowedValues(
<?xml version="1.0" encoding="UTF-8"?>
<AVDT
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:srs="urn:schemas-upnp-org:av:srs"
xmIns=""urn:schemas-upnp-org:av:avdt"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www_upnp.org/schemas/av/avdt.xsd">

<contextID>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlID>

<dataStructType>A ARG TYPE RecordTask</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType maxSize="128">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:class</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValueList>
<al lowedValue>0BJECT .RECORDTASK</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:additional Info</name>
<dataType maxSize="1024"">xsd:string</dataType>
<al lowedValueDescriptor>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<fField>
<name>srs:cdsReference</name>
<dataType maxSize=""8192'">xsd:string</dataType>

29341-4-14 © ISO/IEC:2011(E) - 229 -

<maxCountTotal>2</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordedCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<al lowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:cdsReference@l ink</name>
<dataType maxSize="1024'">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:cdsReference</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:Priority</name>
<dataType maxSize="8">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValueList>
<allowedValue>L1</allowedValue>
<allowedValue>L2</allowedValue>
<allowedValue>L3</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:priority@orderedValue</name>
<dataType>xsd:unsignedlnt</dataType>
<al lowedValueDescriptor>
<al lowedValueRange>
<minimum>1</minimum>
<maximum>64</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority</name>
<dataType maxSize="1024">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valueList>
<value>PREDEF</value>
</valuelList>
</dependentField>
<allowedValuelList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>L1</allowedValue>
<allowedValue>L2</allowedValue>
<allowedValue>L3</allowedValue>
<allowedValue>HIGHEST</al lowedValue>

- 230 - 29341-4-14 © ISO/IEC:2011(E)

<allowedValue>LOWEST</al lowedValue>
<allowedValue>L1l HI</allowedValue>
<allowedValue>L1 LO</allowedValue>
<allowedValue>L2_Hl</allowedValue>
<allowedValue>L2_LO</allowedValue>
<allowedValue>L3 HI</allowedValue>
<allowedValue>L3 LO</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valuelList>
<value>0BJECT ID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16"">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>PREDEF</al lowedValue>
<al lowedValue>0BJECTID</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination</name>
<dataType maxSize="1024">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<allowedValueList>
<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>
<allowedValue>DVD Drive</allowedValue>
<allowedValue>Remote Media Jukebox</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fField>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType csv="xsd:string"” maxSize="16">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<minListSizeTotal>1</minListSizeTotal>
<maxListSizeTotal>4</maxListSizeTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<allowedValuelList>
<allowedValue>HDD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>

29341-4-14 © ISO/IEC:2011(E) - 231 -

<name>srs:recordDestination</name>
<valuelList>
<value>DVD Drive</value>
</valueList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<allowedValue>DVD+RW</al lowedValue>
<al lowedValue>DVD-RW</al lowedValue>
<al lowedValue>DVD-R</al lowedValue>
<allowedValue>DVD+R</al lowedValue>
<allowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>Remote Media Jukebox</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>2</maxListSize>
<allowedValueList>
<allowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@targetURL</name>
<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:recordDestination@preference</name>
<dataType>xsd:unsignedlnt</dataType>
<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<al lowedValueRange>
<minimum>1</minimum>
<maximum>3</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty</name>
<dataType csv="'xsd:string" maxSize="1024">xsd:string</dataType>
<maxListSizeTotal>UNBOUNDED</maxListSizeTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual ity@type</name>
<valuelList>

- 232 - 29341-4-14 © ISO/IEC:2011(E)

<value>DEFAULT</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<allowedValue>HD</al lowedValue>
<al lowedValue>ED</al lowedValue>
<al lowedValue>SD</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQuality@type</name>
<valuelList>
<value>ATSC</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>11</maxListSize>
<allowedValuelList>
<allowedValue>1080p30</al lowedValue>
<al lowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<al lowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</al lowedValue>
<al lowedValue>480i60</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQual i ty@type</name>
<valuelList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<al lowedValue>Ql1l</allowedValue>
<al lowedValue>Q2</al lowedValue>
<al lowedValue>Q3</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQual i ty@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQuality</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

