
# 3 Schaltung von Widerständen

connection of resistances

#### 3.1 Reihenschaltung von Widerständen



$$I = I_1 = I_2 = \dots$$

$$I = \frac{U}{R} = \frac{U_1}{R_1} = \frac{U_2}{R_2} = \dots$$

Serien- oder Hintereinanderschaltung

#### 2. Kirchhoffsches Gesetz (Maschenregel, $\Sigma U = 0$ ):

$$U = U_1 + U_2 + ...$$

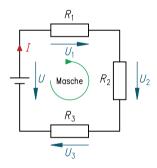
$$U_1 = U - U_2 - ...$$

$$U = I \cdot R = I \cdot R_1 + I \cdot R_2 + \dots$$

$$U = I \cdot (R_1 + R_2 + \dots)$$

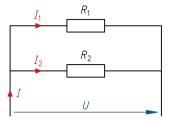
Maschenregel:

$$U_1 + U_2 + U_3 - U = 0$$


In einer Masche ist die Summe der Spannungen gleich Null!

$$R = R_1 + R_2 + \dots$$

$$R_1 = R - R_2 - \dots$$


$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$\frac{U}{R} = \frac{U_1}{R_1} = \frac{U_2}{R_2} = \dots$$



| Zeichen               | Bedeutung                              | Einheit |
|-----------------------|----------------------------------------|---------|
| U                     | Elektrische Spannung, Gesamtspannung   | V       |
| $U_1$ , $U_2$ , $U_3$ | Teilspannungen                         | V       |
| I                     | Elektrische Stromstärke                | Α       |
| $I_1$ , $I_2$         | Teilströme                             | Α       |
| R                     | Elektrischer Gesamt-, Ersatzwiderstand | Ω       |
| $R_1, R_2, R_3$       | Teilwiderstände                        | Ω       |
| Σ                     | Summenzeichen (griech.: Sigma)         |         |

#### 3.2 Parallelschaltung von Widerständen



$$I = I_1 + I_2 + \dots$$

$$I_1 = I - I_2 - \dots$$

$$I_1 = I - I_2 - \dots$$

$$U = U_1 = U_2 = \dots$$

Nebeneinanderschaltung

#### 1. Kirchhoffsches Gesetz (Knotenpunktregel, $\Sigma I = 0$ , $\Sigma I_{zu} = \Sigma I_{ab}$ )





$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$
  $\frac{1}{R_1} = \frac{1}{R} - \frac{1}{R_2} - \dots$ 

$$\frac{1}{R_1} = \frac{1}{R} - \frac{1}{R_2} - \dots$$

$$G = G_1 + G_2 + \dots$$
  $G_1 = G - G_2 - \dots$ 

$$G_1 = G - G_2 - ...$$

Für zwei Widerstände gilt:

$$R = \frac{R_1 \cdot R_2}{R_1 + R_2}$$
  $R_1 = \frac{R_2 \cdot R}{R_2 - R}$   $R_2 = \frac{R_1 \cdot R}{R_1 - R}$ 

$$R_1 = \frac{R_2 \cdot R}{R_2 - R}$$

$$R_2 = \frac{R_1 \cdot R}{R_1 - R}$$

$$\frac{I_1}{I_2} = \frac{R_2}{R_1}$$

$$I_1 = \frac{I_2 \cdot R_2}{R_1}$$

$$I_1 = \frac{I_2 \cdot R_2}{R_1}$$
  $I_2 = \frac{I_1 \cdot R_1}{R_2}$   $R_3 = \frac{I_2 \cdot R_2}{I_1}$   $R_2 = \frac{I_1 \cdot R_1}{I_2}$ 

$$R_1 = \frac{I_2 \cdot R_2}{I}$$

$$R_2 = \frac{I_1 \cdot R_1}{I_2}$$

$$\frac{I_1}{I_2} = \frac{G_1}{G_2}$$

$$I_1 = \frac{I_2 \cdot G_1}{G_2}$$

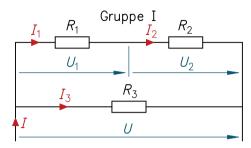
$$I_2 = \frac{I_1 \cdot G_2}{G_2}$$

$$I_1 = \frac{I_1}{G} = \frac{G_1}{G}$$

$$I_2 = \frac{I_1 \cdot G_2}{G}$$

$$G_3 = \frac{I_1 \cdot G_2}{I_2}$$

$$G_4 = \frac{I_1 \cdot G_2}{I_2}$$


$$G_2 = \frac{I_2 \cdot G}{I_1}$$

| Zeichen               | Bedeutung                              | Einheit |
|-----------------------|----------------------------------------|---------|
| U                     | Elektrische Spannung                   | V       |
| $U_1, U_2$            | Teilspannungen                         | V       |
| I                     | Elektrische Stromstärke                | Α       |
| $I_{1}, I_{2}, I_{3}$ | Teilströme                             | Α       |
| R                     | Elektrischer Gesamt-, Ersatzwiderstand | Ω       |
| $R_{1}, R_{2}, R_{3}$ | Teilwiderstände                        | Ω       |
| G                     | Elektrischer Leitwert                  | S, 1/Ω  |
| $G_1, G_2$            | Teilleitwerte                          | S, 1/Ω  |
| Σ                     | Summenzeichen                          | -       |
| $\Sigma I_{zu}$       | Summe der zufließenden Ströme          | Α       |
| $\Sigma I_{ab}$       | Summe der abfließenden Ströme          | Α       |

