

Reference number
ISO/IEC 29361:2008(E)

© ISO/IEC 2008

INTERNATIONAL
STANDARD

ISO/IEC
29361

First edition
2008-06-15

Information technology — Web Services
Interoperability — WS-I Basic Profile
Version 1.1

Technologies de l'information — Interopérabilité des services
du Web — Profil de base WS-I, version 1.1

ISO/IEC 29361:2008(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2008 – All rights reserved

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved iii

Contents

Foreword ...viii

1 Scope and introduction..1

1.1 Scope...1

1.2 Relationships to Other Profiles...1

1.3 Changes from Basic Profile Version 1.0...2

1.4 Guiding Principles ..2

1.5 Notational Conventions ..3

1.6 Profile Identification and Versioning...4

2 Profile Conformance..5

2.1 Conformance Requirements ..5

2.2 Conformance Targets ..6

2.3 Conformance Scope ..6

2.4 Claiming Conformance...7

3 Messaging ...7

3.1 SOAP Envelopes ...8

3.1.1 SOAP Envelope Structure ...8

3.1.2 SOAP Envelope Namespace ..9

3.1.3 SOAP Body Namespace Qualification...9

3.1.4 Disallowed Constructs ...9

3.1.5 SOAP Trailers..9

3.1.6 SOAP encodingStyle Attribute...10

3.1.7 SOAP mustUnderstand Attribute...10

3.1.8 xsi:type Attributes ..10

3.1.9 SOAP1.1 attributes on SOAP1.1 elements ...11

ISO/IEC 29361:2008(E)

iv © ISO/IEC 2008 – All rights reserved

3.2 SOAP Processing Model..11

3.2.1 Mandatory Headers ...11

3.2.2 Generating mustUnderstand Faults...11

3.2.3 SOAP Fault Processing...11

3.3 SOAP Faults ..12

3.3.1 Identifying SOAP Faults...12

3.3.2 SOAP Fault Structure ..12

3.3.3 SOAP Fault Namespace Qualification...13

3.3.4 SOAP Fault Extensibility..14

3.3.5 SOAP Fault Language...14

3.3.6 SOAP Custom Fault Codes ...14

3.4 Use of SOAP in HTTP..15

3.4.1 HTTP Protocol Binding ..16

3.4.2 HTTP Methods and Extensions ...16

3.4.3 SOAPAction HTTP Header..16

3.4.4 HTTP Success Status Codes ..17

3.4.5 HTTP Redirect Status Codes ..17

3.4.6 HTTP Client Error Status Codes..18

3.4.7 HTTP Server Error Status Codes ..18

3.4.8 HTTP Cookies ...18

4 Service Description..19

4.1 Required Description..20

4.2 Document Structure ...20

4.2.1 WSDL Schema Definitions ..20

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved v

4.2.2 WSDL and Schema Import..21

4.2.3 WSDL Import location Attribute Structure..22

4.2.4 WSDL Import location Attribute Semantics..22

4.2.5 Placement of WSDL import Elements ...23

4.2.6 XML Version Requirements...24

4.2.7 XML Namespace declarations...24

4.2.8 WSDL and the Unicode BOM..24

4.2.9 Acceptable WSDL Character Encodings ...24

4.2.10 Namespace Coercion ..24

4.2.11 WSDL documentation Element..25

4.2.12 WSDL Extensions..25

4.3 Types ...26

4.3.1 QName References...26

4.3.2 Schema targetNamespace Structure...26

4.3.3 soapenc:Array ...26

4.3.4 WSDL and Schema Definition Target Namespaces......................................28

4.4 Messages...28

4.4.1 Bindings and Parts ..29

4.4.2 Bindings and Faults ...30

4.4.3 Declaration of part Elements ...31

4.5 Port Types..31

4.5.1 Ordering of part Elements ...31

4.5.2 Allowed Operations ...32

4.5.3 Distinctive Operations..32

4.5.4 parameterOrder Attribute Construction..32

4.5.5 Exclusivity of type and element Attributes ...32

ISO/IEC 29361:2008(E)

vi © ISO/IEC 2008 – All rights reserved

4.6 Bindings ...33

4.6.1 Use of SOAP Binding ..33

4.7 SOAP Binding ..33

4.7.1 Specifying the transport Attribute...33

4.7.2 HTTP Transport...33

4.7.3 Consistency of style Attribute ..34

4.7.4 Encodings and the use Attribute..34

4.7.5 Multiple Bindings for portType Elements ...34

4.7.6 Operation Signatures...34

4.7.7 Multiple Ports on an Endpoint..35

4.7.8 Child Element for Document-Literal Bindings ..35

4.7.9 One-Way Operations...35

4.7.10 Namespaces for soapbind Elements ...36

4.7.11 Consistency of portType and binding Elements...36

4.7.12 Describing headerfault Elements...36

4.7.13 Enumeration of Faults..37

4.7.14 Type and Name of SOAP Binding Elements ...37

4.7.15 name Attribute on Faults..38

4.7.16 Omission of the use Attribute...38

4.7.17 Default for use Attribute ...38

4.7.18 Consistency of Envelopes with Descriptions ...38

4.7.19 Response Wrappers..39

4.7.20 Part Accessors ..39

4.7.21 Namespaces for Children of Part Accessors ...39

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved vii

4.7.22 Required Headers ...41

4.7.23 Allowing Undescribed Headers..41

4.7.24 Ordering Headers ..41

4.7.25 Describing SOAPAction...42

4.7.26 SOAP Binding Extensions ...43

4.8 Use of XML Schema ..43

5 Service Publication and Discovery ..44

5.1 bindingTemplates...44

5.2 tModels ..45

6 Security..46

6.1 Use of HTTPS..47

Appendix A: Referenced Specifications...49

Appendix B: Extensibility Points ..50

Appendix C: Normative References ..52

Appendix D: Defined Terms...53

Appendix E: Acknowledgements ...55

ISO/IEC 29361:2008(E)

viii © ISO/IEC 2008 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29361 was prepared by the Web Services Interoperability Organization (WS-I) and was adopted,
under the PAS procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel
with its approval by national bodies of ISO and IEC.

INTERNATIONAL STANDARD ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 1

Information technology — Web Services
Interoperability — WS-I Basic Profile Version 1.1

1 Scope and introduction

1.1 Scope

This International Standard defines the WS-I Basic Profile 1.1 (hereafter, "Profile"),
consisting of a set of non-proprietary Web services specifications, along with
clarifications, refinements, interpretations and amplifications of those specifications
which promote interoperability.

Section 1 introduces the Profile, and explains its relationships to other profiles.

Section 2, "Profile Conformance", explains what it means to be conformant to the
Profile.

Each subsequent section addresses a component of the Profile, and consists of
two parts: an overview detailing the component specifications and their
extensibility points, followed by subsections that address individual parts of the
component specifications. Note that there is no relationship between the section
numbers in this International Standard and those in the referenced specifications.

1.2 Relationships to Other Profiles

This Profile is derived from the Basic Profile 1.0 by incorporating any errata to date
and separating out those requirements related to the serialization of envelopes
and their representation in messages. Such requirements are now part of the
Simple SOAP Binding Profile 1.0, identified with a separate conformance claim.
This separation is made to facilitate composability of Basic Profile 1.1 with any
profile that specifies envelope serialization, including the Simple SOAP Binding
Profile 1.0 and the Attachments Profile 1.0. A combined claim of conformance to
both the Basic Profile 1.1 and the Simple SOAP Binding Profile 1.0 is roughly
equivalent to a claim of conformance to the Basic Profile 1.0 plus published errata.

This Profile, composed with the Simple SOAP Binding Profile 1.0 supercedes the
Basic Profile 1.0. The Attachments Profile 1.0 adds support for SOAP with
Attachments, and is intended to be used in combination with this Profile.

ISO/IEC 29361:2008(E)

2 © ISO/IEC 2008 – All rights reserved

1.3 Changes from Basic Profile Version 1.0

This specification is derived from the Basic Profile Version 1.0, and incorporates
published errata against that specification. The most notable changes are:

• MESSAGE conformance target - Some requirements that had a MESSAGE
conformance target in BP1.0 now use a new target, ENVELOPE. This
facilitates alternate serialisations of the message, such as that described in
the Attachments Profile.

• SOAP Binding - Requirements relating to the SOAP binding's serialization
of the message have been moved to the Simple SOAP Binding Profile to
facilitate other serializations.

1.4 Guiding Principles

The Profile was developed according to a set of principles that, together, form the
philosophy of the Profile, as it relates to bringing about interoperability. This
section documents these guidelines.

No guarantee of interoperability
It is impossible to completely guarantee the interoperability of a particular
service. However, the Profile does address the most common problems that
implementation experience has revealed to date.

Application semantics
Although communication of application semantics can be facilitated by the
technologies that comprise the Profile, assuring the common understanding
of those semantics is not addressed by it.

Testability
When possible, the Profile makes statements that are testable. However,
such testability is not required. Preferably, testing is achieved in a non-
intrusive manner (e.g., examining artifacts "on the wire").

Strength of requirements
The Profile makes strong requirements (e.g., MUST, MUST NOT) wherever
feasible; if there are legitimate cases where such a requirement cannot be
met, conditional requirements (e.g., SHOULD, SHOULD NOT) are used.
Optional and conditional requirements introduce ambiguity and mismatches
between implementations.

Restriction vs. relaxation
When amplifying the requirements of referenced specifications, the Profile
may restrict them, but does not relax them (e.g., change a MUST to a
MAY).

Multiple mechanisms
If a referenced specification allows multiple mechanisms to be used
interchangeably, the Profile selects those that are well-understood, widely
implemented and useful. Extraneous or underspecified mechanisms and
extensions introduce complexity and therefore reduce interoperability.

Future compatibility
When possible, the Profile aligns its requirements with in-progress revisions
to the specifications it references. This aids implementers by enabling a

http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.htm

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 3

graceful transition, and assures that WS-I does not 'fork' from these efforts.
When the Profile cannot address an issue in a specification it references,
this information is communicated to the appropriate body to assure its
consideration.

Compatibility with deployed services
Backwards compatibility with deployed Web services is not a goal for the
Profile, but due consideration is given to it; the Profile does not introduce a
change to the requirements of a referenced specification unless doing so
addresses specific interoperability issues.

Focus on interoperability
Although there are potentially a number of inconsistencies and design flaws
in the referenced specifications, the Profile only addresses those that affect
interoperability.

Conformance targets
Where possible, the Profile places requirements on artifacts (e.g., WSDL
descriptions, SOAP messages) rather than the producing or consuming
software's behaviors or roles. Artifacts are concrete, making them easier to
verify and therefore making conformance easier to understand and less
error-prone.

Lower-layer interoperability
The Profile speaks to interoperability at the application layer; it assumes
that interoperability of lower-layer protocols (e.g., TCP, IP, Ethernet) is
adequate and well-understood. Similarly, statements about application-layer
substrate protocols (e.g., SSL/TLS, HTTP) are only made when there is an
issue affecting Web services specifically; WS-I does not attempt to assure
the interoperability of these protocols as a whole. This assures that WS-I's
expertise in and focus on Web services standards is used effectively.

1.5 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119.

Normative statements of requirements in the Profile (i.e., those impacting
conformance, as outlined in "Conformance Requirements") are presented in the
following manner:

RnnnnStatement text here.

where "nnnn" is replaced by a number that is unique among the requirements in
the Profile , thereby forming a unique requirement identifier.

Requirement identifiers can be considered to be namespace qualified, in such a
way as to be compatible with QNames from Namespaces in XML. If there is no
explicit namespace prefix on a requirement's identifier (e.g., "R9999" as opposed
to "bp10:R9999"), it should be interpreted as being in the namespace identified by
the conformance URI of the document section it occurs in. If it is qualified, the
prefix should be interpreted according to the namespace mappings in effect, as
documented below.

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/REC-xml-names/

ISO/IEC 29361:2008(E)

4 © ISO/IEC 2008 – All rights reserved

Some requirements clarify the referenced specification(s), but do not place
additional constraints upon implementations. For convenience, clarifications are
annotated in the following manner: C

Some requirements are derived from ongoing standardization work on the
referenced specification(s). For convenience, such forward-derived statements are
annotated in the following manner: xxxx, where "xxxx" is an identifier for the
specification (e.g., "WSDL20" for WSDL Version 2.0). Note that because such
work was not complete when this document was published, the specification that
the requirement is derived from may change; this information is included only as a
convenience to implementers.

Extensibility points in underlying specifications (see "Conformance Scope") are
presented in a similar manner:

EnnnnExtensibility Point Name - Description

where "nnnn" is replaced by a number that is unique among the extensibility points
in the Profile. As with requirement statements, extensibility statements can be
considered namespace-qualified.

This specification uses a number of namespace prefixes throughout; their
associated URIs are listed below. Note that the choice of any namespace prefix is
arbitrary and not semantically significant.

• soap - "http://schemas.xmlsoap.org/soap/envelope/"
• xsi - "http://www.w3.org/2001/XMLSchema-instance"
• xsd - "http://www.w3.org/2001/XMLSchema"
• soapenc - "http://schemas.xmlsoap.org/soap/encoding/"
• wsdl - "http://schemas.xmlsoap.org/wsdl/"
• soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"
• uddi - "urn:uddi-org:api_v2"

1.6 Profile Identification and Versioning

This document is identified by a name (in this case, Basic Profile) and a version
number (here, 1.1). Together, they identify a particular profile instance.

Version numbers are composed of a major and minor portion, in the form
"major.minor". They can be used to determine the precedence of a profile
instance; a higher version number (considering both the major and minor
components) indicates that an instance is more recent, and therefore supersedes
earlier instances.

Instances of profiles with the same name (e.g., "Example Profile 1.1" and
"Example Profile 5.0") address interoperability problems in the same general
scope (although some developments may require the exact scope of a profile to
change between instances).

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 5

One can also use this information to determine whether two instances of a profile
are backwards-compatible; that is, whether one can assume that conformance to
an earlier profile instance implies conformance to a later one. Profile instances
with the same name and major version number (e.g., "Example Profile 1.0" and
"Example Profile 1.1") MAY be considered compatible. Note that this does not
imply anything about compatibility in the other direction; that is, one cannot
assume that conformance with a later profile instance implies conformance to an
earlier one.

2 Profile Conformance

Conformance to the Profile is defined by adherence to the set of requirements
defined for a specific target, within the scope of the Profile. This section explains
these terms and describes how conformance is defined and used.