29341-4-14 © ISO/IEC:2011(E) - 233 -

<field>
<name>srs:recordSchedulelD</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordedCDSObjectlID</name>
<dataType maxSize='8192">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordedCDSObjectID@l ink</name>
<dataType maxSize=""1024'"">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordedCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskCDSObjectlD</name>
<dataType maxSize="8192'">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskCDSObjectID@l ink</name>
<dataType maxSize="1024"">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskCDSObjectlD</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel I1D</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel ID@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskChannel 1D</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<al lowedValue>FREQUENCY</al lowedValue>
<allowedValue>Sli</allowedValue>

— 234 - 29341-4-14 © ISO/IEC:2011(E)

<allowedValue>LINE</al lowedValue>
<allowedValue>NETWORK</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel 1D@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannel ID@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskChannel I1D</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskStartDateTime</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDuration</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskProgramCode</name>
<dataType maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskProgramCode@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskProgramCode</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordQuality</name>
<dataType maxSize="16">xsd:string</dataType>
<minCountTotal>3</minCountTotal>

29341-4-14 © ISO/IEC:2011(E) - 235 -

<maxCountTotal>3</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQual i ty@type</name>
<valuelList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>HD</al lowedValue>
<al lowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
<al lowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQuality@type</name>
<valuelList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>ACTIVE</value>
<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<al lowedValue>SD</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQuality@type</name>
<valuelList>
<value>ATSC</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<al lowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<al lowedValue>480p60</al lowedValue>
<al lowedValue>480p30</al lowedValue>
<al lowedValue>480p24</al lowedValue>
<allowedValue>480i60</al lowedValue>
<al lowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>

— 236 - 29341-4-14 © ISO/IEC:2011(E)

<name>srs:recordQuality@type</name>
<valuelList>
<value>ATSC</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>ACTIVE</value>
<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<al lowedValue>720p60</al lowedValue>
<al lowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<allowedValue>480p60</al lowedValue>
<al lowedValue>480p30</al lowedValue>
<al lowedValue>480p24</al lowedValue>
<allowedValue>480i60</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQuality@type</name>
<valuelList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>IDLE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>Ql1l</allowedValue>
<al lowedValue>Q2</al lowedValue>
<allowedValue>Q3</al lowedValue>
<al lowedValue>UNKNOWN</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQuality@type</name>
<valuelList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:taskState@phase</name>
<valuelList>
<value>ACTIVE</value>
<value>DONE</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>Ql</allowedValue>
<al lowedValue>Q2</al lowedValue>
<al lowedValue>Q3</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordQuality@type</name>
<dataType maxSize="16">xsd:string</dataType>

29341-4-14 © ISO/IEC:2011(E) - 237 -

<al lowedValueDescriptor>
<dependentField>
<name>srs:recordQuality</name>
<anyValue></anyValue>
</dependentField>
<minCount>3</minCount>
<maxCount>3</maxCount>
<allowedValuelList>
<al lowedValue>DEFAULT</al lowedValue>
<al lowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedName</name>
<dataType maxSize="128">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedName@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedName</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue>PROGRAM</al lowedValue>
<al lowedValue>SERIES</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedlD</name>
<dataType maxSize="256">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:matchedlD@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedlD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>S1 PROGRAMID</al lowedValue>
<allowedValue>SI SERIESID</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedRating</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valueList>
<value>MPAA.ORG</value>
</valuelList>

— 238 - 29341-4-14 © ISO/IEC:2011(E)

