

ISO/IEC 29341-13-11
Edition 1.0 2008-11

INTERNATIONAL
STANDARD

Information technology – UPnP Device Architecture –
Part 13-11: Device Security Device Control Protocol – Security Console Service

IS
O

/IE
C

 2
93

41
-1

3-
11

:2
00

8(
E

)

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2008 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this
publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

ISO/IEC 29341-13-11
Edition 1.0 2008-11

INTERNATIONAL
STANDARD

Information technology – UPnP Device Architecture –
Part 13-11: Device Security Device Control Protocol – Security Console Service

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION J
ICS 35.200

PRICE CODE

ISBN 2-8318-1012-9

 – 2 – 29341-13-11 © ISO/IEC:2008(E)

CONTENTS

FOREWORD ..3
ORIGINAL UPNP DOCUMENTS (informative) ..5
1. Overview and Scope..7

1.1. Security Console Actions ...7
1.1.1. Control Point Discovery...8
1.1.2. Local Dictionary Communication ..8
1.1.3. Certificate Processing ...8

2. Service Modeling Definitions ...10
2.1. Service Type ..10
2.2. Namespaces ..10
2.3. State Variables ...10

2.3.1. PendingCPList ..10
2.3.2. NameListVersion...11
2.3.3. A_ARG_TYPE_string..11
2.3.4. A_ARG_TYPE_base64...11

2.4. Eventing and Moderation ...11
2.5. Actions..11

2.5.1. PresentKey..11
2.5.2. GetNameList ...12
2.5.3. GetMyCertificates ...14
2.5.4. RenewCertificate...15

2.6. Relationships between Actions ..17
2.7. Common Error Codes ..17

3. Theory of Operation ..18
3.1. Control Point Discovery..18
3.2. “My Domain” and Component Naming...18

3.2.1. Hardware alternatives ...18
3.3. Certificates ...19
3.4. Certificate Delivery ...19
3.5. Certificate Renewal ..19
3.6. BASE32 Encoding..20
3.7. XML Strings as UPnP Arguments ..21

4. XML Service Description...22

LIST OF TABLES

Table 1: State variable..10
Table 2: Event Moderation..11
Table 3: Actions ..11

29341-13-11 © ISO/IEC:2008(E) – 3 –

INFORMATION TECHNOLOGY –
UPNP DEVICE ARCHITECTURE –

Part 13-10: Device Security Device Control Protocol –

Security Console Service

FOREWORD

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards. Their preparation is entrusted to technical
committees; any ISO and IEC member body interested in the subject dealt with may participate in this
preparatory work. International governmental and non-governmental organizations liaising with ISO and IEC
also participate in this preparation.

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC
1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC and ISO member bodies.

4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for
the way in which they are used or for any misinterpretation by any end user.

5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent possible in their national and regional publications.
Any divergence between any ISO/IEC publication and the corresponding national or regional publication should
be clearly indicated in the latter.

6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for
any equipment declared to be in conformity with an ISO/IEC publication.

7) All users should ensure that they have the latest edition of this publication.

8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual
experts and members of their technical committees and IEC or ISO member bodies for any personal injury,
property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including
legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or
any other IEC, ISO or ISO/IEC publications.

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

IEC and ISO draw attention to the fact that it is claimed that compliance with this document may involve the use of
patents as indicated below.

ISO and IEC take no position concerning the evidence, validity and scope of the putative patent rights. The holders
of the putative patent rights have assured IEC and ISO that they are willing to negotiate free licences or licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statements of the holders of the putative patent rights are registered with IEC and ISO.

Intel Corporation has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Intel Corporation
Standards Licensing Department
5200 NE Elam Young Parkway
MS: JFS-98
USA – Hillsboro, Oregon 97124

Microsoft Corporation has informed IEC and ISO that it has patent applications or granted patents as listed below:

 – 4 – 29341-13-11 © ISO/IEC:2008(E)

6101499 / US; 6687755 / US; 6910068 / US; 7130895 / US; 6725281 / US; 7089307 / US; 7069312 / US;
10/783 524 /US

Information may be obtained from:

Microsoft Corporation
One Microsoft Way
USA – Redmond WA 98052

Philips International B.V. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Philips International B.V. – IP&S
High Tech campus, building 44 3A21
NL – 5656 Eindhoven

NXP B.V. (NL) has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

NXP B.V. (NL)
High Tech campus 60
NL – 5656 AG Eindhoven

Matsushita Electric Industrial Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Matsushita Electric Industrial Co. Ltd.
1-3-7 Shiromi, Chuoh-ku
JP – Osaka 540-6139

Hewlett Packard Company has informed IEC and ISO that it has patent applications or granted patents as listed
below:

5 956 487 / US; 6 170 007 / US; 6 139 177 / US; 6 529 936 / US; 6 470 339 / US; 6 571 388 / US; 6 205
466 / US

Information may be obtained from:

Hewlett Packard Company
1501 Page Mill Road
USA – Palo Alto, CA 94304

Samsung Electronics Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Digital Media Business, Samsung Electronics Co. Ltd.
416 Maetan-3 Dong, Yeongtang-Gu,
KR – Suwon City 443-742

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights
other than those identified above. IEC and ISO shall not be held responsible for identifying any or all such patent
rights.

ISO/IEC 29341-13-11 was prepared by UPnP Implementers Corporation and adopted, under the PAS procedure, by
joint technical committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of
ISO and IEC.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title Universal plug and play
(UPnP) architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting results may be
obtained from the address given on the second title page.