2.1 Conformance Requirements

Requirements state the criteria for conformance to the Profile. They typically refer
to an existing specification and embody refinements, amplifications, interpretations
and clarifications to it in order to improve interoperability. All requirements in the
Profile are considered normative, and those in the specifications it references that
are in-scope (see "Conformance Scope") should likewise be considered
normative. When requirements in the Profile and its referenced specifications
contradict each other, the Profile 's requirements take precedence for purposes of
Profile conformance.

Requirement levels, using RFC2119 language (e.g., MUST, MAY, SHOULD)
indicate the nature of the requirement and its impact on conformance. Each
requirement is individually identified (e.g., R9999) for convenience.

For example;

R9999 WIDGETs SHOULD be round in shape.

This requirement is identified by "R9999", applies to the target WIDGET (see
below), and places a conditional requirement upon widgets; i.e., although this
requirement must be met to maintain conformance in most cases, there are some
situations where there may be valid reasons for it not being met (which are
explained in the requirement itself, or in its accompanying text).

Each requirement statement contains exactly one requirement level keyword (e.g.,
"MUST") and one conformance target keyword (e.g., "MESSAGE"). The
conformance target keyword appears in bold text (e.g. "MESSAGE"). Other
conformance targets appearing in non-bold text are being used strictly for their
definition and NOT as a conformance target. Additional text may be included to
illuminate a requirement or group of requirements (e.g., rationale and examples);
however, prose surrounding requirement statements must not be considered in
determining conformance.

http://www.ietf.org/rfc/rfc2119.txt

ISO/IEC 29361:2008(E)

6 © ISO/IEC 2008 – All rights reserved

Definitions of terms in the Profile are considered authoritative for the purposes of
determining conformance.

None of the requirements in the Profile, regardless of their conformance level,
should be interpreted as limiting the ability of an otherwise conforming
implementation to apply security countermeasures in response to a real or
perceived threat (e.g., a denial of service attack).

2.2 Conformance Targets

Conformance targets identify what artifacts (e.g., SOAP message, WSDL
description, UDDI registry data) or parties (e.g., SOAP processor, end user)
requirements apply to.

This allows for the definition of conformance in different contexts, to assure
unambiguous interpretation of the applicability of requirements, and to allow
conformance testing of artifacts (e.g., SOAP messages and WSDL descriptions)
and the behavior of various parties to a Web service (e.g., clients and service
instances).

Requirements' conformance targets are physical artifacts wherever possible, to
simplify testing and avoid ambiguity.

The following conformance targets are used in the Profile:

• MESSAGE - protocol elements that transport the ENVELOPE (e.g.,
SOAP/HTTP messages)

• ENVELOPE - the serialization of the soap:Envelope element and its content
• DESCRIPTION - descriptions of types, messages, interfaces and their

concrete protocol and data format bindings, and the network access points
associated with Web services (e.g., WSDL descriptions) (from Basic Profile
1.0)

• INSTANCE - software that implements a wsdl:port or a
uddi:bindingTemplate (from Basic Profile 1.0)

• CONSUMER - software that invokes an INSTANCE (from Basic Profile 1.0)
• SENDER - software that generates a message according to the protocol(s)

associated with it (from Basic Profile 1.0)
• RECEIVER - software that consumes a message according to the

protocol(s) associated with it (e.g., SOAP processors) (from Basic Profile
1.0)

• REGDATA - registry elements that are involved in the registration and
discovery of Web services (e.g. UDDI tModels) (from Basic Profile 1.0)

2.3 Conformance Scope

The scope of the Profile delineates the technologies that it addresses; in other
words, the Profile only attempts to improve interoperability within its own scope.
Generally, the Profile's scope is bounded by the specifications referenced by it.

http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 7

The Profile's scope is further refined by extensibility points. Referenced
specifications often provide extension mechanisms and unspecified or open-ended
configuration parameters; when identified in the Profile as an extensibility point,
such a mechanism or parameter is outside the scope of the Profile, and its use or
non-use is not relevant to conformance.

Note that the Profile may still place requirements on the use of an extensibility
point. Also, specific uses of extensibility points may be further restricted by other
profiles, to improve interoperability when used in conjunction with the Profile.

Because the use of extensibility points may impair interoperability, their use should
be negotiated or documented in some fashion by the parties to a Web service; for
example, this could take the form of an out-of-band agreement.

The Profile's scope is defined by the referenced specifications in Appendix A, as
refined by the extensibility points in Appendix B.

2.4 Claiming Conformance

Claims of conformance to the Profile can be made using the following
mechanisms, as described in Conformance Claim Attachment Mechanisms, when
the applicable Profile requirements associated with the listed targets have been
met:

• WSDL 1.1 Claim Attachment Mechanism for Web Services Instances -
MESSAGE DESCRIPTION INSTANCE RECEIVER

• WSDL 1.1 Claim Attachment Mechanism for Description Constructs -
DESCRIPTION

• UDDI Claim Attachment Mechanism for Web Services Instances -
MESSAGE DESCRIPTION INSTANCE RECEIVER

• UDDI Claim Attachment Mechanism for Web Services Registrations -
REGDATA

The conformance claim URI for this Profile is "http://ws-i.org/profiles/basic/1.1".

3 Messaging

This section of the Profile incorporates the following specifications by reference,
and defines extensibility points within them:

• Simple Object Access Protocol (SOAP) 1.1
Extensibility points:

o E0001 - Header blocks - Header blocks are the fundamental
extensibility mechanism in SOAP.

o E0002 - Processing order - The order of processing of a SOAP
envelope's components (e.g., headers) is unspecified, and therefore
may need to be negotiated out-of-band.

o E0003 - Use of intermediaries - SOAP Intermediaries is an
underspecified mechanism in SOAP 1.1, and their use may require

http://www.ws-i.org/Profiles/ConformanceClaims-1.0.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://ws-i.org/profiles/basic/1.1

ISO/IEC 29361:2008(E)

8 © ISO/IEC 2008 – All rights reserved

out-of-band negotiation. Their use may also necessitate careful
consideration of where Profile conformance is measured.

o E0004 - soap:actor values - Values of the soap:actor attribute, other
than the special uri 'http://schemas.xmlsoap.org/soap/actor/next' ,
represent a private agreement between parties of the web service.

o E0005 - Fault details - the contents of a Fault's detail element are not
prescribed by SOAP 1.1.

o E0006 - Envelope serialization - The Profile does not constrain some
aspects of how the envelope is serialized into the message.

• RFC2616: Hypertext Transfer Protocol -- HTTP/1.1
Extensibility points:

o E0007 - HTTP Authentication - HTTP authentication allows for
extension schemes, arbitrary digest hash algorithms and parameters.

o E0008 - Unspecified Header Fields - HTTP allows arbitrary headers
to occur in messages.

o E0009 - Expect-extensions - The Expect/Continue mechanism in
HTTP allows for expect-extensions.

o E0010 - Content-Encoding - The set of content-codings allowed by
HTTP is open-ended and any besides 'gzip', 'compress', or 'deflate'
are an extensibility point.

o E0011 - Transfer-Encoding - The set of transfer-encodings allowed
by HTTP is open-ended.

o E0012 - Upgrade - HTTP allows a connection to change to an
arbitrary protocol using the Upgrade header.

o E0024 - Namespace Attributes - Namespace attributes on
soap:Envelope and soap:Header elements

o E0025 - Attributes on soap:Body elements - Neither namespaced nor
local attributes are constrained by SOAP 1.1.

• RFC2965: HTTP State Management Mechanism

3.1 SOAP Envelopes

The following specifications (or sections thereof) are referred to in this section of
the Profile :

• SOAP 1.1, Section 4

SOAP 1.1 defines a structure for composing messages, the envelope. The Profile
mandates the use of that structure, and places the following constraints on its use:

3.1.1 SOAP Envelope Structure

R9980 An ENVELOPE MUST conform to the structure specified in
SOAP 1.1 Section 4, "SOAP Envelope" (subject to
amendment by the Profile).

R9981 An ENVELOPE MUST have exactly zero or one child
elements of the soap:Body element.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383494
http://schemas.xmlsoap.org/soap/actor/next'

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 9

While the combination of R2201 and R2210 (below) clearly imply that there may
be at most one child element of the soap:Body, there is no explicit requirement in
the Profile that articulates this constraint, leading to some confusion.

3.1.2 SOAP Envelope Namespace

SOAP 1.1 states that an envelope with a document element whose namespace
name is other than "http://schemas.xmlsoap.org/soap/envelope/" should be
discarded. The Profile requires that a fault be generated instead, to assure
unambiguous operation.

R1015 A RECEIVER MUST generate a fault if they encounter an
envelope whose document element is not soap:Envelope.

3.1.3 SOAP Body Namespace Qualification

The use of unqualified element names may cause naming conflicts, therefore
qualified names must be used for the children of soap:Body.

R1014 The children of the soap:Body element in an ENVELOPE
MUST be namespace qualified.

3.1.4 Disallowed Constructs

XML DTDs and PIs may introduce security vulnerabilities, processing overhead
and semantic ambiguity when used in envelopes. As a result, certain XML
constructs are disallowed by section 3 of SOAP 1.1.
Although published errata NE05 (see http://www.w3.org/XML/xml-names-
19990114-errata) allows the namespace declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace" to appear, some older
processors considered such a declaration to be an error. These requirements
ensure that conformant artifacts have the broadest interoperability possible.

R1008 An ENVELOPE MUST NOT contain a Document Type
Declaration. C

R1009 An ENVELOPE MUST NOT contain Processing
Instructions. C

R1033 An ENVELOPE SHOULD NOT contain the namespace
declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace". C

R1034 A DESCRIPTION SHOULD NOT contain the namespace
declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace". C

3.1.5 SOAP Trailers

The interpretation of sibling elements following the soap:Body element is unclear.
Therefore, such elements are disallowed.

R1011 An ENVELOPE MUST NOT have any element children of
soap:Envelope following the soap:Body element.

http://www.w3.org/XML/xml-names-19990114-errata
http://www.w3.org/XML/xml-names-19990114-errata
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace

ISO/IEC 29361:2008(E)

10 © ISO/IEC 2008 – All rights reserved

This requirement clarifies a mismatch between the SOAP 1.1 specification and the
SOAP 1.1 XML Schema.
For example,

INCORRECT:
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <soap:Body>
 <p:Process xmlns:p='http://example.org/Operations' />
 </soap:Body>
 <m:Data xmlns:m='http://example.org/information' >
 Here is some data with the message
 </m:Data>
</soap:Envelope>

CORRECT:
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <soap:Body>
 <p:Process xmlns:p='http://example.org/Operations' >
 <m:Data xmlns:m='http://example.org/information' >
 Here is some data with the message
 </m:Data>
 </p:Process>
 </soap:Body>
</soap:Envelope>

3.1.6 SOAP encodingStyle Attribute

The soap:encodingStyle attribute is used to indicate the use of a particular
scheme in the encoding of data into XML. However, this introduces complexity, as
this function can also be served by the use of XML Namespaces. As a result, the
Profile prefers the use of literal, non-encoded XML.

R1005 An ENVELOPE MUST NOT contain soap:encodingStyle
attributes on any of the elements whose namespace
name is "http://schemas.xmlsoap.org/soap/envelope/".

R1006 An ENVELOPE MUST NOT contain soap:encodingStyle
attributes on any element that is a child of soap:Body.

R1007 An ENVELOPE described in an rpc-literal binding MUST
NOT contain soap:encodingStyle attribute on any
element that is a grandchild of soap:Body.

3.1.7 SOAP mustUnderstand Attribute

The soap:mustUnderstand attribute has a restricted type of "xsd:boolean" that
takes only "0" or "1". Therefore, only those two values are allowed.

R1013 An ENVELOPE containing a soap:mustUnderstand attribute
MUST only use the lexical forms "0" and "1". C

3.1.8 xsi:type Attributes

In many cases, senders and receivers will share some form of type information
related to the envelopes being exchanged.

http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/Operations'
http://example.org/information'
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/Operations'
http://example.org/information'
http://schemas.xmlsoap.org/soap/envelope/

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 11

R1017 A RECEIVER MUST NOT mandate the use of the xsi:type
attribute in envelopes except as required in order to
indicate a derived type (see XML Schema Part 1:
Structures, Section 2.6.1).

3.1.9 SOAP1.1 attributes on SOAP1.1 elements

R1032 The soap:Envelope, soap:Header, and soap:Body elements
in an ENVELOPE MUST NOT have attributes in the
namespace
"http://schemas.xmlsoap.org/soap/envelope/".

3.2 SOAP Processing Model

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• SOAP 1.1, Section 2

SOAP 1.1 defines a model for the processing of envelopes. In particular, it defines
rules for the processing of header blocks and the envelope body. It also defines
rules related to generation of faults. The Profile places the following constraints on
the processing model:

3.2.1 Mandatory Headers

SOAP 1.1's processing model is underspecified with respect to the processing of
mandatory header blocks. Mandatory header blocks are those children of the
soap:Header element bearing a soap:mustUnderstand attribute with a value of "1".

R1025 A RECEIVER MUST handle envelopes in such a way that it
appears that all checking of mandatory header blocks is
performed before any actual processing. SOAP12

This requirement guarantees that no undesirable side effects will occur as a result
of noticing a mandatory header block after processing other parts of the message.

3.2.2 Generating mustUnderstand Faults

The Profile requires that receivers generate a fault when they encounter header
blocks targeted at them, that they do not understand.

R1027 A RECEIVER MUST generate a "soap:MustUnderstand"
fault when an envelope contains a mandatory header
block (i.e., one that has a soap:mustUnderstand attribute
with the value "1") targeted at the receiver (via
soap:actor) that the receiver does not understand.SOAP12

3.2.3 SOAP Fault Processing

When a fault is generated, no further processing should be performed. In request-
response exchanges, a fault message will be transmitted to the sender of the
request, and some application level error will be flagged to the user.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383491
http://schemas.xmlsoap.org/soap/envelope/

ISO/IEC 29361:2008(E)

12 © ISO/IEC 2008 – All rights reserved

Both SOAP and this Profile use the term 'generate' to denote the creation of a
SOAP Fault. It is important to realize that generation of a Fault is distinct from its
transmission, which in some cases is not required.