</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>G</al lowedValue>
<allowedValue>PG</allowedValue>
<allowedValue>PG-13</al lowedValue>
<al lowedValue>R</al lowedValue>
<allowedValue>NC-17</al lowedValue>
<allowedValue>NR</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valuelList>
<value>RIAA.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<al lowedValue></al lowedValue>
<al lowedValue>PA-EC</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valuelList>
<value>ESRB.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>EC</al lowedValue>
<allowedValue>E</al lowedValue>
<allowedValue>E10+</allowedValue>
<allowedValue>T</al lowedValue>
<allowedValue>\M</al lowedValue>
<al lowedValue>A0</al lowedValue>
<allowedValue>RP</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedRating@type</name>
<valuelList>
<value>TVGUIDELINES.ORG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>TV-Y</allowedValue>
<allowedValue>TV-Y7</al lowedValue>
<allowedValue>TV-Y7FV</al lowedValue>
<allowedValue>TV-G</al lowedValue>
<allowedValue>TV-PG</al lowedValue>
<allowedValue>TV-14</al lowedValue>
<allowedValue>TV-MA</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchedRating@type</name>
<dataType maxSize="32">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchedRating</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>MPAA.ORG</al lowedValue>

29341-4-14 © ISO/IEC:2011(E) - 239 -

<allowedValue>RIAA_.ORG</al lowedValue>
<allowedValue>ESRB.ORG</al lowedValue>
<allowedValue>TVGUIDLINES.ORG</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fField>

<field>
<name>srs:matchedEpisodeType</name>
<dataType maxSize="8">xsd:string</dataType>
<al lowedValueDescriptor>
<allowedValuelList>
<allowedValue>ALL</al lowedValue>
<allowedValue>FIRST_RUN</al lowedValue>
<al lowedValue>REPEAT</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskStartDateTimeAdjust</name>
<dataType maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationAdjust</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationLimit</name>
<dataType maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskDurationLimit@effect</name>
<dataType maxSize="8">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskDurationLimit</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue>FIRST</al lowedValue>
<allowedValue>LAST</al lowedValue>
<al lowedValue>SKIP</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskChannelMigration</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskTimeMigration</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<allowAny></al lowAny>

— 240 - 29341-4-14 © ISO/IEC:2011(E)

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<al lowedValueDescriptor>
<allowedValuelList>
<allowedValue>IDLE.READY</al lowedValue>
<allowedValue>IDLE.ATRISK</al lowedValue>
<allowedValue>ACTIVE.TRANSITION.FROMSTART</al lowedValue>
<allowedValue>ACTIVE.TRANSITION.RESTART</al lowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART .0OK
</allowedValue>
<allowedValue>
ACTIVE .RECORDING.FROMSTART .ATRISK
</allowedValue>
<al lowedValue>
ACTIVE.RECORDING.RESTART .OK
</allowedValue>
<al lowedValue>
ACTIVE .RECORDING.RESTART.ATRISK
</allowedValue>
<allowedValue>ACTIVE.NOTRECORDING</al lowedValue>
<al lowedValue>DONE.FULL</al lowedValue>
<al lowedValue>DONE.PARTIAL</al lowedValue>
<allowedValue>DONE.EMPTY</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@phase</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvValuelList>
<allowedValue>IDLE</al lowedValue>
<al lowedValue>ACTIVE</al lowedValue>
<al lowedValue>DONE</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@startDateTimeMet</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs: taskState@endDateTimeMet</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>

29341-4-14 © ISO/IEC:2011(E) - 241 -

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@recording</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@someBitRecorded</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@someBitsMissing</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@firstBitsRecorded</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@lastBitsRecorded</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@fatalError</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>

— 242 - 29341-4-14 © ISO/IEC:2011(E)

<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@currentErrors</name>
<dataType csv="xsd:int" maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<al lowedValue></al lowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</allowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go hear -->
</allowedValuelList>
<al lowedValueRange>
<minimum>200</minimum>
<maximum>204</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>400</minimum>
<maximum>404</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@errorHistory</name>
<dataType csv="xsd:Int" maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue></al lowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</al lowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go here -->
</allowedValueList>
<al lowedValueRange>
<minimum>200</minimum>
<maximum>204</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>400</minimum>
<maximum>404</maximum>
<step>1</step>
</allowedValueRange>