29341-13-11 © ISO/IEC:2008(E) – 5 –

ORIGINAL UPNP DOCUMENTS
(informative)

Reference may be made in this document to original UPnP documents. These references are retained in order to
maintain consistency between the specifications as published by ISO/IEC and by UPnP Implementers Corporation.
The following table indicates the original UPnP document titles and the corresponding part of ISO/IEC 29341:

UPnP Document Title ISO/IEC 29341 Part

UPnP Device Architecture 1.0 ISO/IEC 29341-1
UPnP Basic:1 Device ISO/IEC 29341-2
UPnP AV Architecture:1 ISO/IEC 29341-3-1
UPnP MediaRenderer:1 Device ISO/IEC 29341-3-2
UPnP MediaServer:1 Device ISO/IEC 29341-3-3
UPnP AVTransport:1 Service ISO/IEC 29341-3-10
UPnP ConnectionManager:1 Service ISO/IEC 29341-3-11
UPnP ContentDirectory:1 Service ISO/IEC 29341-3-12
UPnP RenderingControl:1 Service ISO/IEC 29341-3-13
UPnP MediaRenderer:2 Device ISO/IEC 29341-4-2
UPnP MediaServer:2 Device ISO/IEC 29341-4-3
UPnP AV Datastructure Template:1 ISO/IEC 29341-4-4
UPnP AVTransport:2 Service ISO/IEC 29341-4-10
UPnP ConnectionManager:2 Service ISO/IEC 29341-4-11
UPnP ContentDirectory:2 Service ISO/IEC 29341-4-12
UPnP RenderingControl:2 Service ISO/IEC 29341-4-13
UPnP ScheduledRecording:1 ISO/IEC 29341-4-14
UPnP DigitalSecurityCamera:1 Device ISO/IEC 29341-5-1
UPnP DigitalSecurityCameraMotionImage:1 Service ISO/IEC 29341-5-10
UPnP DigitalSecurityCameraSettings:1 Service ISO/IEC 29341-5-11
UPnP DigitalSecurityCameraStillImage:1 Service ISO/IEC 29341-5-12
UPnP HVAC_System:1 Device ISO/IEC 29341-6-1
UPnP HVAC_ZoneThermostat:1 Device ISO/IEC 29341-6-2
UPnP ControlValve:1 Service ISO/IEC 29341-6-10
UPnP HVAC_FanOperatingMode:1 Service ISO/IEC 29341-6-11
UPnP FanSpeed:1 Service ISO/IEC 29341-6-12
UPnP HouseStatus:1 Service ISO/IEC 29341-6-13
UPnP HVAC_SetpointSchedule:1 Service ISO/IEC 29341-6-14
UPnP TemperatureSensor:1 Service ISO/IEC 29341-6-15
UPnP TemperatureSetpoint:1 Service ISO/IEC 29341-6-16
UPnP HVAC_UserOperatingMode:1 Service ISO/IEC 29341-6-17
UPnP BinaryLight:1 Device ISO/IEC 29341-7-1
UPnP DimmableLight:1 Device ISO/IEC 29341-7-2
UPnP Dimming:1 Service ISO/IEC 29341-7-10
UPnP SwitchPower:1 Service ISO/IEC 29341-7-11
UPnP InternetGatewayDevice:1 Device ISO/IEC 29341-8-1
UPnP LANDevice:1 Device ISO/IEC 29341-8-2
UPnP WANDevice:1 Device ISO/IEC 29341-8-3
UPnP WANConnectionDevice:1 Device ISO/IEC 29341-8-4
UPnP WLANAccessPointDevice:1 Device ISO/IEC 29341-8-5
UPnP LANHostConfigManagement:1 Service ISO/IEC 29341-8-10
UPnP Layer3Forwarding:1 Service ISO/IEC 29341-8-11
UPnP LinkAuthentication:1 Service ISO/IEC 29341-8-12
UPnP RadiusClient:1 Service ISO/IEC 29341-8-13
UPnP WANCableLinkConfig:1 Service ISO/IEC 29341-8-14
UPnP WANCommonInterfaceConfig:1 Service ISO/IEC 29341-8-15
UPnP WANDSLLinkConfig:1 Service ISO/IEC 29341-8-16
UPnP WANEthernetLinkConfig:1 Service ISO/IEC 29341-8-17
UPnP WANIPConnection:1 Service ISO/IEC 29341-8-18
UPnP WANPOTSLinkConfig:1 Service ISO/IEC 29341-8-19
UPnP WANPPPConnection:1 Service ISO/IEC 29341-8-20
UPnP WLANConfiguration:1 Service ISO/IEC 29341-8-21
UPnP Printer:1 Device ISO/IEC 29341-9-1
UPnP Scanner:1.0 Device ISO/IEC 29341-9-2
UPnP ExternalActivity:1 Service ISO/IEC 29341-9-10
UPnP Feeder:1.0 Service ISO/IEC 29341-9-11
UPnP PrintBasic:1 Service ISO/IEC 29341-9-12
UPnP Scan:1 Service ISO/IEC 29341-9-13
UPnP QoS Architecture:1.0 ISO/IEC 29341-10-1
UPnP QosDevice:1 Service ISO/IEC 29341-10-10
UPnP QosManager:1 Service ISO/IEC 29341-10-11
UPnP QosPolicyHolder:1 Service ISO/IEC 29341-10-12
UPnP QoS Architecture:2 ISO/IEC 29341-11-1
UPnP QOS v2 Schema Files ISO/IEC 29341-11-2

 – 6 – 29341-13-11 © ISO/IEC:2008(E)

UPnP Document Title ISO/IEC 29341 Part

UPnP QosDevice:2 Service ISO/IEC 29341-11-10
UPnP QosManager:2 Service ISO/IEC 29341-11-11
UPnP QosPolicyHolder:2 Service ISO/IEC 29341-11-12
UPnP RemoteUIClientDevice:1 Device ISO/IEC 29341-12-1
UPnP RemoteUIServerDevice:1 Device ISO/IEC 29341-12-2
UPnP RemoteUIClient:1 Service ISO/IEC 29341-12-10
UPnP RemoteUIServer:1 Service ISO/IEC 29341-12-11
UPnP DeviceSecurity:1 Service ISO/IEC 29341-13-10
UPnP SecurityConsole:1 Service ISO/IEC 29341-13-11

29341-13-11 © ISO/IEC:2008(E) – 7 –

1. Overview and Scope
This service is offered by a Security Console (SC). The Security Console offers a user interface for
administration of access control on security-aware UPnP devices. [See DeviceSecurity:1 for a description of the
actions used in the creation and editing of Access Control Lists (ACLs) and in taking security ownership of
Devices.] As a device the Security Console is self-owned. If it has any access controlled actions, then those are
to be administered by the human user and not by some other Security Console. Therefore, a Security Console
does not need to include a DeviceSecurity service. It does have a certificate cache, but it is an outgoing cache,
rather than an incoming cache.