#### Schaltung von Widerständen 3

connection of resistances

#### 3.3 Gruppenschaltung von Widerständen



Gemischte Schaltung

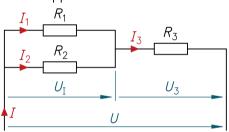
$$R = \frac{R_{\rm I} \cdot R_{\rm 3}}{R_{\rm I} + R_{\rm 3}}$$

$$R_{\rm I} = R_1 + R_2$$

$$I = \frac{U}{R}$$

$$I = I_1 + I_3$$

$$I = I_1 + I_3$$
  $I_1 = I_1 = I_2 = \frac{U}{R_1}$   $I_3 = \frac{U}{R_3}$ 


$$I_3 = \frac{U}{R_2}$$

$$U = I \cdot R$$

$$U_1 = I_1 \cdot R_1$$

$$U = I \cdot R \qquad \qquad U_1 = I_1 \cdot R_1 \qquad \qquad U_2 = I_2 \cdot R_2$$

Gruppe I



$$R = R_{\rm I} + R_{\rm 3}$$

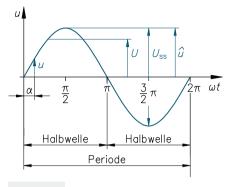
$$R = R_1 + R_3$$
  $R_1 = \frac{R_1 \cdot R_2}{R_1 + R_2}$ 

$$I = I_1 + I_2 = I$$

$$I = \frac{U}{R}$$
  $I_1 = \frac{U_1}{R_1}$   $I_2 = \frac{U_1}{R_2}$   $I_3 = \frac{U_3}{R_3}$ 

$$I_3 = \frac{U_1}{R}$$

$$U = I \cdot R$$


$$U_1 = I \cdot R_T$$

$$U = I \cdot R$$
  $U_1 = I \cdot R_1$   $U_3 = I_3 \cdot R_3$ 

| Zeichen                                                | Bedeutung                              | Einheit |
|--------------------------------------------------------|----------------------------------------|---------|
| <i>U</i> , <i>U</i> <sub>1</sub> <i>U</i> <sub>3</sub> | Elektrische Spannung                   | V       |
| $U_{_{ m I}}$                                          | Gruppenspannung                        | V       |
| I                                                      | Elektrische Stromstärke                | Α       |
| $I_1 \dots I_3$                                        | Teilströme                             | Α       |
| R                                                      | Elektrischer Gesamt-, Ersatzwiderstand | Ω       |
| $R_{_{ m I}}$                                          | Elektrischer Widerstand, Gruppe I      | Ω       |
| $R_1 \dots R_3$                                        | Teilwiderstände                        | Ω       |

#### Wechselstromgrundlagen 14

basics of alternating current



 $f = \frac{1}{\tau}$ 

 $T = \frac{1}{f}$ 

#### Hinweis:

Bei der Eingabe von  $\alpha$  die Einstellung des Taschenrechners beachten!

Wenn n nicht in 1/min sondern in 1/s vorliegt, teilen durch 60 weglassen.

#### Zeitwert einer Wechselstromgröße

 $u = \hat{u} \cdot \sin \alpha$ 

 $i = \hat{i} \cdot \sin \alpha$ 

**Effektiv- und Scheitelwert** (Gilt nur bei sinusförmigen Werten)

$$U = \frac{U_{\text{max}}}{\sqrt{2}}$$

$$U = 0.707 \cdot U_{\text{max}}$$
  $U_{\text{max}} = U \cdot \sqrt{2}$   $U_{\text{ss}} = 2 \cdot U_{\text{max}}$ 