29341-4-14 © ISO/IEC:2011(E) — 243 -

</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@pendingErrors</name>
<dataType csv="xsd:Int" maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValuelList>
<allowedValue></al lowedValue>
<al lowedValue>100</al lowedValue>
<allowedValue>101</al lowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go here -->
</allowedValueList>
<al lowedValueRange>
<minimum>200</minimum>
<maximum>204</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>400</minimum>
<maximum>404</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@infolL ist</name>
<dataType csv="'xsd:int" maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs: taskState</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue></allowedValue>
<allowedValue>100</al lowedValue>
<allowedValue>101</allowedValue>
<allowedValue>102</al lowedValue>
<I-- Additional vendor defined values go here -->
</allowedValueList>
<al lowedValueRange>
<minimum>200</minimum>
<maximum>204</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>300</minimum>
<maximum>307</maximum>
<step>1</step>
</allowedValueRange>
<al lowedValueRange>
<minimum>400</minimum>
<maximum>404</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

</fieldTable>
</AVDT>

— 244 - 29341-4-14 © ISO/IEC:2011(E)

G.3 A ARG TYPE RecordScheduleParts AVDT Example

Note: This A_ ARG _TYPE RecordScheduleParts example is marked by a white background.

Request:
GetAllowedValues(""A_ARG_TYPE_RecordScheduleParts™, "*:*")

The following response will be generated:

Response:

GetAl lowedValues(

<?xml version="1.0" encoding="UTF-8"?>

<AVDT

xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmIns:srs="urn:schemas-upnp-org:av:srs"

xmIns=""urn:schemas-upnp-org:av:avdt"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’

xsi:schemalLocation=""
urn:schemas-upnp-org:av:srs
http://www_upnp.org/schemas/av/srs.xsd
urn:schemas-upnp-org:av:avdt
http://www_upnp.org/schemas/av/avdt.xsd">

<contextlID>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextlD>

<dataStructType>A_ARG_TYPE_RecordScheduleParts</dataStructType>

<fieldTable>
<field>
<name>srs:@id</name>
<dataType maxSize="256">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValueList>
<allowedValue></allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:title</name>
<dataType maxSize="128">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>

<allowAny></al lowAny>

</allowedValueDescriptor>

</field>

<field>
<name>srs:class</name>
<dataType maxSize="64">xsd:string</dataType>
<minCountTotal>1</minCountTotal>
<allowedValueDescriptor>
<allowedValuelList>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT .MANUAL
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT .CDSEPG
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG
</allowedValue>
<al lowedValue>
OBJECT .RECORDSCHEDULE .DIRECT . PROGRAMCODE
</allowedValue>
<allowedValue>
OBJECT .RECORDSCHEDULE . QUERY . CONTENTNAME
</allowedValue>

29341-4-14 © ISO/IEC:2011(E) — 245 -

<allowedValue>
OBJECT .RECORDSCHEDULE . QUERY .CONTENTID
</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</Field>

<field>
<name>srs:desiredPriority</name>
<dataType maxSize="1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredPriority@type</name>
<valuelList>
<value>PREDEF</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<defaultValue>DEFAULT</defaultValue>
<allowedValuelList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>L1</allowedValue>
<allowedValue>L2</allowedValue>
<allowedValue>L3</allowedValue>
<allowedValue>HIGHEST</al lowedValue>
<allowedValue>LOWEST</al lowedValue>
<allowedValue>L1 HI</allowedvValue>
<allowedValue>L1_LO</allowedValue>
<allowedValue>L2_HI</allowedValue>
<allowedValue>L2_LO</allowedValue>
<allowedValue>L3 HI</allowedvalue>
<allowedValue>L3 LO</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<al lowedValueDescriptor>
<dependentField>
<name>srs:desiredPriority@type</name>
<valuelList>
<value>0BJECTID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredPriority@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredPriority</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<defaultValue>PREDEF</defaultValue>
<allowedValueList>
<allowedValue>PREDEF</al lowedValue>
<allowedValue>0BJECTID</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:recordDestination</name>
<dataType maxSize="1024">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<defaultValue>Hard Disk 2</defaultValue>
<allowedValuelList>
<allowedValue>Hard Disk 1</allowedValue>
<allowedValue>Hard Disk 2</allowedValue>
<allowedValue>DVD Drive</allowedValue>