A network built of the user’s own components with no connection to anything outside the user’s personal domain
and with no control points belonging to anyone other than the user ever attached to the network would not require
the features of UPnP Security. Network isolation would already have achieved a level of physical security. We
are concerned in UPnP Security with networks in which more than the user’s own Control Points are present on
the physical network and able to reach the user’s Devices with control messages. These situations can include:

1. use of wireless, power-line networking or cable modem without a firewall, allowing an attacker to join
the network without the user’s knowledge or permission

2. shared infrastructure networks, such as a college dorm or a condominium building wired for Ethernet as
one network segment serving more than one person’s residence

3. households of multiple adults or teens, in which each individual wants to establish a private security
domain, in addition to any domain of devices or control points shared among them, while using a shared
network domain

4. connections to the Internet via devices or services that create single network segments of multiple
subscribers as a side effect of offering network connectivity (such as some cable modems and some ISP
connections)

5. households in which guests might bring mobile devices or control points into the network temporarily

In such networks of intentional or accidental sharing, one cannot rely on physical network security to protect
devices or on discovery methods (e.g., multicast SSDP) to compile a list of “My Devices” or “My Control
Points”. This leaves it up to the user manually to select from physically accessible devices and control points,
choosing those of interest to that user. One primary function of the SC is to enable the user to make that
selection. This process requires two operations that were not anticipated in the original design of UPnP:

1. discovery of control points; and

2. naming of devices and control points on a per-user basis.

The actions provided in this service allow the SC to perform those two functions.

In addition, the sharing of devices across security domains sometimes calls for the use of authorization
certificates, as described in sections 1.1.3 and 3.3. This service provides actions for the delivery of such
certificates (or certificate chains) (see 2.5.3) and for the revocation (via renewal) of certificates (see 2.5.4).

1.1. Security Console Actions
When the Security Console interacts with a security-aware device, it does so through actions offered by that
device. However, the Security Console must also interact with control points (CPs). Instead of forcing CPs to
become devices as well, in order to support these interactions, we define actions that a SC offers. The actions of
this service fall in three functional categories:

1. discovery of control points

2. communication of dictionaries of local names

3. processing of certificates

 – 8 – 29341-13-11 © ISO/IEC:2008(E)

1.1.1. Control Point Discovery
UPnP Device Architecture 1.0 includes a protocol, SSDP, for discovery of devices by control points. However,
there is no protocol for discovery of control points by other control points or devices.

The Security Console needs to discover control points so that it can identify those that should receive access
rights on devices in the local security domain. We achieve this discovery by reversing the logic of UPnP
discovery. A security-aware control point will discover a SC that offers the PresentKey action and will then
invoke that action to announce itself to the SC. Since a CP might act within multiple security domains, it should
announce itself to every SC it detects. The mere act of announcing itself does not imply that it will receive any
rights, since the assignment of rights is an expression of a user’s decision. However, a CP cannot know ahead of
time whether a particular SC will choose to grant it some rights and must therefore announce itself to all SCs.

1.1.2. Local Dictionary Communication
One primary function of the SC is to identify devices and control points in the user’s local network. In at least
one implementation of the SC, this process includes permitting the user to assign names of the user’s own
choosing (local names) to those devices and control points. Since devices and control points might be visible to
(and therefore named within) different security domains operated by different users, a single device or control
point could have different local names. Therefore, these names remain the property of the user (specifically the
SC) rather than the named device or control point itself. Normally, they would reside within and not be released
from the SC.

For example, consider two roommates, Joe and Sue, sharing a network in their Cambridge apartment. Each has a
personal domain of UPnP devices and control points, but some components are shared between them. One
shared device is Joe’s archive of digital photos. Joe refers to it by the name “pix”, while Sue names it “Joe’s
Snapshot Archive”. Neither name fits the preferences of the other user; therefore, neither name is appropriate as
the sole friendly name for the shared device. Meanwhile, the archive device is known on the network by a unique
name such as DE7Z-GVGK-QTYR-TWPO-YF54-GB4M-OGFH-XJYM that neither user wants to deal with.
The mapping from friendly name to unique name is the function of each user’s user interface (the Security
Console, in this case). That mapping is referred to here as a “local dictionary”.

It is possible that this local dictionary of “My Devices and Control Points” might be useful to other components
within the user’s domain. For example, Joe might have two computers on the network, on one of which he
named his personal devices, but on the second computer he would prefer just to import all names from the first
computer, rather than go to all the work of manually assigning names again to each of his devices. To support
such cases, we provide for access to that dictionary, via the GetNameList action, and we also provide for an event
notification whenever that name list changes.

1.1.3. Certificate Processing
The Security Console is responsible for granting access rights to devices under its control. If a device is shared
among multiple domains, there will be multiple Security Consoles that need to grant rights on that device. This
sharing of the right to grant access can be achieved through co-ownership (see GrantOwnership, in
DeviceSecurity:1), but a co-owner has total access to a device and is, among other things, capable of removing
all access rights of the first owner including its ownership status. If that is too much power to share with some
other SC, that other SC can be granted permissions via the device’s Access Control List, just like any control
point. In that case, that SC will grant rights to CPs (or still other SCs) not by adding ACL entries, since it does
not have the right to edit the ACL, but rather via authorization certificates. (See DeviceSecurity:1 for a definition
of authorization certificates.)