$$U_{\text{max}} = U \cdot \sqrt{2}$$

$$U_{\rm ss} = 2 \cdot U_{\rm max}$$

$$I = \frac{I_{\text{max}}}{\sqrt{2}}$$

$$\mathit{I} = 0.707 \cdot \mathit{I}_{\mathsf{max}}$$

$$I_{\text{max}} = I \cdot \sqrt{2}$$

$$I_{\rm ss} = \mathbf{2} \, \cdot I_{\rm max}$$

#### Kreisfrequenz

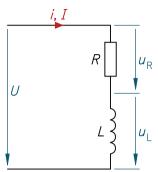
#### **Drehwinkel**

$$\omega = 2 \cdot \pi \cdot f$$

$$f = \frac{\omega}{2 \cdot \pi}$$

$$\alpha = \frac{2 \cdot \pi}{\tau} \cdot t$$

$$\alpha = 2 \cdot \pi \cdot f \cdot t$$


$$\alpha = \omega \cdot t$$

| Zeichen                                           | Bedeutung                                                                                                                                                            | Einheit             |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| U<br>U <sub>max</sub> , û<br>U <sub>ss</sub><br>u | Effektivwert der Wechselspannung<br>Scheitelwert, Maximalwert der Wechselspannung<br>Spannung von Spitze zu Spitze<br>Augenblicks- oder Zeitwert der Wechselspannung | V                   |
| I<br>I <sub>max</sub> , î<br>I <sub>ss</sub><br>i | Effektivwert des Wechselstroms<br>Scheitelwert, Maximalwert des Wechselstroms<br>Strom von Spitze zu Spitze<br>Augenblicks- oder Zeitwert des Wechselstroms          | A                   |
| f                                                 | Frequenz                                                                                                                                                             | Hz, s <sup>-1</sup> |
| T                                                 | Periodendauer                                                                                                                                                        | S                   |
| р                                                 | Polpaarzahl                                                                                                                                                          | -                   |
| n                                                 | Umdrehungsfrequenz                                                                                                                                                   | 1/min               |
| ω                                                 | Kreisfrequenz                                                                                                                                                        | S <sup>-1</sup>     |
| α                                                 | Drehwinkel im Bogenmaß                                                                                                                                               | rad                 |
| t                                                 | Zeit                                                                                                                                                                 | S                   |

# 15.2 Induktivität an Gleichspannung

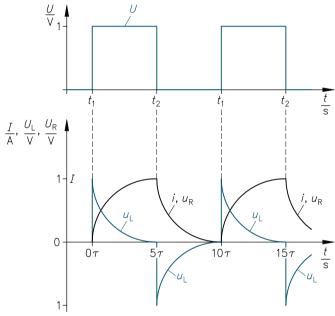
#### Zeitkonstante

$$\tau = \frac{L}{R}$$



# Einschaltmoment $t_1$

$$u_{\rm L} = U \cdot {\rm e}^{\,-{{\rm t}\over{ au}}}$$


$$i = I\left(1 - e^{-\frac{t}{\tau}}\right)$$

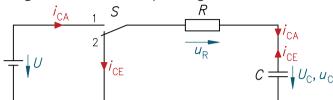
$$I = \mathbf{i}_{\text{max}} = \frac{U}{R}$$

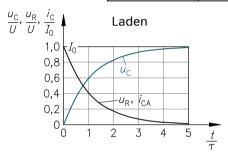
# Ausschaltmoment t<sub>2</sub>

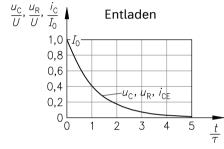
$$i = I \cdot e^{-\frac{t}{\tau}}$$

$$I = \frac{U}{R}$$




| Zeichen                | Bedeutung                                      | Einheit     |
|------------------------|------------------------------------------------|-------------|
| τ                      | Zeitkonstante                                  | S           |
| L                      | Induktivität                                   | H, Vs/A, Ωs |
| R                      | Wirkwiderstand des Stromkreises                | Ω           |
| U                      | Betrag der angelegten Gleichspannung           | V           |
| $u_{\rm R}, u_{\rm L}$ | Augenblickswert der Teilspannung               | V           |
| i                      | Augenblickswert des Stromes                    | Α           |
| I, i <sub>max</sub>    | Höchstwert des Gleichstromes                   | Α           |
| t                      | Zeit (nach dem Schaltvorgang $t_1$ und $t_2$ ) | S           |
| е                      | Eulersche Zahl 2,71828                         | _           |


# 18.2 Ladung und Entladung eines Kondensators


#### Zeitkonstante

 $\tau = R \cdot C$ 

Nach einer Zeitkonstanten  $\tau$  ist  $U_{\rm C}\approx 63$  % von U. Nach  $t=5\cdot \tau$  ist ungefähr die volle Ladespannung des Kondensators erreicht.







t = 0, Umschaltung von 2  $\rightarrow$  1

$$I_0 = \frac{U}{R}$$

$$u_{\rm c} = U \cdot \left(1 - {\rm e}^{-\frac{\rm t}{\tau}}\right)$$
  $t = -\tau \cdot \ln\left(1 - \frac{u_{\rm c}}{U}\right)$ 

$$-\frac{t}{\tau}$$

$$t = -\tau \cdot \ln \left( 1 - \frac{u_{\rm C}}{II} \right)$$

$$i_{\text{CA}} = I_0 \cdot e^{-\frac{t}{\tau}}$$
  $t = -\tau \cdot \ln \left( \frac{i_{\text{CA}}}{I_0} \right)$ 

$$t = 0$$
, Umschaltung von  $1 \rightarrow 2$ 

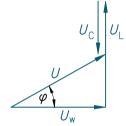
$$I_0 = \frac{U_C}{R}$$

$$u_{\rm C} = U_{\rm C} \cdot {\rm e}^{-{\rm t} \over {\rm \tau}}$$

$$t = -\tau \cdot \ln \left( \frac{u_{\rm C}}{U} \right)$$

$$i_{\mathrm{CE}} = I_{\mathrm{0}} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$$


$$i_{\text{CE}} = I_0 \cdot e^{-\frac{t}{\tau}}$$
  $t = -\tau \cdot \ln \left( \frac{i_{\text{CE}}}{I_0} \right)$ 