R1028 When a fault is generated by a RECEIVER, further
processing SHOULD NOT be performed on the SOAP
envelope aside from that which is necessary to rollback,
or compensate for, any effects of processing the
envelope prior to the generation of the fault. SOAP12

R1029 Where the normal outcome of processing a SOAP
envelope would have resulted in the transmission of a
SOAP response, but rather a fault is generated instead, a
RECEIVER MUST transmit a fault in place of the
response. SOAP12

R1030 A RECEIVER that generates a fault SHOULD notify the
end user that a fault has been generated when practical,
by whatever means is deemed appropriate to the
circumstance. SOAP12

3.3 SOAP Faults

3.3.1 Identifying SOAP Faults

Some consumer implementations erroneously use only the HTTP status code to
determine the presence of a Fault. Because there are situations where the Web
infrastructure changes the HTTP status code, and for general reliability, the Profile
requires that they examine the envelope. A Fault is an envelope that has a single
child element of the soap:Body element, that element being a soap:Fault element.

R1107 A RECEIVER MUST interpret a SOAP message as a Fault
when the soap:Body of the message has a single
soap:Fault child.

3.3.2 SOAP Fault Structure

The Profile restricts the content of the soap:Fault element to those elements
explicitly described in SOAP 1.1.

R1000 When an ENVELOPE is a Fault, the soap:Fault element
MUST NOT have element children other than faultcode,
faultstring, faultactor and detail.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 13

For example,
INCORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>There were lots of elements in the message
 that I did not understand
 </detail>
 <m:Exception xmlns:m='http://example.org/faults/exceptions' >
 <m:ExceptionType>Severe</m:ExceptionType>
 </m:Exception>
</soap:Fault>

CORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>
 <m:msg xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in
 the message that I did not understand
 </m:msg>
 <m:Exception xmlns:m='http://example.org/faults/exceptions'>
 <m:ExceptionType>Severe</m:ExceptionType>
 </m:Exception>
 </detail>
</soap:Fault>

3.3.3 SOAP Fault Namespace Qualification

The children of the soap:Fault element are local to that element, therefore
namespace qualification is unnecessary.

R1001 When an ENVELOPE is a Fault, the element children of the
soap:Fault element MUST be unqualified.

For example,
INCORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <soap:faultcode>soap:Client</soap:faultcode>
 <soap:faultstring>Invalid message format</soap:faultstring>
 <soap:faultactor>http://example.org/someactor</soap:faultactor>
 <soap:detail>
 <m:msg xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in the message that
 I did not understand
 </m:msg>
 </soap:detail>
</soap:Fault>

http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/someactor</faultactor
http://example.org/faults/exceptions'
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/someactor</faultactor
http://example.org/faults/exceptions'
http://example.org/faults/exceptions'
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/someactor</soap:faultactor
http://example.org/faults/exceptions'

ISO/IEC 29361:2008(E)

14 © ISO/IEC 2008 – All rights reserved

CORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns='' >
 <faultcode>soap:Client</faultcode>
 <faultstring>Invalid message format</faultstring>
 <faultactor>http://example.org/someactor</faultactor>
 <detail>
 <m:msg xmlns:m='http://example.org/faults/exceptions'>
 There were lots of elements in the message that
 I did not understand
 </m:msg>
 </detail>
</soap:Fault>

3.3.4 SOAP Fault Extensibility

For extensibility, additional attributes are allowed to appear on the detail element
and additional elements are allowed to appear as children of the detail element.

R1002 A RECEIVER MUST accept faults that have any number of
elements, including zero, appearing as children of the
detail element. Such children can be qualified or
unqualified.

R1003 A RECEIVER MUST accept faults that have any number of
qualified or unqualified attributes, including zero,
appearing on the detail element. The namespace of
qualified attributes can be anything other than
"http://schemas.xmlsoap.org/soap/envelope/".

3.3.5 SOAP Fault Language

Faultstrings are human-readable indications of the nature of a fault. As such, they
may not be in a particular language, and therefore the xml:lang attribute can be
used to indicate the language of the faultstring.
Note that this requirement conflicts with the schema for SOAP appearing at its
namespace URL. A schema without conflicts can be found at "http://ws-
i.org/profiles/basic/1.1/soap-envelope-2004-01-21.xsd".

R1016 A RECEIVER MUST accept faults that carry an xml:lang
attribute on the faultstring element.

3.3.6 SOAP Custom Fault Codes

SOAP 1.1 allows custom fault codes to appear inside the faultcode element,
through the use of the "dot" notation.
Use of this mechanism to extend the meaning of the SOAP 1.1-defined fault codes
can lead to namespace collision. Therefore, its use should be avoided, as doing so
may cause interoperability issues when the same names are used in the right-
hand side of the "." (dot) to convey different meaning.
Instead, the Profile encourages the use of the fault codes defined in SOAP 1.1,
along with additional information in the detail element to convey the nature of the
fault.

http://ws-i.org/profiles/basic/1.1/soap-envelope-2004-01-21.xsd
http://ws-i.org/profiles/basic/1.1/soap-envelope-2004-01-21.xsd
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/someactor</faultactor
http://example.org/faults/exceptions'
http://schemas.xmlsoap.org/soap/envelope/

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 15

Alternatively, it is acceptable to define custom fault codes in a namespace
controlled by the specifying authority.
A number of specifications have already defined custom fault codes using the "."
(dot) notation. Despite this, their use in future specifications is discouraged.

R1004 When an ENVELOPE contains a faultcode element, the
content of that element SHOULD be either one of the
fault codes defined in SOAP 1.1 (supplying additional
information if necessary in the detail element), or a
Qname whose namespace is controlled by the fault's
specifying authority (in that order of preference).

R1031 When an ENVELOPE contains a faultcode element the
content of that element SHOULD NOT use of the SOAP
1.1 "dot" notation to refine the meaning of the fault.

It is recommended that applications that require custom fault codes either use the
SOAP1.1 defined fault codes and supply additional information in the detail
element, or that they define these codes in a namespace that is controlled by the
specifying authority.
For example,

INCORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:c='http://example.org/faultcodes' >
 <faultcode>soap:Server.ProcessingError</faultcode>
 <faultstring>An error occurred while processing the message
 </faultstring>
</soap:Fault>

CORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:c='http://example.org/faultcodes' >
 <faultcode>c:ProcessingError</faultcode>
 <faultstring>An error occured while processing the message
 </faultstring>
</soap:Fault>

CORRECT:
<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <faultcode>soap:Server</faultcode>
 <faultstring>An error occured while processing the message
 </faultstring>
</soap:Fault>

3.4 Use of SOAP in HTTP

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• SOAP 1.1 Section 6
• HTTP/1.1
• HTTP State Management Mechanism

SOAP 1.1 defines a single protocol binding, for HTTP. The Profile mandates the
use of that binding, and places the following constraints on its use:

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383526
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/faultcodes'
http://schemas.xmlsoap.org/soap/envelope/'
http://example.org/faultcodes'
http://schemas.xmlsoap.org/soap/envelope/'

ISO/IEC 29361:2008(E)

16 © ISO/IEC 2008 – All rights reserved

3.4.1 HTTP Protocol Binding

Several versions of HTTP are defined. HTTP/1.1 has performance advantages,
and is more clearly specified than HTTP/1.0.

R1141 A MESSAGE MUST be sent using either HTTP/1.1 or
HTTP/1.0.

R1140 A MESSAGE SHOULD be sent using HTTP/1.1.

Note that support for HTTP/1.0 is implied in HTTP/1.1, and that intermediaries may
change the version of a message; for more information about HTTP versioning,
see RFC2145, "Use and Interpretation of HTTP Version Numbers."

3.4.2 HTTP Methods and Extensions

The SOAP1.1 specification defined its HTTP binding such that two possible
methods could be used, the HTTP POST method and the HTTP Extension
Framework's M-POST method. The Profile requires that only the HTTP POST
method be used and precludes use of the HTTP Extension Framework.

R1132 A HTTP request MESSAGE MUST use the HTTP POST
method.

R1108 A MESSAGE MUST NOT use the HTTP Extension
Framework (RFC2774).

The HTTP Extension Framework is an experimental mechanism for extending
HTTP in a modular fashion. Because it is not deployed widely and also because its
benefits to the use of SOAP are questionable, the Profile does not allow its use.

3.4.3 SOAPAction HTTP Header

Testing has demonstrated that requiring the SOAPAction HTTP header field-value
to be quoted increases interoperability of implementations. Even though HTTP
allows unquoted header field-values, some SOAP implementations require that
they be quoted.
SOAPAction is purely a hint to processors. All vital information regarding the intent
of a message is carried in soap:Envelope.

R1109 The value of the SOAPAction HTTP header field in a HTTP
request MESSAGE MUST be a quoted string. C

R1119 A RECEIVER MAY respond with a fault if the value of the
SOAPAction HTTP header field in a message is not
quoted. C

R1127 A RECEIVER MUST NOT rely on the value of the
SOAPAction HTTP header to correctly process the
message.SOAP12

For example,
CORRECT:

A WSDL Description that has:

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 17

<soapbind:operation soapAction="foo" />

results in a message with a SOAPAction HTTP header field of:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP header
field as follows:

SOAPAction: ""

3.4.4 HTTP Success Status Codes

HTTP uses the 2xx series of status codes to communicate success. In particular,
200 is the default for successful messages, but 202 can be used to indicate that a
message has been submitted for processing. Additionally, other 2xx status codes
may be appropriate, depending on the nature of the HTTP interaction.

R1124 An INSTANCE MUST use a 2xx HTTP status code on a
response message that indicates the successful outcome
of a HTTP request.

R1111 An INSTANCE SHOULD use a "200 OK" HTTP status
code on a response message that contains an envelope
that is not a fault.

R1112 An INSTANCE SHOULD use either a "200 OK" or "202
Accepted" HTTP status code for a response message
that does not contain a SOAP envelope but indicates the
successful outcome of a HTTP request.

Despite the fact that the HTTP 1.1 assigns different meanings to response status
codes "200" and "202", in the context of the Profile they should be considered
equivalent by the initiator of the request. The Profile accepts both status codes
because some SOAP implementations have little control over the HTTP protocol
implementation and cannot control which of these response status codes is sent.

3.4.5 HTTP Redirect Status Codes

There are interoperability problems with using many of the HTTP redirect status
codes, generally surrounding whether to use the original method, or GET. The
Profile mandates "307 Temporary Redirect", which has the semantic of redirection
with the same HTTP method, as the correct status code for redirection. For more
information, see the 3xx status code descriptions in RFC2616.

ISO/IEC 29361:2008(E)

18 © ISO/IEC 2008 – All rights reserved

R1130 An INSTANCE MUST use the "307 Temporary Redirect"
HTTP status code when redirecting a request to a
different endpoint.

R1131 A CONSUMER MAY automatically redirect a request when
it encounters a "307 Temporary Redirect" HTTP status
code in a response.

RFC2616 notes that user-agents should not automatically redirect requests;
however, this requirement was aimed at browsers, not automated processes
(which many Web services will be). Therefore, the Profile allows, but does not
require, consumers to automatically follow redirections.

3.4.6 HTTP Client Error Status Codes

HTTP uses the 4xx series of status codes to indicate failure due to a client error.
Although there are a number of situations that may result in one of these codes,
the Profile highlights those when the HTTP request does not have the proper
media type, and when the anticipated method ("POST") is not used.

R1125 An INSTANCE MUST use a 4xx HTTP status code for a
response that indicates a problem with the format of a
request.

R1113 An INSTANCE SHOULD use a "400 Bad Request" HTTP
status code, if a HTTP request message is malformed.

R1114 An INSTANCE SHOULD use a "405 Method not Allowed"
HTTP status code if a HTTP request message's method
is not "POST".

R1115 An INSTANCE SHOULD use a "415 Unsupported Media
Type" HTTP status code if a HTTP request message's
Content-Type header field-value is not permitted by its
WSDL description.

Note that these requirements do not force an instance to respond to requests. In
some cases, such as Denial of Service attacks, an instance may choose to ignore
requests.
Also note that SOAP 1.1, Section 6.2 requires that SOAP Fault can only be
returned with HTTP 500 "Internal Server Error" code. This profile doesn't change
that requirement. When HTTP 4xx error status code is used, the response
message should not contain a SOAP Fault.

3.4.7 HTTP Server Error Status Codes

HTTP uses the 5xx series of status codes to indicate failure due to a server error.
R1126 An INSTANCE MUST return a "500 Internal Server Error"

HTTP status code if the response envelope is a Fault.

3.4.8 HTTP Cookies

The HTTP State Management Mechanism ("Cookies") allows the creation of
stateful sessions between Web browsers and servers. Being designed for
hypertext browsing, Cookies do not have well-defined semantics for Web services,

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383529

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 19

and, because they are external to the envelope, are not accommodated by either
SOAP 1.1 or WSDL 1.1. However, there are situations where it may be necessary
to use Cookies; e.g., for load balancing between servers, or for integration with
legacy systems that use Cookies. For these reasons, the Profile limits the ways in
which Cookies can be used, without completely disallowing them.

R1120 An INSTANCE MAY use the HTTP state mechanism
("Cookies").

R1122 An INSTANCE using Cookies SHOULD conform to
RFC2965.

R1121 An INSTANCE SHOULD NOT require consumer support
for Cookies in order to function correctly.

R1123 The value of the cookie MUST be considered to be opaque
by the CONSUMER.

The Profile recommends that cookies not be required by instances for proper
operation; they should be a hint, to be used for optimization, without materially
affecting the execution of the Web service. However, they may be required in
legacy integration and other exceptional use cases, so requiring them does not
make an instance non-conformant. While Cookies thus may have meaning to the
instance, they should not be used as an out-of-bound data channel between the
instance and the consumer. Therefore, interpretation of Cookies is not allowed at
all by the consumer - it is required to treat them as opaque (i.e., have no meaning
to the consumer).

4 Service Description

The Profile uses Web Services Description Language (WSDL) to enable the
description of services as sets of endpoints operating on messages.

This section of the Profile incorporates the following specifications by reference,
and defines extensibility points within them:

• Extensible Markup Language (XML) 1.0 (Second Edition)
• Namespaces in XML 1.0
• XML Schema Part 1: Structures

Extensibility points:
o E0017 - Schema annotations - XML Schema allows for annotations,

which may be used to convey additional information about data
structures.