It is possible that a Security Console that does have ownership of a device might also grant rights by certificate,
for example if that device has too little storage for a detailed ACL or if the device is offline at the time the access
right needs to be granted.

The authorization certificate is like an ACL entry, but it is digitally signed and includes an issuer and
specification of the device(s) to which it applies. It will probably also include at least an expiration date and
time.

There are two actions provided here to facilitate the processing of certificates:

29341-13-11 © ISO/IEC:2008(E) – 9 –

1. GetMyCertificates: which serves as a post office mechanism to allow a control point or other security
console to fetch certificates that have been issued to it by this SC (This action is backed up by an
evented variable, PendingCPList, by which the CP or other SC can learn that there are certificates
waiting.); and

2. RenewCertificate: by which a control point can request an updated copy of an expired (or soon to
expire) certificate. For more details about renewal, see section 3, Theory of Operation.

Although GetMyCertificates provides a communication mechanism for certificates, that does not preclude other
communication mechanisms to be implemented by Security Console applications. For example, one might use e-
mail, sneaker-net, some directory service or HTTP for this communication function. In a truly complex network
with a large number of certificates, one might have an intelligent directory service that returns to a CP precisely
the certificate chain it needs to access a particular action on a particular device. These are application design
issues and out of scope of this protocol specification. GetMyCertificates stands as a common denominator, to
insure interoperability (assuming components that share a network at least occasionally).

 – 10 – 29341-13-11 © ISO/IEC:2008(E)

2. Service Modeling Definitions

2.1. Service Type
The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:SecurityConsole:1

The shorthand SecurityConsole:1 is used herein to refer to this service type.

2.2. Namespaces
The XML in this document should be read as if the following namespace definitions were in effect.

xmlns=“urn:schemas-upnp-org:service:DeviceSecurity:1”

xmlns:us=“urn:schemas-upnp-org:service:DeviceSecurity:1”

xmlns:sc=“urn:schemas-upnp-org:service:SecurityConsole:1”

xmlns:ds=“ http://www.w3.org/2000/09/xmldsig#”

2.3. State Variables
SecurityConsole:1 defines two state variables: PendingCPList and NameListVersion.

Table 1: State variable

Variable Name Req. or
Opt. 1

Data Type Default Value

PendingCPList O string <CPList></CPList>
NameListVersion O string
A_ARG_TYPE_string R string
A_ARG_TYPE_base64 R bin.base64

1 R = Required, O = Optional, X = Non-standard.

2.3.1. PendingCPList
The PendingCPList is the string encoding of an XML document giving the list of Control Points (specifically the
hashes of those Control Point keys) that have certificates waiting to be fetched via GetMyCertificates. This
variable is optional: not needed if there is no certificate processing done by this Security Console. For example,
the XML document might be as follows. We use white space here for readability, but since this structure is for
computer-to-computer communication it need have no white space.

<CPList>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>dRDPBgZzTFq7Jl2Q2N/YNghcfj8=</value>
 </hash>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value>
 </hash>
</CPList>

29341-13-11 © ISO/IEC:2008(E) – 11 –

2.3.2. NameListVersion
The NameListVersion variable is modified whenever a change is made to the SC’s name definitions.
Subscription to this variable allows a slaved SC to know when to ask for a new name definition list. The variable
value itself has no meaning. Its purpose is merely to notify a subscribed SC that there is a modified name list to
be fetched. This variable is optional: not needed if there is no GetNameList action implemented. The variable
could, for example, be a counter that gets incremented or a BASE64 encoding of the hash of the name list.

2.3.3. A_ARG_TYPE_string
This is a dummy state variable, for being a related variable to indicate that an argument is a string, possibly
escaped XML.

2.3.4. A_ARG_TYPE_base64
This is a dummy state variable, for being a related variable to indicate that an argument is a BASE64 encoding of
a (usually binary) byte string.

2.4. Eventing and Moderation

Table 2: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

PendingCPList yes N/A N/A N/A N/A
NameListVersion yes N/A N/A N/A N/A
Non-standard state
variables implemented by
an UPnP vendor go here.

TBD TBD TBD TBD TBD

1 Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).

2.5. Actions
As the table below summarizes, SecurityConsole:1 defines actions used to communicate with control points or
other security consoles. These provide for discovery of control points, communication of the set of names of
devices in a personal domain and processing of authorization certificates. Some of these actions are optional,
depending on how full the implementation of the Security Console is.

Table 3: Actions

Name Req. or Opt. 1
PresentKey R
GetNameList O
GetMyCertificates O
RenewCertificate O
Non-standard actions implemented by an UPnP vendor go here. X

1 R = Required, O = Optional, X = Non-standard.

2.5.1. PresentKey
PresentKey accepts an offered key hash from a control point on the network, in order to do “discovery” of
control points without forcing them to become UPnP Devices and announce their existence by SSDP. Other
Security Consoles are expected to announce themselves to Security Consoles via PresentKey as well, since from
the point of view of a Security Console, another SC is just a CP.

 – 12 – 29341-13-11 © ISO/IEC:2008(E)

2.5.1.1. Arguments

Argument(s) Direction relatedStateVariable
HashAlgorithm IN A_ARG_TYPE_string
Key IN A_ARG_TYPE_string
PreferredName IN A_ARG_TYPE_string
IconDesc IN A_ARG_TYPE_string

A Control Point (CP) or Security Console (SC) is identified by its public key. The hash algorithm (SHA1 for
now, with others possible later) and key are given in the first two parameters. The key is encoded as an XML
structure, properly escaped for transmission. This structure should be as described in DeviceSecurity:1, in the
section entitled “Public Keys and their Hashes”. It is hashed on receipt, using the indicated hash algorithm, and
that hash value is stored. It is also presented to the user under the guise of a “Security ID” (in BASE32
encoding) for comparison to the Security ID shipped with or displayed by the CP or SC calling PresentKey.
Using that Security ID, the user assigns a name to the key and therefore the CP or SC.