— 246 - 29341-4-14 © ISO/IEC:2011(E)

<allowedValue>Remote Media Jukebox</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@mediaType</name>
<dataType csv='"'xsd:string" maxSize="16">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<maxListSizeTotal>4</maxListSizeTotal>
<al lowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:recordDestination</name>
<valuelList>
<value>HardDisk 1</value>
<value>HardDisk 2</value>
</valueList>
</dependentField>
<maxListSize>1</maxListSize>
<defaultValue>HDD</defaultValue>
<allowedValuelList>
<allowedValue>HDD</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>DVD Drive</value>
</valueList>
</dependentField>
<maxListSize>4</maxListSize>
<allowedValuelList>
<allowedValue>DVD+RW</al lowedValue>
<allowedValue>DVD-RW</al lowedValue>
<al lowedValue>DVD-R</al lowedValue>
<allowedValue>DVD+R</al lowedValue>
<allowedValue>CD-R</al lowedValue>
<al lowedValue>CD-RW</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<valuelList>
<value>Network Jukebox Recorder</value>
</valuelList>
</dependentField>
<maxListSize>2</maxListSize>
<defaultValue>CD-R</defaultValue>
<allowedValueList>
<al lowedValue>CD-R</al lowedValue>
<allowedValue>CD-RW</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@targetURL</name>
<dataType>xsd:anyURI</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:recordDestination@preference</name>
<dataType>xsd:unsignedInt</dataType>

29341-4-14 © ISO/IEC:2011(E) — 247 -

<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:recordDestination</name>
<anyValue></anyValue>
</dependentField>
<defaultvValue>2</defaultvalue>
<allowedValueRange>
<minimum>1</minimum>
<max imum>3</maximum>
<step>1</step>
</allowedValueRange>
</allowedValueDescriptor>
</field>

<field>
<name>srs:desiredRecordQuality</name>
<dataType csv="xsd:string” maxSize="1024">xsd:string</dataType>
<maxListSizeTotal>UNBOUNDED</maxListSizeTotal>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredRecordQual ity@type</name>
<valueList>
<value>DEFAULT</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<defaultValue>AUTO</defaultValue>
<allowedValuelList>
<allowedValue>HD</al lowedValue>
<allowedValue>ED</al lowedValue>
<allowedValue>SD</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQuality@type</name>
<valuelList>
<value>ATSC</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>11</maxListSize>
<allowedValuelList>
<allowedValue>1080p30</al lowedValue>
<allowedValue>1080p24</al lowedValue>
<allowedValue>1080i60</al lowedValue>
<allowedValue>720p60</al lowedValue>
<allowedValue>720p30</al lowedValue>
<allowedValue>720p24</al lowedValue>
<allowedValue>480p60</al lowedValue>
<allowedValue>480p30</al lowedValue>
<allowedValue>480p24</al lowedValue>
<allowedValue>480i60</al lowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:desiredRecordQuality@type</name>
<valuelList>
<value>QLEVEL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<minListSize>1</minListSize>
<maxListSize>4</maxListSize>
<allowedValuelList>
<al lowedValue>Ql</allowedValue>

— 248 - 29341-4-14 © ISO/IEC:2011(E)

<al lowedValue>Q2</al lowedValue>
<al lowedValue>Q3</allowedValue>
<allowedValue>AUTO</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:desiredRecordQuality@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:desiredRecordQuality</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<defaultValue>DEFAULT</defaultValue>
<allowedValueList>
<allowedValue>DEFAULT</al lowedValue>
<allowedValue>ATSC</al lowedValue>
<allowedValue>QLEVEL</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledCDSObjectlD</name>
<dataType maxSize="1024">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT . RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel 1D</name>
<dataType maxSize='"256">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .MANUAL</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel ID@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel ID</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<al lowedValue>FREQUENCY</al lowedValue>
<allowedValue>Si</allowedValue>
<allowedValue>LINE</allowedValue>
<allowedValue>NETWORK</al lowedValue>
</allowedValuelList>