• XML Schema Part 2: Datatypes
• Web Services Description Language (WSDL) 1.1

Extensibility points:
o E0013 - WSDL extensions - WSDL allows extension elements and

attributes in certain places; use of such extensions requires out-of-
band negotiation.

o E0014 - Validation mode - whether the parser used to read WSDL
and XML Schema documents performs DTD validation or not.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

ISO/IEC 29361:2008(E)

20 © ISO/IEC 2008 – All rights reserved

o E0015 - Fetching of external resources - whether the parser used to
read WSDL and XML Schema documents fetches external entities
and DTDs.

o E0016 - Relative URIs - WSDL does not adequately specify the use
of relative URIs for the following: soapbind:body/@namespace,
soapbind:address/@location, wsdl:import/@location,
xsd:schema/@targetNamespace and xsd:import/@schemaLocation.
Their use may require further coordination; see XML Base for more
information.

4.1 Required Description

An instance of a Web service is required to make the contract that it operates
under available in some fashion.

R0001 Either an INSTANCE's WSDL 1.1 description, its UDDI
binding template, or both MUST be available to an
authorized consumer upon request.

This means that if an authorized consumer requests a service description of a
conformant service instance, then the service instance provider must make the
WSDL document, the UDDI binding template, or both available to that consumer.
A service instance may provide run-time access to WSDL documents from a
server, but is not required to do so in order to be considered conformant. Similarly,
a service instance provider may register the instance provider in a UDDI registry,
but is not required to do so to be considered conformant. In all of these scenarios,
the WSDL contract must exist, but might be made available through a variety of
mechanisms, depending on the circumstances.

4.2 Document Structure

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 2.1

WSDL 1.1 defines an XML-based structure for describing Web services. The
Profile mandates the use of that structure, and places the following constraints on
its use:

4.2.1 WSDL Schema Definitions

The normative schemas for WSDL appearing in Appendix 4 of the WSDL 1.1
specification have inconsistencies with the normative text of the specification. The
Profile references new schema documents that have incorporated fixes for known
errors.

R2028 A DESCRIPTION using the WSDL namespace (prefixed
"wsdl" in this Profile) MUST be valid according to the XML
Schema found at "http://ws-i.org/profiles/basic/1.1/wsdl-
2004-08-24.xsd".

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_document-s
http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd
http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 21

R2029 A DESCRIPTION using the WSDL SOAP binding
namespace (prefixed "soapbind" in this Profile) MUST be
valid according to the XML Schema found at "http://ws-
i.org/profiles/basic/1.1/wsdlsoap-2004-08-24.xsd".

Although the Profile requires WSDL descriptions to be Schema valid, it does not
require consumers to validate WSDL documents. It is the responsibility of a WSDL
document's author to assure that it is Schema valid.

4.2.2 WSDL and Schema Import

Some examples in WSDL 1.1 incorrectly show the WSDL import statement being
used to import XML Schema definitions. The Profile clarifies use of the import
mechanisms to keep them consistent and confined to their respective domains.
Imported schema documents are also constrained by XML version and encoding
requirements consistent to those of the importing WSDL documents.

R2001 A DESCRIPTION MUST only use the WSDL "import"
statement to import another WSDL description.

R2803 In a DESCRIPTION, the namespace attribute of the
wsdl:import MUST NOT be a relative URI.

R2002 To import XML Schema Definitions, a DESCRIPTION
MUST use the XML Schema "import" statement.

R2003 A DESCRIPTION MUST use the XML Schema "import"
statement only within the xsd:schema element of the types
section.

R2004 In a DESCRIPTION the schemaLocation attribute of an
xsd:import element MUST NOT resolve to any document
whose root element is not "schema" from the namespace
"http://www.w3.org/2001/XMLSchema".

R2009 An XML Schema directly or indirectly imported by a
DESCRIPTION MAY include the Unicode Byte Order
Mark (BOM).

R2010 An XML Schema directly or indirectly imported by a
DESCRIPTION MUST use either UTF-8 or UTF-16
encoding.

R2011 An XML Schema directly or indirectly imported by a
DESCRIPTION MUST use version 1.0 of the eXtensible
Markup Language W3C Recommendation.

For example,
INCORRECT:
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote/definitions"
 xmlns:xsd1="http://example.com/stockquote/schemas"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/schemas"
 location="http://example.com/stockquote/stockquote.xsd"/>

http://ws-i.org/profiles/basic/1.1/wsdlsoap-2004-08-24.xsd
http://ws-i.org/profiles/basic/1.1/wsdlsoap-2004-08-24.xsd
http://www.w3.org/2001/XMLSchema
http://example.com/stockquote/definitions
http://example.com/stockquote/schemas
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/schemas
http://example.com/stockquote/stockquote.xsd"/

ISO/IEC 29361:2008(E)

22 © ISO/IEC 2008 – All rights reserved

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>
 ...
</definitions>

CORRECT:
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote/definitions"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"
 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">
 <part name="body" element="..."/>
 </message>
 ...
 </definitions>

CORRECT:
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote/"
 xmlns:xsd1="http://example.com/stockquote/schemas"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"
 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>
 ...
</definitions>

4.2.3 WSDL Import location Attribute Structure

WSDL 1.1 is not clear about whether the location attribute of the wsdl:import
statement is required, or what its content is required to be.

R2007 A DESCRIPTION MUST specify a non-empty location
attribute on the wsdl:import element.

Although the wsdl:import statement is modeled after the xsd:import statement,
the location attribute is required by wsdl:import while the corresponding attribute
on xsd:import, schemaLocation is optional. Consistent with location being
required, its content is not intended to be empty.

4.2.4 WSDL Import location Attribute Semantics

WSDL 1.1 is unclear about whether WSDL processors must actually retrieve and
process the WSDL document from the URI specified in the location attribute on
the wsdl:import statements it encounters.

R2008 A CONSUMER MAY, but need not, retrieve a WSDL
description from the URI specified in the location attribute
on a wsdl:import element. C

http://example.com/stockquote/definitions
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/definitions
http://example.com/stockquote/stockquote.wsdl"/
http://example.com/stockquote/
http://example.com/stockquote/schemas
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/definitions
http://example.com/stockquote/stockquote.wsdl"/

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 23

The value of the location attribute of a wsdl:import element is a hint. A WSDL
processor may have other ways of locating a WSDL description for a given
namespace.

4.2.5 Placement of WSDL import Elements

Example 3 in WSDL 1.1 Section 3.1 causes confusion regarding the placement of
wsdl:import.

R2022 When they appear in a DESCRIPTION, wsdl:import
elements MUST precede all other elements from the
WSDL namespace except wsdl:documentation.

R2023 When they appear in a DESCRIPTION, wsdl:types
elements MUST precede all other elements from the
WSDL namespace except wsdl:documentation and
wsdl:import.

For example,
INCORRECT:
<definitions name="StockQuote"
 ...
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"
 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">
 <part name="body" type="tns:TradePriceRequest"/>
 </message>
 ...
 <service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 </port>
 </service>

 <types>
 <schema targetNamespace="http://example.com/stockquote/schemas"
 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>
 </types>
</definitions>

CORRECT:
 <definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote/definitions">

 <import namespace="http://example.com/stockquote/base"
 location="http://example.com/stockquote/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">
 <part name="body" element="..."/>
 </message>
 ...
 </definitions>

CORRECT:

<definitions name="StockQuote"
 ...

http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/definitions
http://example.com/stockquote/stockquote.wsdl"/
http://example.com/stockquote/schemas
http://www.w3.org/2001/XMLSchema
http://example.com/stockquote/definitions
http://example.com/stockquote/base
http://example.com/stockquote/stockquote.wsdl"/

ISO/IEC 29361:2008(E)

24 © ISO/IEC 2008 – All rights reserved

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote/schemas"
 xmlns="http://www.w3.org/2001/XMLSchema">

 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="tns:TradePriceRequest"/>
 </message>
 ...
 <service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 </port>
 </service>
</definitions>

4.2.6 XML Version Requirements

Neither WSDL 1.1 nor XML Schema 1.0 mandate a particular version of XML. For
interoperability, WSDL documents and the schemas they import expressed in XML
must use version 1.0.

R4004 A DESCRIPTION MUST use version 1.0 of the eXtensible
Markup Language W3C Recommendation.

4.2.7 XML Namespace declarations

Although published errata NE05 (see http://www.w3.org/XML/xml-names-
19990114-errata) allows this namespace declaration to appear, some older
processors considered such a declaration to be an error. This requirement ensures
that conformant artifacts have the broadest interoperability possible.

R4005 A DESCRIPTION SHOULD NOT contain the namespace
declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace".C

4.2.8 WSDL and the Unicode BOM

XML 1.0 allows documents that use the UTF-8 character encoding to include a
BOM; therefore, description processors must be prepared to accept them.

R4002 A DESCRIPTION MAY include the Unicode Byte Order
Mark (BOM).C

4.2.9 Acceptable WSDL Character Encodings

The Profile consistently requires either UTF-8 or UTF-16 encoding for both SOAP
and WSDL.

R4003 A DESCRIPTION MUST use either UTF-8 or UTF-16
encoding.

4.2.10 Namespace Coercion

Namespace coercion on wsdl:import is disallowed by the Profile.

http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/schemas
http://www.w3.org/2001/XMLSchema
http://www.w3.org/XML/xml-names-
http://www.w3.org/XML/1998/namespace".C

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 25

R2005 The targetNamespace attribute on the wsdl:definitions
element of a description that is being imported MUST
have same the value as the namespace attribute on the
wsdl:import element in the importing DESCRIPTION.

4.2.11 WSDL documentation Element

The WSDL 1.1 schema and the WSDL 1.1 specification are inconsistent with
respect to where wsdl:documentation elements may be placed.

R2030 In a DESCRIPTION the wsdl:documentation element MAY
be present as the first child element of wsdl:import,
wsdl:part and wsdl:definitions in addition to the
elements cited in the WSDL1.1 specification.WSDL20

4.2.12 WSDL Extensions

Requiring support for WSDL extensions that are not explicitly specified by this or
another WS-I Profile can lead to interoperability problems with development tools
that have not been instrumented to understand those extensions.

R2025 A DESCRIPTION containing WSDL extensions MUST NOT
use them to contradict other requirements of the Profile.

R2026 A DESCRIPTION SHOULD NOT include extension
elements with a wsdl:required attribute value of "true" on
any WSDL construct (wsdl:binding, wsdl:portType,
wsdl:message, wsdl:types or wsdl:import) that claims
conformance to the Profile.

R2027 If during the processing of a description, a consumer
encounters a WSDL extension element that has a
wsdl:required attribute with a boolean value of "true" that
the consumer does not understand or cannot process, the
CONSUMER MUST fail processing.

Development tools that consume a WSDL description and generate software for a
Web service instance might not have built-in understanding of an unknown WSDL
extension. Hence, use of required WSDL extensions should be avoided. Use of a
required WSDL extension that does not have an available specification for its use
and semantics imposes potentially insurmountable interoperability concerns for all
but the author of the extension. Use of a required WSDL extension that has an
available specification for its use and semantics reduces, but does not eliminate
the interoperability concerns that lead to this refinement.
For the purposes of the Profile, all elements in the
"http://schemas.xmlsoap.org/wsdl/" namespace are extensible via element as well
as attributes. As a convenience, WS-I has published a version of the WSDL1.1
schema that reflects this capability at:
http://ws-i.org/profiles/basic/1.1/wsdl11.xsd

http://ws-i.org/profiles/basic/1.1/wsdl11.xsd
http://schemas.xmlsoap.org/wsdl/

ISO/IEC 29361:2008(E)

26 © ISO/IEC 2008 – All rights reserved

4.3 Types

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 2.2

The wsdl:types element of WSDL 1.1 encloses data type definitions that are
relevant to the Web service described. The Profile places the following constraints
pertinent to those portions of the content of the wsdl:types element that are
referred to by WSDL elements that make Profile conformance claims:

4.3.1 QName References

XML Schema requires each QName reference to use either the target namespace,
or an imported namespace (one marked explicitly with an xsd:import element).
QName references to namespaces represented only by nested imports are not
allowed.
WSDL 1.1 is unclear as to which schema target namespaces are suitable for
QName references from a WSDL element. The Profile allows QName references
from WSDL elements both to the target namespace defined by the xsd:schema
element, and to imported namespaces. QName references to namespaces that
are only defined through a nested import are not allowed.

R2101 A DESCRIPTION MUST NOT use QName references to
WSDL components in namespaces that have been
neither imported, nor defined in the referring WSDL
document.

R2102 A QName reference to a Schema component in a
DESCRIPTION MUST use the namespace defined in the
targetNamespace attribute on the xsd:schema element, or
to a namespace defined in the namespace attribute on an
xsd:import element within the xsd:schema element.

4.3.2 Schema targetNamespace Structure

Requiring a targetNamespace on all xsd:schema elements that are children of
wsdl:types is a good practice, places a minimal burden on authors of WSDL
documents, and avoids the cases that are not as clearly defined as they might be.

R2105 All xsd:schema elements contained in a wsdl:types element
of a DESCRIPTION MUST have a targetNamespace
attribute with a valid and non-null value, UNLESS the
xsd:schema element has xsd:import and/or
xsd:annotation as its only child element(s).

4.3.3 soapenc:Array

The recommendations in WSDL 1.1 Section 2.2 for declaration of array types have
been interpreted in various ways, leading to interoperability problems. Further,
there are other clearer ways to declare arrays.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_types

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 27

R2110 In a DESCRIPTION, declarations MUST NOT extend or
restrict the soapenc:Array type.

R2111 In a DESCRIPTION, declarations MUST NOT use
wsdl:arrayType attribute in the type declaration.

R2112 In a DESCRIPTION, elements SHOULD NOT be named
using the convention ArrayOfXXX.

R2113 An ENVELOPE MUST NOT include the soapenc:arrayType
attribute.

For example,
INCORRECT:

Given the WSDL Description:

<xsd:element name="MyArray2" type="tns:MyArray2Type"/>
<xsd:complexType name="MyArray2Type"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" >
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="tns:MyArray2Type[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

The envelope would serialize as (omitting namespace declarations for
clarity):

<MyArray2 soapenc:arrayType="tns:MyArray2Type[]" >
 <x>abcd</x>
 <x>efgh</x>
</MyArray2>

CORRECT:

Given the WSDL Description:

<xsd:element name="MyArray1" type="tns:MyArray1Type"/>
<xsd:complexType name="MyArray1Type">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The envelope would serialize as (omitting namespace declarations for
clarity):

<MyArray1>
 <x>abcd</x>
 <x>efgh</x>
</MyArray1>

http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/

ISO/IEC 29361:2008(E)

28 © ISO/IEC 2008 – All rights reserved

4.3.4 WSDL and Schema Definition Target Namespaces

The names defined by schemas and the names assigned to WSDL definitions are
in separate symbol spaces.