The PreferredName argument is a descriptive, friendly name for the calling CP or SC. It is available for the SC
to use until the SC’s user chooses a personal name for that caller. Note: in any large network with no physical
security, it is easy to discover multiple callers with the same friendly name, either by popularity of some control
point or by deliberate attack. Therefore, it is important that the process by which a Security Console accepts a
presented key into the category of “My Control Points” (or whatever it would be called) should include
examination of the full hash of the key. For presentation of this value to users, we have defined a BASE32
mapping, as described in section 3.6, below.

The CP can also offer its own icon for display, but the IconDesc is allowed to be empty. If it is non-empty, it
should be an (escaped) XML structure of the form:

<icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
</icon>

2.5.1.2. Effect on State
Unless the offered key hash is already known, it is added to the pool of CP key hashes waiting to be named. If
the offered key is already known, there is no action. Naming of key hashes from that pool is a manual operation
that may occur sometime after the completion of this action.

2.5.1.3. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.5.2. GetNameList

2.5.2.1. Arguments

Argument(s) Direction relatedStateVariable
Names OUT R A_ARG_TYPE_string

R = RetVal

29341-13-11 © ISO/IEC:2008(E) – 13 –

The action returns an XML element, encoded as a string as per section 3.7 below, containing all of the names
defined by the SC. Group names, defined by certificate (as described in DeviceSecurity:1), are not listed since
they are available by certificate.

The data structure returned in the Names argument is digitally signed by the originating Security Console.

If the user’s network is to be protected from inventory-taking, then this action should be access controlled – with
the ACL controlling it edited manually by the user who operates this Security Console.

This XML element is of the form of a list of name definitions, with the whole list signed by the Security Console
signature key. For example, a name list of one device and one control point (including its signature) might be:

<SignedNameList>
 <Names us:Id=“NameList”>
 <Device>
 <name>Joe’s Snapshot Archive</name>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value>
 </hash>
 </Device>
 <CP>
 <name>Joe’s PC</name>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>CC0FQNQuS2S5S22aQnFdmST4tnw=</value>
 </hash>
 </CP>
 </Names>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="minimal"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>
 <Reference URI="#NameList">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>SiGg1/kFmfx7aQ4XWq56rdUQfyo=</DigestValue>
 </Reference>
 </SignedInfo>
<SignatureValue>Tx3dGYKl8UWjx00Q+fE0aYKlMcr2UTO96shC/duR9xYkFY2za5UEVrf8o22
mBEq7LQg3LQF9L5EpLpChtXZEgQ==</SignatureValue>
 <KeyInfo>
 <KeyValue>
 <RSAKeyValue>
<Modulus>tPK7xYLJqm77saltSus77darlxIHHWNajVEdxlwV7YmlnUyp/plhKltFr1jXzozXfP
Wc3ZwN6JfpdbyDwlJ74Q==</Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</SignedNameList>

Note that the digest and signature values in the example above were not calculated from this example, so they
will fail to verify. Note also that we use white space to make the XML more readable, while we expect real XML
on the wire to use no unnecessary white space, since this structure is for communication between two machines.

The caller needs to verify the signature before displaying or otherwise relying on those names.

2.5.2.2. Effect on State
None.

 – 14 – 29341-13-11 © ISO/IEC:2008(E)

2.5.2.3. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
701 Not authorized Authorization failure (action probably not signed by trusted

control point public key).
800-899 TBD (Specified by UPnP vendor.)

2.5.3. GetMyCertificates
GetMyCertificates retrieves and returns the full set of certificates being held for the indicated CP, if any. The
purpose is to provide for communications of certificates, not for a directory of all certificates ever issued. It is
the responsibility of the CP to store the certificates that empower it, whether internally or via some network
directory or backup service. At the discretion of the Security Console application developer, other delivery
mechanisms may be used, but this one is provided as a common denominator among components from different
manufacturers. It is also up to the discretion of the Security Console developer whether and how to back up all
working data of that SC, possibly including the set of all certificates it has generated. It is up to either the
Security Console developer or the human user operating the SC to determine when a given certificate will no
longer be returned to the caller by this action. That is, the developer or end user decides when to flush a given
certificate from the cache of certificates held for a given CP.

2.5.3.1. Arguments

Argument(s) Direction relatedStateVariable
HashAlgorithm IN A_ARG_TYPE_string
Hash IN A_ARG_TYPE_base64
Certificates OUT R A_ARG_TYPE_string

R = RetVal

The argument Hash is the hash of the key of the CP whose certificates are being fetched. HashAlgorithm gives
the algorithm used in that hash, currently SHA1. The hash is BASE64 encoded, for example:

Gd48BqQzAMPn4FkWnFslMMdxSG4=
The Certificates argument is an escaped XML document containing the returned set of certificates, in the
following format:
<Sequence>{<cert>…</cert><ds:Signature>…</ds:Signature>}*</Sequence>
where <cert> is defined in DeviceSecurity:1.

2.5.3.2. Effect on State
When a CP gets its own certificates, its hash is removed from the PendingCPList. That hash is added back to the
PendingCPList when a new CP certificate is added or an old one is changed. A CP’s retrieval of its own
certificates is established only if the CP signed the call to GetMyCertificates. If GetMyCertificates is called by
some other CP (or SC) or by an anonymous caller, then the CP’s hash is not removed from the PendingCPList.