| Zeichen                            | Bedeutung                                                    | Einheit                         |
|------------------------------------|--------------------------------------------------------------|---------------------------------|
| С                                  | Elektrische Kapazität                                        | F, $(A \cdot s)/V$ , $s/\Omega$ |
| R                                  | Wirkwiderstand                                               | Ω                               |
| τ                                  | Zeitkonstante                                                | S                               |
| U                                  | Elektrische Spannung der Quelle                              | V                               |
| $u_{\rm c}$                        | Momentanwert der Kondensatorspannung                         | V                               |
| i <sub>CA</sub>                    | Momentanwert des Kondensatorstromes bei der Aufladung        | Α                               |
| i <sub>ce</sub>                    | Momentanwert des Kondensatorstromes bei der Entladung        | Α                               |
| $I_{\scriptscriptstyle 	extsf{O}}$ | Anfangswert des Stromes                                      | Α                               |
| $U_{\rm c}$                        | Höchstwert der Kondensatorspannung                           | V                               |
| $u_{_{\mathrm{R}}}$                | Spannung am Widerstand                                       | V                               |
| е                                  | Eulersche Zahl 2,71828                                       | -                               |
| t                                  | zeitlicher Moment zu dem ein bestimmter Ladezustand herrscht | S                               |

# Schaltung von Wirkwiderstand, induktivem und kapazitivem Blindwiderstand 19

connection of effective resistance, inductive and capacitve reactance

## 19.1 Reihenschaltung (Schaltung mit induktivem Verhalten, $U_1 > U_2$ , $X_1 > X_2$ )





$$U = \sqrt{U_{\rm w}^2 + (U_{\rm l} - U_{\rm c})^2}$$

$$\cos \varphi = \frac{U_{w}}{U}$$

$$\sin \varphi = \frac{U_{L} - U_{C}}{U}$$

$$U = \frac{U_{\rm w}}{\cos \omega}$$

$$U_{w} = U \cdot \cos q$$

$$\tan \varphi = \frac{U_{L} - U_{C}}{U_{W}}$$

$$U_{\rm w} = \sqrt{U^2 - (U_{\rm I} - U_{\rm C})^2}$$

$$U_{L} = \sqrt{U_{w}^{2} + (U_{L} - U_{C})^{2}}$$

$$\cos \varphi = \frac{U_{w}}{U} \qquad U = \frac{U_{w}}{\cos \varphi} \qquad U_{w} = U \cdot \cos \varphi$$

$$\sin \varphi = \frac{U_{L} - U_{C}}{U} \qquad \tan \varphi = \frac{U_{L} - U_{C}}{U_{w}}$$

$$U_{w} = \sqrt{U^{2} - (U_{L} - U_{C})^{2}} \qquad U_{L} = \sqrt{U^{2} - U_{w}^{2}} + U_{C} \qquad U_{C} = U_{L} - \sqrt{U^{2} - U_{w}^{2}}$$

$$Z = \sqrt{R^2 + (X_1 - X_C)^2}$$

$$X_{C}$$
 $X_{C}$ 
 $X_{C}$ 

$$Z^2 = R^2 + (X_{\rm L} - X_{\rm C})^2$$

$$\cos \varphi = \frac{R}{7}$$

$$\sin \varphi = \frac{X_{L} - X_{C}}{Z}$$

$$R = \sqrt{Z^2 - (X_1 - X_2)^2}$$

$$Z = \frac{R}{\cos \alpha}$$

$$\frac{\kappa}{\cos \varphi}$$
  $R =$ 

$$Z^{2} = R^{2} + (X_{L} - X_{C})^{2}$$

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$$

$$\cos \varphi = \frac{R}{Z}$$

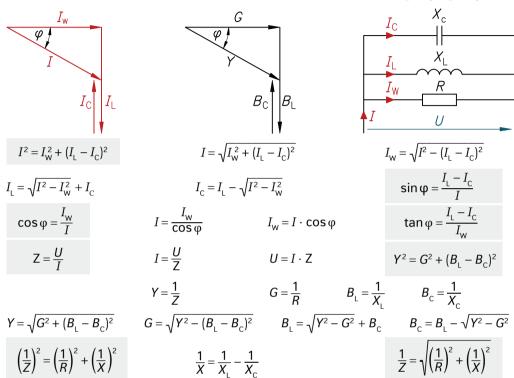
$$Z = \frac{R}{\cos \varphi}$$

$$R = Z \cdot \cos \varphi$$

$$\tan \varphi = \frac{X_{L} - X_{C}}{R}$$

$$R = \sqrt{Z^2 - (X_L - X_C)^2}$$
  $X_L = \sqrt{Z^2 - R^2} + X_C$   $X_C = X_L - \sqrt{Z^2 - R^2}$ 