29341-4-14 © ISO/IEC:2011(E) — 249 -

</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledChannel ID@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel ID</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:scheduledChannel ID@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:scheduledChannel ID</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:scheduledStartDateTime</name>
<dataType maxSize="64">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledDuration</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledProgramCode</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>
OBJECT . RECORDSCHEDULE . DIRECT . PROGRAMCODE
</value>
</valuelList>
</dependentField>
<minCount>1</minCount>

— 250 - 29341-4-14 © ISO/IEC:2011(E)

<allowAny></al lowAny>
</allowedValueDescriptor>
</Tield>

<field>
<name>srs:scheduledProgramCode@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:scheduledProgramCode</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName</name>
<dataType maxSize="128">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName@type</name>
<dataType maxSize="16"">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingName</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>PROGRAM</al lowedValue>
<allowedValue>SERIES</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingName@subStringMatch</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingName</name>
<anyValue></anyValue>
</dependentField>
<defaultvValue>l</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchinglD</name>
<dataType maxSize='"256">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<minCount>1</minCount>
<allowAny></al lowAny>

29341-4-14 © ISO/IEC:2011(E) - 251 -

</allowedValueDescriptor>
</field>

<field>
<name>srs:matchinglD@type</name>
<dataType maxSize="16">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:matchinglD</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>S1 PROGRAMID</allowedValue>
<allowedValue>SI_ SERIESID</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:matchingChannel ID</name>
<dataType maxSize="256">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE . QUERY . CONTENTNAME</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel ID@type</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel ID</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedvValuelList>
<allowedValue>ANALOG</al lowedValue>
<allowedValue>DIGITAL</al lowedValue>
<al lowedValue>FREQUENCY</al lowedValue>
<allowedValue>Si</allowedValue>
<allowedValue>LINE</allowedValue>
<allowedValue>NETWORK</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel ID@distriNetworkName</name>
<dataType maxSize="32">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel ID</name>
<anyValue></anyValue>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingChannel ID@distriNetworklD</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingChannel ID</name>
<anyValue></anyValue>
</dependentField>

- 252 - 29341-4-14 © ISO/IEC:2011(E)

<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingStartDateTimeRange</name>
<dataType maxSize="64">xsd:string</dataType>
<maxCountTotal>3</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingDurationRange</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>4</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<pame>srs:matchingRatingLimit</name>
<dataType maxSize="16">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valuelList>
<value>MPAA.ORG</value>
</valuelList>
</dependentField>
<allowedValuelList>
<allowedValue>G</al lowedValue>
<allowedValue>PG</allowedValue>
<allowedValue>PG-13</al lowedValue>
<allowedValue>R</al lowedValue>
<allowedValue>NC-17</al lowedValue>
<allowedvValue>NR</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>

29341-4-14 © ISO/IEC:2011(E) — 253 -

<valuelList>
<value>RIAA.ORG</value>
</valuelList>
</dependentField>
<allowedValuelList>
<allowedValue></al lowedValue>
<allowedValue>PA-EC</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valuelList>
<value>ESRB.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>EC</allowedValue>
<allowedValue>E</al lowedValue>
<allowedValue>E10+</al lowedValue>
<allowedValue>T</al lowedValue>
<allowedValue>\M</al lowedValue>
<allowedValue>AO</allowedValue>
<allowedValue>RP</allowedValue>
</allowedValuelList>
</allowedValueDescriptor>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valueList>
</dependentField>
<dependentField>
<name>srs:matchingRatingLimit@type</name>
<valuelList>
<value>TVGUIDELINES.ORG</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>TV-Y</al lowedValue>
<allowedValue>TV-Y7</allowedValue>
<allowedValue>TV-Y7FV</al lowedValue>
<al lowedValue>TV-G</al lowedValue>
<allowedValue>TV-PG</al lowedValue>
<allowedValue>TV-14</allowedValue>
<allowedValue>TV-MA</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</Field>