How GetMyCertificates is implemented is up to the Security Console developer. For example, one might
maintain what looks like a local copy of an ACL and note, internally, for each ACL entry whether it is an actual
ACL entry or a certificate. When an entry changes in that local ACL ghost copy, if it is a real ACL entry, the SC
can call ReplaceACLEntry, and if it is a certificate entry, the SC can add the subject CP to the PendingCPList. In
such an implementation, some certificate entries would be enabled by a chain of certificates allowing the SC to
grant some set of privileges. In that case, this chain of empowering certificates would be referred to by the ghost
ACL entry and GetMyCertificates would return the entire empowering chain, not just the final certificate.

More complex certificate chain discovery can be done by a service yet to be defined, if we discover installations
that require complex certificate chains, large named groups of CPs, etc. We do not anticipate such installations
at this time.

29341-13-11 © ISO/IEC:2008(E) – 15 –

2.5.3.3. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
732 No certificates There were no certificates at this SC for this caller.
800-899 TBD (Specified by UPnP vendor.)

2.5.4. RenewCertificate
We assume that the user of a Security Console will appear to be editing ACL entries empowering various control
points or other security consoles, whether those authorizations happen by ACL editing or certificate issuance. In
the case that the authorization is by certificate, it becomes necessary to model the act of deleting a specific entry.
Rather than use elaborate certificate revocation mechanisms, we use the simple renewal mechanism. A certificate
is issued with a short lifetime. The actual lifetime used is established by the Security Console that issues that
certificate, perhaps with user input. However, the certificate is marked as being subject to renewal. The lifetime
used is not a true expiration date for the certificate, but rather a length of time after which the certificate needs to
be synchronized with the SC’s image of what the ACL would have been, had authorization been performed by
ACL editing.

A certificate that is subject to renewal will have an additional element, <renew/> in its <valid> element:

<valid>
 <not-before> … </not-before>
 <not-after> … </not-after>
 <renew></renew>
</valid>

The <renew/> element indicates that the certificate in question can be renewed. To renew it, one sends the old
certificate body to the issuer’s RenewCertificate action and, if the authorization has not been deleted, the issuer
SC generates and returns a new certificate with validity period starting at the present time and ending after the
renewal interval from the present time. [See section 3.5 for a definition of renewal interval.] How much ahead
of time a CP chooses to renew an existing certificate is not specified here. For example, the CP can renew a
certificate when it is half-way through its lifetime, assuming the issuing SC is available. As long as the SC is
expected to be online and in operation at least once in half the renewal interval, that algorithm would allow
service to continue uninterrupted.

2.5.4.1. Arguments

Argument(s) Direction relatedStateVariable
OldCertificate IN A_ARG_TYPE_string
NewCertificate OUT R A_ARG_TYPE_string

R = RetVal

Note: the XML in this document is formatted for reading. We expect that real XML on the wire will not use any
extra white space.

The OldCertificate argument is an XML element such as:

 – 16 – 29341-13-11 © ISO/IEC:2008(E)

<cert>
 <issuer>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value>
 </hash>
 </issuer>
 <subject>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>dRDPBgZzTFq7Jl2Q2N/YNghcfj8=</value>
 </hash>
 </subject>
 <may-not-delegate/>
 <tag>
 <device>
 <hash>
 <algorithm>SHA1</algorithm>
 <value>2jmj7l5rSw0yVb/vlWAYkK/YBwk=</value>
 </hash>
 </device>
 <access><p1/><p2/></access>
 </tag>
 <valid>
 <not-before>2001-09-01T17:00:00Z</not-before>
 <not-after>2001-10-01T17:00:00Z</not-after>
 <renew></renew>
 </valid>
</cert>

The old certificate needs to have been issued by the SC being called. The <Signature> normally associated
with a certificate is not to be present in the OldCertificate. The us:Id attribute in <cert> is therefore not needed.

On output, if the indicated authorization is still in force, a new <cert> is returned, with new dates and a new,
valid <Signature> element, using the XML form:

<Sequence><cert>…</cert><ds:Signature>…</ds:Signature></Sequence>

2.5.4.2. Effect on State
There is no effect on visible state. Depending on the Security Console developer, there may be a record kept of
the last time a given certificate was renewed. Alternatively, one might keep a ghost ACL, as described in section
 2.5.3.2 and include in a renewable certificate entry the length of time that any issued certificate should live, so
that the certificate actually generated would be set to expire at that length of time after the time of the
RenewCertificate call. See section 3.5 for more information about the certificate renewal process.

2.5.4.3. Errors

errorCode errorDescription Description
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
733 Revoked Certificate has been revoked.
734 Not issued here Certificate provided was not issued by this SC
800-899 TBD (Specified by UPnP vendor.)

29341-13-11 © ISO/IEC:2008(E) – 17 –

2.6. Relationships between Actions
The actions presented here are independent, except indirectly in that a certificate must be delivered to someone
before it would be renewed and that a CP or SC must be known before a certificate can be given to it.

2.7. Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most-specific error should be returned.

errorCode errorDescription Description
401 Invalid Action See UPnP Device Architecture section on Control.
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

 – 18 – 29341-13-11 © ISO/IEC:2008(E)

3. Theory of Operation
From the point of view of UPnP, the Security Console is a user application that is both a device and a control
point. Its function is to give the user an interface by which to administer access control on the user’s own
devices. As part of that function, the Security Console maintains a list of all devices, control points and other
Security Consoles that constitute the user’s “own” domain. No network protocol or physical mechanism can be
counted on to define that set, since it amounts to capturing information from the user’s mind. Therefore, the
Security Console enables the user to define that set manually.

As a Control Point, the Security Console invokes Ownership and Access Control List (ACL) Editing actions, as
defined in DeviceSecurity:1. Sometimes, the grant of authorization by a Security Console to a Control Point (or
other Security Console) cannot be achieved by ACL editing. For example, a device might not have memory to
hold any more ACL entries or the Security Console doing the grant of authorization might not have been granted
ACL editing permission or the device might be offline. In those circumstances, the grant of authorization must
be by authorization certificate. These certificates must be communicated to the grantee (or to the affected device,
if it has room in its certificate cache, but that operation is described in DeviceSecurity:1).