#### **Anmerkung:**

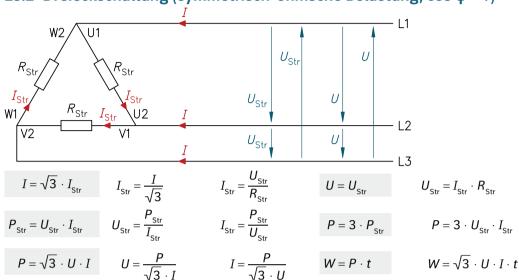

Bei Schaltungen mit kapazitivem Verhalten sind  $U_{\rm L}$  mit  $U_{\rm C}$  und  $X_{\rm L}$  mit  $X_{\rm C}$  in den Klammern zu vertauschen!

| Zeichen                    | Bedeutung                   | Einheit |  |
|----------------------------|-----------------------------|---------|--|
| U                          | Klemmenspannung             | V       |  |
| $U_{w}$                    | Wirkspannung                | V       |  |
| $U_{\scriptscriptstyle L}$ | Blindspannung induktiv      | V       |  |
| $U_{\rm c}$                | Blindspannung kapazitiv     | V       |  |
| I                          | Scheinstrom, Gesamtstrom    | Α       |  |
| Ζ                          | Scheinwiderstand            | Ω       |  |
| R                          | Wirkwiderstand              | Ω       |  |
| $X_{L}$                    | Induktiver Blindwiderstand  | Ω       |  |
| $X_{\rm c}$                | Kapazitiver Blindwiderstand | Ω       |  |
| cosφ                       | Wirkleistungsfaktor         | -       |  |
| sinφ                       | Blindleistungsfaktor        | -       |  |
| tanφ                       | Verlustfaktor               | -       |  |

#### 19 Schaltung von Wirkwiderstand, induktivem und kapazitivem Blindwiderstand

connection of effective resistance, inductive and capacitve reactance

# 19.2 Parallelschaltung von Wirkwiderstand, induktivem und kapazitivem Blindwiderstand (Schaltung mit induktivem Verhalten, $I_L > I_C$ , $B_L > B_C$ )




#### **Anmerkung:**

Bei Schaltungen mit kapazitivem Verhalten sind  $I_{\rm L}$  mit  $I_{\rm C}$  und  $B_{\rm L}$  mit  $B_{\rm C}$  in den Klammern zu vertauschen!

| Zeichen                                                    | Bedeutung                               | Einheit |
|------------------------------------------------------------|-----------------------------------------|---------|
| U                                                          | Elektrische Spannung                    | V       |
| I                                                          | Scheinstrom, Gesamtstrom                | Α       |
| $I_{W}$                                                    | Wirkstrom                               | Α       |
| $I_{\scriptscriptstyle L}$ , $I_{\scriptscriptstyle  m C}$ | Induktiver, Kapazitiver Blindstrom      | Α       |
| Z                                                          | Scheinwiderstand                        | Ω       |
| R                                                          | Wirkwiderstand                          | Ω       |
| X                                                          | Blindwiderstand                         | Ω       |
| $X_{L}, X_{C}$                                             | Induktiver, Kapazitiver Blindwiderstand | Ω       |
| Υ                                                          | Scheinleitwert                          | S       |
| G                                                          | Wirkleitwert                            | S       |
| $B_{\rm L}$ , $B_{\rm C}$                                  | Induktiver, Kapazitiver Blindleitwert   | S       |
| cosφ                                                       | Wirkleistungsfaktor                     | -       |
| sinφ                                                       | Blindleistungsfaktor                    | -       |
| tanφ                                                       | Verlustfaktor                           | -       |

# 23.2 Dreieckschaltung (symmetrisch-ohmsche Belastung, $\cos \varphi = 1$ )

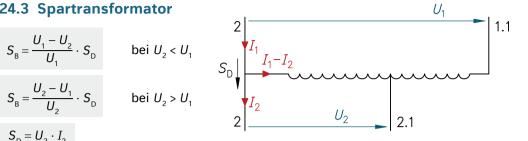


|              | V3 1 V3 0           |         |
|--------------|---------------------|---------|
| Zeichen      | Bedeutung           | Einheit |
| U            | Außenleiterspannung | V       |
| $U_{Str}$    | Strangspannung      | V       |
| I            | Außenleiterstrom    | Α       |
| $I_{Str}$    | Strangstrom         | Α       |
| $R_{ m Str}$ | Strangwiderstand    | Ω       |
| $P_{Str}$    | Strangleistung      | W       |
| P            | Gesamtwirkleistung  | W       |
| W            | Elektrische Arbeit  | Wh      |
| t            | 7eit                | h       |