<field>
<name>srs:matchingRatingLimit@type</name>
<dataType maxSize="32">xsd:string</dataType>
<maxCountTotal>2</maxCountTotal>
<allowedValueDescriptor>
<dependentField>
<name>srs:matchingRatingLimit</name>
<anyValue></anyValue>
</dependentField>
<minCount>1</minCount>
<allowedValueList>
<allowedValue>MPAA.ORG</al lowedValue>
<allowedValue>RIAA.ORG</al lowedValue>
<allowedValue>ESRB.ORG</al lowedValue>

— 254 - 29341-4-14 © ISO/IEC:2011(E)

<allowedValue>TVGUIDLINES.ORG</al lowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:matchingEpisodeType</name>
<dataType maxSize="8">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<allowedValueList>
<allowedValue>ALL</al lowedValue>
<allowedValue>FIRST RUN</allowedValue>
<allowedValue>REPEAT</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:totalDesiredRecordTasks</name>
<dataType>xsd:unsignedInt</dataType>
<allowedValueDescriptor>
<defaultValue>l</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledStartDateTimeAdjust</name>
<dataType maxSize="64">xsd:string</dataType>
<allowedValueDescriptor>
<defaultValue>+P00:00:00</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:scheduledDurationAdjust</name>
<dataType maxSize="16">xsd:string</dataType>
<allowedValueDescriptor>
<defaultValue>+P00:00:00</defaultvValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:activePeriod</name>
<dataType maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE.DIRECT .MANUAL</value>
<value>0BJECT .RECORDSCHEDULE.DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .DIRECT . CDSNONEPG</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>NOW/INFINITY</defaultvalue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:durationLimit</name>
<dataType maxSize="64">xsd:string</dataType>

29341-4-14 © ISO/IEC:2011(E) — 255 -

<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT .RECORDSCHEDULE .QUERY .CONTENT ID</value>
</valuelList>
</dependentField>
<defaultValue>INFINITY</defaultvalue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<fField>
<name>srs:durationLimit@effect</name>
<dataType maxSize="8">xsd:string</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:durationLimit</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>FIRST</defaultValue>
<allowedValueList>
<allowedValue>FIRST</al lowedValue>
<allowedValue>LAST</al lowedValue>
<al lowedValue>SKIP</al lowedValue>
</allowedValuelList>
</allowedValueDescriptor>
</Field>

<field>
<name>srs:channelMigration</name>
<dataType>xsd:boolean</dataType>
<al lowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT .RECORDSCHEDULE .QUERY . CONTENTNAME</value>
<value>0BJECT.RECORDSCHEDULE.QUERY.CONTENTID</value>
</valuelList>
</dependentField>
<defaultValue>l</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:timeMigration</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valuelList>
<value>0BJECT .RECORDSCHEDULE .DIRECT .CDSEPG</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENT ID</value>
</valuelList>
</dependentField>
<defaultvValue>l</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:al lowDupl icates</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField>
<name>srs:class</name>
<valueList>
<value>0BJECT . RECORDSCHEDULE . QUERY . CONTENTNAME</value>

— 256 - 29341-4-14 © ISO/IEC:2011(E)

<value>0BJECT.RECORDSCHEDULE.QUERY .CONTENTID</value>
</valuelList>
</dependentField>
<defaultValue>l</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings</name>
<dataType>xsd:unsignedInt</dataType>
<allowedValueDescriptor>
<defaultValue>0</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings@latest</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>l</defaultvValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

<field>
<name>srs:persistedRecordings@preAl location</name>
<dataType>xsd:boolean</dataType>
<allowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>0</defaultValue>
<allowAny></al TowAny>
</allowedValueDescriptor>
</fTield>

<field>
<name>srs:persistedRecordings@storedLifetime</name>
<dataType maxSize="64">xsd:string</dataType>
<al lowedValueDescriptor>
<dependentField defaultDependency="1">
<name>srs:persistedRecordings</name>
<anyValue></anyValue>
</dependentField>
<defaultValue>ANY</defaultValue>
<allowAny></al lowAny>
</allowedValueDescriptor>
</field>

</fieldTable>
</AVDT>

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: +41 2291902 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