Also, as a Control Point, each Security Console must announce its own keys to any other Security Console it
discovers, by use of PresentKey. However, a Security Console is also a device. As a device it is self-owned. If
it has any access controlled actions, then those are to be administered by the human user and not by some other
Security Console. Therefore, a Security Console does not need to include a DeviceSecurity service.

3.1. Control Point Discovery
In pre-security UPnP, there were no components that would need a list of control points and control points could
be completely anonymous. With UPnP Security, the user must grant access rights to control points and must
therefore both list and name them. The discovery of the list of control points and the assignment of names to
them is performed by the Security Console.

Rather than change the nature of control points, by having them engage in SSDP advertising, the Security
Console advertises itself and offers an action, PresentKey, by which a security-aware CP announces itself to the
SC.

3.2. “My Domain” and Component Naming
In pre-security UPnP, there was no provision for distinguishing between “My Devices” and the devices that were
discoverable by SSDP. With UPnP Security, we make a distinction between components (devices, control points
or Security Consoles) that are in “my domain” and those that are physically on the same network but not “mine”.
This definition of “my domain” is performed manually by the user, via the Security Console.

Since a component might act or be acted upon in multiple domains simultaneously, components are named by
UPnP Security by a fixed, globally unique ID (the hash of a public key). These globally unique IDs are not
meant to be used by a human user, except once during an act of verification to thwart imposters. Instead, the
human uses a name he or she assigns to the component. Components can offer “friendly names” to the user to
help in that name assignment, but such offered names are potential avenues of attack and should not be relied
upon since those offered names can be spoofed or can simply collide. The unique ID cannot be spoofed or
accidentally collide and verification of that ID is therefore a valuable part of the component discovery and
naming process.

3.2.1. Hardware alternatives
If the UPnP Security Working Committee were free to specify that every UPnP component were to have an extra
hardware port, such as a USB connector, then one could devise physically secured hardware channels for
introduction of components and secure transfer of their keys to a Security Console, without requiring the user
ever to see the globally unique ID, much less verify it.

If some manufacturer chooses to build components with such a second channel, for security uses, and deliver a
security console capable of using those second channels, then the user would no doubt welcome the ease of use.

29341-13-11 © ISO/IEC:2008(E) – 19 –

This document in general and the PresentKey mechanism in particular are not meant to preclude some
manufacturer from providing such a channel. However, PresentKey is required, rather than optional, so that an
SC can deal with Control Points that are not so equipped or that cannot be brought into range of the SC for the
physical second channel to be used.

3.3. Certificates
The most straight-forward method of granting access permission is through modification of the device’s Access
Control List (ACL). Actions that enable that modification are described in the DeviceSecurity:1 service
definition.

In some cases, it is not possible or not desirable to grant permission by modifying an ACL. These include:

• when the Security Console (SC) that is granting that permission (that is, is in communication with the
CP that is being granted the permission), does not have permission to edit the ACL of the device

• when the granting SC is not in communication with the target device

• when the device does not have enough memory to hold any more ACL entries

In these cases, access is granted by authorization certificate. An authorization certificate can be thought of as a
digitally signed ACL entry. It is defined more formally in DeviceSecurity:1.

For ease of administration, a Security Console might define named groups of control points. Such named groups
are defined via group-membership Name Certificates, defined in DeviceSecurity:1.

3.4. Certificate Delivery
A certificate (or a chain of such certificates) must be available at the device at the time of any request authorized
by that certificate, in order to prove the right to perform the requested action. This certificate must somehow be
communicated from the SC that generates it to the device that applies it. UPnP supports two methods:

• The certificate can be cached by the target device, directly.

• The certificate can be held by the Control Point (or Security Console) to which the permission is being
granted.

If the certificate is to be communicated to a device, then it can be written to that component via a SOAP
CacheCertificate action, as defined in DeviceSecurity:1. A Control Point, however, does not offer SOAP actions.
To overcome this lack, when the granting SC has a certificate to communicate to a CP, it caches that certificate
itself, advertises the existence of that certificate (via the PendingCPList evented variable) and waits for the CP to
fetch its pending certificates via the GetMyCertificates action. The same method is available to be used to
communicate a certificate to another SC (since to a security console, an SC looks just like a CP).

3.5. Certificate Renewal
When access is granted by modification of an ACL, one is free to delete an ACL entry. We imagine that a user,
operating a Security Console, may be given the impression of editing an ACL whether authorizations are granted
by ACL edit or by issuance of authorization certificates.

If the user wants to delete one of these authorizations and it had been issued by certificate, there is a problem.
The certificate is not under the control of the user’s SC. It is in the hands of the CP that was granted the
authorization involved. There could have been an unlimited number of copies made of the certificate, so deleting
one copy of the certificate does not delete the authorization the way deletion of an ACL entry does.

 – 20 – 29341-13-11 © ISO/IEC:2008(E)

In general, there are three ways to effectively delete a certificate:

1. to have it expire, by way of its <not-after> date and time;

2. to have a certificate validator keep an up to date revocation list; or

3. to have the certificate validator do an online test (as in OCSP1) with every validation.

Of these methods, UPnP Security has chosen to implement #1, as the simplest. Method #2, a revocation list (or
CRL), is very complex and has been generally discounted in the industry. Method #3 works, but requires a
certificate processing service that is available on the network at all times and incurs the overhead of an online test
with each access controlled action call. In effect, this would double the network traffic for all secured actions.

No matter which method of certificate “deletion” one chooses, one must first answer the question:

 How long am I willing to let someone else act on information I know to be false?

That length of time is here called the renewal interval.