R2114 The target namespace for WSDL definitions and the target
namespace for schema definitions in a DESCRIPTION
MAY be the same.WSDL20

4.4 Messages

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 2.3

In WSDL 1.1, wsdl:message elements are used to represent abstract definitions of
the data being transmitted. It uses wsdl:binding elements to define how the
abstract definitions are bound to a specific message serialization. The Profile
places the following constraints on wsdl:message elements and on how conformant
wsdl:binding elements may use wsdl:message element(s).

In this section the following definitions are used to make the requirements more
compact and easier to understand.

Definition: rpc-literal binding

An "rpc-literal binding" is a wsdl:binding element whose
child wsdl:operation elements are all rpc-literal
operations.

An "rpc-literal operation" is a wsdl:operation child
element of wsdl:binding whose soapbind:body
descendant elements specify the use attribute with the
value "literal", and either:

1. The style attribute with the value "rpc" is specified
on the child soapbind:operation element; or

2. The style attribute is not present on the child
soapbind:operation element, and the
soapbind:binding element in the enclosing
wsdl:binding specifies the style attribute with the
value "rpc".

Definition: document-literal binding

A "document-literal binding" is a wsdl:binding element
whose child wsdl:operation elements are all document-
literal operations.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_messages

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 29

A "document-literal operation" is a wsdl:operation child
element of wsdl:binding whose soapbind:body
descendent elements specifies the use attribute with the
value "literal" and, either:

1. The style attribute with the value "document" is
specified on the child soapbind:operation
element; or

2. The style attribute is not present on the child
soapbind:operation element, and the
soapbind:binding element in the enclosing
wsdl:binding specifies the style attribute with the
value "document"; or

3. The style attribute is not present on both the child
soapbind:operation element and the
soapbind:binding element in the enclosing
wsdl:binding.

4.4.1 Bindings and Parts

There are various interpretations about how many wsdl:part elements are
permitted or required for document-literal and rpc-literal bindings and how they
must be defined.

R2201 A document-literal binding in a DESCRIPTION MUST, in
each of its soapbind:body element(s), have at most one
part listed in the parts attribute, if the parts attribute is
specified.

R2209 A wsdl:binding in a DESCRIPTION SHOULD bind every
wsdl:part of a wsdl:message in the wsdl:portType to
which it refers with a binding extension element.

R2210 If a document-literal binding in a DESCRIPTION does not
specify the parts attribute on a soapbind:body element,
the corresponding abstract wsdl:message MUST define
zero or one wsdl:parts.

R2202 A wsdl:binding in a DESCRIPTION MAY contain
soapbind:body element(s) that specify that zero parts
form the soap:Body.

R2203 An rpc-literal binding in a DESCRIPTION MUST refer, in its
soapbind:body element(s), only to wsdl:part element(s)
that have been defined using the type attribute.

R2211 An ENVELOPE described with an rpc-literal binding MUST
NOT have the xsi:nil attribute with a value of "1" or
"true" on the part accessors.

R2207 A wsdl:message in a DESCRIPTION MAY contain
wsdl:parts that use the elements attribute provided those

ISO/IEC 29361:2008(E)

30 © ISO/IEC 2008 – All rights reserved

wsdl:parts are not referred to by a soapbind:body in an
rpc-literal binding.

R2204 A document-literal binding in a DESCRIPTION MUST refer,
in each of its soapbind:body element(s), only to
wsdl:part element(s) that have been defined using the
element attribute.

R2208 A binding in a DESCRIPTION MAY contain
soapbind:header element(s) that refer to wsdl:parts in
the same wsdl:message that are referred to by its
soapbind:body element(s).

R2212 An ENVELOPE MUST contain exactly one part accessor element for
each of the wsdl:part elements bound to the envelope's
corresponding soapbind:body element.

R2213 In a doc-literal description where the value of the parts
attribute of soapbind:body is an empty string, the
corresponding ENVELOPE MUST have no element
content in the soap:Body element.

R2214 In a rpc-literal description where the value of the parts
attribute of soapbind:body is an empty string, the
corresponding ENVELOPE MUST have no part accessor
elements.

Use of wsdl:message elements with zero parts is permitted in Document styles to
permit operations that can send or receive envelopes with empty soap:Bodys. Use
of wsdl:message elements with zero parts is permitted in RPC styles to permit
operations that have no (zero) parameters and/or a return value.
For document-literal bindings, the Profile requires that at most one part, abstractly
defined with the element attribute, be serialized into the soap:Body element.
When a wsdl:part element is defined using the type attribute, the serialization of
that part in a message is equivalent to an implicit (XML Schema) qualification of a
minOccurs attribute with the value "1", a maxOccurs attribute with the value "1" and
a nillable attribute with the value "false".
It is necessary to specify the equivalent implicit qualification because the
wsdl:part element does not allow one to specify the cardinality and nillability rules.
Specifying the cardinality and the nillability rules facilitates interoperability between
implementations. The equivalent implicit qualification for nillable attribute has a
value of "false" because if it is specified to be "true" one cannot design a part
whereby the client is always required to send a value. For applications that want to
allow the wsdl:part to to be nillable, it is expected that applications will generate a
complexType wrapper and specify the nillability rules for the contained elements of
such a wrapper.

4.4.2 Bindings and Faults

There are several interpretations for how wsdl:part elements that describe
soapbind:fault, soapbind:header, and soapbind:headerfault may be defined.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 31

R2205 A wsdl:binding in a DESCRIPTION MUST refer, in each of
its soapbind:header, soapbind:headerfault and
soapbind:fault elements, only to wsdl:part element(s)
that have been defined using the element attribute.

Because faults and headers do not contain parameters, soapbind:fault,
soapbind:header and soapbind:headerfault assume, per WSDL 1.1, that the
value of the style attribute is "document". R2204 requires that all wsdl:part
elements with a style attribute whose value is "document" that are bound to
soapbind:body be defined using the element attribute. This requirement does the
same for soapbind:fault, soapbind:header and soapbind:headerfault elements.

4.4.3 Declaration of part Elements

Examples 4 and 5 in WSDL 1.1 Section 3.1 incorrectly show the use of XML
Schema types (e.g. "xsd:string") as a valid value for the element attribute of a
wsdl:part element.

R2206 A wsdl:message in a DESCRIPTION containing a wsdl:part
that uses the element attribute MUST refer, in that
attribute, to a global element declaration.

For example,
INCORRECT:
 <message name="GetTradePriceInput">
 <part name="tickerSymbol" element="xsd:string"/>
 <part name="time" element="xsd:timeInstant"/>
 </message>

INCORRECT:
 <message name="GetTradePriceInput">
 <part name="tickerSymbol" element="xsd:string"/>
 </message>

CORRECT:
 <message name="GetTradePriceInput">
 <part name="body" element="tns:SubscribeToQuotes"/>
 </message>

4.5 Port Types

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 2.4

In WSDL 1.1, wsdl:portType elements are used to group a set of abstract
operations. The Profile places the following constraints on conformant
wsdl:portType element(s):

4.5.1 Ordering of part Elements

Permitting the use of parameterOrder helps code generators in mapping between
method signatures and messages on the wire.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_porttypes

ISO/IEC 29361:2008(E)

32 © ISO/IEC 2008 – All rights reserved

R2301 The order of the elements in the soap:Body of an
ENVELOPE MUST be the same as that of the
wsdl:parts in the wsdl:message that describes it for each
of the wsdl:part elements bound to the envelope's
corresponding soapbind:body element.

R2302 A DESCRIPTION MAY use the parameterOrder attribute of
an wsdl:operation element to indicate the return value
and method signatures as a hint to code generators.

4.5.2 Allowed Operations

Solicit-Response and Notification operations are not well defined by WSDL 1.1;
furthermore, WSDL 1.1 does not define bindings for them.

R2303 A DESCRIPTION MUST NOT use Solicit-Response and
Notification type operations in a wsdl:portType definition.

4.5.3 Distinctive Operations

Operation name overloading in a wsdl:portType is disallowed by the Profile.

R2304 A wsdl:portType in a DESCRIPTION MUST have
operations with distinct values for their name attributes.

Note that this requirement applies only to the wsdl:operations within a given
wsdl:portType. A wsdl:portType may have wsdl:operations with names that are
the same as those found in other wsdl:portTypes.

4.5.4 parameterOrder Attribute Construction

WSDL 1.1 does not clearly state how the parameterOrder attribute of the
wsdl:operation element (which is the child of the wsdl:portType element) should
be constructed.

R2305 A wsdl:operation element child of a wsdl:portType
element in a DESCRIPTION MUST be constructed so
that the parameterOrder attribute, if present, omits at
most 1 wsdl:part from the output message.

If a wsdl:part from the output message is omitted from the list of wsdl:parts that
is the value of the parameterOrder attribute, the single omitted wsdl:part is the
return value. There are no restrictions on the type of the return value. If no part is
omitted, there is no return value.

4.5.5 Exclusivity of type and element Attributes

WSDL 1.1 does not clearly state that both type and element attributes cannot be
specified to define a wsdl:part in a wsdl:message.

R2306 A wsdl:message in a DESCRIPTION MUST NOT specify
both type and element attributes on the same wsdl:part.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 33

4.6 Bindings

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 2.5

In WSDL 1.1, the wsdl:binding element supplies the concrete protocol and data
format specifications for the operations and messages defined by a particular
wsdl:portType. The Profile places the following constraints on conformant binding
specifications:

4.6.1 Use of SOAP Binding

The Profile limits the choice of bindings to the well-defined and most commonly
used SOAP binding.

R2401 A wsdl:binding element in a DESCRIPTION MUST use
WSDL SOAP Binding as defined in WSDL 1.1 Section 3.

Note that this places a requirement on the construction of conformant
wsdl:binding elements. It does not place a requirement on descriptions as a
whole; in particular, it does not preclude WSDL documents from containing non-
conformant wsdl:binding elements. Also, a binding may have WSDL extensibility
elements present which change how messages are serialized.

4.7 SOAP Binding

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• WSDL 1.1, Section 3.0

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. The Profile mandates the
use of SOAP binding as defined in WSDL 1.1, and places the following constraints
on its use:

4.7.1 Specifying the transport Attribute

There is an inconsistency between the WSDL 1.1 specification and the WSDL 1.1
schema regarding the transport attribute. The WSDL 1.1 specification requires it;
however, the schema shows it to be optional.

R2701 The wsdl:binding element in a DESCRIPTION MUST be
constructed so that its soapbind:binding child element
specifies the transport attribute.

4.7.2 HTTP Transport

The profile limits the underlying transport protocol to HTTP.

R2702 A wsdl:binding element in a DESCRIPTION MUST specify
the HTTP transport protocol with SOAP binding.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_bindings
http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_services

ISO/IEC 29361:2008(E)

34 © ISO/IEC 2008 – All rights reserved

Specifically, the transport attribute of its
soapbind:binding child MUST have the value
"http://schemas.xmlsoap.org/soap/http".

Note that this requirement does not prohibit the use of HTTPS; See R5000.

4.7.3 Consistency of style Attribute

The style, "document" or "rpc", of an interaction is specified at the
wsdl:operation level, permitting wsdl:bindings whose wsdl:operations have
different styles. This has led to interoperability problems.

R2705 A wsdl:binding in a DESCRIPTION MUST either be a rpc-
literal binding or a document-literal binding.

4.7.4 Encodings and the use Attribute

The Profile prohibits the use of encodings, including the SOAP encoding.

R2706 A wsdl:binding in a DESCRIPTION MUST use the value of
"literal" for the use attribute in all soapbind:body,
soapbind:fault, soapbind:header and
soapbind:headerfault elements.

4.7.5 Multiple Bindings for portType Elements

The Profile explicitly permits multiple bindings for the same portType.

R2709 A wsdl:portType in a DESCRIPTION MAY have zero or
more wsdl:bindings that refer to it, defined in the same
or other WSDL documents.

4.7.6 Operation Signatures

Definition: operation signature

The profile defines the "operation signature" to be the
fully qualified name of the child element of SOAP body of
the SOAP input message described by an operation in a
WSDL binding.

In the case of rpc-literal binding, the operation name is
used as a wrapper for the part accessors. In the
document-literal case, since a wrapper with the operation
name is not present, the message signatures must be
correctly designed so that they meet this requirement.

An endpoint that supports multiple operations must unambiguously identify the
operation being invoked based on the input message that it receives. This is only
possible if all the operations specified in the wsdl:binding associated with an
endpoint have a unique operation signature.

http://schemas.xmlsoap.org/soap/http

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 35

R2710 The operations in a wsdl:binding in a DESCRIPTION
MUST result in operation signatures that are different
from one another.

4.7.7 Multiple Ports on an Endpoint

When input messages destined for two different wsdl:ports at the same network
endpoint are indistinguishable on the wire, it may not be possible to determine the
wsdl:port being invoked by them. This may cause interoperability problems.
However, there may be situations (e.g., SOAP versioning, application versioning,
conformance to different profiles) where it is desirable to locate more than one port
on an endpoint; therefore, the Profile allows this.

R2711 A DESCRIPTION SHOULD NOT have more than one
wsdl:port with the same value for the location attribute
of the soapbind:address element.

4.7.8 Child Element for Document-Literal Bindings

WSDL 1.1 is not completely clear what, in document-literal style bindings, the child
element of soap:Body is.

R2712 A document-literal binding MUST be serialized as an
ENVELOPE with a soap:Body whose child element is an
instance of the global element declaration referenced by
the corresponding wsdl:message part.

4.7.9 One-Way Operations

There are differing interpretations of how HTTP is to be used when performing
one-way operations.

R2714 For one-way operations, an INSTANCE MUST NOT return
a HTTP response that contains an envelope. Specifically,
the HTTP response entity-body must be empty.

R2750 A CONSUMER MUST ignore an envelope carried in a
HTTP response message in a one-way operation.

R2727 For one-way operations, a CONSUMER MUST NOT
interpret a successful HTTP response status code (i.e.,
2xx) to mean the message is valid or that the receiver
would process it.