# 23.3 Leistung des Drehstroms (symmetrische gemischte Belastung, $\phi \neq 0$ )

| $S = \sqrt{3} \cdot U \cdot I$                         | $U = \frac{S}{\sqrt{3} \cdot I}$                    | $I = \frac{S}{\sqrt{3} \cdot U}$                    |                                                     |
|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| $S = \sqrt{P^2 + Q^2}$                                 | $S = \frac{P}{\cos \varphi}$                        | $S = \frac{Q}{\sin \varphi}$                        |                                                     |
| $P = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi$      | $U = \frac{P}{\sqrt{3} \cdot I \cdot \cos \varphi}$ | $I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi}$ | $\cos \varphi = \frac{P}{\sqrt{3} \cdot U \cdot I}$ |
| $P = S \cdot \cos \varphi$                             | $P = \sqrt{S^2 - Q^2}$                              |                                                     | $\cos \varphi = \frac{P}{S}$                        |
| $Q = \sqrt{3} \cdot U \cdot I \cdot \sin \varphi$      | $U = \frac{Q}{\sqrt{3} \cdot I \cdot \sin \varphi}$ | $I = \frac{Q}{\sqrt{3} \cdot U \cdot \sin \varphi}$ |                                                     |
| $Q = S \cdot \sin \varphi \qquad Q = \sqrt{S^2 - P^2}$ | $Q = P \cdot \tan \varphi$                          | $\sin \varphi = \frac{Q}{S}$                        | $\tan \varphi = \frac{Q}{R}$                        |

#### 24.3 Spartransformator


$$S_{\rm B} = \frac{U_1 - U_2}{U_1} \cdot S_{\rm D}$$

$$S_{\rm B} = \frac{U_2 - U_1}{U_2} \cdot S_{\rm D}$$

$$S_D = U_2 \cdot I_2$$

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$

$$U_1 = \frac{U_2 \cdot N_1}{N_2}$$



$$U_2 = \frac{U_1 \cdot N_2}{N}$$

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} \qquad U_1 = \frac{U_2 \cdot N_1}{N_2} \qquad U_2 = \frac{U_1 \cdot N_2}{N_1} \qquad N_1 = \frac{U_1 \cdot N_2}{U_2} \qquad N_2 = \frac{U_2 \cdot N_1}{U_1}$$

$$N_2 = \frac{U_2 \cdot N_1}{U_1}$$

| Zeichen               | Bedeutung        | Einheit | Zeichen        | Bedeutung                      | Einheit |
|-----------------------|------------------|---------|----------------|--------------------------------|---------|
| <i>U</i> <sub>1</sub> | Eingangsspannung | V       | N <sub>1</sub> | Windungszahl der Eingangsseite | -       |
| $U_2$                 | Ausgangsspannung | V       | $N_2$          | Windungszahl der Ausgangsseite | -       |
| <i>l</i> <sub>1</sub> | Eingangsstrom    | Α       | $S_{\rm B}$    | Bauleistung                    | VA      |
| l <sub>2</sub>        | Ausgangsstrom    | Α       | $S_{D}$        | Durchgangsleistung             | VA      |

#### 24.4 Parallelschalten von Transformatoren

### Lastverteilung bei gleichen Kurzschlussspannungen

$$S_1 = \sum S \cdot \frac{S_{N1}}{\sum S_{N1}}$$

$$S_2 = \sum S \cdot \frac{S_{N2}}{\sum S_{N2}}$$

$$S_3 = \sum S \cdot \frac{S_{N3}}{\sum S_{N}}$$

### Lastverteilung bei ungleichen Kurzschlussspannungen

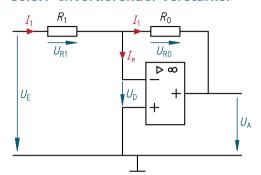
$$u_{K} = \frac{\sum S_{N}}{\frac{S_{N1}}{u_{K1}} + \frac{S_{N2}}{u_{K2}} + \frac{S_{N3}}{u_{K3}}}$$

Bestimmung der Lastanteile, wenn kein Transformator überlastet werden soll.

Hierbei ist als gesamte Kurzschlussspannung die kleinste  $u_{\nu}$  aller Transformatoren in die Formeln einzusetzen.

#### Lastanteile

$$S_{1} = S_{N1} \cdot \frac{u_{K}}{u_{K1}} \cdot \frac{\sum S}{\sum S_{N}}$$


$$S_2 = S_{N2} \cdot \frac{u_K}{u_{K2}} \cdot \frac{\sum S}{\sum S_{N2}}$$

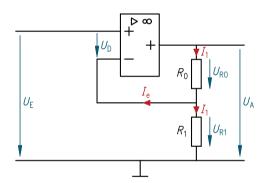
$$S_3 = S_{N3} \cdot \frac{u_K}{u_{K3}} \cdot \frac{\sum S}{\sum S_N}$$

| Zeichen                  | Bedeutung                                            | Einheit |
|--------------------------|------------------------------------------------------|---------|
| $S_1, S_2, S_3$          | Lastabgabe der einzelnen Transformatoren             | VA      |
| $S_{N1}, S_{N2}, S_{N3}$ | Bemessungsleistung der Transformatoren               | VA      |
| $\Sigma S_{N}$           | Summe der Bemessungsleistungen aller Transformatoren | VA      |
| ΣS                       | Summe der Verbraucherleistung                        | VA      |
| $u_{\kappa}$             | Resultierende relative Kurzschlussspannung           | %       |
| $u_{K1}, u_{K2}, u_{K3}$ | Relative Kurzschlussspannung aller Transformatoren   | %       |