The knee-jerk answer is “zero time”, but that is not an option. Even in the OCSP case, it takes time to
communicate the result from the validation server to the relying party and during the time the response message
is in transit, the server may learn that the message just sent was false. This assumes, of course, that the validation
server learns instantly that some certificate is to be revoked. That information, however, is in the head of some
human being and that human being may not be in communication with the validation server for some length of
time after learning that a certificate needs to be revoked. If the network containing the validation server and the
user of that service (the secured device) happens to be partitioned, momentarily, or the validation server is down
for some reason, the time #3 takes could be considerable (even days). The online test cannot proceed until both
machines are in communication with each other. If we were to design in such an online test, then the home
network could become inoperative until the validation server is brought up.

Complicating the choice of renewal interval is the fact that home UPnP devices are not all going to have calendar
clocks. Such devices would have to rely on the SetTimeHint action of DeviceSecurity:1 and we cannot predict
how many days would elapse between invocations of that action to update the device’s concept of the current
date and time.

A user should probably choose this renewal interval, but that assumes that the user understands all the
implications and can make a proper decision. That decision is a matter for application / GUI designers and not in
the scope of this spec. Too small an interval would lead to periods of unavailability of secured devices. Too
long an interval would lead to noticeable periods in which a revocation had not taken effect.

Once that renewal interval is chosen, however, its use is clear.

One issues certificates with a limited lifetime – specifically with a lifetime equal to the renewal interval. This is
the maximum length of time that it would take the SC operator to have a change of mind take complete effect.
However, it is not desirable to force the SC operator to re-issue a certificate every renewal interval. Therefore,
the certificate is issued with the <renew/> element in its <valid> field, indicating that it can be renewed
automatically. The SC that issued it would have to be online for the renewal to happen, but a CP is free to ask
for renewal before the old certificate expires.

A true computation of renewal interval might require formal risk analysis. It is unlikely that a home user would
engage in that, although a manufacturer might and might express the results in a Security Console’s code.

3.6. BASE32 Encoding
For display of a Security ID (CP or SC key hash) to the user, in order to minimize confusion, we have chosen
BASE32 encoding. A 160-bit hash value is represented as a sequence of 32 5-bit quantities, with the left-most 5-
bits being the 5 most significant bits of the 160-bit quantity, etc. The 5-bit quantity is encoded using 32
characters: A..Z, 2..5, 7, 9, in that order, so that 0 becomes “A”, 1 becomes “B”, 31 becomes “9”. The resulting
string of letters and numbers will resemble a product registration key, with which the user is expected to be
familiar, and omits the digits 0, 1, 6 and 8 which can be confused with O, I, G and B. These can be printed as a

1 OCSP: Online Certificate Status Protocol (see the IETF RFC database)

29341-13-11 © ISO/IEC:2008(E) – 21 –

sequence of 8 groups of 4 characters each, separated by dashes. In some cases, e.g., in a summary listing of
devices or control points, one might use only the left-most group of 4 characters, which should be enough to
resolve most ambiguities.

For example, the SHA-1 hash value (in hex):

193d9354 ca84f119 d9eec17b c3078c71 8a7ba70c

would be (in BASE32):

DE7Z-GVGK-QTYR-TWPO-YF54-GB4M-OGFH-XJYM

and might be truncated to: DE7Z or DE7Z-GVGK for resolving ambiguities (e.g., in a list of discovered
devices), while the full security ID might be used while verifying the correctness of a control point key.

3.7. XML Strings as UPnP Arguments
The UPnP Device Architecture 1.0 schemas for SOAP as a transport protocol for calling UPnP actions with their
respective arguments do not permit arguments that are themselves XML. Some of the security related actions
described in this document require the arguments themselves to be XML strings. These XML argument strings
are embedded in the surrounding SOAP XML. To ensure that embedded XML argument strings do not “break”
the surrounding SOAP XML, it is necessary that the embedded XML is “escaped” as follows:

• The ‘<’ character is encoded as ‘<’

• The ‘>’ character is encoded as ‘>’

• The ‘&’ character is encoded as ‘&’

 – 22 – 29341-13-11 © ISO/IEC:2008(E)

4. XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion> <!-- UPnP version 1.x -->
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>PresentKey</name>
 <argumentList>
 <argument>
 <name>HashAlgorithm</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Key</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>PreferredName</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>IconDesc</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetNameList</name>
 <argumentList>
 <argument>
 <name>Names</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>out</direction>
 <retval/>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetMyCertificates</name>
 <argumentList>
 <argument>
 <name>HashAlgorithm</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Hash</name>
 <relatedStateVariable>A_ARG_TYPE_base64</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Certificates</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>out</direction>
 <retval/>

29341-13-11 © ISO/IEC:2008(E) – 23 –

 </argument>
 </argumentList>
 </action>
 <action>
 <name>RenewCertificate</name>
 <argumentList>
 <argument>
 <name>OldCertificate</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>NewCertificate</name>
 <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable>
 <direction>out</direction>
 <retval/>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>PendingCPList</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>NameListVersion</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_string</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_base64</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

	CONTENTS
	FOREWORD
	ORIGINAL UPNP DOCUMENTS (informative)
	1. Overview and Scope
	1.1. Security Console Actions

	2. Service Modeling Definitions
	2.1. Service Type
	2.2. Namespaces
	2.3. State Variables
	2.4. Eventing and Moderation
	2.5. Actions
	2.6. Relationships between Actions
	2.7. Common Error Codes

	3. Theory of Operation
	3.1. Control Point Discovery
	3.2. “My Domain” and Component Naming
	3.3. Certificates
	3.4. Certificate Delivery
	3.5. Certificate Renewal
	3.6. BASE32 Encoding
	3.7. XML Strings as UPnP Arguments

	4. XML Service Description
	Table 1: State variable
	Table 2: Event Moderation
	Table 3: Actions