One-way operations do not produce SOAP responses. Therefore, the Profile
prohibits sending a SOAP envelope in response to a one-way operation. This
means that transmission of one-way operations can not result in processing level
responses or errors. For example, a "500 Internal Server Error" HTTP response
that contains a fault can not be returned in this situation.
The HTTP response to a one-way operation indicates the success or failure of the
transmission of the message. Based on the semantics of the different response
status codes supported by the HTTP protocol, the Profile specifies that "200" and
"202" are the preferred status codes that the sender should expect, signifying that
the one-way message was received. A successful transmission does not indicate

ISO/IEC 29361:2008(E)

36 © ISO/IEC 2008 – All rights reserved

that the SOAP processing layer and the application logic has had a chance to
validate the envelope or have committed to processing it.

4.7.10 Namespaces for soapbind Elements

There is confusion about what namespace is associated with the child elements of
various children of soap:Envelope, which has led to interoperability difficulties. The
Profile defines these.

R2716 A document-literal binding in a DESCRIPTION MUST NOT
have the namespace attribute specified on contained
soapbind:body, soapbind:header, soapbind:headerfault
and soapbind:fault elements.

R2717 An rpc-literal binding in a DESCRIPTION MUST have the
namespace attribute specified, the value of which MUST
be an absolute URI, on contained soapbind:body
elements.

R2726 An rpc-literal binding in a DESCRIPTION MUST NOT have
the namespace attribute specified on contained
soapbind:header, soapbind:headerfault and
soapbind:fault elements.

In a document-literal SOAP binding, the serialized element child of the soap:Body
gets its namespace from the targetNamespace of the schema that defines the
element. Use of the namespace attribute of the soapbind:body element would
override the element's namespace. This is not allowed by the Profile.
Conversely, in a rpc-literal SOAP binding, the serialized child element of the
soap:Body element consists of a wrapper element, whose namespace is the value
of the namespace attribute of the soapbind:body element and whose local name is
either the name of the operation or the name of the operation suffixed with
"Response". The namespace attribute is required, as opposed to being optional, to
ensure that the children of the soap:Body element are namespace-qualified.

4.7.11 Consistency of portType and binding Elements

The WSDL description must be consistent at both wsdl:portType and
wsdl:binding levels.

R2718 A wsdl:binding in a DESCRIPTION MUST have the same
set of wsdl:operations as the wsdl:portType to which it
refers. C

4.7.12 Describing headerfault Elements

There is inconsistency between WSDL specification text and the WSDL schema
regarding soapbind:headerfaults.

R2719 A wsdl:binding in a DESCRIPTION MAY contain no
soapbind:headerfault elements if there are no known
header faults.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 37

The WSDL 1.1 schema makes the specification of soapbind:headerfault element
mandatory on wsdl:input and wsdl:output elements of an operation, whereas the
WSDL 1.1 specification marks them optional. The specification is correct.

4.7.13 Enumeration of Faults

A Web service description should include all faults known at the time the service is
defined. There is also need to permit generation of new faults that had not been
identified when the Web service was defined.

R2740 A wsdl:binding in a DESCRIPTION SHOULD contain a
soapbind:fault describing each known fault.

R2741 A wsdl:binding in a DESCRIPTION SHOULD contain a
soapbind:headerfault describing each known header
fault.

R2742 An ENVELOPE MAY contain fault with a detail element
that is not described by a soapbind:fault element in the
corresponding WSDL description.

R2743 An ENVELOPE MAY contain the details of a header
processing related fault in a SOAP header block that is
not described by a soapbind:headerfault element in the
corresponding WSDL description.

4.7.14 Type and Name of SOAP Binding Elements

The WSDL 1.1 schema disagrees with the WSDL 1.1 specification about the name
and type of an attribute of the soapbind:header and soapbind:headerfault
elements.

R2720 A wsdl:binding in a DESCRIPTION MUST use the part
attribute with a schema type of "NMTOKEN" on all
contained soapbind:header and soapbind:headerfault
elements.

R2749 A wsdl:binding in a DESCRIPTION MUST NOT use the
parts attribute on contained soapbind:header and
soapbind:headerfault elements.

The WSDL Schema gives the attribute's name as "parts" and its type as
"NMTOKENS". The schema is incorrect since each soapbind:header and
soapbind:headerfault element references a single wsdl:part.
For example,

CORRECT:
<binding name="StockQuoteSoap" type="tns:StockQuotePortType">
 <soapbind:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="SubscribeToQuotes">
 <input message="tns:SubscribeToQuotes">
 <soapbind:body parts="body" use="literal"/>
 <soapbind:header message="tns:SubscribeToQuotes"
 part="subscribeheader" use="literal"/>
 </input>
 </operation>
</binding>

http://schemas.xmlsoap.org/soap/http"/

ISO/IEC 29361:2008(E)

38 © ISO/IEC 2008 – All rights reserved

4.7.15 name Attribute on Faults

There is inconsistency between the WSDL 1.1 specification and the WSDL 1.1
schema, which does not list the name attribute.

R2721 A wsdl:binding in a DESCRIPTION MUST have the name
attribute specified on all contained soapbind:fault
elements.

R2754 In a DESCRIPTION, the value of the name attribute on a
soapbind:fault element MUST match the value of the
name attribute on its parent wsdl:fault element.

4.7.16 Omission of the use Attribute

There is inconsistency between the WSDL 1.1 specification and the WSDL 1.1
schema regarding the use attribute.

R2722 A wsdl:binding in a DESCRIPTION MAY specify the use
attribute on contained soapbind:fault elements. C

R2723 If in a wsdl:binding in a DESCRIPTION the use attribute
on a contained soapbind:fault element is present, its
value MUST be "literal".

WSDL 1.1 Section 3.6 indicates that the use attribute of soapbind:fault is
required while in the schema the use attribute is defined as optional. The Profile
defines it as optional, to be consistent with soapbind:body.
Since the use attribute is optional, the Profile identifies the default value for the
attribute when omitted.
Finally, to assure that the Profile is self-consistent, the only permitted value for the
use attribute is "literal".

4.7.17 Default for use Attribute

There is an inconsistency between the WSDL 1.1 specification and the WSDL 1.1
schema regarding whether the use attribute is optional on soapbind:body,
soapbind:header, and soapbind:headerfault, and if so, what omitting the attribute
means.

R2707 A wsdl:binding in a DESCRIPTION that contains one or
more soapbind:body, soapbind:fault, soapbind:header
or soapbind:headerfault elements that do not specify the
use attribute MUST be interpreted as though the value
"literal" had been specified in each case.

4.7.18 Consistency of Envelopes with Descriptions

These requirements specify that when an instance receives an envelope that does
not conform to the WSDL description, a fault should be generated unless the
instance takes it upon itself to process the envelope regardless of this.
As specified by the SOAP processing model, (a) a "VersionMismatch" faultcode
must be generated if the namespace of the "Envelope" element is incorrect, (b) a
"MustUnderstand" fault must be generated if the instance does not understand a

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 39

SOAP header block with a value of "1" for the soap:mustUnderstand attribute. In all
other cases where an envelope is inconsistent with its WSDL description, a fault
with a "Client" faultcode should be generated.

R2724 If an INSTANCE receives an envelope that is inconsistent
with its WSDL description, it SHOULD generate a
soap:Fault with a faultcode of "Client", unless a
"MustUnderstand" or "VersionMismatch" fault is
generated.

R2725 If an INSTANCE receives an envelope that is inconsistent
with its WSDL description, it MUST check for
"VersionMismatch", "MustUnderstand" and "Client" fault
conditions in that order.

4.7.19 Response Wrappers

WSDL 1.1 Section 3.5 could be interpreted to mean the RPC response wrapper
element must be named identical to the name of the wsdl:operation.

R2729 An ENVELOPE described with an rpc-literal binding that is
a response MUST have a wrapper element whose name
is the corresponding wsdl:operation name suffixed with
the string "Response".

4.7.20 Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear what namespace, if any, the
accessor elements for parameters and return value are a part of. Different
implementations make different choices, leading to interoperability problems.

R2735 An ENVELOPE described with an rpc-literal binding MUST
place the part accessor elements for parameters and
return value in no namespace.

R2755 The part accessor elements in a MESSAGE described with
an rpc-literal binding MUST have a local name of the
same value as the name attribute of the corresponding
wsdl:part element.

Settling on one alternative is crucial to achieving interoperability. The Profile
places the part accessor elements in no namespace as doing so is simple, covers
all cases, and does not lead to logical inconsistency.

4.7.21 Namespaces for Children of Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear on what the correct namespace
qualification is for the child elements of the part accessor elements when the
corresponding abstract parts are defined to be of types from a different
namespace than the targetNamespace of the WSDL description for the abstract
parts.

R2737 An ENVELOPE described with an rpc-literal binding MUST
namespace qualify the descendents of part accessor
elements for the parameters and the return value, as

ISO/IEC 29361:2008(E)

40 © ISO/IEC 2008 – All rights reserved

defined by the schema in which the part accessor types
are defined.

WSDL 1.1 Section 3.5 states: "The part names, types and value of the namespace
attribute are all inputs to the encoding, although the namespace attribute only
applies to content not explicitly defined by the abstract types."
However, it does not explicitly state that the element and attribute content of the
abstract (complexType) types is namespace qualified to the targetNamespace in
which those elements and attributes were defined. WSDL 1.1 was intended to
function in much the same manner as XML Schema. Hence, implementations
must follow the same rules as for XML Schema. If a complexType defined in
targetNamespace "A" were imported and referenced in an element declaration in a
schema with targetNamespace "B", the element and attribute content of the child
elements of that complexType would be qualified to namespace "A" and the
element would be qualified to namespace "B".
For example,

CORRECT:

Given this WSDL, which defines some schema in the
"http://example.org/foo/" namespace in the wsdl:types section contained
within a wsdl:definitions that has a targetNamespace attribute with the
value "http://example.org/bar/" (thus, having a type declared in one
namespace and the containing element defined in another);
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bar="http://example.org/bar/"
targetNamespace="http://example.org/bar/"
xmlns:foo="http://example.org/foo/">
<types>
 <xsd:schema targetNamespace="http://example.org/foo/"
 xmlns:tns="http://example.org/foo/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:complexType name="fooType">
 <xsd:sequence>
 <xsd:element ref="tns:bar"/>
 <xsd:element ref="tns:baf"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="bar" type="xsd:string"/>
 <xsd:element name="baf" type="xsd:integer"/>
 </xsd:schema>
</types>
<message name="BarMsg">
 <part name="BarAccessor" type="foo:fooType"/>
</message>
<portType name="BarPortType">
 <operation name="BarOperation">
 <input message="bar:BarMsg"/>
 </operation>
</portType>
<binding name="BarSOAPBinding" type="bar:BarPortType">
 <soapbind:binding
 transport="http://schemas.xmlsoap.org/soap/http"
 style="rpc"/>

http://example.org/foo/
http://example.org/bar/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/http/
http://www.w3.org/2001/XMLSchema
http://example.org/bar/
http://example.org/bar/
http://example.org/foo/
http://example.org/foo/
http://example.org/foo/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 41

 <operation name="BarOperation">
 <input>
 <soapbind:body use="literal" namespace="http://example.org/bar/"/>
 </input>
 </operation>
</binding>
<service name="serviceName">
 <port name="BarSOAPPort" binding="bar:BarSOAPBinding">
 <soapbind:address location="http://example.org/myBarSOAPPort"/>
 </port>
</service>
</definitions>

The resulting envelope for BarOperation is:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:foo="http://example.org/foo/">
 <s:Header/>
 <s:Body>
 <m:BarOperation xmlns:m="http://example.org/bar/">
 <BarAccessor>
 <foo:bar>String</foo:bar>
 <foo:baf>0</foo:baf>
 </BarAccessor>
 </m:BarOperation>
 </s:Body>
</s:Envelope>

4.7.22 Required Headers

WSDL 1.1 does not clearly specify whether all soapbind:headers specified on the
wsdl:input or wsdl:output elements of a wsdl:operation element in the SOAP
binding section of a WSDL description must be included in the resultant envelopes
when they are transmitted. The Profile makes all such headers mandatory, as
there is no way in WSDL 1.1 to mark a header optional.

R2738 An ENVELOPE MUST include all soapbind:headers
specified on a wsdl:input or wsdl:output of a
wsdl:operation of a wsdl:binding that describes it.

4.7.23 Allowing Undescribed Headers

Headers are SOAP's extensibility mechanism. Headers that are not defined in the
WSDL description may need to be included in the envelopes for various reasons.

R2739 An ENVELOPE MAY contain SOAP header blocks that are
not described in the wsdl:binding that describes it.

R2753 An ENVELOPE containing SOAP header blocks that are
not described in the appropriate wsdl:binding MAY have
the mustUnderstand attribute on such SOAP header
blocks set to '1'.

4.7.24 Ordering Headers

http://example.org/bar/"/
http://example.org/myBarSOAPPort"/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://example.org/foo/
http://example.org/bar/

ISO/IEC 29361:2008(E)

42 © ISO/IEC 2008 – All rights reserved

There is no correlation between the order of soapbind:headers in the description
and the order of SOAP header blocks in the envelope. Similarly, more than one
instance of each specified SOAP header block may occur in the envelope.

R2751 The order of soapbind:header elements in
soapbind:binding sections of a DESCRIPTION MUST be
considered independent of the order of SOAP header
blocks in the envelope.

R2752 An ENVELOPE MAY contain more than one instance of
each SOAP header block for each soapbind:header
element in the appropriate child of soapbind:binding in
the corresponding description.

4.7.25 Describing SOAPAction

Interoperability testing has demonstrated that requiring the SOAPAction HTTP
header field-value to be quoted increases interoperability of implementations. Even
though HTTP allows for header field-values to be unquoted, some
implementations require that the value be quoted.
The SOAPAction header is purely a hint to processors. All vital information
regarding the intent of a message is carried in the envelope.

R2744 A HTTP request MESSAGE MUST contain a SOAPAction
HTTP header field with a quoted value equal to the value
of the soapAction attribute of soapbind:operation, if
present in the corresponding WSDL description.

R2745 A HTTP request MESSAGE MUST contain a SOAPAction
HTTP header field with a quoted empty string value, if in
the corresponding WSDL description, the soapAction of
soapbind:operation is either not present, or present with
an empty string as its value.