#### Operationsverstärker - Grundschaltungen 30.8

#### 30.8.1 Invertierender Verstärker




$$I_{\rm e} \approx 0$$
  $U_{\rm D} \approx 0$ 

$$U_{\rm E} \approx U_{\rm R1}$$
  $U_{\rm A} = -U_{\rm R0}$ 

$$V_{\rm U} = -\frac{U_{\rm A}}{U_{\rm E}} = \frac{U_{\rm R0}}{U_{\rm R1}} = \frac{R_{\rm 0}}{R_{\rm 1}}$$

$$U_{A} = -\frac{R_{0}}{R_{c}} \cdot U_{E}$$

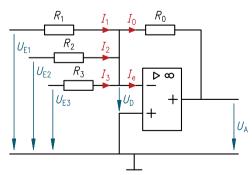
#### 30.8.2 Nichtinvertierender Verstärker



$$I_{\rm e} \approx 0$$
  $U_{\rm D} \approx 0$ 

$$U_{\rm E} \approx U_{\rm R1}$$
  $U_{\rm A} = U_{\rm R0} + U_{\rm R1}$ 

$$V_{\rm U} = \frac{U_{\rm A}}{U_{\rm F}} = \frac{U_{\rm R0} + U_{\rm R1}}{U_{\rm R1}} = \frac{U_{\rm R0}}{U_{\rm R1}} + 1$$


$$V_{U} = \frac{U_{A}}{U_{E}} = \frac{U_{R0} + U_{R1}}{U_{R1}} = \frac{U_{R0}}{U_{R1}} + 1$$

$$\frac{U_{R0}}{U_{R1}} = \frac{R_{0}}{R_{1}}$$

$$V_{U} = \frac{R_{0}}{R_{1}} + 1$$

$$U_{A} = \left(\frac{R_{0}}{R_{1}} + 1\right) U_{E}$$

# 30.8.3 Summierverstärker (Addierer)



$$I_{1} = \frac{U_{E1}}{R_{\bullet}} \qquad I_{0} = \frac{U_{A}}{R_{0}}$$

$$I_2 = \frac{U_{E2}}{R_2} \qquad I_e \approx 0$$

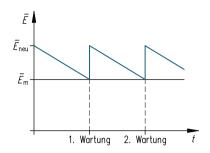
$$I_{3} = \frac{U_{E3}}{R_{3}} \qquad U_{D} \approx 0$$

$$U_{A} \qquad I_{0} = I_{1} + I_{2} + I_{3}$$

$$I_0 = I_1 + I_2 + I_3$$

$$-\frac{U_{A}}{R_{0}} = \frac{U_{E1}}{R_{1}} + \frac{U_{E2}}{R_{2}} + \frac{U_{E3}}{R_{2}}$$

$$U_{A} = -R_{0} \left( \frac{U_{E1}}{R_{1}} + \frac{U_{E2}}{R_{2}} + \frac{U_{E3}}{R_{3}} \right)$$


# 33 Licht- und Beleuchtungstechnik

light engineering

Für die Planung gilt:

 $\overline{E} \ge \overline{E}_{m}$  muss jederzeit eingehalten werden!

$$\overline{E}_{\text{neu}} = \frac{\overline{E}_{\text{m}}}{\text{WF}}$$



Ablauf des Wirkungsgradverfahrens:

| Leuchte, dennoch zunächst mit Lampe weiterrechnen  3. Raumwirkungsgrad $\eta_R$ bestimmen, dazu:  3.1 Berechnung des Raumindex $k = \frac{l \cdot b}{h_{\text{eff}} \cdot (l + b)}  \text{mit}  h_{\text{eff}} = h_R - h_L - h_A$ 3.2 Reflexionsgrad $\varrho$ der Wände, Decke und Boden anhand der Farbe bestimmen Tabellen im Tabellenbuch nutzen!  3.3 Raumwirkungsgrad $\eta_R$ bestimmen Tabellen im Tabellenbuch nutzen, benötigt werden: • Lichtverteilung der Leuchte • Reflexionsgrade $\varrho$ • Raumindex $k$ 4. Leuchten-Betriebswirkungsgrad $\eta_L$ bestimmen Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt  5. Beleuchtungswirkungsgrad $\eta_R$ berechnen                                                                                                                                                           |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <ul> <li>technische Regeln für Arbeitsstätten ASR 3.4</li> <li>2. Lichtstrom einer Lampe Φ<sub>0</sub> bestimmen</li> <li>z. B. aus Datenblatt der Lampe, ggf. befinden sich mehrere Lampen in einer Leuchte, dennoch zunächst mit Lampe weiterrechnen</li> <li>3. Raumwirkungsgrad η<sub>R</sub> bestimmen, dazu:</li> <li>3.1 Berechnung des Raumindex</li> <li>k = (1 · b)/(h<sub>eff</sub> · (l + b)) mit h<sub>eff</sub> = h<sub>R</sub> - h<sub>L</sub> - h<sub>A</sub></li> <li>3.2 Reflexionsgrad ρ der Wände, Decke und Boden anhand der Farbe bestimmen</li></ul>                                                                                                                                                                                                                                                                               |                |
| <ul> <li>z. B. aus Datenblatt der Lampe, ggf. befinden sich mehrere Lampen in einer Leuchte, dennoch zunächst mit Lampe weiterrechnen</li> <li>3. Raumwirkungsgrad η<sub>R</sub> bestimmen, dazu:</li> <li>3.1 Berechnung des Raumindex  k = l · b / h<sub>eff</sub> · (l + b) mit h<sub>eff</sub> = h<sub>R</sub> - h<sub>L</sub> - h<sub>A</sub>  3.2 Reflexionsgrad ρ der Wände, Decke und Boden anhand der Farbe bestimmen  Tabellen im Tabellenbuch nutzen!</li> <li>3.3 Raumwirkungsgrad η<sub>R</sub> bestimmen  Tabellen im Tabellenbuch nutzen, benötigt werden:  • Lichtverteilung der Leuchte  • Reflexionsgrade ρ  • Raumindex k</li> <li>4. Leuchten-Betriebswirkungsgrad η<sub>LB</sub> bestimmen  Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt</li> <li>5. Beleuchtungswirkungsgrad η<sub>B</sub> berechnen</li> </ul> | m              |
| Leuchte, dennoch zunächst mit Lampe weiterrechnen  3. Raumwirkungsgrad $\eta_R$ bestimmen, dazu:  3.1 Berechnung des Raumindex $k = \frac{l \cdot b}{h_{\text{eff}} \cdot (l + b)}  \text{mit}  h_{\text{eff}} = h_R - h_L - h_A$ 3.2 Reflexionsgrad $\varrho$ der Wände, Decke und Boden anhand der Farbe bestimmen Tabellen im Tabellenbuch nutzen!  3.3 Raumwirkungsgrad $\eta_R$ bestimmen Tabellen im Tabellenbuch nutzen, benötigt werden: • Lichtverteilung der Leuchte • Reflexionsgrade $\varrho$ • Raumindex $k$ 4. Leuchten-Betriebswirkungsgrad $\eta_L$ bestimmen Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt  5. Beleuchtungswirkungsgrad $\eta_R$ berechnen                                                                                                                                                           |                |
| <ul> <li>3.1 Berechnung des Raumindex     k = l · b / h<sub>eff</sub> · (l + b) mit h<sub>eff</sub> = h<sub>R</sub> - h<sub>L</sub> - h<sub>A</sub> </li> <li>3.2 Reflexionsgrad ρ der Wände, Decke und Boden anhand der Farbe bestimmen     Tabellen im Tabellenbuch nutzen! </li> <li>3.3 Raumwirkungsgrad η<sub>R</sub> bestimmen     Tabellen im Tabellenbuch nutzen, benötigt werden:     Lichtverteilung der Leuchte     Reflexionsgrade ρ     Raumindex k</li> <li>4. Leuchten-Betriebswirkungsgrad η<sub>LB</sub> bestimmen     Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt</li> <li>5. Beleuchtungswirkungsgrad η<sub>B</sub> berechnen</li> </ul>                                                                                                                                                                          | Þ <sub>o</sub> |
| $k = \frac{l \cdot b}{h_{\text{eff}} \cdot (l + b)} \qquad \text{mit} \qquad h_{\text{eff}} = h_{\text{R}} - h_{\text{L}} - h_{\text{A}}$ $3.2 \text{ Reflexionsgrad } \varrho \text{ der Wände, Decke und Boden anhand der Farbe bestimmen}$ $\text{Tabellen im Tabellenbuch nutzen!}$ $3.3 \text{ Raumwirkungsgrad } \eta_{\text{R}} \text{ bestimmen}$ $\text{Tabellen im Tabellenbuch nutzen, benötigt werden:}$ $\cdot \text{ Lichtverteilung der Leuchte}$ $\cdot \text{ Reflexionsgrade } \varrho$ $\cdot \text{ Raumindex } k$ $4. \text{ Leuchten-Betriebswirkungsgrad } \eta_{\text{LB}} \text{ bestimmen}$ $\text{Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt}$ $5. \text{ Beleuchtungswirkungsgrad } \eta_{\text{B}} \text{ berechnen}$                                                                                  |                |
| Ist abhängig vom Leuchtentyp, siehe Tabellenbuch oder Datenblatt 5. Beleuchtungswirkungsgrad $\eta_B$ berechnen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) <sub>R</sub> |
| 5. Beleuchtungswirkungsgrad η <sub>B</sub> berechnen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| $\eta_{\scriptscriptstyle B} = \eta_{\scriptscriptstyle R} \cdot \eta_{\scriptscriptstyle LB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) <sub>B</sub> |
| 6. Wartungsfaktor WF (MF) festlegen (Kehrwert des Planungsfaktors <i>p</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Festlegung über Pauschalwerte oder individuelle Berechnung Pauschalwerte nach Verschmutzungsgrad: kaum: WF = 0,8; normal: WF = 0,67; erhöht: WF = 0,57; stark: WF = 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /F             |
| 7. Benötigte Anzahl der Lampen berechnen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| $n = \frac{\overline{E}_{m} \cdot l \cdot b}{\Phi_{0} \cdot \eta_{B} \cdot WF}$ Achtung: In einer Leuchte können mehrere Lampen installiert sein!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n              |