See also R1119 and related requirements for more discussion of SOAPAction.
For example,

CORRECT:

A WSDL Description that has:

<soapbind:operation soapAction="foo" />

results in a message with a corresponding SOAPAction HTTP header
field as follows:

SOAPAction: "foo"

CORRECT:

A WSDL Description that has:

<soapbind:operation />

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 43

or

<soapbind:operation soapAction="" />

results in a message with a corresponding SOAPAction HTTP header
field as follows:

SOAPAction: ""

4.7.26 SOAP Binding Extensions

The wsdl:required attribute has been widely misunderstood and used by WSDL
authors sometimes to incorrectly indicate the optionality of soapbind:headers. The
wsdl:required attribute, as specified in WSDL1.1, is an extensibility mechanism
aimed at WSDL processors. It allows new WSDL extension elements to be
introduced in a graceful manner. The intent of wsdl:required is to signal to the
WSDL processor whether the extension element needs to be recognized and
understood by the WSDL processor in order that the WSDL description be
correctly processed. It is not meant to signal conditionality or optionality of some
construct that is included in the envelopes. For example, a wsdl:required attribute
with the value "false" on a soapbind:header element must not be interpreted to
signal to the WSDL processor that the described SOAP header block is conditional
or optional in the envelopes generated from the WSDL description. It is meant to
be interpreted as "in order to send a envelope to the endpoint that includes in its
description the soapbind:header element, the WSDL processor MUST understand
the semantic implied by the soapbind:header element."
The default value for the wsdl:required attribute for WSDL 1.1 SOAP Binding
extension elements is "false". Most WSDL descriptions in practice do not specify
the wsdl:required attribute on the SOAP Binding extension elements, which could
be interpreted by WSDL processors to mean that the extension elements may be
ignored. The Profile requires that all WSDL SOAP 1.1 extensions be understood
and processed by the consumer, irrespective of the presence or the value of the
wsdl:required attribute on an extension element.

R2747 A CONSUMER MUST understand and process all WSDL
1.1 SOAP Binding extension elements, irrespective of the
presence or absence of the wsdl:required attribute on an
extension element; and irrespective of the value of the
wsdl:required attribute, when present.

R2748 A CONSUMER MUST NOT interpret the presence of the
wsdl:required attribute on a soapbind extension element
with a value of "false" to mean the extension element is
optional in the envelopes generated from the WSDL
description.

4.8 Use of XML Schema

The following specifications (or sections thereof) are referred to in this section of
the Profile:

ISO/IEC 29361:2008(E)

44 © ISO/IEC 2008 – All rights reserved

• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes

WSDL 1.1 uses XML Schema as one of its type systems. The Profile mandates
the use of XML Schema as the type system for WSDL descriptions of Web
Services.

R2800 A DESCRIPTION MAY use any construct from XML
Schema 1.0.

R2801 A DESCRIPTION MUST use XML Schema 1.0
Recommendation as the basis of user defined datatypes
and structures.

5 Service Publication and Discovery

When publication or discovery of Web services is required, UDDI is the
mechanism the Profile has adopted to describe Web service providers and the
Web services they provide. Business, intended use, and Web service type
descriptions are made in UDDI terms; detailed technical descriptions are made in
WSDL terms. Where the two specifications define overlapping descriptive data and
both forms of description are used, the Profile specifies that the descriptions must
not conflict.

Registration of Web service instances in UDDI registries is optional. By no means
do all usage scenarios require the kind of metadata and discovery UDDI provides,
but where such capability is needed, UDDI is the sanctioned mechanism.

Note that the Web services that constitute UDDI V2 are not fully conformant with
the Profile 1.0 because they do not accept messages whose envelopes are
encoded in either UTF-8 and UTF-16 as required by the Profile. (They accept
UTF-8 only.) That there should be such a discrepancy is hardly surprising given
that UDDI V2 was designed and, in many cases, implemented before the Profile
was developed. UDDI's designers are aware of UDDI V2's nonconformance and
will take it into consideration in their future work.

This section of the Profile incorporates the following specifications by reference:

• UDDI Version 2.04 API Specification, Dated 19 July 2002
• UDDI Version 2.03 Data Structure Reference, Dated 19 July 2002
• UDDI Version 2 XML Schema

5.1 bindingTemplates

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• UDDI Version 2.03 Data Structure Reference, Section 7

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/schema/uddi_v2.xsd
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130769

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 45

UDDI represents Web service instances as uddi:bindingTemplate elements. The
uddi:bindingTemplate plays a role that is the rough analog of the wsdl:port, but
provides options that are not expressible in WSDL. To keep the WSDL description
of an instance and its UDDI description consistent, the Profile places the following
constraints on how uddi:bindingTemplate elements may be constructed.

WSDL's soapbind:address element requires the network address of the instance
to be directly specified. In contrast, UDDI V2 provides two alternatives for
specifying the network address of instances it represents. One, the
uddi:accessPoint, mirrors the WSDL mechanism by directly specifying the
address. The other, the uddi:hostingRedirector, provides a Web service-based
indirection mechanism for resolving the address, and is inconsistent with the
WSDL mechanism.

R3100 REGDATA of type uddi:bindingTemplate representing a
conformant INSTANCE MUST contain the
uddi:accessPoint element.

For example,
INCORRECT:
<bindingTemplate bindingKey="...">
 <description xml:lang="EN">BarSOAPPort</description>
 <hostingRedirector bindingKey="..."/>
 <tModelInstanceDetails>
 ...
 </tModelInstanceDetails>
</bindingTemplate>

CORRECT:
<bindingTemplate bindingKey="...">
 <description xml:lang="EN">BarSOAPPort</description>
 <accessPoint>http://example.org/myBarSOAPPort</accessPoint>
 <tModelInstanceDetails>
 ...
 </tModelInstanceDetails>
</bindingTemplate>

5.2 tModels

The following specifications (or sections thereof) are referred to in this section of
the Profile:

• UDDI Version 2.03 Data Structure Reference, Section 8

UDDI represents Web service types as uddi:tModel elements. (See UDDI Data
Structures section 8.1.1.) These may, but need not, point (using a URI) to the
document that contains the actual description. Further, UDDI is agnostic with
respect to the mechanisms used to describe Web service types. The Profile
cannot be agnostic about this because interoperation is very much complicated if
Web service types do not have descriptions or if the descriptions can take arbitrary
forms.

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130775
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130777
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130777
http://example.org/myBarSOAPPort</accessPoint

ISO/IEC 29361:2008(E)

46 © ISO/IEC 2008 – All rights reserved

The UDDI API Specification, appendix I.1.2.1.1 allows but does not require
uddi:tModel elements that use WSDL to describe the Web service type they
represent to state that they use WSDL as the description language. Not doing so
leads to interoperability problems because it is then ambiguous what description
language is being used.

Therefore the Profile places the following constraints on how uddi:tModel
elements that describe Web service types may be constructed:

The Profile chooses WSDL as the description language because it is by far the
most widely used such language.

R3002 REGDATA of type uddi:tModel representing a conformant
Web service type MUST use WSDL as the description
language.

To specify that conformant Web service types use WSDL, the Profile adopts the
UDDI categorization for making this assertion.

R3003 REGDATA of type uddi:tModel representing a conformant
Web service type MUST be categorized using the
uddi:types taxonomy and a categorization of "wsdlSpec".

For the uddi:overviewURL in a uddi:tModel to resolve to a wsdl:binding, the
Profile must adopt a convention for distinguishing among multiple wsdl:bindings
in a WSDL document. The UDDI Best Practice for Using WSDL in a UDDI Registry
specifies the most widely recognized such convention.

R3010 REGDATA of type uddi:tModel representing a conformant
Web service type MUST follow V1.08 of the UDDI Best
Practice for Using WSDL in a UDDI Registry.

It would be inconsistent if the wsdl:binding that is referenced by the uddi:tModel
does not conform to the Profile.

R3011 The wsdl:binding that is referenced by REGDATA of type
uddi:tModel MUST itself conform to the Profile.

6 Security

As is true of all network-oriented information technologies, the subject of security is
a crucial one for Web services. For Web services, as for other information
technologies, security consists of understanding the potential threats an attacker
may mount and applying operational, physical, and technological countermeasures
to reduce the risk of a successful attack to an acceptable level. Because an
"acceptable level of risk" varies hugely depending on the application, and because
costs of implementing countermeasures is also highly variable, there can be no
universal "right answer" for securing Web services. Choosing the absolutely
correct balance of countermeasures and acceptable risk can only be done on a
case by case basis.

http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137792

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 47

That said, there are common patterns of countermeasures that experience shows
reduce the risks to acceptable levels for many Web services. The Profile adopts,
but does not mandate use of, the most widely used of these: HTTP secured with
either TLS 1.0 or SSL 3.0 (HTTPS). That is, conformant Web services may use
HTTPS; they may also use other countermeasure technologies or none at all.

HTTPS is widely regarded as a mature standard for encrypted transport
connections to provide a basic level of confidentiality. HTTPS thus forms the first
and simplest means of achieving some basic security features that are required by
many real-world Web service applications. HTTPS may also be used to provide
client authentication through the use of client-side certificates.

This section of the Profile incorporates the following specifications by reference,
and defines extensibility points within them:

• RFC2818: HTTP Over TLS
• RFC2246: The TLS Protocol Version 1.0

Extensibility points:
o E0019 - TLS Cyphersuite - TLS allows for the use of arbitrary

encryption algorithms.
o E0020 - TLS Extensions - TLS allows for extensions during the

handshake phase.
• The SSL Protocol Version 3.0

Extensibility points:
o E0021 - SSL Cyphersuite - SSL allows for the use of arbitrary

encryption algorithms.
• RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL

Profile
Extensibility points:

o E0022 - Certificate Authority - The choice of the Certificate Authority
is a private agreement between parties.

o E0023 - Certificate Extensions - X509 allows for arbitrary certificate
extensions.

6.1 Use of HTTPS

HTTPS is such a useful, widely understood basic security mechanism that the
Profile needs to allow it.

R5000 An INSTANCE MAY require the use of HTTPS.
R5001 If an INSTANCE requires the use of HTTPS, the location

attribute of the soapbind:address element in its wsdl:port
description MUST be a URI whose scheme is "https";
otherwise it MUST be a URI whose scheme is "http".

Simple HTTPS provides authentication of the Web service instance by the
consumer but not authentication of the consumer by the instance. For many
instances this leaves the risk too high to permit interoperation. Including the mutual
authentication facility of HTTPS in the Profile permits instances to use the

http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt

ISO/IEC 29361:2008(E)

48 © ISO/IEC 2008 – All rights reserved

countermeasure of authenticating the consumer. In cases in which authentication
of the instance by the consumer is insufficient, this often reduces the risk
sufficiently to permit interoperation.

R5010 An INSTANCE MAY require the use of HTTPS with mutual
authentication.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 49

Appendix A: Referenced Specifications
The following specifications' requirements are incorporated into the Profile by
reference, except where superseded by the Profile:

• Simple Object Access Protocol (SOAP) 1.1
• RFC2616: Hypertext Transfer Protocol -- HTTP/1.1
• RFC2965: HTTP State Management Mechanism
• Extensible Markup Language (XML) 1.0 (Second Edition)
• Namespaces in XML 1.0
• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes
• Web Services Description Language (WSDL) 1.1
• UDDI Version 2.04 API Specification, Dated 19 July 2002
• UDDI Version 2.03 Data Structure Reference, Dated 19 July 2002
• UDDI Version 2 XML Schema
• RFC2818: HTTP Over TLS
• RFC2246: The TLS Protocol Version 1.0
• The SSL Protocol Version 3.0
• RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL

Profile

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/schema/uddi_v2.xsd
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt

ISO/IEC 29361:2008(E)

50 © ISO/IEC 2008 – All rights reserved

Appendix B: Extensibility Points
This section identifies extensibility points, as defined in "Scope of the Profile," for
the Profile's component specifications.

These mechanisms are out of the scope of the Profile; their use may affect
interoperability, and may require private agreement between the parties to a Web
service.

In Simple Object Access Protocol (SOAP) 1.1:

• E0001 - Header blocks - Header blocks are the fundamental extensibility
mechanism in SOAP.

• E0002 - Processing order - The order of processing of a SOAP envelope's
components (e.g., headers) is unspecified, and therefore may need to be
negotiated out-of-band.

• E0003 - Use of intermediaries - SOAP Intermediaries is an underspecified
mechanism in SOAP 1.1, and their use may require out-of-band negotiation.
Their use may also necessitate careful consideration of where Profile
conformance is measured.

• E0004 - soap:actor values - Values of the soap:actor attribute, other than
the special uri 'http://schemas.xmlsoap.org/soap/actor/next' , represent a
private agreement between parties of the web service.

• E0005 - Fault details - the contents of a Fault's detail element are not
prescribed by SOAP 1.1.

• E0006 - Envelope serialization - The Profile does not constrain some
aspects of how the envelope is serialized into the message.

In RFC2616: Hypertext Transfer Protocol -- HTTP/1.1:

• E0007 - HTTP Authentication - HTTP authentication allows for extension
schemes, arbitrary digest hash algorithms and parameters.

• E0008 - Unspecified Header Fields - HTTP allows arbitrary headers to
occur in messages.

• E0009 - Expect-extensions - The Expect/Continue mechanism in HTTP
allows for expect-extensions.

• E0010 - Content-Encoding - The set of content-codings allowed by HTTP
is open-ended and any besides 'gzip', 'compress', or 'deflate' are an
extensibility point.

• E0011 - Transfer-Encoding - The set of transfer-encodings allowed by
HTTP is open-ended.

• E0012 - Upgrade - HTTP allows a connection to change to an arbitrary
protocol using the Upgrade header.

• E0024 - Namespace Attributes - Namespace attributes on soap:Envelope
and soap:Header elements

• E0025 - Attributes on soap:Body elements - Neither namespaced nor
local attributes are constrained by SOAP 1.1.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2616.txt
http://schemas.xmlsoap.org/soap/actor/next'

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 51

In XML Schema Part 1: Structures:

• E0017 - Schema annotations - XML Schema allows for annotations, which
may be used to convey additional information about data structures.

In Web Services Description Language (WSDL) 1.1:

• E0013 - WSDL extensions - WSDL allows extension elements and
attributes in certain places; use of such extensions requires out-of-band
negotiation.

• E0014 - Validation mode - whether the parser used to read WSDL and
XML Schema documents performs DTD validation or not.

• E0015 - Fetching of external resources - whether the parser used to read
WSDL and XML Schema documents fetches external entities and DTDs.

• E0016 - Relative URIs - WSDL does not adequately specify the use of
relative URIs for the following: soapbind:body/@namespace,
soapbind:address/@location, wsdl:import/@location,
xsd:schema/@targetNamespace and xsd:import/@schemaLocation. Their
use may require further coordination; see XML Base for more information.

In RFC2246: The TLS Protocol Version 1.0:

• E0019 - TLS Cyphersuite - TLS allows for the use of arbitrary encryption
algorithms.

• E0020 - TLS Extensions - TLS allows for extensions during the handshake
phase.

In The SSL Protocol Version 3.0:

• E0021 - SSL Cyphersuite - SSL allows for the use of arbitrary encryption
algorithms.

In RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile:

• E0022 - Certificate Authority - The choice of the Certificate Authority is a
private agreement between parties.

• E0023 - Certificate Extensions - X509 allows for arbitrary certificate
extensions.

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459.txt

ISO/IEC 29361:2008(E)

52 © ISO/IEC 2008 – All rights reserved

Appendix C: Normative References
In addition to all of the profiled specifications listed in Appendix A, the following
specifications are referenced:

• RFC2119, http://ietf.org/rfc/rfc2119, Key words for use in RFCs to Indicate
Requirement Levels, S. Bradner, March 1997.

• WS-I Basic Profile 1.0, http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-
04-16.html, K. Ballinger et al., April 2004.

• Namespaces in XML 1.0 (Second Edition),
http://www.w3.org/TR/2006/REC-xml-names-20060816, T. Bray et al.,
August 2006.

• WS-I Conformance Claim Attachment Mechanisms Version 1.0,
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html, M.
Nottingham et al., November 2004.

http://ietf.org/rfc/rfc2119
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 53

Appendix D: Defined Terms
The following list of terms have specific definitions that are authoritative for this
profile:

rpc-literal binding

An "rpc-literal binding" is a wsdl:binding element
whose child wsdl:operation elements are all rpc-
literal operations.

An "rpc-literal operation" is a wsdl:operation child
element of wsdl:binding whose soapbind:body
descendant elements specify the use attribute with
the value "literal", and either:

1. The style attribute with the value "rpc" is
specified on the child soapbind:operation
element; or

2. The style attribute is not present on the
child soapbind:operation element, and the
soapbind:binding element in the enclosing
wsdl:binding specifies the style attribute
with the value "rpc".

document-literal binding

A "document-literal binding" is a wsdl:binding
element whose child wsdl:operation elements are
all document-literal operations.

A "document-literal operation" is a wsdl:operation
child element of wsdl:binding whose
soapbind:body descendent elements specifies the
use attribute with the value "literal" and, either:

1. The style attribute with the value
"document" is specified on the child
soapbind:operation element; or

2. The style attribute is not present on the
child soapbind:operation element, and the
soapbind:binding element in the enclosing
wsdl:binding specifies the style attribute
with the value "document"; or

3. The style attribute is not present on both
the child soapbind:operation element and
the soapbind:binding element in the
enclosing wsdl:binding.

ISO/IEC 29361:2008(E)

54 © ISO/IEC 2008 – All rights reserved

operation signature

The profile defines the "operation signature" to be
the fully qualified name of the child element of
SOAP body of the SOAP input message described
by an operation in a WSDL binding.

In the case of rpc-literal binding, the operation
name is used as a wrapper for the part accessors.
In the document-literal case, since a wrapper with
the operation name is not present, the message
signatures must be correctly designed so that they
meet this requirement.

ISO/IEC 29361:2008(E)

© ISO/IEC 2008 – All rights reserved 55

Appendix E: Acknowledgements
This document is the work of the WS-I Basic Profile Working Group, whose
members have included:

Mark Allerton (Crystal Decisions Corp), Steve Anderson (OpenNetwork),
George Arriola (Talking Blocks, Inc.), Siddharth Bajaj (Verisign), Keith
Ballinger (Microsoft Corp.), David Baum (Kantega AS), Ilya Beyer
(KANA), Rich Bonneau (IONA Technologies), Don Box (Microsoft Corp.),
Andrew Brown (Verisign), Heidi Buelow (Quovadx), David Burdett
(Commerce One, Inc.), Luis Felipe Cabrera (Microsoft Corp.), Maud
Cahuzac (France Telecom), Mike Chadwick (Kaiser Permanente), Martin
Chapman (Oracle Corporation), Richard Chennault (Kaiser Permanente),
Roberto Chinnici (Sun Microsystems), Dipak Chopra (SAP AG), Jamie
Clark (OASIS), David Cohen (Merrill Lynch), Ugo Corda (SeeBeyond
Tech), Paul Cotton (Microsoft Corp.), Joseph Curran (Accenture), Alex
Deacon (Verisign), Mike DeNicola (Fujitsu Limited), Paul Downey (BT
Group), Jacques Durand (Fujitsu Limited), Aladin Eajani (Hummingbird,
Ltd.), Michael Eder (Nokia), Dave Ehnebuske (IBM), Mark Ericson
(Mindreef Inc), Colleen Evans (Microsoft Corp.), Tim Ewald (Microsoft
Corp.), Chuck Fay (FileNET Corp.), Chris Ferris (IBM), Daniel Foody
(Actional Corporation), Satoru Fujita (NEC Corporation), Shishir Garg
(France Telecom), Yaron Goland (BEA Systems Inc), Marc Goodner
(SAP AG), Pierre Goyette (Hummingbird, Ltd.), Hans Granqvist
(Verisign), Martin Gudgin (Microsoft Corp.), Marc Hadley (Sun
Microsystems), Norma Hale (Webify Solutions Inc), Bob Hall (Unisys
Corporation), Scott Hanselman (Corillian), Muir Harding (Autodesk Inc.),
Loren Hart (Verisign), Andrew Hately (IBM), Harry Holstrom (Accenture),
Lawrence Hsiung (Quovadx), Hemant Jain (Tata Consultancy), Steve
Jenisch (SAS Institute), Erik Johnson (Epicor Software), Bill Jones
(Oracle Corporation), Anish Karmarkar (Oracle Corporation), Dana
Kaufman (Forum Systems), Takahiro Kawamura (Toshiba), Oldre Kepka
(Systinet), Bhushan Khanal (WRQ Inc.), Sandy Khaund (Microsoft Corp.),
Jacek Kopecky (Systinet), Sanjay Krishnamurthi (Informatica), Sundar
Krishnamurthy (Verisign), Eva Kuiper (Hewlett-Packard), Sunil Kunisetty
(Oracle Corporation), Christopher Kurt (Microsoft Corp.), Lars Laakes
(Microsoft Corp.), Canyang Kevin Liu (SAP AG), Ted Liu (webMethods
Inc.), Donna Locke (Oracle Corporation), Brad Lund (Intel), Michael
Mahan (Nokia), Ron Marchi (EDS), Jonathan Marsh (Microsoft Corp.),
Eric Matland (Hummingbird, Ltd.), Barbara McKee (IBM), Derek Medland
(Hummingbird, Ltd.), David Meyer (Plumtree Software Inc.), Jeff
Mischkinsky (Oracle Corporation), Ray Modeen (MITRE Corp.), Tom
Moog (Sarvega Inc.), Gilles Mousseau (Hummingbird, Ltd.), Greg
Mumford (MCI), Jim Murphy (Mindreef Inc), Bryan Murray (Hewlett-
Packard), Richard Nikula (BMC Software, Inc.), Eisaku Nishiyama
(Hitachi, Ltd.), Mark Nottingham (BEA Systems Inc), David Orchard (BEA
Systems Inc), Vivek Pandey (Sun Microsystems), Jesse Pangburn
(Quovadx), Eduardo Pelegri-Llopart (Sun Microsystems), Mike Perham
(Webify Solutions Inc), Eric Rajkovic (Oracle Corporation), Shaan Razvi

ISO/IEC 29361:2008(E)

56 © ISO/IEC 2008 – All rights reserved

(MITRE Corp.), Rimas Rekasius (IBM), Mark Richards (Fidelity), Graeme
Riddell (Bowstreet), Sam Ruby (IBM), Tom Rutt (Fujitsu Limited), Saikat
Saha (Commerce One, Inc.), Roger Sanborn (Crystal Decisions Corp),
Matt Sanchez (Webify Solutions Inc), Krishna Sankar (Cisco Systems
Inc.), Jeffrey Schlimmer (Microsoft Corp.), Don Schricker (Micro Focus),
Dave Seidel (Mindreef Inc), AKIRA SHIMAYA (NTT), David Shoaf
(Hewlett-Packard), Yasser Shohoud (Microsoft Corp.), David Smiley
(Ascential Software), Seumas Soltysik (IONA Technologies), Joseph
Stanko (Plumtree Software Inc.), Andrew Stone (Accenture), Julie Surer
(MITRE Corp.), YASUO TAKEMOTO (NTT), Nobuyoshi Tanaka (NEC
Corporation), Jorgen Thelin (Microsoft Corp.), Sameer Vaidya (Talking
Blocks, Inc.), William Vambenepe (Hewlett-Packard), Claus von Riegen
(SAP AG), Rick Weil (Eastman Kodak Company), Scott Werden (WRQ
Inc.), Ajamu Wesley (IBM), Ian White (Micro Focus), Dave Wilkinson
(Vignette), Mark Wood (Eastman Kodak Company), Prasad Yendluri
(webMethods Inc.), and Brandon Zhu (NetManage Inc).

ISO/IEC 29361:2008(E)

ICS 35.100.05
Price based on 56 pages

© ISO/IEC 2008 – All rights reserved

	1 Scope and introduction
	1.1 Scope
	1.2 Relationships to Other Profiles
	1.3 Changes from Basic Profile Version 1.0
	1.4 Guiding Principles
	1.5 Notational Conventions
	1.6 Profile Identification and Versioning

	2 Profile Conformance
	2.1 Conformance Requirements
	2.2 Conformance Targets
	2.3 Conformance Scope
	2.4 Claiming Conformance

	3 Messaging
	3.1 SOAP Envelopes
	3.1.1 SOAP Envelope Structure
	3.1.2 SOAP Envelope Namespace
	3.1.3 SOAP Body Namespace Qualification
	3.1.4 Disallowed Constructs
	3.1.5 SOAP Trailers
	3.1.6 SOAP encodingStyle Attribute
	3.1.7 SOAP mustUnderstand Attribute
	3.1.8 xsi:type Attributes
	3.1.9 SOAP1.1 attributes on SOAP1.1 elements

	3.2 SOAP Processing Model
	3.2.1 Mandatory Headers
	3.2.2 Generating mustUnderstand Faults
	3.2.3 SOAP Fault Processing

	3.3 SOAP Faults
	3.3.1 Identifying SOAP Faults
	3.3.2 SOAP Fault Structure
	3.3.3 SOAP Fault Namespace Qualification
	3.3.4 SOAP Fault Extensibility
	3.3.5 SOAP Fault Language
	3.3.6 SOAP Custom Fault Codes

	3.4 Use of SOAP in HTTP
	3.4.1 HTTP Protocol Binding
	3.4.2 HTTP Methods and Extensions
	3.4.3 SOAPAction HTTP Header
	3.4.4 HTTP Success Status Codes
	3.4.5 HTTP Redirect Status Codes
	3.4.6 HTTP Client Error Status Codes
	3.4.7 HTTP Server Error Status Codes
	3.4.8 HTTP Cookies

	4 Service Description
	4.1 Required Description
	4.2 Document Structure
	4.2.1 WSDL Schema Definitions
	4.2.2 WSDL and Schema Import
	4.2.3 WSDL Import location Attribute Structure
	4.2.4 WSDL Import location Attribute Semantics
	4.2.5 Placement of WSDL import Elements
	4.2.6 XML Version Requirements
	4.2.7 XML Namespace declarations
	4.2.8 WSDL and the Unicode BOM
	4.2.9 Acceptable WSDL Character Encodings
	4.2.10 Namespace Coercion
	4.2.11 WSDL documentation Element
	4.2.12 WSDL Extensions

	4.3 Types
	4.3.1 QName References
	4.3.2 Schema targetNamespace Structure
	4.3.3 soapenc:Array
	4.3.4 WSDL and Schema Definition Target Namespaces

	4.4 Messages
	4.4.1 Bindings and Parts
	4.4.2 Bindings and Faults
	4.4.3 Declaration of part Elements

	4.5 Port Types
	4.5.1 Ordering of part Elements
	4.5.2 Allowed Operations
	4.5.3 Distinctive Operations
	4.5.4 parameterOrder Attribute Construction
	4.5.5 Exclusivity of type and element Attributes

	4.6 Bindings
	4.6.1 Use of SOAP Binding

	4.7 SOAP Binding
	4.7.1 Specifying the transport Attribute
	4.7.2 HTTP Transport
	4.7.3 Consistency of style Attribute
	4.7.4 Encodings and the use Attribute
	4.7.5 Multiple Bindings for portType Elements
	4.7.6 Operation Signatures
	4.7.7 Multiple Ports on an Endpoint
	4.7.8 Child Element for Document-Literal Bindings
	4.7.9 One-Way Operations
	4.7.10 Namespaces for soapbind Elements
	4.7.11 Consistency of portType and binding Elements
	4.7.12 Describing headerfault Elements
	4.7.13 Enumeration of Faults
	4.7.14 Type and Name of SOAP Binding Elements
	4.7.15 name Attribute on Faults
	4.7.16 Omission of the use Attribute
	4.7.17 Default for use Attribute
	4.7.18 Consistency of Envelopes with Descriptions
	4.7.19 Response Wrappers
	4.7.20 Part Accessors
	4.7.21 Namespaces for Children of Part Accessors
	4.7.22 Required Headers
	4.7.23 Allowing Undescribed Headers
	4.7.24 Ordering Headers
	4.7.25 Describing SOAPAction
	4.7.26 SOAP Binding Extensions

	4.8 Use of XML Schema

	5 Service Publication and Discovery
	5.1 bindingTemplates
	5.2 tModels

	6 Security
	6.1 Use of HTTPS

	Appendix A: Referenced Specifications
	Appendix B: Extensibility Points
	Appendix C: Normative References
	Appendix D: Defined Terms
	Appendix E: Acknowledgements

